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Abstract
The semantic image segmentation task consists of classifying each pixel of an image into 
an instance, where each instance corresponds to a class. This task is a part of the concept 
of scene understanding or better explaining the global context of an image. In the medical 
image analysis domain, image segmentation can be used for image-guided interventions, 
radiotherapy, or improved radiological diagnostics. In this review, we categorize the lead-
ing deep learning-based medical and non-medical image segmentation solutions into six 
main groups of deep architectural, data synthesis-based, loss function-based, sequenced 
models, weakly supervised, and multi-task methods and provide a comprehensive review 
of the contributions in each of these groups. Further, for each group, we analyze each vari-
ant of these groups and discuss the limitations of the current approaches and present poten-
tial future research directions for semantic image segmentation.

Keywords  Semantic image segmentation · Deep learning

Saeid Asgari Taghanaki and Kumar Abhishek Joint first authors.

Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s1046​
2-020-09854​-1) contains supplementary material, which is available to authorized users.

 *	 Saeid Asgari Taghanaki 
	 sasgarit@sfu.ca

	 Kumar Abhishek 
	 kabhishe@sfu.ca

	 Joseph Paul Cohen 
	 joseph@josephpcohen.com

	 Julien Cohen‑Adad 
	 jcohen@polymtl.ca

	 Ghassan Hamarneh 
	 hamarneh@sfu.ca

1	 School of Computing Science, Simon Fraser University, Burnaby, Canada
2	 Mila, Université de Montréal, Montreal, Canada
3	 NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-020-09854-1&domain=pdf
https://doi.org/10.1007/s10462-020-09854-1
https://doi.org/10.1007/s10462-020-09854-1


138	 S. Asgari Taghanaki et al.

1 3

1  Introduction

Deep learning has had a tremendous impact on various fields in science. The focus of the 
current study is on one of the most critical areas of computer vision: medical image analy-
sis (or medical computer vision), particularly deep learning-based approaches for medical 
image segmentation. Segmentation is an important processing step in natural images for 
scene understanding and medical image analysis, for image-guided interventions, radio-
therapy, or improved radiological diagnostics, etc. Image segmentation is formally defined 
as “the partition of an image into a set of nonoverlapping regions whose union is the entire 
image”  (Haralick and Shapiro 1992). A plethora of deep learning approaches for medi-
cal image segmentation have been introduced in the literature for different medical imag-
ing modalities, including X-ray, visible-light imaging (e.g. colour dermoscopic images), 
magnetic resonance imaging (MRI), positron emission tomography (PET), computer-
ized tomography (CT), and ultrasound (e.g. echocardiographic scans). Deep architectural 
improvement has been a focus of many researchers for different purposes, e.g., tackling 
gradient vanishing and exploding of deep models, model compression for efficient small 
yet accurate models, while other works have tried to improve the performance of deep net-
works by introducing new optimization functions.

Guo et al. (2018) provided a review of deep learning based semantic segmentation of 
images, and divided the literature into three categories: region-based, fully convolutional 
network (FCN)-based, and weakly supervised segmentation methods. Hu et  al. (2018b) 
summarized the most commonly used RGB-D datasets for semantic segmentation as well 
as traditional machine learning based methods and deep learning-based network architec-
tures for RGB-D segmentation. Lateef and Ruichek (2019) presented an extensive survey 
of deep learning architectures, datasets, and evaluation methods for the semantic segmenta-
tion of natural images using deep neural networks. Similarly, for medical imaging, Goceri 
and Goceri (2017) presented an high-level overview of deep learning-based medical image 
analysis techniques and application areas. Hesamian et al. (2019) presented an overview of 
the state-of-the-art methods in medical image segmentation using deep learning by cover-
ing the literature related to network structures and model training techniques. Karimi et al. 
(2019) reviewed the literature on techniques to handle label noise in deep learning based 
medical image analysis and evaluated existing approaches on three medical imaging data-
sets for segmentation and classification tasks. Zhou et  al. (2019b) presented a review of 
techniques proposed for fusion of medical images from multiple modalities for medical 
image segmentation. Goceri (2019a) discussed the fully supervised, weakly supervised and 
transfer learning techniques for training deep neural networks for segmentation of medi-
cal images, and also discussed the existing methods for addressing the problems of lack 
of data and class imbalance. Zhang et al. (2019) presented a review of the approaches to 
address the problem of small sample sizes in medical image analysis, and divided the lit-
erature into five categories including explanation, weakly supervised, transfer learning, and 
active learning techniques. Tajbakhsh et al. (2020) presented a review of the literature for 
addressing the challenges of scarce annotations as well as weak annotations (e.g., noisy 
annotations, image-level labels, sparse annotations, etc.) in medical image segmentation. 
Similarly, there are several surveys covering the literature on the task of object detec-
tion (Wang et al. 2019c; Zou et al. 2019; Borji et al. 2019; Liu et al. 2019b; Zhao et al. 
2019), which can also be used to obtain what can be termed as rough localizations of the 
object(s) of interest. In contrast to the existing surveys, we make the following contribu-
tions in this review:
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•	 We provide comprehensive coverage of research contributions in the field of semantic 
segmentation of natural and medical images. In terms of medical imaging modalities, 
we cover the literature pertaining to both 2D (RGB and grayscale) as well as volumetric 
medical images.

•	 We group the semantic image segmentation literature into six different categories based 
on the nature of their contributions: architectural improvements, optimization function 
based improvements, data synthesis based improvements, weakly supervised models, 
sequenced models, and multi-task models. Figure 1 indicates the categories we cover 
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(b)A timeline of the various contributions in deep learning based semantic segmentation of natural
    and medical images. The contributions are colored according to their topics in (a) above.

Fig. 1   An overview of the deep learning based segmentation methods covered in this review
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in this review, along with a timeline of the most influential papers in the respective 
categories. Moreover, Fig.  2 shows a high-level overview of the deep semantic seg-
mentation pipeline, and where each of the categories mentioned in Fig. 1 belong in the 
pipeline.

•	 We study the behaviour of many popular loss functions used to train segmentation 
models on handling scenarios with varying levels of false positive and negative predic-
tions.

•	 Followed by the comprehensive review, we recognize and suggest the important 
research directions for each of the categories.

In the following sections, we discuss deep semantic image segmentation improve-
ments under different categories visualized in Fig.  1. For each category, we first review 
the improvements on non-medical datasets, and in a subsequent section, we survey the 
improvements for medical images.

2 � Network architectural improvements

This section discusses the advancements in semantic image segmentation using convolu-
tional neural networks (CNNs), which have been applied to interpretation tasks on both 
natural and medical images  (Garcia-Garcia et  al. 2018; Litjens et  al. 2017). Although 
artificial neural network-based image segmentation approaches have been explored in 
the past using shallow networks (Reddick et al. 1997; Kuntimad and Ranganath 1999) as 
well as works which relied on superpixel segmentation maps to generate pixelwise predic-
tions (Couprie et al. 2013), in this work, we focus on deep neural network based image seg-
mentation models which are end-to-end trainable. The improvements are mostly attributed 
to exploring new neural architectures (with varying depths, widths, and connectivity or 
topology) or designing new types of components or layers.
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2.1 � Fully convolutional neural networks for semantic segmentation

As one of the first high impact CNN-based segmentation models, Long et  al. (2015) 
proposed fully convolutional networks for pixel-wise labeling. They proposed up-sam-
pling (deconvolving) the output activation maps from which the pixel-wise output can 
be calculated. The overall architecture of the network is visualized in Fig. 3.

In order to preserve the contextual spatial information within an image as the filtered 
input data progresses deeper into the network, Long et al. (2015) proposed to fuse the 
output with shallower layers’ output. The fusion step is visualized in Fig. 4.

