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Abstract

The metaheuristic approaches inspired by the nature are becoming powerful optimizing
algorithms for solving NP-complete problems. This paper presents five nature-inspired
metaheuristic optimization algorithms to find near-optimal Golomb ruler (OGR) sequences
in a reasonable time. In order to improve the search space and further improve the conver-
gence speed and optimization precision of the metaheuristic algorithms, the improved algo-
rithms based on mutation strategy and Lévy-flight search distribution are proposed. These
two strategies help the metaheuristic algorithms to jump out of the local optimum, improve
the global search ability so as to maintain the good population diversity. The OGRs found
their potential application in channel-allocation method to suppress the four-wave mixing
crosstalk in optical wavelength division multiplexing systems. The results conclude that
the proposed algorithms are superior to the existing conventional computing algorithms
i.e. extended quadratic congruence and search algorithm and nature-inspired optimization
algorithms i.e. genetic algorithms, biogeography based optimization and simple big bang—
big crunch to find near-OGRs in terms of ruler length, total optical channel bandwidth and
computation time. The idea of computational complexity for the proposed algorithms is
represented through the Big O notation. In order to validate the proposed algorithms, the
non-parametric statistical Wilcoxon analysis is being considered.

Keywords Channel spacing - Conventional computing - Equally and unequally spaced
channel allocation - Four-wave mixing - Metaheuristic - Nature-inspired algorithm - Near-
optimal Golomb ruler - Optimization

1 Introduction
There exists a rich collection of nonlinear optical effects (Kwong and Yang 1997; Aggar-

wal 2001; Thing et al. 2004; Babcock 1953; Singh and Bansal 2013) in optical WDM sys-
tems, each of which manifests itself in a unique way. Out of these nonlinearities, the FWM
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crosstalk signal is the major dominant noise effects in optical WDM systems employing
equal channel spacing (ECS). Four-wave mixing is a third-order nonlinear optical effect
in which two or more wavelengths (or frequencies) combine and produce several mixing
products. For uniformly spaced WDM channels, the generated FWM product terms fall
onto other active channels in the band, causing inter-channel crosstalk. The performance
can be substantially improved if FWM crosstalk generation at the channel frequencies is
prevented. The efficiency of FWM signals depends on the channel spacing and fiber disper-
sion. If the frequency separation of any two channels of an optical WDM system is differ-
ent from that of any other pair of channels, no FWM crosstalk signals will be generated at
any of the channel frequencies (Kwong and Yang 1997; Aggarwal 2001; Thing et al. 2004;
Babcock 1953; Singh and Bansal 2013).

To suppress the FWM signals in optical WDM systems, unequally spaced channel allo-
cation (USCA) algorithms (Kwong and Yang 1997; Sardesai 1999; Forghieri et al. 1995;
Hwang and Tonguz 1998; Tonguz and Hwang 1998; Atkinson et al. 1986; Randhawa et al.
2009) have been proposed, having the limitation of increased channel bandwidth require-
ment compared to equally spaced channel allocation (ESCA). This paper proposes an une-
qually spaced optical bandwidth channel allocation algorithm by taking into consideration
the concept of near-OGRs (Babcock 1953; Bloom and Golomb 1977; Shearer 1998) to
suppress FWM crosstalk in optical WDM systems.

Studies have been shown that Golomb rulers represent a class of NP-complete (http://
theinf1.informatik.uni-jena.de/teaching/ss10/oberseminar-ss10) problems. For higher order
marks, the exhaustive computer search (Robinson 1979; Shearer 1990) of such problems
is difficult. Numerous algorithms (Robinson 1979; Shearer 1990; Galinier et al. 2001;
Leitao 2004; Rankin 1993; Cotta et al. 2006) have been proposed to tackle Golomb ruler
problem. To date, no efficient algorithm is known for finding the shortest length ruler. The
realization of nature-inspired metaheuristic optimization algorithms such as Tabu search
(TS) (Cotta et al. 2006), Memetic approach (Cotta et al. 2006), Genetic algorithms (GAs)
(Soliday et al. 1995; Robinson 2000; Ayari et al. 2010; Dotd and Hentenryck 2005) and
its hybridizations (HGA) (Ayari et al. 2010), hybrid evolutionary (HE) algorithms (Dotd
and Hentenryck 2005), Biogeography based optimization (BBO) (Bansal 2014) and Big
bang—big crunch (BB-BC) (Bansal 2017; Bansal and Sharma 2017) in finding relatively
good solutions to such NP-complete problems provides a good starting point for algo-
rithms of finding near-OGRs. Therefore, nature-inspired algorithms seem to be very effec-
tive solutions for such NP-complete problems. This paper proposes the application of five
nature-inspired algorithms namely BB-BC algorithm, Firefly algorithm (FA), Bat algo-
rithm (BA), Cuckoo search algorithm (CSA), Flower pollination algorithm (FPA) and their
modified forms to find either optimal or near-optimal rulers in a reasonable time and their
performance comparison with the existing conventional and nature-inspired algorithms to
find near-OGRs.

2 Golomb rulers

Babcock (1953) firstly introduced the concept of Golomb rulers, and further was described
by Bloom and Golomb (1977). According to the literatures (Colannino 2003; Dimitro-
manolakis 2002; Dollas et al. 1998), all of rulers’ up to 8-marks introduced in Babcock
(1953) are optimal; the 9- and 10-marks are near-optimal.
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Golomb rulers are an ordered set of unevenly marks at positive integer locations such
that no distinct pairs of numbers from the set have the same difference (http://www.distr
ibuted.net/ogr; Bansal 2019; Drakakis and Rickard 2010; Drakakis 2009). This means
that an n-mark Golomb ruler G = {xl,xz, ,xn_l,xn} X; <Xy <o <X, <X, 1s an
ordered set of n different positive integer numbers such that all the positive differences

| —x;|, x,x,€G Vi>jori#j (1)

i J
are distinct (Bansal 2017). And
Vi, j,k,l € {1,2,...,n—1,n},x; —X =X X Si=kAj=1L )

The positive integer numbers are referred to as order or marks. The number of marks
on a ruler is referred to as the ruler size. The difference between the largest and smallest
number is referred to as the ruler length RL, i.e.

RL = max(G) — min(G) = x,, — x; 3)
where
max(G) = max{x,,xz, ,xn_l,xn} =X, 4
and
min(G) = min{xl,xQ, ,xn_l,xn} =X (5)

Generally, the first mark x; of set G may be assumed on position 0. Then the n-mark
Golomb ruler set becomes G = {0, x,, ...,x,_;,x,} and the RL of such n-mark set G is x,,.

An OGR is the shortest length ruler for a given number of marks (http://mathworld.
wolfram.com/PerfectRuler.html; http://mathworld.wolfram.com/GolombRuler.html). There
can be multiple different OGRs for a specific number of marks. However, the unique opti-
mal Golomb 4-marks ruler is shown in Fig. 1, which measures all the distances from O to 6.

A perfect Golomb ruler measures all the integer distances from O to RL (http://thein
f1.informatik.uni-jena.de/teaching/ss10/oberseminar-ss10; Soliday et al. 1995). The
ruler length RL of perfect Golomb ruler set G is (Rankin 1993):

n—1

nn-1) .
RL=——— =§z (6)

For example, the set (0, 1, 3, 7, 12, 20), shown in Fig. 2 is a non-optimal 6-marks
Golomb ruler with a length of 20. As from the differences it is clear that the numbers
10, 14, 15, 16, 18 are missing, so it is not a perfect Golomb ruler set. The distance asso-
ciated between each pair of marks is also shown in Fig. 2.

