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Abstract
Optimal Coalition Structure Generation (CSG) is a significant research problem in multi-
agent systems that remains difficult to solve. This problemhasmany important applications in
transportation, eCommerce, distributed sensor networks and others. The CSG problem is NP-
complete and finding the optimal result for n agents needs to check O(nn) possible partitions.
The ODP–IP algorithm (Michalak et al. in Artif Intell 230:14–50, 2016) achieves the current
lowest worst-case time complexity of O(3n). In the light of its high computational time
complexity, we devise an Imperfect Dynamic Programming (ImDP) algorithm for the CSG
problemwith runtime O(n2n) given n agents. Imperfect algorithmmeans that there are some
contrived inputs for which the algorithm fails to give the optimal result. We benchmarked
ImDP against ODP–IP and proved its efficiency. Experimental results confirmed that ImDP
algorithm performance is better for several data distributions, and for some it improves
dramatically ODP–IP. For example, given 27 agents, with ImDP for agent-based uniform
distribution time gain is 91% (i.e. 49 min).

Keyword Coalition structure generation · Dynamic programming · Coalition formation ·
Imperfect algorithm

1 Introduction

Agents form coalitions when they find that they cannot achieve certain goals, that can be
accomplished when they “team up" with other agents with complementary capabilities. The
resulting teams are called coalitions. Several applications use coalition formation methods.
Agents can form a coalition to satisfy particular market niches (Norman et al. 2004). In
distributed sensor networks, different sensors can form a coalition and work together to
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track their target of interest (Dang et al. 2006). Delivery companies may agree together
and build coalitions to make their profit by reducing transportation costs (Sandhlom and
Lesser 1997). In line with the long-standing literature in cooperative game theory, we assume
the existence of a characteristic function v that maps each coalition to a real-valued utility
measure. Cooperative game theory studies CSG problem in a characteristic function form,
where each coalition is associated with a positive value. In the CSG problem, each coalition
(C) is a non-empty subset of agents. Given n agents there are 2n − 1 coalitions. Hence, in
the CSG problem, given a set of 2n − 1 coalitions, each associated with a positive value, we
have to find a maximal valued disjoint set of coalitions with the same union as the whole set

In other words, the coalition structure generation problem consists of identifying the
optimal partitioning of a set of agents, such that the sum of the utilities obtained by applying
the characteristic function to each partition is maximized.

There is a vast amount of literature on the CSG problem [see e.g. Rahwan et al. (2015) for a
survey on this problem]. In this context, Yun Yeh (1986) developed a dynamic programming
algorithm to solve the complete set partitioning problem. A few years later, Rothkopf et al.
(1998) described another similar algorithm for solving the winner determination problem in
combinatorial auctions. Solution approaches in Yun Yeh (1986), Rothkopf et al. (1998) are
based on Dynamic Programming (DP) with time complexity O(3n) and are directly appli-
cable to the optimal CSG problem. The Improved Dynamic Programming (IDP) algorithm
(Rahwan and Jennings 2008a) with time complexity O(3n) is an improved version of the
dynamic programming algorithm. The main idea in IDP is to avoid some evaluations in the
dynamic programming network, without losing the guarantees of finding the optimal coali-
tion structure. An anytime algorithm, called IP (a tree-search algorithm), was developed by
Rahwan et al. (2009). Later a modified version of IDP reported on a new method which runs
IDP and IP in parallel (Rahwan et al. 2012).

The Optimal Dynamic Programming (ODP) algorithm (Michalak et al. 2016) achieves a
further improvement over IDP by using a bound on the size of the coalitions to be explored.
In Michalak et al. (2016), authors also proposed a hybrid version of ODP and IP - called
ODP–IP and showed empirically that it is faster than other algorithms. Finally, the Inclusion-
Exclusion algorithm proposed by Björklund et al. (2009) was tested in practice by Michalak
et al. (2016) and authors found “the growth rate resembles O(6n), not O(2n)”. Recently,
Cruz et al. (2017) described a novel technique to identify the most frequent operations in DP
and IDP search tree and proposed an optimized version by distributing the processing into
multiple threads using some multi-threading techniques. The authors in Cruz et al. (2017)
reported that a speed-up over ten times was obtained.

Numerous anytime CSG algorithms operate on the space of all coalition structures,
between �(nn) to O(nn). In Sandholm et al. (1999), authors proposed the first anytime
algorithm for CSG with worst-case guarantees on the solution quality. The algorithm pro-
posed by Dang and Jennings (2004) empirically generates tighter quality guarantees than
Sandholm et al. (1999). Other proposals involve anytime algorithms that search the space
of coalition structure graphs in different ways (Rahwan and Jennings 2008b; Rahwan et al.
2009). In Rahwan et al. (2009), authors used an entirely new representation of coalition
structures search space based on integer partitions and shows empirically that this approach
(called the anytime IP algorithm) generates higher-quality solutions than any other previous
anytime algorithm. The algorithm in Rahwan and Jennings (2008b), called IDP–IP, avoids
the weaknesses of IDP and IP by combining the positive aspects of IDP and IP. In Ser-
vice and Adams (2011), Service and Adams (2010), authors furthered the idea of dynamic
programming in different ways to make CSG algorithm anytime.
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Manymetaheuristic algorithms have been proposed to tackle theCSGproblem. In Shehory
andKraus (1995a), Shehory andKraus (1995b), Shehory andKraus (1998), authors proposed
algorithms for coalition formation for task allocation. Another heuristic algorithm based
on genetic algorithm was proposed in Sen and Dutta (2000). A few years later, Keinänen
proposed an algorithm (Keinänen 2009) for the CSG problem based on simulated annealing.
In Di Mauro et al. (2010), authors addressed a solution approach based on GRASP. The
problem with metaheuristic algorithms is that they do not guarantee if an optimal solution is
ever found nor do they provide any guaranty on the quality of the solutions achieved.

The CSG problem over graph restricted games has been introduced byMyerson (1977). In
this setting, given a graph G = (V, E), the agents are represented by the vertex set V and the
edges can be interpreted as communication channels, or trust relationships, which facilitate
the cooperation. A coalition C in the graphG is feasible iff it induces a connected subgraph of
G. A modified version of IDP algorithm for graph restricted games is proposed in Voice et al.
(2012), the authors called this IDP based algorithm DyCE. DyCE only considers a split of a
coalition C if C′ is feasible in {C′, C \ C′}. The DyPE (Vinyals et al. 2013) algorithm imposes
a hierarchical structure over the set of agents. DyPE solves the CSG problem faster than
both IDP and DyCE in a range of graph structures. An alternative algorithm was proposed in
Bistaffa et al. (2014), Bistaffa et al. (2017), based on edge contraction. The process follows
two steps: i) removing an edge e from the graph G, and ii) merging the two nodes that
were previously joined by the edge e. Since every node represents an agent (i.e., a singleton
coalition), “merging the two nodes” corresponds to merging the two coalitions that were
represented by those nodes.