2.2 � Encoder‑decoder semantic image segmentation networks

Next, encoder-decoder segmentation networks (Noh et al. 2015) such as SegNet, were 
introduced (Badrinarayanan et al. 2015). The role of the decoder network is to map the 
low-resolution encoder feature to full input resolution feature maps for pixel-wise clas-
sification. The novelty of SegNet lies in the manner in which the decoder upsamples 
the lower resolution input feature maps. Specifically, the decoder uses pooling indices 
(Fig.  5) computed in the max-pooling step of the corresponding encoder to perform 
non-linear upsampling. The architecture (Fig.  5) consists of a sequence of non-linear 
processing layers (encoder) and a corresponding set of decoder layers followed by a 
pixel-wise classifier. Typically, each encoder consists of one or more convolutional lay-
ers with batch normalization and a ReLU non-linearity, followed by non-overlapping 
max-pooling and sub-sampling. The sparse encoding due to the pooling process is 
upsampled in the decoder using the max-pooling indices in the encoding sequence.

Fig. 3   Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like 
semantic segmentation (Long et al. 2015)

Pool3 Pool4 Pool5

32x up-sampled 
prediction (FCN-32s)

16x up-sampled 
prediction (FCN-32s)

8x up-sampled 
prediction (FCN-32s)

2x up-sampled 
prediction

2x up-sampled 
prediction

Fig. 4   Upsampling and fusion step of the fully convolution networks (Long et al. 2015)
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Ronneberger et  al. (2015) proposed an architecture (U-Net; Fig.  6) consisting of a 
contracting path to capture context and a symmetric expanding path that enables pre-
cise localization. Similar to the image recognition  (He et  al. 2016) and keypoint 

Fig. 5   Top An illustration of the SegNet architecture. There are no fully connected layers, and hence it 
is only convolutional. Bottom An illustration of SegNet and FCN (Long et al. 2015) decoders. a, b, c, d 
correspond to values in a feature map. SegNet uses the max-pooling indices to upsample (without learn-
ing) the feature map(s) and convolves with a trainable decoder filter bank. FCN upsamples by learning to 
deconvolve the input feature map and adds the corresponding encoder feature map to produce the decoder 
output. This feature map is the output of the max-pooling layer (includes sub-sampling) in the correspond-
ing encoder. Note that there are no trainable decoder filters in FCN ( Badrinarayanan et al. (2015))

Fig. 6   An illustration of the U-Net (Ronneberger et al. 2015) architecture
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detection (Honari et al. 2016), Ronneberger et al. (2015) added skip connections to the 
encoder-decoder image segmentation networks, e.g., SegNet, which improved the mod-
el’s accuracy and addressed the problem of vanishing gradients.

Milletari et al. (2016) proposed a similar architecture (V-Net; Fig. 7) which added resid-
ual connections and replaced 2D operations with their 3D counterparts in order to process 
volumetric images. Milletari et al. also proposed optimizing for a widely used segmenta-
tion metric, i.e., Dice, which will be discussed in more detail in the Sect. 4.

Jégou et al. (2017) developed a segmentation version of the densely connected networks 
architecture (DenseNet ( Huang et al. (2017)) by adapting the U-Net like encoder-decoder 
skeleton. In Fig. 8, the detailed architecture of the network is visualized.

In Fig.  9, we visualize the simplified architectural modifications applied to the first 
image segmentation network i.e. FCN.

Several modified versions (e.g. deeper/shallower, adding extra attention blocks) of 
encoder-decoder networks have been applied to semantic segmentation (Amirul Islam et al. 
2017; Fu et al. 2019b; Lin et al. 2017a; Peng et al. 2017; Pohlen et al. 2017; Wojna et al. 
2017; Zhang et al. 2018d). Recently in 2018, DeepLabV3+ (Chen et al. 2018b) has outper-
formed many state-of-the-art segmentation networks on PASCAL VOC 2012 (Everingham 
et al. 2015) and Cityscapes (Cordts et al. 2016) datasets. Zhao et al. (2017b) modified the 
feature fusing operation proposed by Long et al. (2015) using a spatial pyramid pooling 
module or encode-decoder structure (Fig. 10) are used in deep neural networks for seman-
tic segmentation tasks. The spatial pyramid networks are able to encode multi-scale con-
textual information by probing the incoming features with filters or pooling operations at 
multiple rates and multiple effective fields-of-view, while the latter networks can capture 
sharper object boundaries by gradually recovering the spatial information.

Fig. 7   An illustration of the V-Net (Milletari et al. 2016) architecture
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Chen et al. (2018b) proposed to combine the advantages from both dilated convolutions 
and feature pyramid pooling. Specifically, DeepLabv3+, extends DeepLabv3 (Chen et al. 
2017b) by adding a simple yet effective decoder module (Fig. 11) to refine the segmen-
tation results, especially along object boundaries using dilated convolutions and pyramid 
features.

Fig. 8   Diagram of the one-hundred layers Tiramisu network architecture (Jégou et al. 2017). The architec-
ture is built from dense blocks. The architecture is composed of a downsampling path with two transitions 
down and an upsampling path with two transitions up. A circle represents concatenation, and the arrows 
represent connectivity patterns in the network. Gray horizontal arrows represent skip connections, where 
the feature maps from the downsampling path are concatenated with the corresponding feature maps in 
the upsampling path. Note that the connectivity pattern in the upsampling and the downsampling paths are 
different. In the downsampling path, the input to a dense block is concatenated with its output, leading to 
linear growth of the number of feature maps, whereas in the upsampling path, it is not the case

Fig. 9   Gradual architectural improvements applied to FCN (Long et al. 2015) over time



145Deep semantic segmentation of natural and medical images: a…

1 3

2.3 � Computational complexity reduction for image segmentation networks

Several works have been done on reducing the time and the computational complexity of 
deep classification networks (Howard et al. 2017; Leroux et al. 2018). A few other works have 
attempted to simplify the structure of deep networks, e.g., by tensor factorization (Kim et al. 
2015), channel/network pruning (Wen et al. 2016), or applying sparsity to connections (Han 
et al. 2016). Similarly, Yu et al. (2018b) addressed the high computational cost associated with 
high resolution feature maps in U-shaped architectures by proposing spatial and context paths 

Fig. 10   Overview of the pyramid scene parsing networks. Given an input image (a), feature maps from last 
convolution layer are pulled (b), then a pyramid parsing module is applied to harvest different sub-region 
representations, followed by upsampling and concatenation layers to form the final feature representation, 
which carries both local and global context information in c. Finally, the representation is fed into a convo-
lution layer to get the final per-pixel prediction (d) Zhao et al. (2017b)

Fig. 11   An illustration of the DeepLabV3+; The encoder module encodes multi-scale contextual informa-
tion by applying atrous (dilated) convolution at multiple scales, while the simple yet effective decoder mod-
ule refines the segmentation results along object boundaries (Chen et al. 2018b)
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to preserve the rich spatial information and obtain a large receptive field. A few methods have 
focused on the complexity optimization of deep image segmentation networks. Similar to the 
work of Saxena and Verbeek (2016), Liu et al. (2019a) proposed a hierarchical neural archi-
tecture search for semantic image segmentation by performing both cell and network-level 
search and achieved comparable results to the state-of-the-art results on the PASCAL VOC 
2012 (Everingham et al. 2015) and Cityscapes (Cordts et al. 2016) datasets. In contrast, Chen 
et  al. (2018a) focused on searching the much smaller atrous spatial pyramid pooling mod-
ule using random search. Depth-wise separable convolutions (Sifre 2014; Chollet 2017) offer 
computational complexity reductions since they have fewer parameters and have therefore also 
been used in deep segmentation models (Chen et al. 2018b; Sandler et al. 2018).

Besides network architecture search, Srivastava et  al. (2015) modified ResNet in a way 
to control the flow of information through a connection. Lin et al. (2017a) adopted one step 
fusion without filtering the channels.