Fig. 1 A 4-marks OGR with its | [ | |
associated distances

4
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Fig.2 A 6-marks non-OGR with its associated distances

The OGRs found their potential applications in radio frequency allocation, computer
communication network, sensor placement in X-ray crystallography, circuit layout, pulse
phase modulation, self-orthogonal codes, VLSI architecture, geographical mapping, cod-
ing theory, linear arrays, fitness landscape analysis, radio astronomy, antenna design for
radar missions, sonar applications and NASA missions in astrophysics, planetary and earth
sciences (Babcock 1953; Bloom and Golomb 1977; Rankin 1993; Soliday et al. 1995;
Dimitromanolakis 2002; Dollas et al. 1998; Lam and Sarwate 1988; Lavoie et al. 1991;
Robinson and Bernstein 1967; Cotta and Fernandez 2005; Fang and Sandrin 1977; Blum
et al. 1974; Memarsadegh 2013; http://encompass.gsfc.nasa.gov/cases.html).

On applying OGRs to the channel allocation, it was possible to achieve the smallest dis-
tinct number to be used for the optical WDM channel allocation problem. As the difference
between any two numbers is distinct, the new FWM frequency signals generated would not
fall into the one already assigned for the carrier channels.

3 Nature-inspired metaheuristic algorithms

Due to highly nonlinearity and complexity of the problem of interest, design optimization
in engineering fields tends to be very challenging. As conventional computing algorithms
are local search algorithm, so they are not the best tools for highly nonlinear global opti-
mization, and thus often miss the global optimality. In addition, design solutions have to
be robust, low cost, subject to uncertainty in parameters and tolerance for imprecision of
available components and materials. Nature-inspired algorithms are now among the most
widely used optimization algorithms. The guiding principle is to devise algorithms of com-
putation that lead to an acceptable solution at low cost by seeking for an approximate solu-
tion to a precisely/imprecisely formulated problem (Cotta and Hemert 2008; Yang 2010a,
2012a, 2013a; Koziel and Yang 2011; Rajasekaran and Vijayalakshmi Pai 2004; Mitchell
2004).

This section is devoted to the brief overview of nature-inspired optimization algorithms
based on the theories of big bang and big crunch called BB-BC, flash pattern of fireflies
called FA, the echolocation characteristics of microbats called BA, brood parasitism of
cuckoo species called CSA and flow pollination process of flowering plants called FPA.
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The power of nature-inspired optimization algorithms lies in how faster the algorithms
explore the new possible solutions and how efficiently they exploit the solutions to make
them better. Although all optimization algorithms in their simplified form works well in the
exploitation (the fine search around a local optimal), there are some problems in the global
exploration of the search space. If all of the solutions in the initial phase of the optimiza-
tion algorithm are collected in a small part of search space, the algorithms may not find the
optimal result and with a high probability, it may be trapped in that sub-domain. One can
consider a large number for solutions to avoid this shortcoming, but it causes an increase
in the function calculations as well as the computational costs and time. So for the optimi-
zation algorithms, there is a need by which exploration and exploitation can be enhanced
and the algorithms can work more efficiently. By keeping this in mind two features, fitness
(cost) based mutation strategy and random walk i.e. Lévy-flight distribution are introduced
in the proposed metaheuristic algorithms, which is the main technical contribution of this
paper. The Lévy flights distribution is much faster than the normal random walk. Lévy
flights can reduce the required number of metaheuristic algorithms iterations by ~4 orders
compared to normal random walk (Mareli and Twala 2018). Both the mutation and Lévy
flight strategies help the metaheuristic algorithms to jump out of the local optimum, avoid
the premature convergence of the algorithm and improve the global search ability so as to
maintain the good population diversity. In all the modified algorithms, the mutation rate
probability is determined based on the fitness value. The mutation rate probability MR! of
each solution x; at running iteration index ¢, mathematically is given by:

13
MR' = f[
L Max(f")

)

where f! is the fitness value of each solution x; at iteration index 7, and Max(f*) is the maxi-
mum fitness value in the population at iteration ¢. For all proposed algorithms, the mutation
equation (Storn and Price 1997; Price et al. 2005) use throughout this paper is:

t—1

t 1—1 1—1 t—1
best xi ) +pm(xrl - xr2 ) (8)

=2 +p, &
where x! is the population at running iteration index ¢, x;‘e:t = x'~is the current global best
solution at iteration one less than running iteration index ¢, p,, is mutation operator, r, and
r, are uniformly distributed random integer numbers between 1 to size of the given prob-
lem. The numbers r, and r, are different from running index. Typical values of p,, are same
as in GA i.e. 0.001 to 0.05. The mutation strategy increases the chances for a good solu-
tion, but a high mutation rate (p,,=0.5 and 1.0) results in too much exploration and is
disadvantageous to the improvement of candidate solutions. As p,, decreases from 1.0 to
0.01, optimization ability increases greatly, but as p,, continues to decrease to 0.001, opti-
mization ability decreases rapidly. A small value of p,, is not able to sufficiently increase
solution diversity (Bansal 2014).

The Lévy flight distribution (Yang 2012b) used for all proposed algorithms in this paper
mathematically is given by:

L) ~ AL Wsinxd/2) L 5>>5>0 ©)
T slta

Here, I'(\) is the standard gamma distribution valid for large steps i.e. for s>0.
Throughout the paper, A=3/2 is used. In theory, it is required that |s,| >> 0, but in practice
s can be as small as 0.1 (Yang 2012b).
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By introducing these two features in the simplified forms of proposed algorithms, the
basic concept of search space is modified i.e. the proposed algorithms can explore new
search space by the mutation and random walk. A fundamental benefit of using mutation
and Lévy flight strategies with nature-inspired algorithms in this paper is their ability to
improve its solutions over time, which does not seem in the existing algorithms (Cotta et al.
2006; Soliday et al. 1995; Robinson 2000; Ayari et al. 2010; Dott and Hentenryck 2005;
Bansal 2014, 2017; Bansal and Sharma 2017) to find near-OGRs.

3.1 Big bang-big crunch optimization algorithm and its modified forms

Erol and Eksin (2006), inspired by the theories of the evolution of universe; namely, the
Big bang and Big crunch theory, developed a metaheuristic algorithm called Big bang-big
crunch (BB-BC) optimization algorithm. BB-BC algorithm has two phases: Big bang
phase where candidate solutions are randomly distributed over the search space and big
crunch phase where a contraction procedure calculates a center of mass or the best fit indi-
vidual for the population (Erol and Eksin 2006; Afshar and Motaei 2011; Tabakov 2011;
Yesil and Urbas 2010). In BB-BC, the centre of mass mathematically is computed by:

Popsize .
2 7
=1 7
x, = (10)

Popzstze 1

iz
where x.=position of the center of mass; x;=position of candidate i; f;=fitness (cost)
value of candidate i; and Popsize =population size. Instead of the center of mass, the best
fit individual can also be chosen as the starting point in the big bang phase. The new can-
didates (x,,,,) around the centre of mass are calculated by adding or subtracting a normal

random number whose value decreases as the iterations elapse. This can be formalized as
by (Erol and Eksin 2006):

(*max —*min)

X T+ 1/c (11)

=x,+rxc X

new

where r is a random number with a standard normal distribution, ¢, is a parameter for lim-
iting the size of the search space, parameter ¢, denotes after how many iterations the search
space will be restricted to half, x,,,, and x,,, are the upper and lower limits of elite pool,
and ¢ is the iteration index.

If fitness based mutation strategy is introduced in the simple BB-BC algorithm, a new
Big bang—big crunch algorithm with mutation (BB—BCM) can be formulated.

On adding Lévy-flight distributions in the simple BB-BC algorithm, another new
Lévy—flight Big bang—big crunch algorithm (LBB—BC) can be formulated. For LBB-BC,
Eq. (11) is randomized via Lévy flights as:

(*max —*min) & L(A) (12)

Xpow = X, + Xy X
o T T T/

T

The product @ means entrywise multiplications and L(4) is the Lévy flight based step
size given mathematically by Eq. (9).
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If fitness based mutation strategy is applied to LBB-BC algorithm, Lévy flight Big
bang-big crunch with mutation (LBB—BCM) algorithm can be formulated.