Practically ODP–IP (Michalak et al. 2016) algorithm runs faster for wide variety of prob-
lem instances, but there are problems for which ODP–IP is unable to produce exact result
faster. For this type of problems if an efficient algorithm can be found to solve most of the
CSG problem instances except a few instances, then it might be a practical method. To deal
with this challenge, we define a new imperfect algorithm (Karp 1983) called ImDP. Karp
stated that (Karp 1983) the criteria of correctness and worst-case efficiency are particularly
inapplicable to the class of NP-hard combinatorial problems. There is strong circumstantial
evidence, although no conclusive proof, that these problems are intractable, in the sense that
no correct algorithm for such a problem can run within a polynomial time bound. If this
folk belief about the intractability of NP-hard problems proves correct, then every algorithm
for such a problem must inevitably be imperfect: there will be some inputs for which the
algorithm either runs too long or fails to give a correct result. Nevertheless, such imperfect
algorithms can be useful if they do not fail too often and especially if the failure is detectable.
One way to validate or compare imperfect algorithms for NP-hard combinatorial problems
is simply to run them on typical instances and see how often they fail. Against the research
aims outlined above, this paper makes the following contributions to the coalition structure
generation problem.

• We propose a novel imperfect dynamic programming algorithm, called ImDP for the
CSG problem.

• We analyze how the symmetry and geometry introduced properties play an important
role for CSG by using two merge functions.

• We prove theoretically that ImDP algorithm’s time complexity is O(n2n).

Throughout this paper,A will denote the set of agents, n the number of agents, C a coalition,
v the input table (i.e. v(C) is the value of coalition C), and Pt the partition table (i.e. Pt (C)

stores one optimal partition of coalition C. There can be more than one optimal partition of
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a coalition C, Pt (C) stores any one of them), and Vt the optimal value table (i.e. Vt (C) stores
the optimal value of coalition C).

The rest of the paper is organized as follows: Section two describes the optimal CSG
problem. Section three delineates the proposed imperfect algorithm (ImDP) and the two
merge functions used in proposed imperfect algorithm. Sections four describes the time
complexity of ImDP algorithm. Section five details the comparison between ImDP andODP–
IP and provides the results of the experimental evaluation. Finally section six proposes a
conclusion.

2 The optimal CSG problem formulation

Let A be the set of agents A = {a1, a2, . . . , an}, n the number of agents in A. We denote
any coalition C = {a1, a2, . . . , al} as a coalition of agents a1, a2, . . . , and al , where l ≤ n.
Let v be a characteristic function, v assigns a real value v(C) to each coalition C (i.e. v(C)).
Formally, v : 2A → R.

A coalition structure (CS) over A is a partitioning of A into a set of disjoint coalitions
{C1, C2, . . . , Ck}, where k = |CS|. In other words, {C1, C2, . . . , Ck} satisfies the following
constraints:

I. Ci , C j �= ∅ , i, j ∈ {1, 2, . . . , k}
II. Ci ∩ C j = ∅, for all i �= j

III.
k⋃

i=1
Ci = A.

Definition 1 Given a characteristic function v which maps each coalition C to a utility
value, the value of any coalition structure CS = {C1, C2, . . . , Ck} is defined by v(CS) =∑

Ci∈CS(v(Ci )).

The optimal solution of CSG is an optimal coalition structure CS∗ ∈ �A, where�A denotes
the set of all coalition structures over A. Thus, CS∗ = arg maxCS∈�Av(CS). The CSG
problem is then the problem of finding such CS∗.

2.1 Dynamic programming

Let, Pt be a partition table, Pt (C) stores one optimal partition of each coalition C. There
can be more than one optimal partition of a coalition C, and Pt (C) stores any one of them.
Let Vt be an optimal value table, Vt (C) stores the optimal value of the coalition C. Dynamic
programming offers an exact algorithm for computing the optimal coalition structure by
constructing the tables Pt and Vt (cf. Fig. 1) using the below recursion.

Let C′′ =
{
C′|C′ ⊂ C and 0 ≤ |C′| ≤ |C|

2

}
, table Vt for each coalition C is constructed as

follows:

Vt (C) =
{

v(C) if |C| = 1

arg maxC′∈C′′ {Vt (C′) + Vt (C \ C′)} otherwise

For each coalition C, Pt (C) stores the corresponding partition of Vt (C). After DP
evaluates all possible coalitions, the optimal coalition structure CS∗ is computed recur-
sively from the partition table Pt (cf. Fig. 1). In our example, this is done by first setting
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Size Coalition

(C)

v(C) Splitting Optimal

partition Pt

Optimal

value Vt

{1} 24 Vt[{1}] = 24 {1} 24

1 {2} 35 Vt[{2}] = 35 {2} 35

{3} 20 Vt[{3}] = 20 {3} 20

{4} 41 Vt[{4}] = 41 {4} 41

{1,2} 47 v[{1, 2}] = 47, Vt{1} + Vt{2} = 59 {1}{2} 59

{1,3} 43 v[{1, 3}] = 43, Vt{1} + Vt{3} = 44 {1}{3} 44

2 {1,4} 79 v[{1, 4}] = 79, Vt{1} + Vt{4} = 65 {1, 4} 79

{2,3} 52 v[{2, 3}] = 52, Vt{2} + Vt{3} = 55 {2}{3} 55

{2,4} 65 v[{2, 4}] = 65, Vt{2} + Vt{4} = 76 {2}{4} 76

{3,4} 75 v[{3, 4}] = 75, Vt{3} + Vt{4} = 61 {3, 4} 75

{1,2,3} 85 v[{1, 2, 3}] = 85, Vt{1} + Vt{2, 3} = 79 {1, 2, 3} 85

Vt{2} + Vt{1, 3} = 79, Vt{3} + Vt{1, 2} = 79

{1,2,4} 110 v[{1, 2, 4}] = 110, Vt{1} + Vt{2, 4} = 100 {2}{1, 4} 114

Vt{2} + Vt{1, 4} = 114, Vt{4} + Vt{1, 2} = 100

3 {1,3,4} 92 v[{1, 3, 4}] = 92, Vt{1} + Vt{3, 4} = 99 {1}{3, 4} 99

Vt{3} + Vt{1, 4} = 99, Vt{4} + Vt{1, 3} = 85

{2,3,4} 108 v[{2, 3, 4}] = 108, Vt{2} + Vt{3, 4} = 110 {2}{3, 4} 110

Vt{3} + Vt{2, 4} = 96, Vt{4} + Vt{2, 3} = 96

v[{1, 2, 3, 4}] = 131, Vt{1} + Vt{2, 3, 4} = 134

Vt{2} + Vt{1, 3, 4} = 134, Vt{3} + Vt{1, 2, 4} = 134

4 {1,2,3,4} 131 Vt{4} + Vt{1, 2, 3} = 126, Vt{1, 2} + Vt{3, 4} = 134 {2}{1, 3, 4} 134