2.4 � Attention‑based semantic image segmentation

Attention can be viewed as using information transferred from several subsequent layers/
feature maps to select and localize the most discriminative (or salient) part of the input sig-
nal. Wang et al. (2017a) added an attention module to the deep residual network (ResNet) for 
image classification. Their proposed attention module consists of several encoding-decoding 
layers. Hu et al. (2018a) proposed a selection mechanism where feature maps are first aggre-
gated using global average pooling and reduced to a single channel descriptor. Then an activa-
tion gate is used to highlight the most discriminative features.  Wang et al. (2018b) proposed 
non-local operation blocks for encoding long range spatio-temporal dependencies with deep 
neural networks that can be plugged into existing architectures. Fu et  al. (2019a) proposed 
dual attention networks that apply both spatial and channel-based attention operations.

Li et al. (2018) proposed a pyramid attention based network, for semantic segmentation. 
They combined an attention mechanism and a spatial pyramid to extract precise dense features 
for pixel labeling instead of complicated dilated convolution and artificially designed decoder 
networks. Chen et al. (2016) applied attention to DeepLab (Chen et al. 2017a) which takes 
multi-scale inputs.

2.5 � Adversarial semantic image segmentation

Goodfellow et al. (2014) proposed an adversarial approach to learn deep generative models. 
Their generative adversarial networks (GANs) take samples z from a fixed (e.g., standard 
Gaussian) distribution pz(z) , and transform them using a deterministic differentiable deep net-
work p(.) to approximate the distribution of training samples x. Inspired by adversarial learn-
ing, Luc et al. (2016) trained a convolutional semantic segmentation network along with an 
adversarial network that discriminates segmentation maps coming either from the ground 
truth or from the segmentation network. Their loss function is defined as

(1)
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where �s and �a denote the parameters of the segmentation and adversarial model, respec-
tively. lbce and lmce are binary and multi-class cross-entropy losses, respectively. In this 
setup, the segmentor tries to produce segmentation maps that are close to the ground truth, 
i.e., which look more realistic.

The main models being used for image segmentation mostly follow encoder-decoder 
architectures as U-Net. Recent approaches have shown that dilated convolutions and fea-
ture pyramid pooling can improve the U-Net style networks. In Sect. 3, we summarize how 
these methods and their modified counterparts have been applied to medical images.

3 � Architectural improvements applied to medical images

In this section, we review the different architectural based improvements for deep learning-
based 2D and volumetric medical image segmentation.

3.1 � Model compression based image segmentation

To perform image segmentation in real-time and be able to process larger images or (sub) 
volumes in case of processing volumetric and high-resolution 2D images such as CT, 
MRI, and histopathology images, several methods have attempted to compress deep mod-
els. Weng et  al. (2019a) applied a neural architecture search method to U-Net to obtain 
a smaller network with a better organ/tumor segmentation performance on CT, MR, and 
ultrasound images. Brügger et al. (2019) by leveraging group normalization (Wu and He 
2018) and leaky ReLU function, redesigned the U-Net architecture in order to make the 
network more memory efficient for 3D medical image segmentation. Perone et al. (2018) 
and Bonta and Kiran (2019) designed a dilated convolution neural network with fewer 
parameters as compared to the original convolution-based one. Some other works (Xu et al. 
2018; Paschali et al. 2019) have focused on weight quantization of deep networks for mak-
ing segmentation networks smaller.

3.2 � Encoder decoder based image segmentation

Drozdzal et al. (2018) proposed to normalize input images before segmentation by apply-
ing a simple CNN prior to pushing the images to the main segmentation network. They 
showed improved results on electron microscopy segmentation, liver segmentation from 
CT, and prostate segmentation from MRI scans. Gu et al. (2019) proposed using a dilated 
convolution block close to the network’s bottleneck to preserve contextual information.

Vorontsov et  al. (2019), using a dataset defined in Cohen et  al. (2018), proposed an 
image-to-image based framework to transform an input image with object of interest (pres-
ence domain) like a tumor to an image without the tumor (absence domain) i.e. translate 
diseased image to healthy; next, their model learns to add the removed tumor to the new 
healthy image. This results in capturing detailed structure from the object, which improves 
the segmentation of the object. Zhou et al. (2018) proposed a rewiring method for the long 
skip connections used in U-Net and tested their method on nodule segmentation in the low-
dose CT scans of the chest, nuclei segmentation in the microscopy images, liver segmenta-
tion in abdominal CT scans, and polyp segmentation in colonoscopy videos.
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3.3 � Attention based image segmentation

Nie et  al. (2018) designed an attention model to segment prostate from MRI images with 
higher accuracy compared to baseline models, e.g., V-Net  (Milletari et  al. 2016) and 
FCN (Long et al. 2015). Sinha and Dolz (2019) proposed a multi-level attention based archi-
tecture for abdominal organ segmentation from MRI images. Qin et  al. (2018) proposed a 
dilated convolution base block to preserve more detailed attention in 3D medical image seg-
mentation. Similarly, other papers (Lian et al. 2018; Isensee et al. 2019; Li et al. 2019b; Ni 
et al. 2019; Oktay et al. 2018; Schlemper et al. 2019) have leveraged the attention concept into 
medical image segmentation as well.

3.4 � Adversarial training based image segmentation

Khosravan et al. (2019) proposed an adversarial training framework for pancreas segmenta-
tion from CT scans. Son et al. (2017) applied GANs for retinal image segmentation. Xue et al. 
(2018) used a fully convolutional network as a segmenter in the generative adversarial frame-
work to segment brain tumors from MRI images. Other papers (Costa et al. 2017; Dai et al. 
2018; Jin et al. 2018; Moeskops et al. 2017; Neff et al. 2017; Rezaei et al. 2017; Yang et al. 
2017a; Zhang et al. 2017) have also successfully applied adversarial learning to medical image 
segmentation.

3.5 � Sequenced models

The Recurrent Neural Network (RNN) was designed for handling sequences. The long short-
term memory (LSTM) network is a type of RNN that introduces self-loops to enable the gra-
dient flow for long duration (Hochreiter and Schmidhuber 1997). In the medical image analy-
sis domain, RNNs have been used to model the temporal dependency in image sequences. 
Bai et al. (2018) proposed an image sequence segmentation algorithm by combining a fully 
convolutional network with a recurrent neural network, which incorporates both spatial and 
temporal information into the segmentation task. Similarly, Gao et al. (2018) applied LSTM 
and CNN to model temporal relationship in brian MRI slices to improve segmentation perfor-
mance in 4D volumes. Li et al. (2019a) applied U-Net to obtain initial segmentation probabil-
ity maps and further improve them using LSTM for pancreas segmentation from 3D CT scans. 
Similarly, other works have also applied RNNs (LSTMs)  (Alom et  al. 2019; Chakravarty 
and Sivaswamy 2018; Yang et al. 2017b; Zhao and Hamarneh 2019a, b) to medical image 
segmentation.

4 � Optimization function based improvements

In addition to improved segmentation speed and accuracy using architectural modifications as 
mentioned in Sect. 2, designing new loss functions has also resulted in improvements in sub-
sequent inference-time segmentation accuracy.
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4.1 � Cross entropy

The most commonly used loss function for the task of image segmentation is a pixel-
wise cross entropy loss (Eq.  2). This loss examines each pixel individually, compar-
ing the class predictions vector to the one-hot encoded target (or ground truth) vec-
tor. For the case of binary segmentation, let P(Y = 0) = p and P(Y = 1) = 1 − p . The 
predictions are given by the logistic/sigmoid function P(Ŷ = 0) =

1

1+e−x
= p̂ and 

P(Ŷ = 1) = 1 −
1

1+e−x
= 1 − p̂ , where x is output of network. Then cross entropy (CE) 

can be defined as:

The general form of the equation for multi-region (or multi-class) segmentation can be 
written as:

4.2 � Weighted cross entropy

The cross-entropy loss evaluates the class predictions for each pixel vector individu-
ally and then averages over all pixels, which implies equal learning to each pixel in the 
image. This can be problematic if the various classes have unbalanced representation 
in the image, as the most prevalent class can dominate training. Long et al. (2015) dis-
cussed weighting the cross-entropy loss (WCE) for each class in order to counteract a 
class imbalance present in the dataset. WCE was defined as:

To decrease the number of false negatives, � is set to a value larger than 1, and to decrease 
the number of false positives � is set to a value smaller than 1. To weight the negative pix-
els as well, the following balanced cross-entropy (BCE) can be used (Xie and Tu 2015).