Based upon the above discussions, the corresponding general pseudo-code for modified
BB-BC algorithm (MBB-BC) can be summarized in Fig. 3. If the lines 17-22 in Fig. 3 are
removed and Lévy flight distributions in lines 14-16 are not used, then Fig. 3 represents
the general pseudo-code for BB-BC algorithm. If from lines 14-16 Lévy flight distribu-
tions are not used, then Fig. 3 corresponds to the general pseudo-code for BB-BCM algo-
rithm. If no modifications in Fig. 3 are performed, then it represents the pseudo-code for
LBB-BCM algorithm.

3.2 Firefly algorithm and its modified forms

Yang (2010a, 2012a, 2013a), Koziel and Yang (2011) inspired by the flashing pattern and
characteristics of fireflies, developed a novel optimization algorithm called Firefly inspired
algorithm or Firefly algorithm (FA). For describing this algorithm, FA uses the following
three idealized rules:

1. All fireflies are unisex so that one firefly will be attracted to other fireflies regardless of
their sex;

2. The attractiveness is proportional to the brightness and they both decrease as their
distance increases. If there is no brighter one than a particular firefly, it will move ran-
domly;

3. The brightness of a firefly is determined by the landscape of the objective function.

In FA, the variation of light intensity and the formulation of attractiveness are two main
issues. For maximum optimization problems, the brightness 7 of a firefly at a particular

Fig.3 General pseudo-code for 1. Modified Big Bang_Big Crunch (MBB-BC) Algorithm
MBB-BC Algorithm 2. Begin
3. /* Big Bang Phase */
4. Generate a random set of candidates (population);
5. /* End of Big Bang Phase */
6.  While not ¢ /* t is a termination criterion */
7. Compute the fitness value of all the candidate solutions;
8. Sort the population from best to worst based on fitness (cost)
9. value;
10.  /* Big Crunch Phase */
12. Compute the center of mass;

13.  /* End of Big Crunch Phase */

14.  Calculate new candidates around the center of mass by adding
15.  or subtracting a normal random number whose value decreases
16.  as the iterations elapse via Lévy flight;  /* Big Bang Phase */
17.  /* Mutation */

18. Compute mutation rate probability MR; via equation (7);
19. If (MR; < rand)

20. Perform mutation via equation (8);

21. End if

22. /* End of mutation */

23.  Rank the candidates and find the current best;
24. End while

25. Postprocess results and visualization;

26. End
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location X can simply be proportional to the objective function i.e. I(X) x f{X) (Yang 2010a,
b, ¢, 2011a, b, 2012a, 2013a; Koziel and Yang 2011; Yang and Deb 2010a; Yang and He
2013). As both the light intensity and attractiveness decreases as the distance from the
source increases, the variations of the light intensity and attractiveness should be monoton-
ically decreasing functions. For a given medium with a fixed light absorption coefficient y,
the light intensity /(r) varies with the distance r between any two fireflies (Yang 2010b) as:

I=1Ie" (13)

where I, denotes the original light intensity.
As attractiveness of a firefly is proportional to the light intensity seen by the neighbor-
ing fireflies, therefore the attractiveness f of a firefly with the distance r is given by:

B(r) = Ppe ™" (14)

where f is the attractiveness at r=0.
The distance between any two fireflies i and j at locations X; and X}, respectively, is the
Cartesian distance as given by (Yang 2010b):

ry=I1% - X = (15)

where x; is the kth component of the spatial coordinate X; of i"™ firefly and d is the number
of dimensions in search space. The movement of a firefly i is attracted to another brighter
firefly j is determined by (Yang 2010b):

X; = X, + foe”"i (X; — X;) + a(rand — 0.5) (16)

where the second term is due to the attraction and the third term is randomization with a
control parameter a, which makes the more efficient exploration of the search space. For
most cases in the implementation,f, = land a € [0, 1].

If mutation strategy is combined with the above mentioned three idealized rules, Firefly
algorithm with mutation (FAM) can be formulated. All the parameters and equations for
FAM are same as for simple FA. Only the difference between algorithms FAM and simple
FA is that mutation strategy is added to simple FA.

By combining the characteristics of Lévy flights with the simple FA, another new algo-
rithm named, Lévy flight Firefly algorithm (LFA) can be formulated. For LFA, the third
term in Eq. (16) is randomized via Lévy flights. The firefly movement equation for LFA is
approximated by:

X; = X, + Boe”""I (X, = X;) + a.sign(rand — 0.5) ® L(A) (17)

The term sign(rand — 0.5), where rand € [0, 1] essentially provides a random direction,
while the random step length is drawn from a Lévy distribution having an infinite variance
with an infinite mean. In LFA the steps of firefly motion are essentially a random walk
process.

If both algorithms FAM and LFA are combine into a single algorithm, then Lévy flight
Firefly algorithm with mutation (LFAM) can be formulated.

The corresponding general pseudo-code for modified FA (MFA) is shown in Fig. 4. If
lines 15-20 in Fig. 4 are removed and in line 13 Lévy flight distributions are not used, then
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Fig.4 General pseudo-code for 1. Modified Firefly Algorithm (MFA)
MFA 2. Begin
3 /* MFA parameter initialization */
4 Define objective function f(X);
5. Generate initial population of fireflies x; (i = 1, 2,...n);
6. Compute the light intensity 7; at x; by f(X;);
7 Define light absorption coefficient y;
8.  /* End of MFA parameter initialization */
9

. While not ¢ /* t is a termination criterion */
10. Fori=1:n /*all n fireflies*/
11. Forj=1:i
12. If(>1)

13. Move firefly i towards j in d-dimension via Lévy flights;
14. End if

15. /* Mutation */

16. Compute mutation rate probability MR; via equation (7);
17. If (MR; < rand)

18. Perform mutation via equation (8);

19. End if

20. /* End of mutation */

21. Vary attractiveness with distance  via exp[— yr];

22. Evaluate new solutions and update light intensity;

23. End for /* End forj */
24.  End for /* End for i */

25. Rank the fireflies and find the current best;
26. End while

27. Postprocess results and visualization;

28. End

Fig. 4 corresponds to the general pseudo-code for simple FA. If Lévy flight distributions in
line 13 are not used in Fig. 4, then it corresponds to the general pseudo-code for FAM and
if no modifications in Fig. 4 are performed then it represents the general pseudo-code for
LFAM algorithm.

3.3 Batalgorithm and its modified forms

Yang (2010a, c, 2011b, 2012a, Yang 2013a) and Koziel and Yang (2011), inspired by the
echolocation characteristics of microbats, introduced a novel optimization algorithm called
Bat algorithm (BA). For describing this new algorithm, the author in Yang (2010c) uses
the following three idealized rules:

1. To sense the distance, all bats use echolocation and they also know the surroundings in
some magical way;

2. Bats fly randomly with velocity v; at position x;, with a fixed frequency range [f,,,;,, finaxls
fixed wavelength range [4,,;,,, 4,,.,], varying its pulse emission rate r € [0, 1], and loud-
ness A to hunt for prey, depending on the proximity of their target;

3. Although the loudness can vary in different ways, it is assume that the loudness varies
from a minimum constant (positive) A, to a large A°.

In BA, each bat is defined by its position x;, velocity v;, frequency f;, loudness A;, and the
emission pulse rate r; in a d-dimensional search space. Among all the bats, there is a cur-
rent global best solution x. which is located after comparing all the solutions among all the
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bats. The new velocities v} and solutions x! at step ¢ are given by (Yang 2010c, 2013a, b; Li
et al. 2019; Guo et al. 2019):

Ji =Jmin + fmax = /min)P (18)
Vi= vl (ol =, ), 19)
x = xm ! (20)

where f € [0, 1] is a random vector drawn from a uniform distribution. A random walk is
used for local search that modifies the current best solution according to Eq. (21):

X = Xpest + sAt (21)

new

where x,,,, = x,, € € [—1, 1]is a scaling factor and A’ is loudness. Further the loudness A
and pulse rate r are updated according to the Eqgs. (22) and (23) respectively as iterations
proceed:

Ap=aAl! (22)

r=r -7 (23)

where a and y are constants and for simplicity, a=y is chosen. For most of the simulation
a=y=0.9 is used (Yang 2010c).

