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Abstract
The metaheuristic approaches inspired by the nature are becoming powerful optimizing 
algorithms for solving NP-complete problems. This paper presents five nature-inspired 
metaheuristic optimization algorithms to find near-optimal Golomb ruler (OGR) sequences 
in a reasonable time. In order to improve the search space and further improve the conver-
gence speed and optimization precision of the metaheuristic algorithms, the improved algo-
rithms based on mutation strategy and Lévy-flight search distribution are proposed. These 
two strategies help the metaheuristic algorithms to jump out of the local optimum, improve 
the global search ability so as to maintain the good population diversity. The OGRs found 
their potential application in channel-allocation method to suppress the four-wave mixing 
crosstalk in optical wavelength division multiplexing systems. The results conclude that 
the proposed algorithms are superior to the existing conventional computing algorithms 
i.e. extended quadratic congruence and search algorithm and nature-inspired optimization 
algorithms i.e. genetic algorithms, biogeography based optimization and simple big bang–
big crunch to find near-OGRs in terms of ruler length, total optical channel bandwidth and 
computation time. The idea of computational complexity for the proposed algorithms is 
represented through the Big O notation. In order to validate the proposed algorithms, the 
non-parametric statistical Wilcoxon analysis is being considered.

Keywords Channel spacing · Conventional computing · Equally and unequally spaced 
channel allocation · Four-wave mixing · Metaheuristic · Nature-inspired algorithm · Near-
optimal Golomb ruler · Optimization

1 Introduction

There exists a rich collection of nonlinear optical effects (Kwong and Yang 1997; Aggar-
wal 2001; Thing et al. 2004; Babcock 1953; Singh and Bansal 2013) in optical WDM sys-
tems, each of which manifests itself in a unique way. Out of these nonlinearities, the FWM 
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crosstalk signal is the major dominant noise effects in optical WDM systems employing 
equal channel spacing (ECS). Four-wave mixing is a third-order nonlinear optical effect 
in which two or more wavelengths (or frequencies) combine and produce several mixing 
products. For uniformly spaced WDM channels, the generated FWM product terms fall 
onto other active channels in the band, causing inter-channel crosstalk. The performance 
can be substantially improved if FWM crosstalk generation at the channel frequencies is 
prevented. The efficiency of FWM signals depends on the channel spacing and fiber disper-
sion. If the frequency separation of any two channels of an optical WDM system is differ-
ent from that of any other pair of channels, no FWM crosstalk signals will be generated at 
any of the channel frequencies (Kwong and Yang 1997; Aggarwal 2001; Thing et al. 2004; 
Babcock 1953; Singh and Bansal 2013).

To suppress the FWM signals in optical WDM systems, unequally spaced channel allo-
cation (USCA) algorithms (Kwong and Yang 1997; Sardesai 1999; Forghieri et al. 1995; 
Hwang and Tonguz 1998; Tonguz and Hwang 1998; Atkinson et al. 1986; Randhawa et al. 
2009) have been proposed, having the limitation of increased channel bandwidth require-
ment compared to equally spaced channel allocation (ESCA). This paper proposes an une-
qually spaced optical bandwidth channel allocation algorithm by taking into consideration 
the concept of near-OGRs (Babcock 1953; Bloom and Golomb 1977; Shearer 1998) to 
suppress FWM crosstalk in optical WDM systems.

Studies have been shown that Golomb rulers represent a class of NP-complete (http://
thein f1.infor matik .uni-jena.de/teach ing/ss10/obers emina r-ss10) problems. For higher order 
marks, the exhaustive computer search (Robinson 1979; Shearer 1990) of such problems 
is difficult. Numerous algorithms (Robinson 1979; Shearer 1990; Galinier et  al. 2001; 
Leitao 2004; Rankin 1993; Cotta et al. 2006) have been proposed to tackle Golomb ruler 
problem. To date, no efficient algorithm is known for finding the shortest length ruler. The 
realization of nature-inspired metaheuristic optimization algorithms such as Tabu search 
(TS) (Cotta et al. 2006), Memetic approach (Cotta et al. 2006), Genetic algorithms (GAs) 
(Soliday et al. 1995; Robinson 2000; Ayari et al. 2010; Dotú and Hentenryck 2005) and 
its hybridizations (HGA) (Ayari et al. 2010), hybrid evolutionary (HE) algorithms (Dotú 
and Hentenryck 2005), Biogeography based optimization (BBO) (Bansal 2014) and Big 
bang–big crunch (BB–BC) (Bansal 2017; Bansal and Sharma 2017) in finding relatively 
good solutions to such NP-complete problems provides a good starting point for algo-
rithms of finding near-OGRs. Therefore, nature-inspired algorithms seem to be very effec-
tive solutions for such NP-complete problems. This paper proposes the application of five 
nature-inspired algorithms namely BB–BC algorithm, Firefly algorithm (FA), Bat algo-
rithm (BA), Cuckoo search algorithm (CSA), Flower pollination algorithm (FPA) and their 
modified forms to find either optimal or near-optimal rulers in a reasonable time and their 
performance comparison with the existing conventional and nature-inspired algorithms to 
find near-OGRs.

2  Golomb rulers

Babcock (1953) firstly introduced the concept of Golomb rulers, and further was described 
by Bloom and Golomb (1977). According to the literatures (Colannino 2003; Dimitro-
manolakis 2002; Dollas et  al. 1998), all of rulers’ up to 8-marks introduced in Babcock 
(1953) are optimal; the 9- and 10-marks are near-optimal.

http://theinf1.informatik.uni-jena.de/teaching/ss10/oberseminar-ss10
http://theinf1.informatik.uni-jena.de/teaching/ss10/oberseminar-ss10
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Golomb rulers are an ordered set of unevenly marks at positive integer locations such 
that no distinct pairs of numbers from the set have the same difference (http://www.distr 
ibute d.net/ogr; Bansal 2019; Drakakis and Rickard 2010; Drakakis 2009). This means 
that an n-mark Golomb ruler G =

{
x1, x2,… , xn−1, xn

}
x1 < x2 < ⋯ < xn−1 < xn is an 

ordered set of n different positive integer numbers such that all the positive differences

are distinct (Bansal 2017). And

The positive integer numbers are referred to as order or marks. The number of marks 
on a ruler is referred to as the ruler size. The difference between the largest and smallest 
number is referred to as the ruler length RL, i.e.

where

and

Generally, the first mark x1 of set G may be assumed on position 0. Then the n-mark 
Golomb ruler set becomes G = {0, x2,… , xn−1, xn} and the RL of such n-mark set G is xn.

An OGR is the shortest length ruler for a given number of marks (http://mathw orld.
wolfr am.com/Perfe ctRul er.html; http://mathw orld.wolfr am.com/Golom bRule r.html). There 
can be multiple different OGRs for a specific number of marks. However, the unique opti-
mal Golomb 4-marks ruler is shown in Fig. 1, which measures all the distances from 0 to 6.