Ronneberger et al. (2015) added a distance function to the cross-entropy function to enforce 
learning distance between the components to enforce better segmentation in case of having 
very close objects to each other as follows:

where d1(x) and d2(x) are two functions that calculate the distance to the border of nearest 
and second cells in their cell segmentation problem.

(2)CE(p, p̂) = −(p log(p̂) + (1 − p) log(1 − p̂)).

(3)CE = −
∑
classes

p log p̂

(4)WCE(p, p̂) = −(𝛽p log(p̂) + (1 − p) log(1 − p̂)).

(5)BCE(p, p̂) = −(𝛽p log(p̂) + (1 − 𝛽)(1 − p) log(1 − p̂)).

(6)BCE(p, p̂) + w0 ⋅ exp

(
−

(
d1(x) + d2(x)

)2
2𝜎2

)
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4.3 � Focal loss

To reduce the contribution of easy examples so that the CNN focuses more on the dif-
ficult examples, Lin et al. (2017b) added the term (1 − p̂)𝛾 to the cross entropy loss as:

Setting � = 0 in this equation yields the BCE loss.

4.4 � Overlap measure based loss functions

4.4.1 � Dice loss/F1 score

Another popular loss function for image segmentation tasks is based on the Dice coef-
ficient, which is essentially a measure of overlap between two samples and is equivalent 
to the F1 score. This measure ranges from 0 to 1, where a Dice coefficient of 1 denotes 
perfect and complete overlap. The Dice coefficient (DC) is calculated as:

Similarly, the Jaccard metric (intersection over union: IoU) is computed as:

where X and Y are the predicted and ground truth segmentation, respectively. TP is the true 
positives, FP false positives and FN false negatives. We can see that DC ≥ IoU.

To use this as a loss function the DC can be defined as a Dice loss (DL) func-
tion (Milletari et al. 2016):

where p ∈ {0, 1}n and 0 ≤ p̂ ≤ 1 . p and p̂ are the ground truth and predicted segmentation 
and ⟨⋅, ⋅⟩ denotes dot product.

4.4.2 � Tversky loss

Tversky loss (TL) (Salehi et al. 2017) is a generalization of the DL. To control the level 
of FP and FN, TL weights them as the following:

setting � = 0.5 simplifies the equation to Eq. 10.

(7)FL(p, p̂) = −(𝛼(1 − p̂)𝛾p log(p̂) +(1 − 𝛼)p̂𝛾 (1 − p) log(1 − p̂)).

(8)DC =
2TP

2TP + FP + FN
=

2|X ∩ Y|
|X| + |Y| .

(9)IoU =
TP

TP + FP + FN
=

|X ∩ Y|
|X| + |Y| − |X ∩ Y|

(10)DL(p, p̂) =
2⟨p, p̂⟩

‖p‖1 + ‖p̂‖1

(11)TL(p, p̂) =
⟨p, p̂⟩

⟨p, p̂⟩ + 𝛽(1 − p, p̂⟩ + (1 − 𝛽)(p, 1 − p̂)
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4.4.3 � Exponential logarithmic loss

Wong et al. (2018) proposed using a weighted sum of the exponential logarithmic Dice 
loss ( Leld ) and the weighted exponential cross-entropy loss ( Lwece ) in order to improve 
the segmentation accuracy on small structures for tasks where there is a large variability 
among the sizes of the objects to be segmented.

where

x, i, and l denote the pixel position, the predicted label, and the ground truth label. Di 
denotes the smoothed Dice loss (obtained by adding an � = 1 term to the numerator and 
denominator in Eq. 10 in order to handle missing labels while training, and �D and �CE are 
used to control the non-linearities of the respective loss functions.

4.4.4 � Lovász‑softmax loss

Since it has been shown that the Jaccard loss (IoU loss) is submodular (Berman et al. 2018a), 
Berman et al. (2018b) proposed using the Lovász hinge with the Jaccard loss for binary seg-
mentation, and proposed a surrogate of the Jaccard loss, called the Lovász-Softmax loss, 
which can be applied for the multi-class segmentation task. The Lovász-Softmax loss is, 
therefore, a smooth extension of the discrete Jaccard loss, and is defined as

where ΔJc
(⋅) denotes the convex closure of the submodular Jaccard loss, ⋅ denotes that it 

is a tight convex closure and polynomial time computable, C denotes all the classes, and Jc 
and m(c) denote the Jaccard index and the vector of errors for class c respectively.

4.4.5 � Boundary loss

Kervadec et al. (2019a) proposed to calculate boundary loss LB along with the generalized 
Dice loss LGD function as

where the two terms in the loss function are defined as

(12)L = weldLeld + wweceLwece,

(13)Leld =�
[(
− ln (Di)

)�D], and

(14)Lwece =�
[(
− ln (pl(�))

)�CE ].

(15)LLovaszSoftmax =
1

|C|
∑
c∈C

ΔJc
(m(c)),

(16)�LGD(�) + (1 − �)LB(�),

(17)LGD(�) =1 − 2
wG

∑
p∈Ω g(p)s�(p) + wB

∑
p∈Ω(1 − g(p))

�
1 − s�(p)

�

wG

∑
p∈Ω

�
s�(p) + g(p)

�
+ wB

∑
p∈Ω

�
2 − s�(p) − g(p)

� , and

(18)LB(�) =p ∈ Ω�G(p)s�(p),
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where �G(p) = −‖‖p − z�G(p)
‖‖ if p ∈ G and �G(p) =

‖‖p − z�G(p)
‖‖ , otherwise. The general 

form integral 
∑

Ω g(p)f
�
s�(p)

�
 is for foreground and 

∑
Ω(1 − g(p))f

�
1 − s�(p)

�
 for back-

ground. wG = 1∕
�∑

p∈Ω g(p)
�2

 and wB = 1∕
�∑

Ω(1 − g(p))
�2
.Ω shows the spatial domain.

4.4.6 � Conservative loss

Zhu et al. (2018) proposed the Conservative Loss for in order to achieve a good generaliza-
tion ability in domain adaptation tasks by penalizing the extreme cases and encouraging 
the moderate cases. The Conservative Loss is defined as

where pt is the probability of the prediction towards the ground truth and a is the base of 
the logarithm. a and � are empirically chosen to be e (Euler’s number) and 5 respectively.

Other works also include approaches to optimize the segmentation metrics  (Nowozin 
2014), weighting the loss function (Roy et al. 2017), and adding regularizers to loss func-
tions to encode geometrical and topological shape priors (BenTaieb and Hamarneh 2016; 
Mirikharaji and Hamarneh 2018).

A significant problem in image segmentation (particularly in medical images) is to over-
come class imbalance for which overlap measure based methods have shown reasonably 
good performance in overcoming the imbalance. In Sect. 5, we summarize the approaches 
which use new loss functions, particularly for medical image segmentation or use the 
(modified) loss functions mentioned above.

In Fig.  12, we visualize the behavior of different loss functions for segmenting large 
and small objects. For the parameters of the loss functions, we use the same parameters 
as reported by the authors in their respective papers. Therefore, we use � = 0.3 in Eq. 11, 
� = 0.25 and � = 2 in Eq. 7, and �D = �CE = 1 , weld = 0.8 , and wwece = 0.2 in Eq. 12. Mov-
ing from the left to the right for each plot, the overlap of the predictions and ground truth 
mask becomes progressively smaller, i.e., producing more false positives and false nega-
tives. Ideally, the loss value should monotonically increase as more false positives, and 

(19)CL(pt) = �(1 + loga(pt))
2 ∗ loga(− loga(pt)),

Fig. 12   A comparison of seven loss functions for different extends of overlaps for a large (left) and a small 
(right) object
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negatives are predicted. For large objects, almost all the functions follow this assumption; 
however, for the small objects (right plot), only combo loss and focal loss penalize mono-
tonically more for larger errors. In other words, the overlap-based functions highly fluctu-
ate while segmenting small and large objects (also see Fig. 13), which results in unstable 
optimization. The loss functions which use cross-entropy as the base and the overlap meas-
ure functions as a weighted regularizer show more stability during training.