Vt{1, 3} + Vt{2, 4} = 120, Vt{1, 4} + Vt{2, 3} = 134

Fig. 1 Working principle of DP algorithm computing the tables Pt and Vt , given four agentsA = {1, 2, 3, 4},
and a characteristic function v. With blue color, we highlight the path leading to the optimal result. (Color
figure online)

CS∗ = Pt (A) = Pt ({1, 2, 3, 4}) and found that it is beneficial to split the coalition {1, 2, 3, 4}
into two coalitions {2} and {1, 3, 4}. In the same way, by looking at Pt ({1, 3, 4}), it is found
that it is beneficial to split the coalition {1, 3, 4} into {1} and {3, 4}. Finally, by looking at
Pt ({3, 4}), it decides that it is beneficial to keep the coalition {3, 4} as it is. Now, the optimal
CS is {{1}{2}{3, 4}} with a value of 134.

3 Imperfect algorithm

The fastest algorithm for the CSG problem is ODP–IP (Michalak et al. 2016) with a time
complexity O(3n). However, if a faster algorithm can be found to solve most of the CSG
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problem instances excepting a few instances, then it might be a practical method. To deal
with this challenge, we define a new imperfect algorithm called ImDP. The ImDP algorithm
is based on the symmetric relationship of combinatorics and two merge functions that we
will describe in this section.

In the previous section, we showed that DP algorithm solves the CSG problem incremen-
tally, that means DP solves all the coalitions of size x , then all the coalitions of size x +1 and
so on. Our main aim is to reduce the workload to solve a coalition of size x using the partial
enumeration. To evaluate a coalition C of size x using partial enumeration, ImDP algorithm
uses the merge functions: Merge1 and Merge2.

To show how merge functions work, we focus on the evaluation of a single coalition. The
following notation will be used to represent a coalition and its partitions. When evaluating
the coalition {1, 2, 3}, it can be stored in the partition table Pt as {{1}{2, 3}} or {{2}{1, 3}} or
{{3}{1, 2}} or as the coalition itself, i.e. {1, 2, 3} and the value corresponding to the partition
will be stored in the Vt table. For example, in Fig. 1, the coalition {1, 2, 3} is stored in the Pt
table as Pt ({1, 2, 3}) = {1, 2, 3}, the coalition {2, 3, 4} is stored as Pt ({2, 3, 4}) = {{2}{3, 4}}
and so on. Recall that the coalition {1, 2, 3} cannot be stored in the partition table Pt as
{1}{2}{3} because DP algorithm splits every coalition in all possible partitions into two parts.
More formally, any coalition can be stored in the partition table with any of its different
possible partitions (into twoparts or as the coalition itself).Wewill call each half a component.
For example in {{1}{2, 3}}, we denote {1} and {2, 3} as two different components of the
coalition {1, 2, 3}. In the following, we will detail each of ImDP merge functions.

3.1 Merge1 function

We use Merge1 function to evaluate1 each coalition of size 4, 5, . . . , � n
2 �. For any coalition

C,Merge1 picks a single agent as and creates all partitions of the coalition C as {{as}{C \as}}.
For each as ∈ C,Merge1 is applied between {as} and {C \as}. As the coalitions are evaluated
in size order, then the coalition {C \as} has already been evaluated by Merge1 before solving
the coalition {as ∪C\as}. Hence,Merge1 checks how the coalition {C \as} is stored in the Pt
table. If the coalition {C \as} is stored in the Pt table as it is, then Merge1 is not used. But, let
us suppose the coalition {C \ as} = U is stored in the Pt table with two different components
as {{u1}{u2}}, where u1 and u2 are two different coalitions of any size2. Our assumption is
that U is stored in the Pt table with two components. If this is not the case, it means the
algorithm will still work but Merge1 will not be applied. The Fig. 2 and Algorithm 1 show
the detailed operation of Merge1 function.

Formally, for a coalition C = {a1, a2, . . . , ax } of size x containing x agents, Merge1
function partitions the coalition C into x ways as follows:

{a1}{a2, a3, . . . , ax }
{a2}{a1, a3, . . . , ax }

...

{ax }{a1, a2, . . . , ax−1}
The main steps of this function can be summarized as follows:

1 Use of Merge1 function for coalitions of size 1, 2 and 3 is redundant. We prove this later in property 1.
2 The set difference {C \ as } is defined as {C \ as } = {x : x ∈ C and x /∈ as }. We use U to denote coalition
{C \ as }

123



Improving coalition structure search with an imperfect… 403

as

u1

u2

Merge

(a) {as ∪ u2}{u1}

as

u1

u2

Merge

(b) {as ∪ u1}{u2}

Fig. 2 Merge1 function operates on a coalition {as ∪ C \ as }. In this figure, Merge1 is applied between
the coalitions as and {C \ as }. It is assumed that the coalition {C \ as } is stored in the partition table Pt as
{{u1}{u2}}. In the left part, Merge1 is applied between the coalitions {as } and {u2}, it results with a new
partition {{as ∪ u2}{u1}} of the coalition {as ∪ C \ as }. In the right part, Merge1 is applied between the
coalitions {as } and {u1}, it results with another new partition {{as ∪ u1}{u2}} of the coalition {as ∪ C \ as }

Algorithm 1Merge function (Merge1)

Input: Two coalitions {as } and {C\as }, where {C\as } is stored in partition table Pt with its two components
U = {{u1}{u2}}.
Output: Feasible maximum valued coalition structure CSp over {as ∪ U} and its value.
1: Value ← Vt ({as }) + Vt (U)

2: CSp ← {{as }{U}}
3: if |U | �= 1 and 3 < |U | then � |U | = 1 means

� coalition U is stored as it is.
4: for Each component i in U = {{u1}{u2}} do
5: if |i ∪ as | < |U | then
6: if Vt (i ∪ as ) + Vt (U \ i) > Value then
7: Value ← Vt (i ∪ as ) + Vt (U \ i)
8: CSp ← {{i ∪ as }{U \ i}}
9: end if
10: end if
11: end for
12: end if
13: return CSp, Value

Partition each coalition C of size x in all possible ways into two disjoint coalitions such
that one half contains a singleton coalition {as} and the other half is the coalition {C \ as} of
size x − 1.