A perfect Golomb ruler measures all the integer distances from 0 to RL (http://thein 
f1.infor matik .uni-jena.de/teach ing/ss10/obers emina r-ss10; Soliday et  al. 1995). The 
ruler length RL of perfect Golomb ruler set G is (Rankin 1993):

For example, the set (0, 1, 3, 7, 12, 20), shown in Fig. 2 is a non-optimal 6-marks 
Golomb ruler with a length of 20. As from the differences it is clear that the numbers 
10, 14, 15, 16, 18 are missing, so it is not a perfect Golomb ruler set. The distance asso-
ciated between each pair of marks is also shown in Fig. 2.

(1)|xi − xj|, xi, xj ∈ G ∀ i > j or i ≠ j

(2)∀i, j, k, l ∈ {1, 2,… , n − 1, n}, xi − xj = xk − xl ⇔ i = k ∧ j = l.

(3)RL = max(G) −min(G) = xn − x1

(4)max(G) = max
{
x1, x2,… , xn−1, xn

}
= xn

(5)min(G) = min
{
x1, x2,… , xn−1, xn

}
= x1

(6)RL =
n(n − 1)

2
=

n−1∑

i=1

i

Fig. 1  A 4-marks OGR with its 
associated distances 0 1 4 6
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http://www.distributed.net/ogr
http://www.distributed.net/ogr
http://mathworld.wolfram.com/PerfectRuler.html
http://mathworld.wolfram.com/PerfectRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://theinf1.informatik.uni-jena.de/teaching/ss10/oberseminar-ss10
http://theinf1.informatik.uni-jena.de/teaching/ss10/oberseminar-ss10
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The OGRs found their potential applications in radio frequency allocation, computer 
communication network, sensor placement in X-ray crystallography, circuit layout, pulse 
phase modulation, self-orthogonal codes, VLSI architecture, geographical mapping, cod-
ing theory, linear arrays, fitness landscape analysis, radio astronomy, antenna design for 
radar missions, sonar applications and NASA missions in astrophysics, planetary and earth 
sciences (Babcock 1953; Bloom and Golomb 1977; Rankin 1993; Soliday et  al. 1995; 
Dimitromanolakis 2002; Dollas et  al. 1998; Lam and Sarwate 1988; Lavoie et  al. 1991; 
Robinson and Bernstein 1967; Cotta and Fernández 2005; Fang and Sandrin 1977; Blum 
et al. 1974; Memarsadegh 2013; http://encom pass.gsfc.nasa.gov/cases .html).

On applying OGRs to the channel allocation, it was possible to achieve the smallest dis-
tinct number to be used for the optical WDM channel allocation problem. As the difference 
between any two numbers is distinct, the new FWM frequency signals generated would not 
fall into the one already assigned for the carrier channels.

3  Nature‑inspired metaheuristic algorithms

Due to highly nonlinearity and complexity of the problem of interest, design optimization 
in engineering fields tends to be very challenging. As conventional computing algorithms 
are local search algorithm, so they are not the best tools for highly nonlinear global opti-
mization, and thus often miss the global optimality. In addition, design solutions have to 
be robust, low cost, subject to uncertainty in parameters and tolerance for imprecision of 
available components and materials. Nature-inspired algorithms are now among the most 
widely used optimization algorithms. The guiding principle is to devise algorithms of com-
putation that lead to an acceptable solution at low cost by seeking for an approximate solu-
tion to a precisely/imprecisely formulated problem (Cotta and Hemert 2008; Yang 2010a, 
2012a, 2013a; Koziel and Yang 2011; Rajasekaran and Vijayalakshmi Pai 2004; Mitchell 
2004).

This section is devoted to the brief overview of nature-inspired optimization algorithms 
based on the theories of big bang and big crunch called BB–BC, flash pattern of fireflies 
called FA, the echolocation characteristics of microbats called BA, brood parasitism of 
cuckoo species called CSA and flow pollination process of flowering plants called FPA.
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Fig. 2  A 6-marks non-OGR with its associated distances

http://encompass.gsfc.nasa.gov/cases.html
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The power of nature-inspired optimization algorithms lies in how faster the algorithms 
explore the new possible solutions and how efficiently they exploit the solutions to make 
them better. Although all optimization algorithms in their simplified form works well in the 
exploitation (the fine search around a local optimal), there are some problems in the global 
exploration of the search space. If all of the solutions in the initial phase of the optimiza-
tion algorithm are collected in a small part of search space, the algorithms may not find the 
optimal result and with a high probability, it may be trapped in that sub-domain. One can 
consider a large number for solutions to avoid this shortcoming, but it causes an increase 
in the function calculations as well as the computational costs and time. So for the optimi-
zation algorithms, there is a need by which exploration and exploitation can be enhanced 
and the algorithms can work more efficiently. By keeping this in mind two features, fitness 
(cost) based mutation strategy and random walk i.e. Lévy-flight distribution are introduced 
in the proposed metaheuristic algorithms, which is the main technical contribution of this 
paper. The Lévy flights distribution is much faster than the normal random walk. Lévy 
flights can reduce the required number of metaheuristic algorithms iterations by ~ 4 orders 
compared to normal random walk (Mareli and Twala 2018). Both the mutation and Lévy 
flight strategies help the metaheuristic algorithms to jump out of the local optimum, avoid 
the premature convergence of the algorithm and improve the global search ability so as to 
maintain the good population diversity. In all the modified algorithms, the mutation rate 
probability is determined based on the fitness value. The mutation rate probability MRi

t of 
each solution xi at running iteration index t, mathematically is given by:

where fi
t is the fitness value of each solution xi at iteration index t, and Max(f t) is the maxi-

mum fitness value in the population at iteration t. For all proposed algorithms, the mutation 
equation (Storn and Price 1997; Price et al. 2005) use throughout this paper is:

where xt
i
 is the population at running iteration index t, xt−1

best
= xt−1

∗
 is the current global best 

solution at iteration one less than running iteration index t, pm is mutation operator, r1 and 
r2 are uniformly distributed random integer numbers between 1 to size of the given prob-
lem. The numbers r1 and r2 are different from running index. Typical values of pm are same 
as in GA i.e. 0.001 to 0.05. The mutation strategy increases the chances for a good solu-
tion, but a high mutation rate (pm = 0.5 and 1.0) results in too much exploration and is 
disadvantageous to the improvement of candidate solutions. As pm decreases from 1.0 to 
0.01, optimization ability increases greatly, but as pm continues to decrease to 0.001, opti-
mization ability decreases rapidly. A small value of pm is not able to sufficiently increase 
solution diversity (Bansal 2014).

The Lévy flight distribution (Yang 2012b) used for all proposed algorithms in this paper 
mathematically is given by:

Here, Γ(λ) is the standard gamma distribution valid for large steps i.e. for s > 0. 
Throughout the paper, λ = 3/2 is used. In theory, it is required that ||s0|| >> 0 , but in practice 
s0 can be as small as 0.1 (Yang 2012b).