By combining the characteristics of mutation and Lévy flights strategies with the simple
BA, three new algorithms, namely, Bat algorithm with mutation (BAM), Lévy flight Bat
algorithm (LBA) and Lévy flight Bat algorithm with mutation (LBAM) can be formulated.
For LBA, the modification performed in Eq. (21) is given by:

Xnew = Xbest + gAt o L(i) (24)

Based on these idealizations, the basic steps of BA can be described as a general
pseudo-code shown in Fig. 5. In Fig. 5, if the concept of Lévy flights in lines 11, 12 and
mutation (lines 17-22) are omitted, then Fig. 5 corresponds to the general pseudo-code for
simple BA. If only the concept of mutation (lines 17-22) is not used in Fig. 5, then it cor-
responds to the pseudo-code for LBA, otherwise Fig. 5 shows the general pseudo-code for
LBAM algorithm.

3.4 Cuckoo search algorithm and its modified form

Yang and Deb (2010b), Gandomi et al. (2013), Yang and Deb (2014), inspired by brood
parasitism of some cuckoo species, developed a nature-inspired metaheuristic optimization
algorithm called Cuckoo search algorithm (CSA). In addition, CSA algorithm is enhanced
by the Lévy flights trajectory of some birds, rather than by simple random walks. For
describing this algorithm, Yang et al. uses the following three idealized rules:

1. Each Cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
2. The best nest with high quality of eggs (solution) are carried over to the next iterations;
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Fig.5 General pseudo-code for 1. Modified Bat Algorithm (MBA)
MBA 2. Begin

3. /* MBA parameter initialization */

4 Define objective function f (X);

5. Generate initial bat population x; and initial velocities v; (i = 1,

6. 2,...n);

7 Define pulse frequency f; at x;;

8 Initialize pulse rates r; and the loudness A4;;

E

/* End of MBA parameter initialization */
10. While not ¢ /* t is a termination criterion */
11. Generate new solutions by adjusting frequency, and updating
12. velocities and locations/solutions by Lévy flights;
13. If (rand > r;)
14. Select a solution among the best solutions;
15. Generate a local solution around the selected best solution;
16. Else
17. /* Mutation */
18. Compute mutation rate probability MR; via equation (7);
19. If (MR; < rand)
20. Perform mutation via equation (8);
21. End if
22. /* End of Mutation */
23. End if
24. Generate a new solution by flying randomly;
25. If (rand < r;and f'(x;) <f(x+))
26. Accept the new solutions;
27. Increase r; and reduce 4;;
28. End if

29. Rank the bats and find the current best;
30. End while

31. Postprocess results and visualization;

32. End

3. The number of available host nests is fixed, and a host can discover an alien egg with
probability p, € [0,1]. In this case, the host bird can either throw the egg away or simply
abandon the nest so as to build a completely new nest in a new location.

For simplicity, the last assumption can be approximated by a fraction p, of the n
host nests being replaced by new nests (with new random solutions). For a maximiza-
tion problem, the quality i.e. fitness of a solution can simply be proportional to the
value of the objective function. When new solutions x’ are generating for, say, a cuckoo
i, a Lévy flight is performed as approximated by (Iglesias et al. 2018):

X=x""+a® L) (25)

where a > 0 is the step size, which should be related to the scale of the specified problem.

As authors in Yang and Deb (2010b), already introduced the Lévy flights distri-
bution concept to enhance the performance, so only mutation strategy is applied to
simple CSA to explore the search space. The new modified algorithm so formulated is
named as Cuckoo search algorithm with mutation (CSAM). The basic steps of CSAM
can be summarized as the pseudo-code shown in Fig. 6. If the concept of mutation
(lines 9 to 14) is withdrawn from Fig. 6, then it corresponds to general pseudo-code for
simple CSA.
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Fig.6 General pseudo-code for

1. Cuckoo Search Algorithm with Mutation (CSAM)
CSAM 2. Begin
3 /* CSAM parameter initialization */
4 Define objective function f(X);
5. Generate initial population of # host nests x; (i = 1, 2,...,n);
6. /* End of CSAM parameter initialization */
7 While not ¢ /* t is a termination criterion */
8. Get a cuckoo (say i) randomly by Lévy flights;
9. /* Mutation */
10. Compute mutation rate probability MR; via equation (7);
11. If (MR, < rand)
12. Perform mutation via equation (8);
13. End if
14. /* End of mutation */
15. Evaluate its quality/fitness Fj;
16. Choose a nest among » (say j) randomly;
17. If (F;> F)),
18. Replace j by the new solution;
19. End if
20. A fraction (p,) of worse nests are abandoned and new ones
21. are built;
22. Keep the best solutions (or nests with quality solutions);
23. Rank the solutions and find the current best;

24.  End while
25.  Postprocess results and visualization;
26. End

3.5 Flower pollination algorithm and its modified form

Yang (2012b) and Yang et al. (2014), inspired by the flow pollination process of flow-
ering plants, introduced an optimization algorithm called Flower pollination algorithm
(FPA). For describing this metaheuristic algorithm, the following four idealized rules
were used:

1. For global pollination process, biotic cross-pollination is used and pollen-carrying pol-
linators obey Lévy flights distributions.

2. For local pollination, abiotic and self-pollination are used.

3. Pollinators such as insects can develop flower constancy, which is equivalent to a repro-
duction probability that is proportional to the similarity of two flowers involved.

4. The interaction of local pollination and global pollination can be controlled by a switch
probability p€[0,1], with a slight bias towards local pollination.

In FPA, the global pollination and local pollination are two main steps. In the global
pollination step, flower pollens are carried by pollinators such as insects, and pollens can
travel over a long distance because insects can often fly and travel over a much longer
range. The first rule and flower constancy (i.e. third rule) can be written mathematically
into a single equation (Yang 2012b):

X =x LA, =X (26)
where x§ is the pollen i or solution vector x; at iteration ¢, x is the current best solution (i.e.
most fittest) found among all solutions at the current iteration and y is a scaling factor to
control the step size. The Lévy flight based step size L(1) corresponds to strength of the
pollination. Since insects may travel over a long distance with various distance steps, a
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Lévy flight can be used to mimic this characteristic efficiently. That is, L> 0 is drawn from
a Lévy flight distribution.

For local pollination, the second rule and flower constancy can be written mathemati-
cally by a single equation:

y=x+ e —xh 27)

where x'~!and xi‘l are pollens from different flowers of the same plant species. This essen-
tially mimics the flower constancy in a limited neighborhood. Mathematically, if x{ and x;,
are selected from the same population, this become a local random walk if € is drawn from
a uniform distribution in [0,1]. Pollination may also occur in a flower from the neighboring
flower than by the far away flowers. For this, a switch probability (i.e. fourth rule) or prox-
imity probability p can be used to switch between global pollination and local pollination.

Like CSA, the author in Yang (2012b) already introduced the concept of Lévy flight
distributions in FPA, so only mutation based on fitness value is added to simple FPA.
The new algorithm so formed is named in this paper as Flower pollination algorithm
with mutation (FPAM) which is summarized as pseudo-code shown in Fig. 7. The only
difference in the pseudo-code for FPA and FPAM is only the addition of mutation (lines
19-24) in Fig. 7. If lines 19-24 are not used in Fig. 7 then it corresponds to the general
pseudo-code for simple FPA.