1. For all such partitions, Merge1 checks how the coalition {C \ as} of size x − 1 is stored.
2. For the coalition {C \ as} of size x − 1, if it is stored into two components in the partition

table Pt , then according to Algorithm 1, each component merges with the singleton
coalition {as}, one at a time, creating a new partition of the coalition C.

Theorem 1 Partition of any coalition of size x takes O(2x ) steps using DP algorithm. ImDP
takes O(2x) steps.

Proof To evaluate a coalition C of size x , DP algorithm needs to consider all possible ways of
partitioning the coalition C into two parts. Hence, it needs to check total 2x−1 − 1 partitions.
On the other hand, ImDP checks x number of partitions for a coalition of size x , each of
them may create two extra partitions by using the Merge1 function. So, total 2x number of
partitions are needed by ImDP. ��
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Corollary 1 To evaluate a coalition C of size n, DP algorithm needs to partition the coalition
C = {{ci }{c j }} into all possible ways into two disjoint coalitions, where total number of
coalitions in ci is

(
n

1

)

+
(
n

2

)

+
(
n

3

)

+ · · · +
(
n
n
2

)

Neverthless, ImDP only evaluates
(n
1

)
number of splitting. ��

Property 1 The Merge1 function is not effective for coalitions of size 1, 2 and 3.

The Merge1 function is used when there are two coalitions {as} and {C \ as}, where {as} is a
singleton coalition and {C \ as} is stored in the partition table Pt with two components. For
any coalition C of size 1 or 2, it is not possible to apply the Merge1 function because the
size of the coalition {C \ as} becomes 0 or 1.

For any coalition C of size 3, the size of the coalition {C \ as} becomes 2 and if Merge1
is used, it produces an already examined partition. �
Example 1 In Fig. 1, for coalition {1, 2, 3, 4}, Merge1 will perform the following steps. For 4
agents ImDPwould only evaluate coalitions of size upto 2. Here, we are evaluating a coalition
of size 4 to explain how Merge1 works.

{1}{2, 3, 4} Merge1−−−−→ {1}{{2}{3, 4}} → {1, 2}{3, 4}
{2}{1, 3, 4} Merge1−−−−→ {2}{{1}{3, 4}} → {1, 2}{3, 4}
{3}{1, 2, 4} Merge1−−−−→ {3}{{2}{1, 4}} → {2, 3}{1, 4}
{4}{1, 2, 3} Merge1−−−−→ {4}{1, 2, 3}

The last merge operation in the above example does not produce any new partition because
the coalition {1, 2, 3} is stored as it is (see row 3 of Fig. 1 where Vt ({1, 2, 3}) = 85, i.e. the
maximum). When performing merge operation for {1}{2, 3, 4}, it merges the coalition {1}
with the component {2} of the coalition {2, 3, 4} and it does not merge the coalition {1} with
the component {3, 4} of the coalition {2, 3, 4} because in that case it would create an extra
partition {2}{1, 3, 4} of the coalition {1, 2, 3, 4} (this situation is already considered in the
Algorithm 3, lines 15–23). As mentioned before, Merge1 function works on the coalition
{1, 2, 3, 4} by partitioning it as {1}{2, 3, 4}, {2}{1, 3, 4}, {3}{1, 2, 4} and {4}{1, 2, 3}. Hence,
the partition {2}{1, 3, 4} is an extra partition.

3.2 Merge2 function

Given two disjoint coalitions X and Y respectively of size � n
2 � and n − � n

2 �, where the
coalitions X and Y are stored in the partition table Pt as {{x1}{x2}} and {{y1}{y2}}. The
principle of Merge2 function is shown in Algorithm 2. Merge1 function is used to evaluate
all the coalitions of size 4, 5, . . . , � n

2 �, whereas Merge2 function is used on X and Y . Each
component of X is merged with the components of Y once at a time. Figure 3a shows that
first component {x1} of the coalition X is merged with the component {y1} of the coalition
Y leaving the component {x2} of the coalition X and the component {y2} of the coalition Y
unchanged, thus creating a coalition structure {{x1 ∪ y1}{x2}{y2}}. In Fig. 3b, the component
{x1} of the coalitionX is merged with the component {y2} of Y , leaving the components {x2}
and {y1} unchanged, thus creating another coalition structure {{x1 ∪ y2}{x2}{y1}} and so on.
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y1 y2

x1 x2

Merge

(a) {{x1 ∪ y1}{x2}{y2}}

y1 y2

x1 x2Merge

(b) {{x1 ∪ y2}{x2}{y1}}

y1 y2

x1 x2
Merge

(c) {{x2 ∪ y1}{x1}{y2}}

y1 y2

x1 x2

Merge

(d) {{x2 ∪ y2}{x1}{y1}}

Fig. 3 Merge2 function is applied on two coalitionsX andY of size � n2 � and n−� n2 �. Each figure shows how
a new coalition structure is formed by using the Merge2 function. In a the component {x1} of the coalition
X is merged with the component {y1} of the coalition Y , resulting a coalition structure {{x1 ∪ y1}{x2}{y2}},
and so on

Algorithm 2Merge function (Merge2)

Input: Given two disjoint coalitions X and Y respectively of size � n2 � and n − � n2 �, where coalitions X
and Y are stored in the partition table Pt as {{x1}{x2}} and {{y1}{y2}} or as they are.
Output: maximum valued CS from the coalitions X and Y .
Used variables: val and CSo are used to keep track of the values and the coalition structures obtained so
far from X and Y .
1: val← Vt (X ) + Vt (Y)

2: CSo ← {{X }{Y}}
3: for Each component i in X = {{x1}{x2}} do
4: for Each component j in Y = {{y1}{y2}} do

//When |i ∪ j | ≥ � n2 �, no need to merge because this situation is already considered in the Algorithm 3,
lines 15-23.

5: if |i ∪ j | < � n2 � then
6: if Vt (i ∪ j) + Vt (X \ i) + Vt (Y \ j) > val then
7: val ← Vt (i ∪ j) + Vt (X \ i) + Vt (Y \ j)

� see footnote a.
8: CSo ← {{i ∪ j}{X \ i}{Y \ j}}
9: end if
10: end if
11: end for
12: end for
13: return CSo, val

a This line merges each component of X with another component of Y one at a time and leaves the other
parts unchanged.

3.3 ImDP algorithm

ImDP runs for coalitions of size 1, 2, . . . , � n
2 � as shown in lines 1–13 of Algorithm 3. Line

6 shows how Merge1 function is called for each coalition.
Next, ImDP picks all coalitions of size n, . . . , � n

2 � and each time takes the rest of the
unassigned agents i.e. complement of the chosen coalition. Lines 15–23 describe how ImDP
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Algorithm 3 Imperfect dynamic programming algorithm for CSG problem.