(7)MRt
i
=

f t
i

Max(f t)

(8)xt
i
= xt−1

i
+ pm(x

t−1
best

− xt−1
i

) + pm(x
t−1
r1

− xt−1
r2

)

(9)L(𝜆) ∼
𝜆𝛤 (𝜆) sin(𝜋𝜆∕2)

𝜋

1

s1+𝜆
, (s >> s0 > 0)
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By introducing these two features in the simplified forms of proposed algorithms, the 
basic concept of search space is modified i.e. the proposed algorithms can explore new 
search space by the mutation and random walk. A fundamental benefit of using mutation 
and Lévy flight strategies with nature-inspired algorithms in this paper is their ability to 
improve its solutions over time, which does not seem in the existing algorithms (Cotta et al. 
2006; Soliday et al. 1995; Robinson 2000; Ayari et al. 2010; Dotú and Hentenryck 2005; 
Bansal 2014, 2017; Bansal and Sharma 2017) to find near-OGRs.

3.1  Big bang–big crunch optimization algorithm and its modified forms

Erol and Eksin (2006), inspired by the theories of the evolution of universe; namely, the 
Big bang and Big crunch theory, developed a metaheuristic algorithm called Big bang–big 
crunch (BB–BC) optimization algorithm. BB–BC algorithm has two phases: Big bang 
phase where candidate solutions are randomly distributed over the search space and big 
crunch phase where a contraction procedure calculates a center of mass or the best fit indi-
vidual for the population (Erol and Eksin 2006; Afshar and Motaei 2011; Tabakov 2011; 
Yesil and Urbas 2010). In BB–BC, the centre of mass mathematically is computed by:

where xc = position of the center of mass; xi = position of candidate i; fi = fitness (cost) 
value of candidate i; and Popsize = population size. Instead of the center of mass, the best 
fit individual can also be chosen as the starting point in the big bang phase. The new can-
didates (xnew) around the centre of mass are calculated by adding or subtracting a normal 
random number whose value decreases as the iterations elapse. This can be formalized as 
by (Erol and Eksin 2006):

where r is a random number with a standard normal distribution, c1 is a parameter for lim-
iting the size of the search space, parameter c2 denotes after how many iterations the search 
space will be restricted to half, xmax and xmin are the upper and lower limits of elite pool, 
and t is the iteration index.

If fitness based mutation strategy is introduced in the simple BB–BC algorithm, a new 
Big bang–big crunch algorithm with mutation (BB–BCM) can be formulated.

On adding Lévy-flight distributions in the simple BB–BC algorithm, another new 
Lévy–flight Big bang–big crunch algorithm (LBB–BC) can be formulated. For LBB–BC, 
Eq. (11) is randomized via Lévy flights as:

The product ⊕ means entrywise multiplications and L(λ) is the Lévy flight based step 
size given mathematically by Eq. (9).

(10)xc =

Popsize∑
i=1

1

fi
xi

Popsize∑
i=1

1

fi

(11)xnew = xc + r × c1 ×
(xmax −xmin)

1 + t∕ c
2

(12)xnew = xc + r × c1 ×
(xmax −xmin)

1 + t∕ c
2

⊕ L(𝜆)
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If fitness based mutation strategy is applied to LBB–BC algorithm, Lévy flight Big 
bang–big crunch with mutation (LBB–BCM) algorithm can be formulated.

Based upon the above discussions, the corresponding general pseudo-code for modified 
BB–BC algorithm (MBB–BC) can be summarized in Fig. 3. If the lines 17–22 in Fig. 3 are 
removed and Lévy flight distributions in lines 14–16 are not used, then Fig. 3 represents 
the general pseudo-code for BB–BC algorithm. If from lines 14–16 Lévy flight distribu-
tions are not used, then Fig. 3 corresponds to the general pseudo-code for BB–BCM algo-
rithm. If no modifications in Fig. 3 are performed, then it represents the pseudo-code for 
LBB–BCM algorithm.

3.2  Firefly algorithm and its modified forms

Yang (2010a, 2012a, 2013a), Koziel and Yang (2011) inspired by the flashing pattern and 
characteristics of fireflies, developed a novel optimization algorithm called Firefly inspired 
algorithm or Firefly algorithm (FA). For describing this algorithm, FA uses the following 
three idealized rules:

1. All fireflies are unisex so that one firefly will be attracted to other fireflies regardless of 
their sex;

2. The attractiveness is proportional to the brightness and they both decrease as their 
distance increases. If there is no brighter one than a particular firefly, it will move ran-
domly;

3. The brightness of a firefly is determined by the landscape of the objective function.

In FA, the variation of light intensity and the formulation of attractiveness are two main 
issues. For maximum optimization problems, the brightness I of a firefly at a particular 

Fig. 3  General pseudo-code for 
MBB–BC Algorithm

1. Modified Big Bang–Big Crunch (MBB–BC) Algorithm
2. Begin
3.     /* Big Bang Phase */
4.            Generate a random set of candidates (population);
5.     /* End of Big Bang Phase */
6.     While not t                                  /* t is a termination criterion */
7.        Compute the fitness value of all the candidate solutions;
8.       Sort the population from best to worst based on fitness (cost) 
9.        value;
10.      /* Big Crunch Phase */
12.            Compute the center of mass;
13.      /* End of Big Crunch Phase */
14.      Calculate new candidates around the center of mass by adding
15.      or subtracting a normal random number whose value decreases 
16. as the iterations elapse via Lévy flight;     /* Big Bang Phase */
17.      /* Mutation */
18.            Compute mutation rate probability MRi via equation (7);
19.            If (MRi < rand)
20.             Perform mutation via equation (8);
21.            End if
22.      /* End of mutation */
23.     Rank the candidates and find the current best;
24.   End while
25.   Postprocess results and visualization;
26. End
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location X can simply be proportional to the objective function i.e. I(X) ∝ f(X) (Yang 2010a, 
b, c, 2011a, b, 2012a, 2013a; Koziel and Yang 2011; Yang and Deb 2010a; Yang and He 
2013). As both the light intensity and attractiveness decreases as the distance from the 
source increases, the variations of the light intensity and attractiveness should be monoton-
ically decreasing functions. For a given medium with a fixed light absorption coefficient γ, 
the light intensity I(r) varies with the distance r between any two fireflies (Yang 2010b) as:

where I0 denotes the original light intensity.
As attractiveness of a firefly is proportional to the light intensity seen by the neighbor-

ing fireflies, therefore the attractiveness β of a firefly with the distance r is given by:

where β0 is the attractiveness at r = 0.
The distance between any two fireflies i and j at locations Xi and Xj, respectively, is the 

Cartesian distance as given by (Yang 2010b):

where xi,k is the kth component of the spatial coordinate Xi of ith firefly and d is the number 
of dimensions in search space. The movement of a firefly i is attracted to another brighter 
firefly j is determined by (Yang 2010b):

where the second term is due to the attraction and the third term is randomization with a 
control parameter α, which makes the more efficient exploration of the search space. For 
most cases in the implementation,�0 = 1 and � ∈ [0, 1].