5 � Optimization function based improvements applied to medical 
images

The standard CE loss function and its weighted versions, as discussed in Sect. 4, have been 
applied to numerous medical image segmentation problems (Isensee et al. 2019; Li et al. 
2019b; Lian et al. 2018; Ni et al. 2019; Nie et al. 2018; Oktay et al. 2018; Schlemper et al. 
2019). However, Milletari et  al. (2016) found that optimizing CNNs for DL (Eq. 10) in 
some cases, e.g., in the case of having very small foreground objects in a large background, 
works better than the original cross-entropy.

Li et al. (2019c) proposed adding the following regularization term to the cross entropy 
loss function to encourage smooth segmentation outputs.

where �′ and � are different perturbation (e.g., Gaussian noise, network dropout, and rand-
omized data transformation) applied to the input image xi.

Chen et al. (2019) proposed leveraging traditional active contour energy minimization 
into CNNs via the following loss function.

(20)R =

N∑
i=1

��� ,�
‖‖‖f
(
xi;�, �

�
)
− f

(
xi;�, �

)‖‖‖
2

Fig. 13   Comparison of cross entropy and Dice losses for segmenting small and large objects. The red pixels 
show the ground truth and the predicted foregrounds in the left and right columns respectively. The striped 
and the pink pixels indicate false negative and false positive, respectively. For the top row (i.e., large fore-
ground), the Dice loss returns 0.96 for one false negative and for the bottom row (i.e., small object) returns 
0.66 for one false negative, whereas the cross entropy loss function outputs 0.83 for both the cases. By con-
sidering a false negative and false positive, the output value drops even more in case of using Dice but the 
cross entropy stays smooth (i.e., Dice value of 0.93 and 0.50 for large and small object versus cross entropy 
loss value of 1.66 for both.)
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where x and y from uxi,j and uyi,j are horizontal and vertical directions, respectively.

where u and v are represented as prediction and a given image, respectively. c1 is set to 1 
and c2 to 0. Similar to, Li et al. (2019c), Zhou et al. (2019a) proposed adding a contour 
regression term to the weighted cross entropy loss function.

Karimi and Salcudean (2019) optimized Hausdorff distance based function between a pre-
dicted and ground truth segmentation as follows.

where the second term is the Dice loss function and the first term can be replaced with 
three different versions of the Hausdorff distance for p and q i.e. ground truth and predicted 
segmentations respectively, as follows;

The parameter � determines the level of penalty for larger errors. dp is the distance map of 
the ground-truth segmentation as the unsigned distance to the boundary �p . Similarly, dq is 
defined as the distance to �q . The ◦ is Hadamard operation.

where ⊖k denotes k successive erosions. where

where fq�p = (p − q)2q . fs indicates soft thresholding. Br denotes a circular-shaped con-
volutional kernel of radius r. Elements of Br are normalized such that they sum to one. 
p
C
= 1 − p . Ground-truth and predicted segmentations, denoted with p and q,

(21)Loss =Length + � ⋅ Region

(22)Length =

i=1,j=1∑
Ω

√
||||
(
∇uxi,j

)2

+
(
∇uyi,j

)2|||| + �

(23)Region =

||||||

i=1,j=1∑
Ω

ui,j
(
c1 − vi,j

)2||||||
+

||||||

i=1,j=1∑
Ω

(
1 − ui,j

)(
c2 − vi,j

)2||||||

(24)fHD(p, q) = Loss(p, q) + �

�
1 −

2
∑

Ω(p◦q)∑
Ω

�
p2 + q2

�
�

(25)Loss(q, p) =
1

|Ω|
∑
Ω

(
(p − q)2◦

(
d�
p
+ d�

q

))

(26)Loss(q, p) =
1

|Ω|
K∑
k=1

∑
Ω

(
(p − q)2 ⊖k B

)
k𝛼

(27)B =

⎛
⎜⎜⎝

0 1∕5 0
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(28)
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Caliva et al. (2019) proposed to measure distance of each voxel to the boundaries of the 
objects and use the weight matrices to penalize a model for error on the boundaries. Kim 
and Ye (2019) proposed using level-set energy minimization as a regularizer summed with 
standard multi-class cross entropy loss function for semi-supervised brain MRI segmenta-
tion as:

with

where x(r) is the input, yΘ
n
(r) is the output of softmax layer, Θ refers to learnable parameters.

Taghanaki et al. (2019e) discussed the risks of using solo overlap based loss functions 
and proposed to use them as regularizes along with a weighted cross entropy to explicitly 
handle input and output imbalance as follows;

where � controls the amount of Dice term contribution in the loss function L, and � ∈ [0, 1] 
controls the level of model penalization for false positives/negatives: when � is set to a 
value smaller than 0.5, FP are penalized more than FN as the term (1 − ti) ln (1 − pi) is 
weighted more heavily, and vice versa. In their implementation, to prevent division by 
zero, the authors perform add-one smoothing (a specific instance of the additive/Laplace/
Lidstone smoothing; Russell and Norvig 2016), i.e., they add unity constant S to both the 
denominator and numerator of the Dice term.

The majority of the methods discussed in Sect.  5 have attempted to handle the class 
imbalance issue in the input images i.e., small foreground versus large background with 
providing weights/penalty terms in the loss function. Other approaches consist of first iden-
tifying the object of interest, cropping around this object, and then performing the task 
(e.g., segmentation) with better-balanced classes. This type of cascade approach has been 
applied for the segmentation of multiple sclerosis lesions in the spinal cord  (Gros et  al. 
2019).

6 � Image synthesis based methods

Deep CNNs are heavily reliant on big data to avoid overfitting and class imbalance 
issues, and therefore this section focuses on data augmentation, a data-space solution to 
the problem of limited data. Apart from standard online image augmentation methods 
such as geometric transformations (LeCun et al. 1998; Simard et al. 2003; Cireşan et al. 
2011, 2012; Krizhevsky et  al. 2012), color space augmentations  (Galdran et  al. 2017; 
Yuan 2017; Abhishek et  al. 2020), etc., in this section, we discuss image synthesis 
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methods, the output of which are novel images rather than modifications to existing 
images. GANs based augmentation techniques for segmentation tasks have been used 
for a wide variety of problems - from remote sensing imagery (Mohajerani et al. 2019) 
to filamentary anatomical structures  (Zhao et  al. 2017a). For a more detailed review 
of image augmentation strategies in deep learning, we direct the interested readers to 
Shorten and Khoshgoftaar (2019).

6.1 � Image synthesis based methods applied to natural image segmentation

Neff et  al. (2018) trained a Wasserstein GAN with gradient penalty  (Gulrajani et  al. 
2017) to generate labeled image data in the form of image-segmenation mask pairs. 
They evaluated their approach on a dataset of chest X-ray images and the Cityscapes 
dataset, and found that the WGAN-GP was able to generate images with sufficient vari-
ety and that a segmentation model trained using GAN-based augmentation only was 
able to perform better than a model trained with geometric transformation based aug-
mentation. Cherian and Sullivan (2019) proposed to incorporate semantic consistency 
in image-to-image translation task by introducing segmentation functions in the GAN 
architecture and showed that the semantic segmentation models trained with synthetic 
images led to considerable performance improvements. Other works include GAN-
based data augmentation for domain adaptation  (Huang et  al. 2018; Choi et  al. 2019) 
and panoptic data augmentation (Liu et al. 2019c). However, the majority of GAN based 
data augmentation has been applied to medical images  (Shorten and Khoshgoftaar 
2019). Next, we discuss the GAN based image synthesis for augmentation in the field of 
medical image analysis.