Input: Set of all possible non-empty subsets of n agents (2n − 1). The value of any coalition C is v(C).
Output: Coalition structure CS and its value v(CS).
Used variables: Variables X and Y are used to store coalitions of size � n2 � and n − � n2 �. Pt the partition
table and Vt the optimal value table. To store coalition structures we use the variables CSo.

// Algorithm runs for coalitions size 1, 2, . . . � n2 �. Lines 5-10 show working procedure of Merge1.
1: for i = 1 to � n2 � do
2: for each coalition C ⊆ A, where |C| = i do
3: Vt (C) ← v(C)

4: Pt (C) ← C
5: for each agent as ∈ C do
6: CSp, Value ←Merge1 (as ,C \ as )
7: if Vt (C) < Value then
8: Vt (C) = Value
9: Pt (C) ← CSp
10: end if
11: end for
12: end for
13: end for
14: Maximum ← 0

// Lines 15-23 show that the algorithm goes through all coalitions of size n, n− 1, . . . � n2 � and each time
picks rest of the unassigned agents.

15: for j = n downto � n2 � do
16: X ← C j � C j denotes a coalition of size j
17: Y ← A \ X � Y is the complement of X .
18: Tempvalue ← v(X ) + Vt (Y)

19: if Tempvalue > Maximum then
20: Maximum ← Tempvalue
21: CS ← {{X }{Y}}
22: end if
23: end for

// Lines 24-30 show working procedure of Merge2.
24: for each coalition Z of size � n2 � do
25: CSo, Value ← Merge2(Z,A \ Z)

26: if value > Maximum then
27: Maximum ← Value
28: CS ← CS0
29: end if
30: end for

// Lines 31-36 show how final CS is generated.
31: for each coalition C ∈ CS do
32: if Pt (C) �= C then
33: CS ← (CS \ C ∪ Pt (C))

34: end if
35: end for
36: Return CS and v(CS).

evaluates and computes the maximum valued coalition structure found so far. Lines 24–30
elaborate on how to check all the feasible coalition structures from two disjoint coalitions
X and Y of size � n

2 � and n − � n
2 � using Merge2 function. In the merging process, Merge2

checks the size of the merged coalitions. If this size is greater than or equal to � n
2 �, then

no need to merge because it has already been computed by ImDP, as shown in lines 15–23
of Algorithm 3. Finally, lines 31–35 find the optimal coalition structures in the bottom-
up fashion. Now, let’s propose a numerical example for better understanding of the whole
procedure.
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Example 2 In our example shown in Fig. 1, ImDP evaluates all coalitions of size � 4
2� = 2

incrementally starting from a coalition of size 1. Now it picks all coalitions of size 4 and 3 and
selects their complement coalitions as follows: v({1, 2, 3, 4}) = 131, v({1, 2, 3})+vt ({4}) =
85+41 = 126, v({1, 2, 4})+vt ({3}) = 110+20 = 130, v({1, 3, 4})+vt ({2}) = 92+35 =
127 and v({2, 3, 4}) + vt ({1}) = 108 + 24 = 132.

So far, maximum valued coalition structure is {{2, 3, 4}{1}} with value 132. Next, all the
compatible pairs of the coalitions of size 2 are checked using theMerge2 function as follows:
First, ImDP picks {1, 2} and {3, 4} and checks that it gives value 59 + 75 = 134. Now, at
this stage, Merge2 function finds that one of the coalition, i.e., {3, 4}, is stored as it is. So,
no need to merge, because whenever Merge2 function tries to merge {3, 4} with {1} or {2} it
will generate already computed coalition structures {1, 3, 4}{2} or {2, 3, 4}{1} ( this situation
is already considered in the Algorithm 3, lines 15–23). Next, Merge2 function picks two
disjoint coalitions {1, 3} and {2, 4} and finds that they are stored as {1}{3} and {2}{4}. First,
Merge2 function merges {1} with {2} and {4} once at a time, thus creates coalition structures
{{1, 2}{3}{4}} and {{1, 4}{2}{3}}. Next, Merge2 merges {3} with {2} and {4} once at a time
and creates the coalition structures {{2, 3}{1}{4}} and {{3, 4}{1}{2}}. Figure 3 details these
operations. Then, Merge2 picks the compatible pairs {1, 4} and {2, 3}, evaluates their value
as 79+ 55 = 134 and finds that there is no need to perform merge operation because one of
the coalitions is stored as it is in the table Pt . Merge2 function calculates values for all these
coalition structures as follows:

Vt ({1, 2}) + Vt ({3, 4}) = 59 + 75 = 134

Vt ({1, 3}) + Vt ({2, 4}) = 44 + 76 = 120

Vt ({1, 2}) + Vt ({3}) + Vt ({4}) = 59 + 20 + 41 = 120

Vt ({1, 4}) + Vt ({2}) + Vt ({3}) = 79 + 35 + 20 = 134

Vt ({2, 3}) + Vt ({1}) + Vt ({4}) = 55 + 24 + 41 = 120

Vt ({3, 4}) + Vt ({1}) + Vt ({2}) = 75 + 24 + 35 = 134

ImDP finds that the maximum valued CS is {{3, 4}{1}{2}} with value 134.
To better understand the principle of ImDP algorithm, let us consider the example given in

Table 1 for five agents. In this example, ImDP evaluates all the coalitions of size 2, then size
3 till the size becomes � n

2 �. Next, ImDP picks all the coalitions of size 5, 4, 3 and each time
takes the complement of the choosen coalition. For example, when ImDP picks the coalition
{1, 2, 3, 4}, the complement coalition would be the coalition {5} and the value of the coalition
structure is v{1, 2, 3, 4} + v{5} = 1 + 3 = 4. After this step, Merge2 function picks all the
coalitions of size � n

2 � = 3 and each time selects the complement coalition of size 2. For
example, when it picks the coalition {3, 4, 5}, the complement coalition selected by Merge2
is {1, 2}. Now, at this stage, Merge2 function finds that the coalition, {3, 4, 5}, is stored as
{3, 4}{5} and the coalition {1, 2} is stored as {1}{2}. First, Merge2 function merges {3, 4}
with {1} and {2} once at a time, thus creates the coalition structures {{1, 3, 4}{2}{5}} and
{{2, 3, 4}{1}{5}}. Next, Merge2 merges {5} with {1} and {2} once at a time and creates the
coalition structures {{1, 5}{3, 4}{2}} and {{2, 5}{3, 4}{1}}. The value of the coalition structure
{{1, 5}{3, 4}{2}} is calculated as Vt {1, 5} + Vt {3, 4} + Vt {2} = 5 + 4 + 3 = 12. Figure 3
details these operations. In this way, Merge2 function calculates the value of the optimal
coalition structure.