If mutation strategy is combined with the above mentioned three idealized rules, Firefly 
algorithm with mutation (FAM) can be formulated. All the parameters and equations for 
FAM are same as for simple FA. Only the difference between algorithms FAM and simple 
FA is that mutation strategy is added to simple FA.

By combining the characteristics of Lévy flights with the simple FA, another new algo-
rithm named, Lévy flight Firefly algorithm (LFA) can be formulated. For LFA, the third 
term in Eq. (16) is randomized via Lévy flights. The firefly movement equation for LFA is 
approximated by:

The term sign(rand − 0.5) , where rand ∈ [0, 1] essentially provides a random direction, 
while the random step length is drawn from a Lévy distribution having an infinite variance 
with an infinite mean. In LFA the steps of firefly motion are essentially a random walk 
process.

If both algorithms FAM and LFA are combine into a single algorithm, then Lévy flight 
Firefly algorithm with mutation (LFAM) can be formulated.

The corresponding general pseudo-code for modified FA (MFA) is shown in Fig. 4. If 
lines 15–20 in Fig. 4 are removed and in line 13 Lévy flight distributions are not used, then 

(13)I = I0e
−�r

(14)�(r) = �0e
−�r2

(15)rij =
‖‖Xi − Xj

‖‖‖ =

√√√√
d∑

k=1

(
xi,k − xj,k

)2

(16)Xi = Xi + �0e
−�r2

ij

(
Xj − Xi

)
+ �(rand − 0.5)

(17)Xi = Xi + 𝛽0e
−𝛾r2

ij

(
Xj − Xi

)
+ 𝛼.sign(rand − 0.5)⊕ L(𝜆)
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Fig. 4 corresponds to the general pseudo-code for simple FA. If Lévy flight distributions in 
line 13 are not used in Fig. 4, then it corresponds to the general pseudo-code for FAM and 
if no modifications in Fig. 4 are performed then it represents the general pseudo-code for 
LFAM algorithm.

3.3  Bat algorithm and its modified forms

Yang (2010a, c, 2011b, 2012a, Yang 2013a) and Koziel and Yang (2011), inspired by the 
echolocation characteristics of microbats, introduced a novel optimization algorithm called 
Bat algorithm (BA). For describing this new algorithm, the author in Yang (2010c) uses 
the following three idealized rules:

1. To sense the distance, all bats use echolocation and they also know the surroundings in 
some magical way;

2. Bats fly randomly with velocity vi at position xi, with a fixed frequency range [fmin, fmax], 
fixed wavelength range [λmin, λmax], varying its pulse emission rate r ∈ [0, 1], and loud-
ness A0 to hunt for prey, depending on the proximity of their target;

3. Although the loudness can vary in different ways, it is assume that the loudness varies 
from a minimum constant (positive) Amin to a large A0.

In BA, each bat is defined by its position xi, velocity vi, frequency fi, loudness Ai, and the 
emission pulse rate ri in a d-dimensional search space. Among all the bats, there is a cur-
rent global best solution x* which is located after comparing all the solutions among all the 

Fig. 4  General pseudo-code for 
MFA

1. Modified Firefly Algorithm (MFA)
2.   Begin
3.      /* MFA parameter initialization */
4.             Define objective function f (X);
5.             Generate initial population of fireflies xi (i = 1, 2,…n);
6.             Compute the light intensity Ii at xi by f (Xi);
7.             Define light absorption coefficient γ;
8.      /* End of MFA parameter initialization */
9.      While not t                                     /* t is a termination criterion */
10.       For i = 1 : n                                                       /*all n fireflies*/
11.          For j = 1 : i
12.             If (Ij > Ii)
13.                Move firefly i towards j in d-dimension via Lévy flights;
14.             End if
15.             /* Mutation */
16.                  Compute mutation rate probability MRi via equation (7);
17.                   If (MRi < rand)
18.                      Perform mutation via equation (8);
19.                   End if
20.             /* End of mutation */
21.             Vary attractiveness with distance r via exp[− γr];
22.             Evaluate new solutions and update light intensity;
23.          End for                                                               /* End for j */
24.       End for                                                                  /* End for i */
25.       Rank the fireflies and find the current best;
26.    End while
27.    Postprocess results and visualization;
28. End
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bats. The new velocities vt
i
 and solutions xt

i
 at step t are given by (Yang 2010c, 2013a, b; Li 

et al. 2019; Guo et al. 2019):

where � ∈ [0, 1] is a random vector drawn from a uniform distribution. A random walk is 
used for local search that modifies the current best solution according to Eq. (21):

where xbest = x∗ , � ∈ [−1, 1] is a scaling factor and At is loudness. Further the loudness A 
and pulse rate r are updated according to the Eqs. (22) and (23) respectively as iterations 
proceed:

where α and γ are constants and for simplicity, α = γ is chosen. For most of the simulation 
α = γ = 0.9 is used (Yang 2010c).

By combining the characteristics of mutation and Lévy flights strategies with the simple 
BA, three new algorithms, namely, Bat algorithm with mutation (BAM), Lévy flight Bat 
algorithm (LBA) and Lévy flight Bat algorithm with mutation (LBAM) can be formulated. 
For LBA, the modification performed in Eq. (21) is given by:

Based on these idealizations, the basic steps of BA can be described as a general 
pseudo-code shown in Fig. 5. In Fig. 5, if the concept of Lévy flights in lines 11, 12 and 
mutation (lines 17–22) are omitted, then Fig. 5 corresponds to the general pseudo-code for 
simple BA. If only the concept of mutation (lines 17–22) is not used in Fig. 5, then it cor-
responds to the pseudo-code for LBA, otherwise Fig. 5 shows the general pseudo-code for 
LBAM algorithm.

3.4  Cuckoo search algorithm and its modified form

Yang and Deb (2010b), Gandomi et al. (2013), Yang and Deb (2014), inspired by brood 
parasitism of some cuckoo species, developed a nature-inspired metaheuristic optimization 
algorithm called Cuckoo search algorithm (CSA). In addition, CSA algorithm is enhanced 
by the Lévy flights trajectory of some birds, rather than by simple random walks. For 
describing this algorithm, Yang et al. uses the following three idealized rules:

1. Each Cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
2. The best nest with high quality of eggs (solution) are carried over to the next iterations;

(18)fi = fmin + (fmax − fmin)�

(19)vt
i
= vt−1

i
+(xt−1

i
−x∗)fi

(20)xt
i
= xt−1

i
+ vt−1

i

(21)xnew = xbest + �At

(22)A
t
i
= � A

t−1
i

(23)rt
i
= r0

i
[1 − e−�t]

(24)xnew = xbest + 𝜀At ⊕ L(𝜆)
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3. The number of available host nests is fixed, and a host can discover an alien egg with 
probability pa ∈ [0,1]. In this case, the host bird can either throw the egg away or simply 
abandon the nest so as to build a completely new nest in a new location.