Fig.7 General pseudo-code for 1. Flower Pollination Algorithm with Mutation (FPAM)
FPAM 2. Begin

3. /* FPAM parameter initialization */

4 Define objective function f (X);

5. Initialize a population of n flowers/pollen gametes with random
6. solutions;

7 Find the best solution g in the initial population;

8. Define a switch probability p €[0,1];

9. /* End of FPAM parameter initialization */

10. While not ¢ /* t is a termination criterion */
11. Fori=1:n /*all n flowers */
12. If (rand < p)

13. Draw a (d—dimensional) step vector L via Lévy flights;
14. Perform global pollination via equation (26);

15. Else

16. Draw e from a uniform distribution in [0,1];

17. Perform local pollination via equation (27);

18. End if

19. /* Mutation */

20. Compute mutation rate probability MR; via equation (7);
21. If (MR; < rand)

22. Perform mutation via equation (8);

23. End if

24. /* End of mutation */

25. Evaluate new solutions;

26. If new solutions are better, update them in the population;
27. End for

28. Rank the solutions and Find the current best solution x _ ;

29. End while
30. Postprocess results and visualization;
31. End
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4 Finding near-OGRs: problem formulation

Both simplicity and efficiency attracts researchers towards natural phenomenon to solve
NP-complete and complex optimization problems. The first problem investigated in
this research is to find Golomb rulers for unequal channel allocation. Second problem
is to obtain either optimal or near-OGRs through nature-inspired metaheuristic algo-
rithms by optimizing the ruler length so as to conserve the total occupied optical chan-
nel bandwidth.

If each individual element in an obtained set (i.e. non-negative integer location) is a
Golomb ruler, the sum of all elements of an individual set forms the total occupied opti-
cal channel bandwidth. Thus if the spacing between any pair of channels in a Golomb
ruler set G is denoted as CS, an individual element is as /E and the total number of
channels/marks is n, then the ruler length RL and the total optical channel bandwidth
TBW are approximated by the following equations:

Ruler Length (RL):

n—1

RL =)' (CS), (28a)
i=1

subject to (CS); # (CS);
Alternatively, Eq. (28a) can also be approximated as:

RL = IE(n) — IE(1) (28b)
Total Bandwidth (TBW):

TBW =)' (IE),. (29)
i=1

subject to (IE); # (E);
where i,j = 1,2, ...,n with i # j are distinct in both Egs. (28) and (29).

4.1 Nature-inspired algorithms to find near-OGRs

The general pseudo-code to find near-OGRs by using nature-inspired optimization algo-
rithms proposed in this paper is shown in Fig. 8. The core of the proposed algorithms
is lines 19-30 which find Golomb rulers for a number of iterations or until either an
optimal or near—to—optimal solution is found. Also the size of the generated population
must be equal at the end of iteration to the initial population size (Popsize). Since there
are many solutions, a replacement strategy must be performed as shown in Fig. 8 to
remove the worst individuals. This mean that the proposed algorithms maintain a fixed
population of rulers and performs a fixed number of iterations until either an optimal or
near—to—optimal solution is found.
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1. Nature-Inspired Optimization Algorithms to Find Near—-OGRs

2. Begin

3 /* Parameter initialization */

4 Define operating parameters for nature—inspired optimization algorithms;

5. Initialize the number of channels, lower and upper bound on the ruler length;

6. ‘While not Popsize /* Popsize is the population size input by the user */
7 Generate a random set of candidates (integer population);

8. /* Number of integers in candidates is being equal to the number of channels */
9. Check Golombness of each candidates;

10. If Golombness is satisfied

11. Retain that candidate;

12. Else

13. Remove that particular candidate from the generated population;

14. End if

15. End while

16. Compute the fitness values; /* fitness value represents the cost value i.e. ruler length and total optical channel bandwidth */
17. Rank the candidates from best to worst based on fitness values;

18. /* End of parameter initialization */

19. While not ¢ /* tis a termination criterion */
20. A: Call any nature—inspired optimization algorithm to determine new optimal set of candidates;

21. Recheck Golombness of updated candidates;

22. If Golombness is satisfied

23. Retain that candidate and then go to B;

24. Else

25. Retain the previous generated candidate and then go to A;

26. /* Previous generated candidate is being equal to the candidate generated into the parameter initialization step*/
27. End if

28 B: Recompute the fitness values of the modified candidates;

29. Rank the candidates from best to worst based on fitness values and find the current best;

30. End while
31. Display the near-OGR sequences;
32. End

Fig.8 General pseudo-code to find near-OGR sequences by using nature-inspired optimization algorithms

5 Simulation results

This section presents the performance of proposed optimization algorithms and their
performance comparison with best known OGRs (Bloom and Golomb 1977; Shearer
1990; Rankin 1993; Colannino 2003; Dollas et al. 1998; http://mathworld.wolfram.com/
GolombRuler.html), two of the conventional computing algorithms i.e. EQC and SA
(Kwong and Yang 1997; Randhawa et al. 2009) and three nature-inspired algorithms i.e.
GAs (Bansal 2014), BBO (Bansal 2014) and simple BB-BC (Bansal and Sharma 2017),
of finding unequal channel spacing. All the proposed algorithms to find near-OGRs have
coded and tested in Matlab—R2017a language running under Windows 7, 64-bit operat-
ing system. The algorithms have been executed on Intel(R) core™ 2 Duo CPU T6600 @
2.20 GHz processor Laptop with a RAM of 3 Gb and hard drive of 320 Gb.

5.1 Parameters selection for the proposed algorithms

To find either optimal or near-optimal solutions after a number of careful experimentation, fol-
lowing optimum parameter values of proposed algorithms have finally been settled as shown

Table 1 Simulation parameters

for MBB_BC Parameter Value
c 0.1
c,y 5
p”1 0'05
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Table 2 Simulation parameters

for FA and MFA Parameter Value
a 0.5
02
% 1.0
P 0.05
I:rb g: arsuiimMu};igon parameters Parameter Value
A 0.8
r 0.5
P 0.01
;:rb ICeS4A i;rzlmcl;t/l:;[ pATMEEES  Parameter Value
a 0.01
Pa 0.5
P 0.05
:2:3 EPSA :;?;?XK/III paameters Parameter Value
v 1.0
P 0.8
P 0.01

in Tables 1, 2, 3, 4 and 5. The selection of a suitable parameter values for nature-inspired algo-
rithms are problem specific as there are no concrete rules.

5.2 Near-OGR sequences

With the above mentioned parameters setting, the large numbers of sets of trials for various
marks/channels were conducted. Each algorithm was executed 20 times until near-optimal
solution was found. The generated near-OGRs for different marks by proposed metaheuristic
algorithms are shown in “Appendix”. It has been verified that all the generated sequences are
Golomb rulers. Although the proposed metaheuristic algorithms find same near-OGRs, but
the difference is in required maximum number of iterations and computational time which is
discussed in the following subsections.
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5.3 Influence of selecting different population size on the performance
of proposed algorithms

In this subsection, the influence of selecting different Popsize on the performance of pro-
posed optimization algorithms for different values of channels is examined. The increased
Popsize increases the diversity of potential solutions, and helps to explore the search space.
But as the Popsize increase, the computation time required to get either the optimal or near-
optimal solutions increase slightly as the diversity of possible solutions increase. But after
some limit, it is not useful to increase Popsize, because it does not help in solving the
problem faster. The choice of the best Popsize for nature-inspired optimization algorithms
depends on the type of the problem (Bansal 2019).

Golomb rulers realized from 10- to 16-marks by TS (Cotta et al. 2006), maximum Pop-
size set was 190. The hybrid approach proposed in (Ayari et al. 2010) to find Golomb rulers
from 11- to 23-marks, the Popsize was set between 20 and 2000. The near-OGRs found
by the HE algorithms (Dotti and Hentenryck 2005), maximum Popsize set was 50. For the
algorithms GAs and BBO (Bansal 2014), to find near-OGRs, maximum Popsize set was
30.

With the above mentioned parameter settings, the experiment with Popsize varying
from 10 to 100 for all the proposed metaheuristic algorithms was performed. It was noted
that Popsize has little significant effect on the performance of all proposed metaheuristic
algorithms. By carefully looking at the results, the Popsize of 10 in all proposed algorithms
was found to be adequate for finding near-OGRs.