ImDP algorithm finds the optimal coalition structure when one of the optimal partitions
is actually considered by Merge1 and Merge2 functions. If none of these partitions is con-
sidered by ImDP, then it fails to give the optimal result. However, ImDP will still give a

123



408 N. Changder et al.

Table 1 Working principle of ImDP algorithm computing the tables Pt and Vt , given five agents A =
{1, 2, 3, 4, 5}, and a characteristic function v

Size Coalition (C) v(C) Optimal partition Pt Optimal value Vt

{1} 2 {1} 2

{2} 3 {2} 3

1 {3} 2 {3} 2

{4} 2 {4} 2

{5} 3 {5} 3

{1, 2} 1 {1}{2} 5

{1, 3} 1 {1}{3} 4

{1, 4} 3 {1}{4} 4

{1, 5} 1 {1}{5} 5

{2, 3} 2 {2}{3} 5

2 {2, 4} 1 {2}{4} 5

{2, 5} 3 {2}{5} 6

{3, 4} 2 {3}{4} 4

{3, 5} 1 {3}{5} 5

{4, 5} 1 {4}{5} 5

{1, 2, 3} 3 {1, 2}{3} 7

{1, 2, 4} 1 {1, 2}{4} 7

{1, 2, 5} 1 {1, 2}{5} 8

{1, 3, 4} 1 {1, 3}{4} 6

3 {1, 3, 5} 2 {1, 3}{5} 7

{1, 4, 5} 3 {1, 4}{5} 7

{2, 3, 4} 1 {2, 3}{4} 7

{2, 3, 5} 2 {2, 3}{5} 8

{2, 4, 5} 1 {2, 4}{5} 8

{3, 4, 5} 1 {3, 4}{5} 7

{1, 2, 3, 4} 1 {1, 2, 3, 4} 1

{1, 2, 3, 5} 2 {1, 2, 3, 5} 2

4 {1, 2, 4, 5} 1 {1, 2, 4, 5} 1

{1, 3, 4, 5} 2 {1, 3, 4, 5} 2

{2, 3, 4, 5} 1 {2, 3, 4, 5} 1

5 {1, 2, 3, 4, 5} 1 {1, 2, 3, 4, 5} 12

sub-optimal solution. To better understand the fail cause of ImDP algorithm, we need to
introduce the coalition structure graph (cf. Fig. 4) Sandholm et al. (1999), which consists of
a number of nodes and a number of edges connecting these nodes. Each node represents a
coalition structure, and each edge represents how the DP algorithm moves in the coalition
structure graph. Given n agents, the nodes in this graph are categorized into n levels, where
each level Li : i ∈ {1, 2, . . . , n} contains nodes representing coalition structures containing
i coalitions. Each edge in this graph represents merging of two coalitions into one coalition
(when followed downwards) and the splitting of one coalition into two coalitions (when
followed upwards).

123



Improving coalition structure search with an imperfect… 409

{1, 2, 3, 4}
V = 131

{1, 3}, {2, 4}
V = 108

{2}, {1, 3, 4}
V = 127

{1, 2}, {3, 4}
V = 122

{1}, {2, 3, 4}
V = 132

{3}, {1, 2, 4}
V = 130

{1, 4}, {2, 3}
V = 131

{4}, {1, 2, 3}
V = 126

{1}, {3}, {2, 4}
V = 109

{3}, {4}, {1, 2}
V = 108

{1}, {2}, {3, 4}
V = 134

{2}, {4}, {1, 3}
V = 119

{1}, {4}, {2, 3}
V = 117

{2}, {3}, {1, 4}
V = 134

{1}, {2}, {3}, {4}
V = 120

Fig. 4 The coalition structure graph of 4 agents

Let’s fix a node P in the coalition structure graph, which contains the optimal coalition
structure. ImDP algorithmfinds the optimal coalition structure in the coalition structure graph
if the movement of ImDP in this graph reaches the node P , starting from the bottom node
where all agents are in one set. Otherwise ImDP fails to produce the optimal result.

4 Computational efficiency of ImDP

First, we have to check ImDP’s worst case time complexity for n number of agents. ImDP
evaluates all coalitions of size 1, . . . � n

2 �, i.e. it performs the following steps.

(
n

1

)

∗ 1 +
(
n

2

)

∗ 2,+ · · · ,+
(

n

�n/2�
)

∗ (�n/2�) =
(� n

2 �)∑

k=1

(
n

k

)

∗ k

Using the identity
(n
k

) = n
k

(n−1
k−1

)
(assume n is even), we get

n
2∑

k=1

(
n

k

)

∗ k =
n
2∑

k=1

k
n

k

(
n − 1

k − 1

)

= n

n
2 −1∑

j=0

(
n − 1

j

)

.

Nowwe are going to compute the bound for j = 0, 1, . . . , n/2. Let f (m, j) = ∑ n
2 −1
j=0

(n−1
j

)
,

we know
(m
j

) + ( m
j−1

) + ( m
j−2

)
. . .

(m
j

) = 1 + j

m − j + 1

+ j( j − 1)

(m − j + 1)(m − j + 2)
+ · · ·

Nowwe can bound the right side from above by the geometric series 1+ j
m− j+1 +

(
j

m− j+1

)2

+ · · · , which is the sum of a geometric series 1−r j+1

1−r , where r = j
m− j+1 . Here r < 1, then
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we obtain a simpler expression

f (m, j) ≤
(
n

j

)
m − ( j − 1)

m − (2 j − 1)

Therefore we get

f (m, n/2) ≤
(

n

n/2

)

≡ O(2n)

(� n
2 �)∑

k=1

(
n

k

)

∗ k ≡ O(n2n)

There remain 2n
2 coalitions that ImDP needs to check which lead to a total of O(2n) steps

necessary for this stage. Finally, in the last step, ImDP checks all the coalitions in the middle
level using Merge2 function. The central term in the binomial series is the largest one, and
it is proved that

( n
n/2

)
is O(2n) because it follows from Wallis product. Merge2 function

requires 4 merge operations in the worst case when applied to two disjoint coalitions of size
� n
2 � and n−� n

2 �. Hence, total 4×2n operations are performed by Merge2, which is an order
of 2n . The input to our algorithm is K = 2n , where, n is the number of agents in A.

So, the total time complexity is O(n2n) + O(2n) + O(2n) = O(n2n). Putting the value
of n = log K , we get the time complexity of ImDP is O(K log K ).