For simplicity, the last assumption can be approximated by a fraction pa of the n 
host nests being replaced by new nests (with new random solutions). For a maximiza-
tion problem, the quality i.e. fitness of a solution can simply be proportional to the 
value of the objective function. When new solutions xt are generating for, say, a cuckoo 
i, a Lévy flight is performed as approximated by (Iglesias et al. 2018):

where 𝛼 > 0 is the step size, which should be related to the scale of the specified problem.
As authors in Yang and Deb (2010b), already introduced the Lévy flights distri-

bution concept to enhance the performance, so only mutation strategy is applied to 
simple CSA to explore the search space. The new modified algorithm so formulated is 
named as Cuckoo search algorithm with mutation (CSAM). The basic steps of CSAM 
can be summarized as the pseudo-code shown in Fig.  6. If the concept of mutation 
(lines 9 to 14) is withdrawn from Fig. 6, then it corresponds to general pseudo-code for 
simple CSA.

(25)xt
i
= xt−1

i
+ 𝛼 ⊕ L(𝜆)

Fig. 5  General pseudo-code for 
MBA

1. Modified Bat Algorithm (MBA)
2.  Begin
3.     /* MBA parameter initialization */
4.        Define objective function f (X);
5.         Generate initial bat population xi and initial velocities vi (i = 1,
6.        2,…n);
7.        Define pulse frequency fi at xi;
8.        Initialize pulse rates ri and the loudness Ai;
9.     /* End of MBA parameter initialization */
10.   While not t                                      /* t is a termination criterion */
11.       Generate new solutions by adjusting frequency, and updating 
12.        velocities and locations/solutions by Lévy flights;
13.        If (rand > ri)
14.            Select a solution among the best solutions;
15.          Generate a local solution around the selected best solution;
16.        Else
17.        /* Mutation */
18.                Compute mutation rate probability MRi via equation (7);
19.               If (MRi < rand)
20.                  Perform mutation via equation (8);
21.                  End if
22.          /* End of Mutation */
23.        End if
24.        Generate a new solution by flying randomly;
25.        If (rand < ri and f (xi) < f (x*))
26.               Accept the new solutions;
27.             Increase ri and reduce Ai;
28.        End if
29.        Rank the bats and find the current best;
30.    End while
31.    Postprocess results and visualization;
32.  End
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3.5  Flower pollination algorithm and its modified form

Yang (2012b) and Yang et al. (2014), inspired by the flow pollination process of flow-
ering plants, introduced an optimization algorithm called Flower pollination algorithm 
(FPA). For describing this metaheuristic algorithm, the following four idealized rules 
were used:

1. For global pollination process, biotic cross-pollination is used and pollen-carrying pol-
linators obey Lévy flights distributions.

2. For local pollination, abiotic and self-pollination are used.
3. Pollinators such as insects can develop flower constancy, which is equivalent to a repro-

duction probability that is proportional to the similarity of two flowers involved.
4. The interaction of local pollination and global pollination can be controlled by a switch 

probability p∈[0,1], with a slight bias towards local pollination.

In FPA, the global pollination and local pollination are two main steps. In the global 
pollination step, flower pollens are carried by pollinators such as insects, and pollens can 
travel over a long distance because insects can often fly and travel over a much longer 
range. The first rule and flower constancy (i.e. third rule) can be written mathematically 
into a single equation (Yang 2012b):

where xt
i
 is the pollen i or solution vector xi at iteration t, x

∗
 is the current best solution (i.e. 

most fittest) found among all solutions at the current iteration and γ is a scaling factor to 
control the step size. The Lévy flight based step size L(λ) corresponds to strength of the 
pollination. Since insects may travel over a long distance with various distance steps, a 

(26)xt
i
= xt−1

i
+ �L(�)(x

∗
− xt−1

i
)

Fig. 6  General pseudo-code for 
CSAM

1. Cuckoo Search Algorithm with Mutation (CSAM)
2.     Begin
3.        /* CSAM parameter initialization */
4.            Define objective function f (X);
5.              Generate initial population of n host nests xi (i = 1, 2,…,n);
6.        /* End of CSAM parameter initialization */
7.        While not t                                   /* t is a termination criterion */
8.             Get a cuckoo (say i) randomly by Lévy flights;
9.             /* Mutation */
10.                 Compute mutation rate probability MRi via equation (7);
11.                If (MRi < rand)
12.                    Perform mutation via equation (8);
13.                End if
14.           /* End of mutation */
15.           Evaluate its quality/fitness Fi;
16.           Choose a nest among n (say j) randomly;
17.           If (Fi > Fj),
18.               Replace j by the new solution;
19.           End if
20.           A fraction (pa) of worse nests are abandoned and new ones
21.          are built;
22.          Keep the best solutions (or nests with quality solutions);
23.        Rank the solutions and find the current best;
24.      End while
25.      Postprocess results and visualization;
26.   End
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Lévy flight can be used to mimic this characteristic efficiently. That is, L > 0 is drawn from 
a Lévy flight distribution.

For local pollination, the second rule and flower constancy can be written mathemati-
cally by a single equation:

where xt−1
j

 and xt−1
k

 are pollens from different flowers of the same plant species. This essen-
tially mimics the flower constancy in a limited neighborhood. Mathematically, if xt

j
 and xt

k
 

are selected from the same population, this become a local random walk if ∈ is drawn from 
a uniform distribution in [0,1]. Pollination may also occur in a flower from the neighboring 
flower than by the far away flowers. For this, a switch probability (i.e. fourth rule) or prox-
imity probability p can be used to switch between global pollination and local pollination.

Like CSA, the author in Yang (2012b) already introduced the concept of Lévy flight 
distributions in FPA, so only mutation based on fitness value is added to simple FPA. 
The new algorithm so formed is named in this paper as Flower pollination algorithm 
with mutation (FPAM) which is summarized as pseudo-code shown in Fig. 7. The only 
difference in the pseudo-code for FPA and FPAM is only the addition of mutation (lines 
19–24) in Fig. 7. If lines 19–24 are not used in Fig. 7 then it corresponds to the general 
pseudo-code for simple FPA.

(27)xt
i
= xt−1

i
+ ∈ (xt−1

j
− xt−1

k
)

Fig. 7  General pseudo-code for 
FPAM
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4  Finding near‑OGRs: problem formulation

Both simplicity and efficiency attracts researchers towards natural phenomenon to solve 
NP–complete and complex optimization problems. The first problem investigated in 
this research is to find Golomb rulers for unequal channel allocation. Second problem 
is to obtain either optimal or near-OGRs through nature-inspired metaheuristic algo-
rithms by optimizing the ruler length so as to conserve the total occupied optical chan-
nel bandwidth.

If each individual element in an obtained set (i.e. non-negative integer location) is a 
Golomb ruler, the sum of all elements of an individual set forms the total occupied opti-
cal channel bandwidth. Thus if the spacing between any pair of channels in a Golomb 
ruler set G is denoted as CS , an individual element is as IE and the total number of 
channels/marks is n, then the ruler length RL and the total optical channel bandwidth 
TBW  are approximated by the following equations:

Ruler Length (RL):

subject to (CS)i ≠ (CS)j
Alternatively, Eq. (28a) can also be approximated as:

Total Bandwidth (TBW):

subject to (IE)i ≠ (IE)j
where i, j = 1, 2,… , n with i ≠ j are distinct in both Eqs. (28) and (29).