6.2 � Image synthesis based methods applied to medical image segmentation

Chartsias et al. (2017) used a conditional GAN to generate cardiac MR images from CT 
images. They showed that utilizing the synthetic data increased the segmentation accuracy 
and that using only the synthetic data led to only a marginal decrease in the segmentation 
accuracy. Similarly, Zhang et al. (2018c) proposed a GAN based volume-to-volume trans-
lation for generating MR volumes from corresponding CT volumes and vice versa. They 
showed that synthetic data improve segmentation performance on cardiovascular MRI vol-
umes. Huo et al. (2018) proposed an end-to-end synthesis and segmentation network called 
EssNet to simultaneously synthesize CT images from unpaired MR images and to segment 
CT splenomegaly on unlabeled CT images and showed that their approach yielded better 
segmentation performance than even segmentation obtained using models trained using the 
manual CT labels. Abhishek and Hamarneh (2019) trained a conditional GAN to generate 
skin lesion images from and confined to binary masks, and showed that using the syn-
thesized images led to a higher skin lesion segmentation accuracy. Zhang et  al. (2018b) 
trained a GAN for translating between digitally reconstructed radiographs and X-ray 
images and achieved similar accuracy as supervised training in multi-organ segmentation. 
Shin et  al. (2018) proposed a method to generate synthetic abnormal MRI images with 
brain tumors by training a GAN using two publicly available data sets of brain MRI. Simi-
larly, other works (Han et al. 2019; Yang et al. 2018; Yu et al. 2018a) have leveraged GANs 
to synthesize brain MR images.
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7 � Weakly supervised methods

Collecting large-scale accurate pixel-level annotation is time-consuming and finan-
cially expensive. However, unlabeled and weakly-labeled images can be collected in 
large amounts in a relatively fast and cheap manner. As shown in Fig. 2, varying levels 
of supervision are possible when training deep segmentation models, from pixel-wise 
annotations (supervised learning) and image-level and bounding box annotations (semi-
supervised learning) to no annotations at all (unsupervised learning), the last two of 
which comprise weak supervision. Therefore, a promising direction for semantic image 
segmentation is to develop weakly supervised segmentation models.

7.1 � Weakly supervised methods applied to natural images

Kim and Hwang (2016) proposed a weakly supervised semantic segmentation network 
using unpooling and deconvolution operations, and used feature maps from the decon-
volutions layers to learn scale-invariant features, and evaluated their model on the PAS-
CAL VOC and chest X-ray image datasets. Lee et al. (2019) used dropout  (Srivastava 
et  al. 2014) to choose features at random during training and inference and combine 
the many different localization maps to generate a single localization map, effectively 
discovering relationships between locations in an image, and evaluated their proposed 
approach on the PASCAL VOC dataset.

7.2 � Weakly supervised methods applied to medical images

The scarcity of richly annotated medical images is limiting supervised deep learning-
based solutions to medical image analysis tasks (Perone and Cohen-Adad 2019), such as 
localizing discriminatory radiomic disease signatures. Therefore, it is desirable to lever-
age unsupervised and weakly supervised models. Kervadec et  al. (2019b) introduced 
a differentiable term in the loss function for datasets with weakly supervised labels, 
which reduced the computational demand for training while also achieving almost simi-
lar performance to full supervision for segmentation of cardiac images. Afshari et  al. 
(2019) used a fully convolutional architecture along with a Mumford-Shah functional 
Mumford and Shah (1989) inspired loss function to segment lesions from PET scans 
using only bounding box annotations as supervision. Mirikharaji et al. (2019) proposed 
to learn spatially adaptive weight maps to account for spatial variations in pixel-level 
annotations and used noisy annotations to train a segmentation model for skin lesions. 
Taghanaki et al. (2019d) proposed to learn spatial masks using only image-level labels 
with minimizing mutual information between the input and masks, and at the same time 
maximizing the mutual information between the masks and image labels. Peng et  al. 
(2019) proposed an approach to train a CNN with discrete constraints and regularization 
priors based on the alternating direction method of multipliers (ADMM). Perone and 
Cohen-Adad (2018) expanded the semi-supervised mean teacher  (Tarvainen and Val-
pola 2017) approach to segmentation tasks on MRI data, and show that it can bring 
important improvements in a realistic small data regime. In another work, Perone et al. 
(2019) extended the method of unsupervised domain adaptation using self-ensembling 
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for the semantic segmentation task. They showed how this approach could improve the 
generalization of the models even when using a small amount of unlabeled data.

8 � Multi‑task models

Multi-task learning (Caruana 1997) refers to a machine learning approach where multiple 
tasks are learned simultaneously, and the learning efficiency and the model performance on 
each of the tasks are improved because of the existing commonalities across the tasks. For 
visual recognition tasks, it has been shown that there exist relations between various tasks 
in the task space (Zamir et al. 2018), and multi-task models can help exploit these relation-
ships to improve performance on the related tasks.

8.1 � Multi‑task models applied to natural images

Bischke et al. (2019) proposed a cascaded multi-task loss to preserve boundary informa-
tion from segmentation masks for segmenting building footprints and achieved state-of-
the-art performance on an aerial image labeling task. He et  al. (2017) extended Faster 
R-CNN (Ren et al. 2015) by adding a new branch to predict the object mask along with a 
class label and a bounding box, and the proposed model was called Mask R-CNN. Mask 
R-CNN has been used extensively for multi-task segmentation models for a wide range 
of application areas  (Abdulla et  al. 2017), such as adding sports fields to OpenStreet-
Map  (Remillard 2018), detection and segmentation for surgery robots  (SUYEgit 2018), 
understanding climate change patterns from aerial imagery of the Arctic  (Zhang et  al. 
2018a), converting satellite imagery to maps  (Mohanty 2018), detecting image forger-
ies (Wang et al. 2019d), and segmenting tree canopy (Zhao et al. 2018).

8.2 � Multi‑task models applied to medical images

Chaichulee et al. (2017) extended the VGG16 architecture (Simonyan and Zisserman 2014) 
to include a global average pooling layer for patient detection and a fully convolutional 
network for skin segmentation. The proposed model was evaluated on images from a clini-
cal study conducted at a neonatal intensive care unit, and was robust to changes in light-
ing, skin tone, and pose. He et al. (2019) trained a U-Net (Ronneberger et al. 2015)-like 
encoder-decoder architecture to simultaneously segment thoracic organs from CT scans 
and perform global slice classification. Ke et al. (2019) trained a multi-task U-Net architec-
ture to solve three tasks - separating wrongly connected objects, detecting class instances, 
and pixelwise labeling for each object, and evaluated it on a food microscopy image data-
set. Other multi-task models have also been proposed for segmentation and classification 
for detecting manipulated faces in images and video (Nguyen et al. 2019) and diagnosis of 
breast biopsy images (Mehta et al. 2018) and mammograms (Le et al. 2019).

Mask R-CNN has also been used for segmentation tasks in medical image analysis 
such as automatically segmenting and tracking cell migration in phase-contrast micros-
copy (Tsai et al. 2019), detecting and segmenting nuclei from histological and microscopic 
images  (Johnson 2018; Vuola et al. 2019; Wang et al. 2019a, b), detecting and segmenting 
oral diseases  (Anantharaman et  al. 2018), segmenting neuropathic ulcers  (Gamage et  al. 
2019), and labeling and segmenting ribs in chest X-rays (Wessel et al. 2019). Mask R-CNN 
has also been extended to work with 3D volumes and has been evaluated on lung nodule 
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detection and segmentation from CT scans and breast lesion detection and categorization 
on diffusion MR images (Jaeger et al. 2018; Kopelowitz and Engelhard 2019).