5 Experimental evaluation

Having described all the parts of our algorithm, we now seek to evaluate its effectiveness
by comparing it against the ODP–IP. Both algorithms were implemented in Java, and the
experiments were run on an Intel (R) Xeon (R) CPU E7-4830 v3, running at 2.10 GHz
under Linux operating system (64 bit) with 160 GB of RAM. For ODP–IP, we used the code
provided by the authors of ODP–IP (Michalak et al. 2016).

5.1 Dataset generation

One way to validate or compare imperfect algorithm for a N P- hard combinatorial optimiza-
tion problem is to run them on typical problem instances and see how often they fail. Any
imperfect algorithm is convenient if the algorithm does not fail too often. With this in mind,
we compare the proposed algorithmwith ODP–IP using different value distributions. Specif-
ically, we considered the following distributions, and made tests for sets of 5–27 agents as
shown in Fig. 5. For these sets, we tested 50 instances except for sets of 27 agents for which
we tested 25 instances because for 27 agents the input file size becomes very large. That
means, for a single distribution we tested over 1125 problem instances.

I. Agent-based Uniform (ABU) Each agent ai is assigned a random power pi ∼
U (0, 10), reflecting its average performance over all coalitions (Rahwan et al. 2012).
Then for all coalitions, C in which agent ai appears, the actual power of ai in C is
determined as pCi ∼ U (0, 2 × pi ) and the coalition value is calculated as the sum
of all the members’ power in that coalition. That is, ∀C, v(C) = ∑

ai∈C pCi .
II. Agent-based Normal (ABN) Each agent ai is assigned a random power pi ∼

N (10, 0.01) (Michalak et al. 2016). Then for all coalitions, C in which agent ai
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appears, the actual power of ai in C is determined as pCi ∼ N (pi , 0.01) and the
coalition value is calculated as the sum of all the members’ power in that coalition.
That is, ∀C, v(C) = ∑

ai∈C pCi .
III. Chi-square (χ2) The value of each coalition C is drawn from v(C) ∼ χ2(ν), where

ν = |C| is the degree of freedom.
IV. Beta (β) The value of each coalition C is drawn as v(C) ∼ |C|× Beta (α, β), where

α = β = 0.5.
V. Exponential (EXPO)The value of each coalition C is drawn as v(C) ∼ |C|×Exp (λ),

where λ = 1 and n is the number of agents for all the coalitions C ∈ 2A − 1.
VI. Geometric (GEO) For each coalition C, a value is generated as rv = U (|C|/n, 1),

where n is the number of agents. The value of a coalition v(C) = Geometric(rv) ∗
rv ∗ |C|, next a random number r is generated r ∼ U (0, 50) and is added to the
coalition value v(C) with probability 0.2.

VII. Weibull Distribution (WB) The value of each coalition C is drawn as v(C) ∼ |C | ×
Weibull (|C|).

VIII. Gamma The value of each coalition C is drawn as v(C) ∼ |C| × Gamma (x, θ),
where x = θ = 2.

IX. Modified Normal (MN-D) The value of each coalition C is first drawn as v(C) ∼
N (a, b), where a = 10 × |C| and b = 0.01 (Rahwan et al. 2012), next a random
number r is generated r ∼ U (0, 50) and is added to the coalition value v(C) with
probability 0.2.

X. Modified Uniform (MU-D) The value of each coalition C is drawn uniformly as
v(C) ∼ U (a, b), where a = 0 and b = 10× |C| (Adams et al. 2010), next a random
number r is generated r ∼ U (0, 50) and is added to the coalition value v(C) with
probability 0.2.

XI. Normally Distributed Coalition Structures (NDCS) the value of each coalition C is
drawn as v(C) ∼ N (μ, σ 2) (Rahwan et al. 2009), where μ = |C| and σ = √|C|.

XII. Normal (N-D) Every coalition value is drawn from v(C) ∼ N (μ, σ 2) (Rahwan et al.
2007), where μ = 10 × |C| and σ = 0.1.

XIII. Rayleigh (RAL) The value of each coalition C is drawn as v(C) ∼ Rayleigh

(Modevalue), where Modevalue is defined as 10 ∗
√

2
π

∗ |C |.
XIV. Uniform (U-D) For all coalitions C ∈ 2A − 1, v(C) ∼ U (a, b), where a = 0 and

b = |C| (Larson and Sandholm 2000).
XV. F Distribution (F-D) Each coalition value is calculated using F-distribution with

degrees of freedom in the numerator Df num = 1 and degrees of freedom in the
denominator Df den1 = |C| + 1.

XVII. Laplace or double exponential (LAP) The value of each coalition C is drawn as
v(C) ∼ Laplace (μ, λ) where μ = 10 × |C| and λ = 0.1, the exponential decay.

5.2 Performance evaluation

We empirically evaluated the ImDP algorithm and benchmarked it against ODP–IP. We
compared the performances of both algorithms given different numbers of agents (5–27).
As can be seen, ImDP is faster for some distributions shown in Figs. 5 and 6. These tests
revealed that for Agent-based uniform and Agent-based normal datasets, we can use ImDP
with an average runtime gain of 90.91% and 89.50% for 27 agents. Further analysis showed
the behavior of ODP–IP and ImDP as follows:
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Fig. 5 Time performance of ODP–IP versus ImDP. Here, time is measured in seconds and plotted on a log
scale
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Fig. 5 continued
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Fig. 5 continued

For instance, for Chi-square dataset, ImDP’s average runtime gain over ODP–IP is 74.31%
for 27 agents. In geometric distribution, average runtime gain of ImDP is 46.03% over
ODP–IP for 27 agents. A similar pattern is found for NDCS, raleigh, double exponential
exponential, and F- distribution. In these cases, ImDP is better than ODP–IP for 27 agents
with an average runtime gain of 51%, 61.46%, 36.36%, 22.64% and 58.50% respectively. In
other cases ODP–IP outperforms ImDP for 27 agents. For beta, gamma, modified-normal,
modified uniform, normal, uniform, and weibull distributions ImDP is slower than ODP–IP
by 222%, 12.32%, 1670%, 138%, 182%, 290%, and 555%. The runtime gain is calculated
as I MDPtime−ODP−I Ptime

ODP−I Ptime
× 100.

Moreover, experimental results show that we gain maximum 2931 s in Agent-based uni-
form distribution. Table 2 shows the absolute runtime values for 27 agents.