4.1  Nature‑inspired algorithms to find near‑OGRs

The general pseudo-code to find near-OGRs by using nature-inspired optimization algo-
rithms proposed in this paper is shown in Fig. 8. The core of the proposed algorithms 
is lines 19–30 which find Golomb rulers for a number of iterations or until either an 
optimal or near–to–optimal solution is found. Also the size of the generated population 
must be equal at the end of iteration to the initial population size (Popsize). Since there 
are many solutions, a replacement strategy must be performed as shown in Fig.  8 to 
remove the worst individuals. This mean that the proposed algorithms maintain a fixed 
population of rulers and performs a fixed number of iterations until either an optimal or 
near–to–optimal solution is found.

(28a)RL =

n−1∑

i=1

(CS)i

(28b)RL = IE(n) − IE(1)

(29)TBW =

n∑

i=1

(IE)i.
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5  Simulation results

This section presents the performance of proposed optimization algorithms and their 
performance comparison with best known OGRs (Bloom and Golomb 1977; Shearer 
1990; Rankin 1993; Colannino 2003; Dollas et al. 1998; http://mathw orld.wolfr am.com/
Golom bRule r.html), two of the conventional computing algorithms i.e. EQC and SA 
(Kwong and Yang 1997; Randhawa et al. 2009) and three nature-inspired algorithms i.e. 
GAs (Bansal 2014), BBO (Bansal 2014) and simple BB–BC (Bansal and Sharma 2017), 
of finding unequal channel spacing. All the proposed algorithms to find near-OGRs have 
coded and tested in Matlab–R2017a language running under Windows 7, 64–bit operat-
ing system. The algorithms have been executed on Intel(R) core™ 2 Duo CPU T6600 @ 
2.20 GHz processor Laptop with a RAM of 3 Gb and hard drive of 320 Gb.

5.1  Parameters selection for the proposed algorithms

To find either optimal or near-optimal solutions after a number of careful experimentation, fol-
lowing optimum parameter values of proposed algorithms have finally been settled as shown 

1.  Nature–Inspired Optimization Algorithms to Find Near–OGRs
2.    Begin
3.          /* Parameter initialization */
4.                 Define operating parameters for nature–inspired optimization algorithms;
5.                 Initialize the number of channels, lower and upper bound on the ruler length;
6.                 While not Popsize                                                                                                    /* Popsize is the population size input by the user */
7.                         Generate a random set of candidates (integer population);                  
8.                                                                                                       /* Number of integers in candidates is being equal to the number of channels */
9.                         Check Golombness of each candidates;
10.                       If Golombness is satisfied
11.                              Retain that candidate;
12.                       Else
13.                              Remove that particular candidate from the generated population;
14.                       End if
15.               End while
16.               Compute the fitness values;                /* fitness value represents the cost value i.e. ruler length and total optical channel bandwidth */
17.               Rank the candidates from best to worst based on fitness values;
18.        /* End of parameter initialization */
19.        While not t                                                                                                                                                        /* t is a termination criterion */
20.     A:        Call any nature–inspired optimization algorithm to determine new optimal set of candidates;
21.               Recheck Golombness of updated candidates;
22.                 If Golombness is satisfied
23.                         Retain that candidate and then go to B;
24.                 Else
25.                         Retain the previous generated candidate and then go to A;
26.                                                 /* Previous generated candidate is being equal to the candidate generated into the parameter initialization step*/
27.                 End if
28    B:         Recompute the fitness values of the modified candidates;
29.                Rank the candidates from best to worst based on fitness values and find the current best;
30.        End while
31.        Display the near–OGR sequences;
32.   End

Fig. 8  General pseudo-code to find near-OGR sequences by using nature-inspired optimization algorithms

Table 1  Simulation parameters 
for MBB–BC

Parameter Value

c1 0.1
c2 5
pm 0.05

http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
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in Tables 1, 2, 3, 4 and 5. The selection of a suitable parameter values for nature-inspired algo-
rithms are problem specific as there are no concrete rules.

5.2  Near‑OGR sequences

With the above mentioned parameters setting, the large numbers of sets of trials for various 
marks/channels were conducted. Each algorithm was executed 20 times until near-optimal 
solution was found. The generated near-OGRs for different marks by proposed metaheuristic 
algorithms are shown in “Appendix”. It has been verified that all the generated sequences are 
Golomb rulers. Although the proposed metaheuristic algorithms find same near-OGRs, but 
the difference is in required maximum number of iterations and computational time which is 
discussed in the following subsections.

Table 2  Simulation parameters 
for FA and MFA

Parameter Value

α 0.5
β 0.2
γ 1.0
pm 0.05

Table 3  Simulation parameters 
for BA and MBA

Parameter Value

A0 0.8
r0 0.5
pm 0.01

Table 4  Simulation parameters 
for CSA and CSAM

Parameter Value

α 0.01
pa 0.5
pm 0.05

Table 5  Simulation parameters 
for FPA and FPAM

Parameter Value

γ 1.0
p 0.8
pm 0.01
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5.3  Influence of selecting different population size on the performance 
of proposed algorithms

In this subsection, the influence of selecting different Popsize on the performance of pro-
posed optimization algorithms for different values of channels is examined. The increased 
Popsize increases the diversity of potential solutions, and helps to explore the search space. 
But as the Popsize increase, the computation time required to get either the optimal or near-
optimal solutions increase slightly as the diversity of possible solutions increase. But after 
some limit, it is not useful to increase Popsize, because it does not help in solving the 
problem faster. The choice of the best Popsize for nature-inspired optimization algorithms 
depends on the type of the problem (Bansal 2019).

Golomb rulers realized from 10- to 16-marks by TS (Cotta et al. 2006), maximum Pop-
size set was 190. The hybrid approach proposed in (Ayari et al. 2010) to find Golomb rulers 
from 11- to 23-marks, the Popsize was set between 20 and 2000. The near-OGRs found 
by the HE algorithms (Dotú and Hentenryck 2005), maximum Popsize set was 50. For the 
algorithms GAs and BBO (Bansal 2014), to find near-OGRs, maximum Popsize set was 
30.

With the above mentioned parameter settings, the experiment with Popsize varying 
from 10 to 100 for all the proposed metaheuristic algorithms was performed. It was noted 
that Popsize has little significant effect on the performance of all proposed metaheuristic 
algorithms. By carefully looking at the results, the Popsize of 10 in all proposed algorithms 
was found to be adequate for finding near-OGRs.