5.4 Influence of increasing iterations on total optical channel bandwidth

The choice of the best maximum iteration for metaheuristic algorithms is always criti-
cal for specific problems. Increasing the numbers of iteration, will increase the possibil-
ity of reaching optimal solutions and promoting the exploitation of the search space so
as to obtain the global optimization abilities of the metaheuristic algorithms. This will
maintain a better population diversity and the global search ability is improved, which
efficiently improves the accuracy and efficiency of the metaheuristic algorithms. This is
because after a number of iteration, it is necessary to search from a different path so as to
get improved solutions. The algorithm effectively jumps out of the local optimal value and
continues to optimize. This means, the chance to find the correct search direction increases
considerably.

In this subsection the influence of increasing the number of iterations on proposed algo-
rithms with the same parameter settings as mentioned above subsections is examined. By
increasing the number of iterations, the total optical channel bandwidth tends to decrease;
it means that the rulers reach their optimal or near-optimal values after certain iterations.
This is the point where no further improvement is seen. Figure 9 illustrates the influence of
increasing iterations on the performance of proposed algorithms for various channels. It is
noted that the iterations have little effect for low value marks. But for higher order marks,
the iterations have a great effect on the total optical channel bandwidth i.e. total optical
bandwidth gets optimized after a certain numbers of iterations.

In literatures (Cotta et al. 2006) and (Ayari et al. 2010), the maximum numbers of
iterations (Maxiter) for TS algorithm to find Golomb rulers were set to 10000 and 30000
respectively. The hybrid approach proposed in (Ayari et al. 2010) to find Golomb rulers
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the maximum number of iterations set were 100000. In (Bansal 2014), it was noted that
to find near-OGRs, hybrid evolutionary algorithms (Dotd and Hentenryck 2005) get sta-
bilized in and around 10000 iterations, while GAs and BBO algorithms stabilized in and
around 5000 iterations. By carefully looking at the results, it is concluded that all the
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proposed optimization algorithms in this paper to find either optimal or near-OGRs sta-
bilized in or around 1000 iterations. To find n-channel near-OGRs, the value of Maxiter
parameter during the simulations was selected to 50 times the number of channel (n), i.e.
Maxiter = 50 X n. In summary, the FPAM algorithm shows stronger optimization per-
formance and higher optimization efficiency and faster convergence rate than the other
algorithms.

5.5 Performance comparison of proposed algorithms with previous existing
algorithms in terms of ruler length and total optical channel bandwidth

Table 6 enlists the ruler length and total occupied channel bandwidth by different sequences
obtained from the proposed algorithms after 20 executions and their performance com-
parison with best known OGRs (best solutions), EQC, SA, GAs, BBO and simple BB-BC.
According to (Kwong and Yang 1997), the applications of EQC and SA is restricted to
prime powers only, so the ruler length and total occupied channel bandwidth for EQC and
SA are presented by a dash line in Table 6. Comparing the experimental results obtained
from the proposed algorithms with best known OGRs and existing algorithms, it is noted
that there is a significant improvement in the ruler length and thus the total occupied chan-
nel bandwidth that is, the results gets better.

From Table 6, it is also observed that simulation results are particularly impressive.
First observe that for all the proposed algorithms, the ruler length obtained up to 13-marks
is same as that of best known OGRs and the total optical channel bandwidth occupied
for marks 5 to 9 and 11 is smaller than the best known OGRS, while all the other rulers
obtained are either optimal or near-optimal. Second observe that the algorithms BB-BCM
and LBB-BC do not find best known rulers after 7-marks, but finds near-optimal rulers
for 8- to 20-marks. Algorithm LBB—-BCM can find best optimal rulers up to 8-marks, but
finds near-optimal rulers after 8-marks. FA can find best rulers for up to 11-marks. Algo-
rithms FAM and LFA can find best rulers for up to 12-marks and near-optimal rulers after
12-marks. By combining algorithms FAM and LFA into a single algorithm named LFAM,
best OGRs up to 16-marks and near-optimal rulers for 17- to 20-marks can be find effi-
ciently. BA, BAM and LBA can find best rulers up to 17-marks and near-optimal rulers for
18- to 20-marks. The algorithms LBAM, CSA, CSAM, FPA and FPAM can find best rulers
up to 20-marks very efficiently and effectively in a reasonable computational time.

From simulation results, it is concluded that modified forms of the proposed algorithms
to find near-OGRes, slightly outperforms the algorithms presented in their simplified forms.
As illustrated in Table 6 for higher order marks, the algorithms CSA, FPA, BA and their
modified forms outperforms the other algorithms in terms of both the ruler length and total
occupied channel bandwidth. Figure 10 shows the graphical representation of Table 6.

5.6 Performance comparison of proposed algorithms in terms of computational
time

Finding Golomb rulers is an extremely challenging optimization problem. The OGRs gen-
eration by exhaustive parallel search algorithms for higher order marks is computationally
very time consuming, which took several hours, months, even years of calculation on the
network of several thousand computers (Shearer 1998; Rankin 1993; Dollas et al. 1998;
http://www.distributed.net/ogr). For example, rulers with 20- to 26-marks were found by

@ Springer


http://www.distributed.net/ogr

S.Bansal

5608

S6
S6 €¢ 98 43
16 43 €8 1€ S6
18 0¢ 78 1€ 08 0¢ 06
LL 8T €8 0¢ 6L 6C L8
YL 9T (43 6C 8L 8C 18
€L ST €L LT €L LT - - - - LL ST L
34
S¥ 1T 49
a4 0t St 1T 0S
a4 81 94 81 a4 81 Ly
W LT W LT W LT 09 0C ovl S a4 LT 9
6C
ST 4! ¥C €l ST €l 8C
€C 1 €C 4! €C 4! - - - - ST 1 S
L L L
I 9 I 9 I 9 8C SI 8C ST 1 9 ¥
12 € 12 € 12 € 12 9 01 9 ¥ € €
(zH) M4.L T (zH) M4.L Td (zH) M4L Td (zH) M4L T (zH) M4.L T4 (zH) M4.L T
(Junyx
QMY qUIO[OH)/WOI WL
. M%ON . mooom Ijomprromuyewy//:dny
(L10T ewIeys [& 10 eMBYPURY (L66] 230 BMPUPURY SLO61  co 1o 1o seq10q] 00T
pue [esueq) DG-dd (#10¢ Tesueq) 094 (10T [esueq) syD Suex pue Suomy[) VS Suex pue Suomy) DOH

swy)Ioge paidsur-ainjeu Sunsixyg

SWIIOS[E [EUOTIUSAUOD)

swyILIosy

ouruue|oD ‘€661 UMULY
{0661 10189YS 6T
quIO[0D) puE Woo[y)
SYDO umouy Jsog

u

UOTIEOO[[B [SUURYD 0) SWYIIIOSe dnsunayelow parndsur-armeu pasodord jo uostreduioo souewiojrod 9 3jqel

pringer

&l


http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html

5609

Performance comparison of five metaheuristic nature-inspired. ..