Note that the number of operations performed by ImDP is not related to the characteristic
function at hand, i.e., it depends solely on the number of agents. On the contrary, the number
of operations performed by ODP–IP depends on the effectiveness of IP’s branch-and-bound
technique, which depends on the characteristic function used at hand (Michalak et al. 2016).
This is the reason why there is such a significant difference in the run-time of ImDP with
respect to ODP–IP when varying the distributions that define the characteristic function as
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Fig. 6 Time difference (in s) between ODP–IP versus ImDP for different numbers of agents
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Fig. 6 continued
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Fig. 6 continued

shown in Fig. 5. For instance, ODP–IP can generate an optimal result in a very short time
in the case of β distribution, but for the agent-based uniform distribution ODP–IP is unable
to generate the optimal solution quickly, because ODP–IP can prune many subspaces in the
case of β distribution but it cannot prune subspaces easily in the case of the agent-based
uniform distribution.

Broadly speaking, we have found some datasets for which ImDP works well for some
problem instances andODP–IPworks better for others. Table 3 shows the number of problem
instances for 5 to 27 agents, where ImDP time is better than or equals to ODP–IP time (cf.
column 2 in Table 3).

As ImDP is an imperfect algorithm, we need to know if ImDP does not produce optimal
CS, then what is the difference between ODP–IP generated optimal CS and ImDP generated
CS. ImDP algorithm fails only for few datasets but the failure rate is very low. Table 4
shows the number of fail cases where ImDP is unable to produce the exact result for each
distribution.

We also found that, in the case of failure, (ImDP generated CS value)/(Optimal CS value)
is always greater than .90 andmost ratios are .99. In Fig. 7b we have drawn the results only for
8 distributions in order to show how ImDP can surpass significantly ODP–IP on larger sets
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Table 2 Time difference between ODP–IP and ImDP in seconds for 27 agents

Distribution Time measured in seconds

ODP–IP ImDP Difference
Time (t1) Time (t2) t1 − t2

Agent-based uniform 3224.8075 293.0295 2931.778

Agent-based normal 2696.692 283.88 2412.812

Chi-square 1078.2885 277.5145 800.774

Raleigh 628.897 242.6665 386.2305

F-distribution 588.918 244.1565 344.7615

NDCS 500.1605 245.4155 254.745

Geometric 441.038 238.922 202.116

Exponential 318.16 246.21 71.95

Beta 1.25 279.01 − 277.76

Gamma 219.47 246.34 − 26.87

Modified-normal 14.55 248.70 − 234.15

Modified-uniform 109.14 260.97 − 151.83

Normal 92.67 263.66 − 170.99

Uniform 66.19 258.15 − 191.96

Weibull 37.98 249.98 − 212

Table 3 The number of problem instances where ImDP is faster than ODP–IP. For a single distribution we
tested over 1125 problem instances ranges from 5–27 agents

Distribution Probleminstance Probleminstance

ImDP ≤ ODP–IP ImDP > ODP–IP

Agent-based Uniform 1084 41

Agent-based Normal 1119 6

Chi-square 1084 41

Beta 754 371

Exponential 738 387

Geometric 934 191

Weibull 931 194

Gamma 673 452

Modified Normal 464 661

Modified Uniform 695 430

NDCS 658 467

Normal 695 430

Rayleigh 623 502

Uniform 448 677

F 699 426

Laplace 782 343
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Table 4 The number of failure
against 1125 problem instances
for each distribution

Distribution Number of failure Failure rate (%)

Agent-based uniform 58 5.11

Agent-based normal 57 5.06

Chi-square 83 7.38

Beta 83 12.08

Exponential 45 4.00

Geometric 19 1.70

Weibull 13 1.15

Gamma 51 4.53

Modified normal 14 1.24

Modified uniform 16 1.42

NDCS 86 7.64

Normal 19 1.69

Rayleigh 67 5.95

Uniform 260 23.11

F 24 2.13

Laplace 37 3.30

and Fig. 7a shows the behavior of ImDP under 22 agents. As ImDP is an imperfect algorithm,
we have shown in Fig. 7c the percentage of the optimal CS value difference generated by
ODP–IP with the CS value generated by ImDP.

ImDP is not an exact algorithm, but it can generate a near optimal CS in less time than
ODP–IP for these distributions. When tested, we found that for Agent-based uniform dis-
tribution ImDP is 49 min faster than ODP–IP for 27 agents as it is depicted in Figs. 5 and
6. Considering this set of 27 agents, the difference in term of values has also been mea-
sured as can be seen in Fig. 8. The effectiveness of IP’s branch and bound techniques play
an essential role in ODP–IP, which in turn depends on the characteristic functions at hand.
For some distributions, ODP–IP is much faster because of IP’s effectiveness on those distri-
butions. On the other hand, the number of operations performed by ImDP is not influenced
by the characteristic functions at hand, i.e. it depends solely on the number of agents. For
instance, with Beta, Exponential, Gamma, Modified normal-distribution, Modified uniform-
distribution, Normal-distribution and Uniform-distribution, we found that ODP–IP is faster
in those cases as compared to ImDP and very slow for other distributions. Now, the question
is, why is ODP–IP faster in some cases and slower in other cases? The reason is that applying
branch-and-bound in some distributions is very tough and for other distributions most of the
search spaces are pruned away easily.

As shown in Fig. 8, the curves have a zigzag shape, but this does not really impact the
results, since the differences in values of the two algorithms are very small. They are of the
order of 0.2 on average which is negligible compared to the value of the optimal coalition
structure.
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(c) Mean of the differences of solutions values for 5-27 agents

Fig. 7 Time performance and value difference of ODP–IP versus ImDP. a Shows the mean of time gain for
5–21 numbers of agents and b shows the mean of time gain for 5–27 numbers of agents. In this case ImDP
outperforms ODP–IP for all the 8 distributions. c shows the mean difference of coalition structure value
generated by ODP–IP and ImDP. Here, time is measured in seconds. Percentage of time gain is calculated
taking mean of time percentage gain. Similarly, value difference between ODP–IP generated optimal CS and
ImDP generated CS are calculated

6 Conclusion and future works

This paper has proposed anew imperfect dynamicprogrammingalgorithm (ImDP) for solving
the CSG problem. The design of our algorithm is based on twomerge functions: Merge1 and
Merge2 that we have introduced and illustrated. The experimental results demonstrate that
ImDP algorithm fails in rare cases. We have shown that ImDP strongly surpasses ODP–IP in
several distributions. Even if the runtimes obtained are still high, the interest of such results
is to show that it is still possible to make significant improvements to existing algorithms like
ODP–IP. With this first step, it will undoubtedly be possible for future work to improve the
results of ImDP as we did for ODP–IP in order to make the run times of the next algorithms
shorter. As such, the result already obtained for ImDP will be very beneficial for future
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Fig. 8 The mean of the differences of solutions values (absolute value) produced by ODP–IP and ImDP
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Fig. 8 continued
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Fig. 8 continued

work since the improvement already obtained on ODP–IP is of the order of 91% for some
distributions (cf. Fig. 7a, b).
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