9 � Segmentation evaluation metrics and datasets

9.1 � Evaluation metrics

The quantitative evaluation of segmentation models can be performed using pixel-wise and 
overlap based measures. For binary segmentation, pixel-wise measures involve the con-
struction of a confusion matrix to calculate the number of true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) pixels, and then calculate various met-
rics such as precision, recall (also known as sensitivity), specificity, and overall pixel-wise 
accuracy. They are defined as follows:

Two popular overlap-based measures used to evaluate segmentation performance are the 
Sørensen–Dice coefficient (also known as the Dice coefficient) and the Jaccard index (also 
known as the intersection over union or IoU). Given two sets A and B , these metrics are 
defined as:

For binary segmentation masks, these overlap-based measures can also be calculated from 
the confusion matrix as shown in Eqs. 8 and 9 respectively. The two measures are related 
by:

Figure  14 contains a simple overlap scenario, with the ground truth and the pre-
dicted binary masks with a spatial resolution 5 × 5 . Let black pixels denote the object 
to be segmented. The confusion matrix for this can be constructed as shown in Table 1. 
Using the expressions above, we can calculate the metrics as precision =

7

8
= 0.875 , 

(32)Precision =
TP

TP + FP
,

(33)Recall or Sensitivity =
TP

TP + FN
,

(34)Specificity =
TN

TN + FP
, and,

(35)Accuracy =
TP + TN

TP + TN + FP + FN
.

(36)Dice coefficient, Dice(A,B) =2
|A ∩ B|
|A| + |B| , and,

(37)Jaccard index, Jaccard(A,B) =
|A ∩ B|
|A ∪ B| .

(38)Jaccard =
Dice

2 − Dice
.
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recall =
7

10
= 0.7 , specificity =

14

15
= 0.9333 , pixel-wise accuracy =

21

25
= 0.84 , 

Dice coefficient =
7

9
= 0.7778 , and Jaccard index =

7

11
= 0.6364.

9.2 � Semantic segmentation datasets for natural images

Next, we briefly discuss the most popular and widely used datasets for the semantic seg-
mentation of natural images. These datasets cover various categories of scenes, such as 
indoor and outdoor environments, common objects, urban street view as well as generic 
scenes. For a comprehensive review of the natural image datasets that segmentation mod-
els are usually benchmarked upon, we direct the interested readers to Lateef and Ruichek 
(2019).

•	 Pascal VOC datasets The PASCAL Visual Object Classes (VOC) Challenge  (Ever-
ingham et  al. 2010) was an annual challenge that ran from 2005 through 2012 and 
had annotations for several tasks such as classification, detection, and segmentation. 
The segmentation task was first introduced in the 2007 challenge and featured objects 
belonging to 20 classes. The last offering of the challenge, the PASCAL VOC 2012 
challenge, contained segmentation annotations for 2913 images across 20 object 
classes (Everingham et al. 2015).

•	 PASCAL Context The PASCAL Context dataset  (Mottaghi et  al. 2014) extended the 
PASCAL VOC 2010 Challenge dataset by providing pixel-wise annotations for the 
images, resulting in a much larger dataset with 19,740 annotated images and labels 
belonging to 540 categories.

•	 Cityscapes The Cityscapes dataset (Cordts et al. 2016) contains annotated images of urban 
street scenes. The data was collected during daytime from 50 cities and exhibits variance 
in the season of the year and traffic conditions. Semantic, instance wise, and dense pixel-

(a) Ground truth binary mask (b) Predicted binary mask (c) Overlap between the masks.

Fig. 14   A 5 × 5 overlap scenario with a the ground truth, b the predicted binary masks, and c the overlap. 
In a and b, black and white pixels denote the foreground and the background respectively. In c, green, grey, 
blue, and red pixels denote TP, TN, FP, and FN pixels respectively

Table 1   Confusion matrix for 
the overlap scenario shown in 
Fig. 14

Ground truth

Background Object

Prediction Background 14 3
Object 7
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wise annotations are provided, with ‘fine’ annotations for 5,000 images and ‘coarse’ anno-
tations for 20,000 images.

•	 ADE20K The ADE20K dataset  (Zhou et  al. 2017) contains 25,210 images from other 
existing datasets, e.g, the LabelMe (Russell et al. 2008), the SUN (Xiao et al. 2010), and 
the Places (Zhou et al. 2014) datasets. The images are annotated with labels belonging to 
150 classes for “scenes, objects, parts of objects, and in some cases even parts of parts”.

•	 CamVid The Cambridge-driving Labeled Video Database (CamVid) (Brostow et al. 2008, 
2009) contains 10 min of video captured at 30 frames per second from a driving auto-
mobile’s perspective, along with pixel-wise semantic segmentation annotations for 701 
frames and 32 object classes.

Table 2 lists a summary of selected papers from this review, the nature of their proposed con-
tributions, and the datasets that they were evaluated on. For the papers that evaluated their 
models on the PASCAL VOC 2012 dataset (Everingham et al. 2012), one of the most popular 
image semantic segmentation dataset for natural images, we also list their reported mean IoU 
scores. As can be seen in Table 2, the focus has been mostly on architectural improvements. 
Comparing the first deep learning-based model (i.e., FCN Long et al. 2015) to the state-of-the-
art model (i.e., DeepLabV3+ Chen et al. 2018b) there is a large improvement (i.e. ∼ 27% , i.e., 
62.2–89.0% ) in terms of mean IoU. The latter model leverages a more sophisticated decoder, 
dilated convolutions, and feature pyramid pooling.

9.3 � Semantic segmentation datasets for medical images

In contrast to natural images, it is difficult to tabulate and summarize the performance of 
medical image segmentation methods because of the vast number of (a) medical imaging 
modalities and (b) medical image segmentation datasets. Figure 15 presents a breakdown of 
the various attributes of the medical image segmentation papers surveyed in this review, color 
coded similar to Fig. 1. As shown in Fig. 15b, the papers covered in this review use 13 medi-
cal imaging modalities. Figure 15c shows the distribution of the number of samples across 
datasets from multiple modalities. We observe that modalities which are expensive to acquire 
and annotate (such as electron microscopy (EM), PET, and MRI) have smaller dataset sizes 
than relative cheaper to acquire modalities such as RGB images (e.g., skin lesion images), 
ultrasound (US) and X-ray images. We also present a summary of the popular medical image 
segmentation papers in Table 3 and include the entire table in the Supplementary Material.

A similar observation can be made by looking at the medical image segmentation competi-
tions. Grand Challenges in Biomedical Image Analysis (Challenge 2020) provides a compre-
hensive but not exhaustive list of publicly available medical image segmentation challenges, 
and since 2007, there have been 94 segmentation challenges for medical images and volumes 
from as many as 12 imaging modalities. Figure 16 shows the number of these challenges for 
every year since 2007, and it can be seen that this number has been on the rise in the past few 
years.

10 � Discussion and future directions

In the following sections, we discuss in detail the potential future research directions for 
semantic segmentation of natural and medical images.
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10.1 � Architectures

Encoder-decoder networks with long and short skip connections are the winning architec-
tures according to the state-of-the-art methods. Skip connections in deep networks have 
improved both segmentation and classification performance by facilitating the training of 
deeper network architectures and reducing the risks for vanishing gradients. They equip 
encoder-decoder-like networks with richer feature representations, but at the cost of higher 
memory usage, computation, and possibly resulting in transferring non-discriminative fea-
ture maps. Similar to Taghanaki et  al. (2019c), one future work direction is to optimize 
the amount of data is being transferred through skip connections. As for the cell level 
architectural design, our study shows that atrous convolutions with feature pyramid pool-
ing modules are highly being used in the recent models. These approaches are somehow 
modifications of the classical convolution blocks. Similar to the radial basis function layers 
in Meyer et al. (2018) and Taghanaki et al. (2019a), a future work focus can be designing 
new layers that capture a new aspect of data as opposed to convolutions or transform the 

(a) The various categories of contributions. (b) The various medical imaging modalities.

(c) The distribution of dataset sizes across multiple imaging modalities.