5.4  Influence of increasing iterations on total optical channel bandwidth

The choice of the best maximum iteration for metaheuristic algorithms is always criti-
cal for specific problems. Increasing the numbers of iteration, will increase the possibil-
ity of reaching optimal solutions and promoting the exploitation of the search space so 
as to obtain the global optimization abilities of the metaheuristic algorithms. This will 
maintain a better population diversity and the global search ability is improved, which 
efficiently improves the accuracy and efficiency of the metaheuristic algorithms. This is 
because after a number of iteration, it is necessary to search from a different path so as to 
get improved solutions. The algorithm effectively jumps out of the local optimal value and 
continues to optimize. This means, the chance to find the correct search direction increases 
considerably.

In this subsection the influence of increasing the number of iterations on proposed algo-
rithms with the same parameter settings as mentioned above subsections is examined. By 
increasing the number of iterations, the total optical channel bandwidth tends to decrease; 
it means that the rulers reach their optimal or near-optimal values after certain iterations. 
This is the point where no further improvement is seen. Figure 9 illustrates the influence of 
increasing iterations on the performance of proposed algorithms for various channels. It is 
noted that the iterations have little effect for low value marks. But for higher order marks, 
the iterations have a great effect on the total optical channel bandwidth i.e. total optical 
bandwidth gets optimized after a certain numbers of iterations.

In literatures (Cotta et  al. 2006) and (Ayari et  al. 2010), the maximum numbers of 
iterations (Maxiter) for TS algorithm to find Golomb rulers were set to 10000 and 30000 
respectively. The hybrid approach proposed in (Ayari et  al. 2010) to find Golomb rulers 
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the maximum number of iterations set were 100000. In (Bansal 2014), it was noted that 
to find near-OGRs, hybrid evolutionary algorithms (Dotú and Hentenryck 2005) get sta-
bilized in and around 10000 iterations, while GAs and BBO algorithms stabilized in and 
around 5000 iterations. By carefully looking at the results, it is concluded that all the 

Fig. 9  Influence of iterations on TBW for a BB-BCM; b LBB-BC; c LBB-BCM; d FA; e FAM; f LFA; g 
LFAM; h BA; i BAM; j LBA; k LBAM; l CSA; m CSAM; n FPA; and o FPAM for various channels
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proposed optimization algorithms in this paper to find either optimal or near-OGRs sta-
bilized in or around 1000 iterations. To find n-channel near-OGRs, the value of Maxiter 
parameter during the simulations was selected to 50 times the number of channel (n), i.e. 
Maxiter = 50 × n . In summary, the FPAM algorithm shows stronger optimization per-
formance and higher optimization efficiency and faster convergence rate than the other 
algorithms.

5.5  Performance comparison of proposed algorithms with previous existing 
algorithms in terms of ruler length and total optical channel bandwidth

Table 6 enlists the ruler length and total occupied channel bandwidth by different sequences 
obtained from the proposed algorithms after 20 executions and their performance com-
parison with best known OGRs (best solutions), EQC, SA, GAs, BBO and simple BB–BC. 
According to (Kwong and Yang 1997), the applications of EQC and SA is restricted to 
prime powers only, so the ruler length and total occupied channel bandwidth for EQC and 
SA are presented by a dash line in Table 6. Comparing the experimental results obtained 
from the proposed algorithms with best known OGRs and existing algorithms, it is noted 
that there is a significant improvement in the ruler length and thus the total occupied chan-
nel bandwidth that is, the results gets better.

From Table  6, it is also observed that simulation results are particularly impressive. 
First observe that for all the proposed algorithms, the ruler length obtained up to 13-marks 
is same as that of best known OGRs and the total optical channel bandwidth occupied 
for marks 5 to 9 and 11 is smaller than the best known OGRs, while all the other rulers 
obtained are either optimal or near-optimal. Second observe that the algorithms BB–BCM 
and LBB–BC do not find best known rulers after 7-marks, but finds near-optimal rulers 
for 8- to 20-marks. Algorithm LBB–BCM can find best optimal rulers up to 8-marks, but 
finds near-optimal rulers after 8-marks. FA can find best rulers for up to 11-marks. Algo-
rithms FAM and LFA can find best rulers for up to 12-marks and near-optimal rulers after 
12-marks. By combining algorithms FAM and LFA into a single algorithm named LFAM, 
best OGRs up to 16-marks and near-optimal rulers for 17- to 20-marks can be find effi-
ciently. BA, BAM and LBA can find best rulers up to 17-marks and near-optimal rulers for 
18- to 20-marks. The algorithms LBAM, CSA, CSAM, FPA and FPAM can find best rulers 
up to 20-marks very efficiently and effectively in a reasonable computational time.

From simulation results, it is concluded that modified forms of the proposed algorithms 
to find near-OGRs, slightly outperforms the algorithms presented in their simplified forms. 
As illustrated in Table 6 for higher order marks, the algorithms CSA, FPA, BA and their 
modified forms outperforms the other algorithms in terms of both the ruler length and total 
occupied channel bandwidth. Figure 10 shows the graphical representation of Table 6.

5.6  Performance comparison of proposed algorithms in terms of computational 
time

Finding Golomb rulers is an extremely challenging optimization problem. The OGRs gen-
eration by exhaustive parallel search algorithms for higher order marks is computationally 
very time consuming, which took several hours, months, even years of calculation on the 
network of several thousand computers (Shearer 1998; Rankin 1993; Dollas et  al. 1998; 
http://www.distr ibute d.net/ogr). For example, rulers with 20- to 26-marks were found by 

http://www.distributed.net/ogr
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distributed OGR project (http://www.distr ibute d.net/ogr) which took several years of cal-
culations on many computers to prove the optimality of the rulers.

This subsection is devoted to report the experimental average CPU time taken to find 
either optimal or near-OGRs by the proposed algorithms and their comparison with the 
computation time taken by existing algorithms (Shearer 1990; Rankin 1993; Soliday et al. 
1995; Ayari et al. 2010; Bansal 2014, 2017; Bansal and Sharma 2017; Dollas et al. 1998; 
http://www.distr ibute d.net/ogr). Figure 11 illustrates the average CPU time taken by pro-
posed metaheuristic algorithms to find near-OGRs up to 20-marks. In (Soliday et al. 1995), 
it is identified that to find Golomb rulers from heuristic based exhaustive search algorithm, 
the times varied from 0.035 s to 6 weeks for 5- to 13-marks ruler, whereas by non-heuristic 
exhaustive search algorithms took approximately 12.57 min for 10-marks, 2.28 years for 
12-marks, 2.07 ×  104 years for 14-marks, 3.92 × 109 years for 16-marks, 1.61 × 1015 years 
for 18-marks and 9.36 × 1020 years for 20-marks ruler. In (Ayari et al. 2010), it is reported 

Fig. 10  Comparison of proposed algorithms in terms of a RL and b TBW with the other existing algorithms

Fig. 11  Comparison of average 
CPU time taken by proposed 
algorithms for various channels

http://www.distributed.net/ogr
http://www.distributed.net/ogr
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that CPU time taken by TS algorithm to find OGRs is around 0.1  s for 5-marks, 720  s 
for 10-marks, 960  s for 11-marks, 1913s for 12-marks and 2516  s (around 41  min) for 
13-marks. The OGRs realized by HGA (Ayari et al. 2010) took around 5 h for 11-marks, 
8 h for 12-marks, and 11 h for 13-marks. The OGRs realized by the exhaustive search algo-
rithms in (Shearer 1990) for 14- and 16-marks, took nearly one hour and hundred hours 
respectively, while 17-, 18- and 19-marks OGRs realized in (Rankin 1993) and (Dollas 
et al. 1998), took around 1440, 8600 and 36200 CPU hours (nearly seven months) respec-
tively on a Sun Sparc Classic workstation. Also, the near-OGRs realized up to 20-marks by 
algorithms GAs and BBO (Bansal 2014), the maximum execution time was approximately 
31 h i.e. nearly 1.3 days, while for BB–BC (Bansal and Sharma 2017) the maximum execu-
tion time was around 28 h i.e. almost 1.1 days.