811
16 148!
9st ort 01
06% o1 sep €01 95t 96 16€
LLE L 8LE 98 S6¢ 76 - - - - 98¢ (9 11
10€
L8C 9L
86T LL vLT YL €8¢ SL - - - - 6T (s o1
S9
Sic 9 st €9
79¢ 19 90T 79 €0¢T 19
€5 9% 10C 19 961 6
8T 97 00T 9 €61 9
6L1 4% L8T o 61 49 - - - - 90T 4 6
el
1€l 9%
3 (47 6¢l Sy
611 w LTl o 8Tl w
811 |82 STl 6¢ 9zl |82
€l 6¢ 121 ve |14 s 681 6 8LE 16 LI ve 8
(zH) M4L T (ZH) M4L T (ZH) M4L T (ZH) M4L s (zH) M4L T (zH) M4L 'l
(Juny
QMY qUIOTOH)/WOD IR
. Gooz (600T  jjom puomyrews/dny
(L10€ pwireyg [& 10 BMEUPURY 1/66] [P 12 BMBUPURY SLO61 o 1o 1o serroq S€00C
pue [esueq) Dg-dd (¥10€ resueq) odd (¥10T [esueq) sYD Suex pue Suomy) VS  Suex pue Suomd|) DOH

swy)Ioge paidsur-aInjeu Sunsixyg

SWIOS[E [EUOTIUSAUOD)

swyLIoIy

OUIUUR[0D) €661 UMuRY
‘0661 1018YS “LL61
qUIO[OD) pue Woo[{)

SYDO umouy jsog

u

(ponunuod) 9 sjqer

pringer

As


http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html

S.Bansal

5610

101¥ 86
80%¢ SLYy L90S L6S
10T+ 8¢ LEEE L9V Tere L9S - - - - sTee 9t 61
T16T Sty 6L0€ £9F
6L0€ LTy 9967 79¢ 66ST LTy 001¢ c6b €0TS 19 Y681 91T 81
807T 69¢
10CC 69¢ 102¢ 1293 S0Te 6se - - - - 1991 661 LT
6861 91¢ 081 €8¢ 861 91¢ - - - - 8671 LLY 91
$SST L9T €591 86¢
Teel L9T Teel 092 €91 SLT - - - - LYO1 IS1 SI
9911 172 68Tl 0£¢
1001 90T LLYT 8TT
9911 12C 166 691 TLIT 90¢ 0281 98¢ 0veT sTe ¥6 LT] 2
0L6 L8T
€SL €Il 98L ILT 8101 1C
89L 011 89L 961 S101 €0C - - - - 099 901 €l
€19 S09 8¢ 099 LET
08¢ 16 06S 74! 18 8CT
0SS S8 966 911 439 €Tl 789 (43 842! €54 €0S S8 !
(zH) MIL T (zH) MIL T (zH) ML T (zH) ML o'l (zH) MYL T (zH) ML el
(Juny
QMY qUIOTOH)/WOD IR
. mooom . (6002 Ljom-promyew;//:dny
(L10T ewIeys [€ 30 emeypuey {L661 [P 19 BMBUPURH 661 g1 1 15 sej0q] €002
pue [esueq) Dg-dd (#107 [esueq) Odd (£10C Tesueq) syD Sueg pue Suomy) vS§  Suex pue Suomy)) DOH

swy)Ioge paidsur-aInjeu Sunsixyg

SWIOS[E [EUOTIUSAUOD)

swyLIoIy

OUIUUR[0D) €661 UMuRY
‘0661 1018YS “LL61
qUIO[OD) pue Woo[{)

SYDHO umouy 1sog

u

(ponunuod) 9 sjqer

pringer

&l


http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html

5611

Performance comparison of five metaheuristic nature-inspired. ..

12 € v € 14 1% € ¥ € ¥ ¢ ¥ € 12 € v € ¢
CHMEL T4 (ZHMIL T4 (ZH) MIL CHIMEL T4 ZHMIL T4 CHMIL T4 CHMIL T4 CHMIL T8 CHMIL 1Y
(Juny-enyq
WO[0H)/WOd e
JJ[OM PO
myyewy/:dpy
8661 'Te 1
se[jod ‘€002
ouruue[o) (€661
. » . unjuey ‘0661
vd VAT VA1 NVANVA vd WOog-4491 og-9971 WOE- 88 paue /61
swyoge paxdsur-ameu pasodoig quiojoH pue
woorg) sYDO
SunILIosy umouy Jsog  u
1874 169
6S8Y 6+9 S061 089
LISt €65 9z8Y €L9
176¥ 169 90¢Y 8LS 099% S19 09%9 €0L €91L €0L ¥6LT €8¢ 0C
(zH) MEL el (zH) MEL el (zH) MEL el (zH) MIL o'l (zH) MYL T (zH) ML el
(Juny
QMY qUIOTOH)/WOD IR
: (6ooc (60T yrom pomeny/duy
(L10T ewIeys [€ 30 emeypuey {L661 [P 19 BMBUPURH 661 g1 1 15 sej0q] €002
pue [esueq) Dg-dd (#107 [esueq) Odd (£10C Tesueq) syD Sueg pue Suomy) vS§  Suex pue Suomy)) DOH

swy)Ioge paidsur-aInjeu Sunsixyg

SWIOS[E [EUOTIUSAUOD)

swyLIoIy

ouruue|[0)) ‘g661 UMUEY

‘0661 1018YS “LL61
qUIO[OD) pue Woo[{)

SYDO umouy jsog

u

(ponunuod) 9 sjqer

pringer

As


http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html

S.Bansal

5612

LIT  6¢ LIT  6¢ LIT  6¢ LIT  6€ LIT  6¢ LIT  6¢ 811 1% 811 I¥
€Il %€ €Il ¥¢ [0 S €Il € €Il ¥¢ €Il ¥¢ €Il 6¢ €Il 6€ LIT  ¥€ 8
S6
06 8C 18 18 6L  0¢ 06
8 LL LT 08 LT LL 8T 08 LT LL  0g 8 LL 8T L8
LL 8T vL 9 LL 9T vL LT LL 9T vL 8T LL  0€ vL LT 18
vL ST €L ST €L ST €L ST €L ST €L ST €L ST €L ST LL ST L
49
9% 9 0S
vy 81 ¥y 81 ¥y 81 ¥y 81 ¥y 81 ¥y 81 ¥ 81 v 8l Ly
WLl WLl WLl WLl WLl WLl WLl WLl vro LT 9
€1 €1 €1 S 8C sz ¢l
sz Tl ¥T Tl ¥ Tl v T v¢ T sz Tl v¢ T St Tl 8T
€11 € 11 € 11 € 11 € 11 € 11 € 11 € I1 s 11 ¢
L L L L L L L L
Il 9 Il 9 1 9 1 9 I 9 I 9 I 9 Il 9 1 9 ¥
CHMEL T4 CHMIL T4 CHMIL T4 CHMIL T8 CHMIL T4 CHMIL T8 CHMIL T4 CHMIL T4 CHMIL 1Y
(TunyIe[nyq
WO[0H)/WOd WL
IJ[OM PLIO
myrewy/:dpy
8661 Te 10
se[jod ‘€002
ouruue[o) €661
vd VAT Va1 NVANVA vd WOd-4491 odg-4g4g1 wog-gg oA moma
Joredys :L.61
swyoge paxndsur-ameu pasodoig quiojop pue
woorg) sYDO
SunILIo3y umouy Jsog  u

(ponunuod) 9 sjqer

pringer

&l


http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html

5613

Performance comparison of five metaheuristic nature-inspired. ..

pringer

w
€9L 818 Gl
0zL 111 sTL 111 L oL 111 ISL 111 SSL oIl
099 901 099 901 €L9 901 SL9 901 STL 901 STL 901 00L 601 9¢L 901 099 901 €I
0SS €6
1SS 16 L9S 06 S9S 06
€0S S8 €0S S8 €0S S8 €0S S8 SIS 8 0TS S8 S9S 8 6vS S8 €0S S8 TI
16€ 434
98¢ €01 16 €01 L6E 96 65y €01 S¢S0l 16€
98¢  TL 8LE TL 8LE  TL 98¢  TL 16€ TL 69¢ TL 8L  TL LLE  TL 98¢ TL 11
843 e L
60€ e LL 66T 8§
6vc  SS 6vCc S 6vc  SS 6vc  SS 6vc  SS 6SC  SS 86T <SS LTSS 6vc SS 01
8TC
6% L1T 8§ 9T
90T LV (4 (4 80T  6F 807 S Y0z LY SIz LS
90T ¥ S8 ¥ 90T ¥ 90T ¥ 90T ¥ 9L1 ¥ LLT 9% [ 1 . 2 90C ¥ 6
CHMEL T4 CHMIL T4 CHMIL T4 CHMIL T8 CHMIL T4 CHMIL T8 CHMIL T4 CHMIL T4 CHMIL 1Y
(TunyIe[nyq
WO[0H)/WOd WL
IJ[OM PLIO
myrewy/:dpy
8661 Te 10
se[jod ‘€002
ouruue[o) €661
vd VAT VA1 NVANVA vd WOd-4491 odg-4g4g1 wWog-gg moma
JIIedYS -LL61
swyoge paxndsur-ameu pasodoig quiojop pue
woo[q) sYNDO
mﬂ:t_uowﬁaﬂ umouy 1sogq u