Fig. 15   Analyzing the attributes of the medical image segmentation papers discussed in this review. The 
large number of medical imaging modalities (b) as well as the smaller average dataset sizes for medical 
image segmentation datasets (c) as compared to natural images (as discussed in Sect.  9.2) make it diffi-
cult to benchmark the performance of various approaches. In (b), PET (1.1%), OCT (0.6%), and topogram 
(0.6%) make up the ‘Other’ label
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convolution features into a new manifold. Another useful research direction is using neural 
architecture search (Zoph and Le 2016) to search for optimal deep neural network archi-
tectures for segmentation (Liu et al. 2019a; Zhu et al. 2019; Shaw et al. 2019; Weng et al. 
2019b).

10.2 � Sequenced models

For image segmentation, sequenced models can be used to segment temporal data such as 
videos. These models have also been applied to 3D medical datasets, however the advan-
tage of processing volumetric data using 3D convolutions versus the processing the volume 
slice by slice using 2D sequenced models. Ideally, seeing the whole object of interest in a 
3D volume might help to capture the geometrical information of the object, which might 
be missed in processing a 3D volume slice by slice. Therefore a future direction in this 
area can be through analysis of sequenced models versus volumetric convolution-based 
approaches.

10.3 � Optimization functions

In medical image segmentation works, researchers have converged toward using clas-
sical cross-entropy loss functions along with a second distance or overlap based func-
tions. Incorporating domain/prior knowledge (such as coding the location of different 
organs explicitly in a deep model) is more sensible in the medical datasets. As shown in 
Taghanaki et  al. (2019e), when only a distance-based or overlap-based loss function is 
used in a network, and the final layer applies sigmoid function, the risk of gradient vanish-
ing increases. Although overlap based loss function are used in case of a class imbalance 
(small foregrounds), in Fig.  13, we show how using (only) overlap based loss functions 
as the main term can be problematic for smooth optimization where they highly penal-
ize a model under/over-segmenting a small foreground. However, the cross-entropy loss 
returns a reasonable score for the same cases. Besides using integrated cross-entropy based 

Fig. 16   The number of medical image segmentation challenges every year since 2007 listed on Grand Chal-
lenges (Challenge 2020), along with a imaging modality-wise breakdown. Note that for many challenges, 
the data is multi-modal, and therefore the breakdown takes that into account
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loss functions, future work can be exploring a single loss function that follows the behav-
ior of the cross-entropy and at the same time, offers more features such capturing contour 
distance. This can be achieved by revisiting the current distance and overlap based loss 
functions. Another future path can be exploring auto loss function (or regularization term) 
search similar to the neural architecture search mentioned above. Similarly, gradient based 
optimizations based on Sobolev  (Adams and Fournier 2003) gradients  (Czarnecki et  al. 
2017), such as the works of Goceri (2019b, 2020) are an interesting research direction.

10.4 � Other potential directions

•	 Going beyond pixel intensity-based scene understanding by incorporating prior knowl-
edge, which have been an active area of research for the past several decades  (Nos-
rati and Hamarneh 2016; Xie et al. 2020). Encoding prior knowledge in medical image 
analysis models is generally more possible as compared to natural images. Currently, 
deep models receive matrices of intensity values, and usually, they are not forced to 
learn prior information. Without explicit reinforcement, the models might still learn 
object relations to some extent. However, it is difficult to interpret a learned strategy.

•	 Because of the large number of imaging modalities, the significant signal noise present 
in imaging modalities such as PET and ultrasound, and the limited amount of medical 
imaging data mainly because of high acquisition cost compounded by legal, ethical, 
and privacy issues, it is difficult to develop universal solutions that yield acceptable 
performances across various imaging modalities. Therefore, a proper research direction 
would be along the work of Raghu et al. (2019) on image classification models, study-
ing the risks of using non-medical pre-trained models for medical image segmentation.

•	 Creating large 2D and 3D publicly available medical benchmark datasets for seman-
tic image segmentation such as the Medical Segmentation Decathlon (Simpson et al. 
2019). Medical imaging datasets are typically much smaller in size than natural image 
datasets (Jin et al. 2020), and the curation of larger public datasets for medical imaging 
modalities will allow researchers to accurately compare proposed approaches and make 
incremental improvements for specific datasets and problems.

•	 A possible solution to address the paucity of sufficient annotated medical data is the 
development and use of physics based imaging simulators, the outputs of which can be 
used to train segmentation models and augment existing segmentation datasets. Sev-
eral platforms (Marion et al. 2011; Glatard et al. 2013) as well as simulators already 
exist for various imaging modalities such as SIMRI  (Benoit-Cattin et  al. 2005) and 
POSSUM (Drobnjak et al. 2006, 2010) for magnetic resonance imaging (MRI), PET-
SORTEO (Reilhac et al. 2005) and SimSET (Harrison and Lewellen 2012) for emis-
sion tomography, SINDBAD (Tabary et al. 2007) for computed tomography (CT), and 
FIELD-II (Jensen and Svendsen 1992; Jensen 1996) and SIMUS (Shahriari and Garcia 
2018) for ultrasound imaging as well as anatomical regions of interest such as Vas-
cuSynth (Hamarneh and Jassi 2010) for vascular trees.

•	 Medical images, both 2D and volumetric, have in general, larger file sizes than natural 
images, which inhibits the ability to load them entirely onto the memory for processing. 
As such, they need to be processed either as patches or sub-volumes, making it difficult 
for the segmentation models to capture spatial relationships in order to perform accu-
rate segmentation. Therefore, an interesting and potentially very useful research direc-
tion would be coming up with architectures and training methods that can incorporate 
spatial relationships from large medical images and volumes in the models.
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•	 Exploring reinforcement learning approaches similar to Song et al. (2018) and Wang 
et  al. (2018c) for semantic (medical) image segmentation to mimic the way humans 
delineate objects of interest. Deep CNNs are successful in extracting features of differ-
ent classes of objects, but they lose the local spatial information of where the borders 
of an object should be. Some researchers resort to traditional computer vision methods 
such as conditional random fields (CRFs) to overcome this problem, which however, 
add more computation time to the models.

•	 Studying the causes for some models and datasets being prone to false positive and 
false negative predictions in the image segmentation context as found by Berman et al. 
(2018b) and Taghanaki et al. (2019e).

•	 Exploring segmentation-free approaches  (Zhen and Li 2015; Hussain et  al. 2017; 
Taghanaki et al. 2018; Mukherjee et al. 2019; Proenca and Neves 2019), i.e., bypassing 
the segmentation step according to the target problem.

•	 Weakly supervised segmentation using image-level labels versus a few images with 
segmentation annotations. Most new weakly supervised localization methods apply 
attention maps or region proposals in a multiple instance learning formulations. While 
attention maps can be noisy, leading to erroneously highlighted regions, it is not simple 
to decide on an optimal window or bag size for multiple instance learning approaches.

•	 While most deep segmentation models for medical image analysis rely on only clinical 
images for their predictions, there is often multi-modal patient data in the form of other 
imaging modalities as well as patient metadata that can provide valuable information, 
which most deep segmentation models do not use. Therefore, a valuable research direc-
tion for improving segmentation performance of medical images would be to develop 
models which are able to leverage multi-modal patient data.

•	 Modifying input instead of the model, loss function, and adding more train data. 
Drozdzal et al. (2018) showed that attaching a pre-processing module at the beginning 
of a segmentation network improves the network performance. Taghanaki et al. (2019b) 
leveraged the gradients of a trained segmentation network with respect to the input to 
transfer it to a new space where the segmentation accuracy improves.

•	 Deep neural networks are trained using error backpropagation (Rumelhart et al. 1986) 
and gradient descent for optimizing the network weights. However, there have been 
many neural network optimization techniques which do not rely on backpropagation, 
such as credit assignment  (Bengio and Frasconi 1994), neuroevolution  (Stanley and 
Miikkulainen 2002), difference target propagation (Lee et al. 2015), training with local 
error signals  (Nøkland and Eidnes 2019) and several other techniques  (Amit 2019; 
Bellec et  al. 2019; Ma et  al. 2019). Exploring these and similar other techniques to 
optimize deep neural networks for semantic segmentation would be another valuable 
research direction.
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