It is noted that for proposed algorithms, the average CPU time varied from 0.000 s for 
3-marks ruler to approximately 27  h for 20-marks ruler. The maximum and minimum 
execution time taken by the proposed algorithms for 20-marks ruler is about 27 and 19 h, 
respectively. By introducing the concept of mutation and

Lévy flight strategies with the proposed algorithms, the minimum execution time is 
reduced to approximately 18  h i.e. less than one day. This represents the improvement 
achieved by the use of proposed optimization algorithms and their modified forms to find 
near-OGRs. From Fig.  11, it is further observed that algorithm FPAM outperforms the 
other algorithms in terms of computational time.

5.7  Maximum computation complexity of proposed algorithms in terms of big O 
notation

The nature-inspired metaheuristic algorithms are stochastic process that execute randomly 
operations. For this reason, it is not practical to conduct a complexity analysis from a deter-
ministic point of view. However, it is possible to have an idea of this complexity through 
the mathematical notation called Big O notation.

To find the optimal solutions, the proposed metaheuristic algorithms have an initializa-
tion stage and a subsequent stage of iterations. The computational complexity of nature-
inspired algorithm depends upon n, Popsize and Maxiter:

For all the proposed metaheuristic algorithms, the maximum computational complexity 
in terms of Big O notation is

Thus the computational complexity for all the proposed metaheuristic algorithms is 
directly proportional to the square of the input mark/channel value.

(30)Computation complexity = O(n × Popsize ×Maxiter)

(31)Computation complexity = O(n × 10 × 50 × n) = O
(
500n2

)
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5.8  Wilcoxon rank‑sum test of proposed algorithms

In order to validate the proposed algorithms, the non-parametric statistical analysis with 
5% significance level is conducted to analyze and rank the algorithms. With the non-par-
ametric statistical analysis, we can make sure that the results are not caused by chance (Li 
et al. 2019). The Wilcoxon rank-sum statistical analysis (García et al. 2009) is performed 
on RL, TBW and CPU time. The Wilcoxon statistical comparison analysis between FPAM 
and other algorithms are listed in Table 7. Since the algorithms BA, CSA, FPA and their 
improved forms find same near-OGR sequences at different computational time so the RL 
and TBW p value is shown by a dash line in Table 7. In this experiment p value < 0.05 and 
h = 1 indicate that the difference between the two data is significant.

6  Conclusions and future scope

In this paper, WDM channel allocation algorithm by considering the concept of OGRs 
is presented. Finding OGRs through conventional computing algorithms is computa-
tionally hard problem because as the number of marks increases, the search for OGRs 

Table 7  Comparison of 
Wilcoxon rank-sum analysis for 
FPAM and other algorithms

Algorithm RL TBW (Hz) CPU time 
(Sec.)

p value h p value h p value h

FPAM versus GAs 0.0001 1 < 0.0001 1 < 0.0001 1
FPAM versus BBO 0.0002 1 < 0.0001 1 < 0.0001 1
FPAM versus BB-BC 0.002 1 < 0.0001 1 < 0.0001 1
FPAM versus BB-BCM 0.0078 1 < 0.0001 1 0.0001 1
FPAM versus LBB-BC 0.0156 1 < 0.0001 1 0.0001 1
FPAM versus LBB-BCM 0.00156 1 0.0001 1 0.0001 1
FPAM versus FA 0.0156 1 0.0001 1 < 0.0001 1
FPAM versus FAM 0.0313 1 0.0005 1 0.0001 1
FPAM versus LFA 0.0313 1 0.0039 1 0.0001 1
FPAM versus LFAM 0.125 0 0.0625 0 0.0001 1
FPAM versus BA – – 0.0625 0 < 0.0001 1
FPAM versus BAM – – – – 0.0001 1
FPAM versus LBA – – – – < 0.0001 1
FPAM versus LBAM – – – – 0.0001 1
FPAM versus CSA – – – – 0.0001 1
FPAM versus CSAM – – – – 0.0001 1
FPAM versus FPA – – – – 0.0001 1
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rises exponentially. The aim to use metaheuristic algorithms is not necessarily to pro-
duce perfect solutions, but to produce the near–to–optimal solutions under the given 
constraints. Even if exact algorithms are able to find optimal/near-OGRs, they remain 
unpractical in terms of computational time. This paper presented the application of five 
nature-inspired metaheuristic algorithms (BB–BC, FA, BA, CSA and FPA) to solve 
near-OGRs problem. The main technical contribution of this paper was to modify the 
nature-inspired metaheuristic algorithms by applying mutation and Lévy flight strate-
gies. The proposed algorithms have been validated and compared with other existing 
algorithms to find near-OGRs. It has been observed that modified forms finds near-
OGRs very efficiently and effectively than their simplified forms. The enumerated 
near-OGRs were compared with those enumerated through existing conventional and 
nature-inspired algorithms in terms of iterations, ruler length, total optical channel 
bandwidth and computational time. Simulations and comparison show that the proposed 
algorithms are superior to the existing algorithms. From preliminary results it is also 
concluded that for large order marks, MFA outperforms FA and MBB–BC, MBA out-
performs MFA and BA, CSAM outperforms MBA and CSA, while FPAM is slightly 
outperforms CSAM and FPA in terms of ruler length, total channel bandwidth, experi-
mental computation time and maximum number of iterations needed to find near-OGRs. 
The results obtained from simulation experiment and Wilcoxon rank-sum analysis show 
that the proposed FPAM is potentially more superior in terms of exploitation and explo-
ration abilities, success rate and convergence speed compared with the other algorithms 
in solving such a NP–complete problem.

To date, none of the researchers show the implementation of their algorithm in real opti-
cal WDM systems in order to see the complexity of realizing the unequal channel spacing. 
Although numerous algorithms have been suggested for finding near-OGRs, yet there is 
no uniformly accepted formulation. So, in order for these algorithms to be of practical use, 
it is desired that the performance of these algorithms for higher order OGRs up to about 
several thousand channels may be evaluated and may be used to provide unequal channel 
spacing in real WDM system. Though this process will be very time consuming yet this 
needs be done for this work to be of some use in the field of communication engineering.

Appendix

Tables 8 and 9 lists the near-OGRs found by proposed algorithms for various marks.
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