(ponunuod) 9 sjqer


http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html

S.Bansal

5614

099%  SI9
90¢y  8LS 90¢y  8LS 099% S19 099% SI9 LISt 6%9 LISt 6%9 978y €19 978y €19 ¥6LT €8T 0T
LEEE L9V LEEE L9¥ 80¥¢  SLY LEEE L9V e L9S LEEE L9V 101  #8S e L9S §TTT 9vT 61
6L0E LTV 996T St 996T  Sh¥ 16T T9¢ 665T  €9% TL8T  9tY TL8T  9eY 996T  ShY ¥681 91T 81
1991 661 102C  69¢ 80CC  ¥S¢ 80CC  ¥S¢ S0TC  SS¢E S0TC  SS¢ 10CC  69¢ 102C  69¢ 1991 661 LI
86C1  LLI 86C1 LLI Y081 €8¢ Y081 €8¢ Y081 €8¢ Y081 €8¢ 6861 9I¢ G861 9I¢ 86C1 LLT 91
LYOT  IST LYOT  1ST LYOT  IST LYOT  IST $SST 092 $SST 092 el L9T el L9T LYOT IST ST
1001 90T 68Tl 97T

¥26 LTI ¥26 LTI 1001 691 166 90T 166 691 €66 90T 9911 1CC 966  6CC ¥26 LTI VI

CHMEL T4 CHMIL T4 CHMIL T4 CHMIL T8 CHMIL T4 CHMIL T8 CHMIL T4 CHMIL T4 CHMIL 1Y

(Juny-eyq

WO[0H)/WOd WL

IJ[OM PLIO

myrewy/:dpy

8661 ‘T8 10

se[jod ‘€002

ouruue[o) (€661

vd VAT VA1 NVANVA vd WOd-4491 odg-4g4g1 wog-gg oA 0661

Joresys ‘LL61

swyoge paxndsur-ameu pasodoig quiojop pue

woo[q) sYNDO
SunILIo3y umouy 1sog  u

(ponunuod) 9 sjqer

pringer

&l


http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html

5615

Performance comparison of five metaheuristic nature-inspired. ..

LTT 6¢ LIT 6¢ LTT 6¢ LTT 6¢ L1T 6¢ L1T 6€ LTT 6¢
€Il 123 €Il 1z €Il 173 €Il 7€ €Il 7€ 8! 173 €Il 7€ L11 7€ 8
S6
I8 06
LT 08 LT LT 08 LT LT LT L8
LL 9T LL 9T LL 9T LL 9T LL 9T LL LT LL 9T 18
€L ST €L ST €L ST €L ST €L ST €L ST €L ST LL ST L
0S 0S 0S 0S 4y
Ly Lt Lt Ly Ly Ly 0S
¥y 81 vy 81 vy 81 ¥y 8l ¥y 8l 44 81 vy 81 LY
WLl w Ll WLl WLl WLl w L1 WLl v Ll 9
ST ¢l 8C €l €1
¥z Tl vz Tl vz Tl ¥ 4! vo Tl ¥ 4! v Tl 8¢
€T 1 4 Il €C 1 €T 1 €C 1 €T 1 €T 1 ST 1 S
L L L L
1 9 1 9 1 9 1 9 1 9 I 9 1 9 1 9 ¥
14 € 14 € 14 € 14 € % € 1% € 14 € 14 € €
CHMIL T4 (ML T4 @CHMIL T CCHMIL 174 (CHMIL T8 (ZH) ML T4 CHMIL 1 (ZHMIL 1Y
(Junyx
MY quIo[on)
\EHOU.EN.HﬁOB
‘prIomyrew//:dny
8661 ‘Te 19 se[joq
€00¢ ouruue[o)
€661 unjuey
WVdd vdd NVSD VSO WVITAVET veal Wvd

{0661 Jo109YS

‘LL6T quo[oD

swyjio3e paidsur-arnjeu pasodoid
pue woolg) sYD0

SWLIOI[Y umouy| 1sog

u

(ponunuod) 9 sjqer

pringer

As


http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html

S.Bansal

5616

6587  €6S
¥6LT €8T ¥6LT €8T ¥6LT €8T ¥6LT €8T ¥6LT €8T 90¢y  8LS 90¢y  8LS ¥6LT €8T 0T
6TTT 9T STTT 9T STTT 9T STTT 9T STTT 9T 80¥¢  SL¥ LEEE L9V gTee  9vT 61
7681  91C 681 91T 681 91T 7681 91T 681 91T 16T 79¢ 996T  Sh¥ 681 91T  8I
1991 661 1991 661 1991 661 1991 661 1991 661 1991 661 1991 661 1991 661 LI
86T  LLI 86T  LLI 86T  LLI 86C1  LLI 86C1  LLI 861  LLI 86T  LLI 86C1  LLT 91
LYOT  IST LYOT  IST LYOT  1IST LYOT  1ST LYOT  1ST LYOT  ISIT LYOT  ISIT LYOT  IST ST
¥26 LTI ¥26 LTI ¥26 LTI ¥26 LTI ¥26 LTI ¥26 LTI ¥26 LTI ¥26 LTI VI
099 901 099 901 099 901 099 901 099 901 099 901 099 901 099 901 €I
€0S 83 €0S 8 €0S 8 €0S 8 €0S S8 €0S 8 €0S 8 €0S 68 Tl
98¢ €01 98¢ €01 16€ 16€
8LE L 98¢ L 8LE L 16€ L 98¢ L 16€ L 98¢ L 98¢ o 11
6vC S¢S 6vC S¢S 6v¢C S¢S 6¥¢C S¢S 64¢C S¢S 64T S¢S 6¥¢C S¢S 64T S
90¢ S¢S 90¢ SS
68l Ly 68l Ly 90T Ly 90T 8¢ 90T LS
9L1 44 90T 44 9L1 44 90T 44 S81 144 LLT 44 €81 44 90T 44 6
CHMIL T4 (ML T4 @CHMIL T CCHMIL 174 (CHMIL T8 (ZH) ML T4 CHMIL 1 (ZHMIL 1Y
(Junyx
JINYquIo[on)
\HEOU.EN.HEOB
‘prIomyrew//:dny
8661 & 39 sefog
{€00C ouruue[0)
NVdd Vdd NVSO VSO NV TAVET val Wvd €661 YRS
10661 Joreays
swyoge paxndsur-amjeu pasodoig *LL6T quiojoD
pue woolg) sYD0
swyIIosy umouy| 1s9g u

(ponunuoo) g sjqey

pringer

&l


http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html
http://mathworld.wolfram.com/GolombRuler.html

Performance comparison of five metaheuristic nature-inspired. .. 5617

(a) 720 (b) 75 5
600+
4804

3604
-l
x

TBW (kHz)

2404

1204

04

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Channels (n) Channels (n)

—0—Best Known OGRs ——BB-BC —0—FAM —+—LBA
o EQC —-BB-BCM ——LFA —O—LBAM
A sA —o—LBB-BC —>—LFAM —0—CSA
—7—GAs —e—LBB-BCM —¥%—BA  ——CSAM
——BBO —o—FA —BAM —v—FPA

—o—FPAM

Fig. 10 Comparison of proposed algorithms in terms of a RL and b TBW with the other existing algorithms

i i 12
Fig. 11. Comparison of average GAs [25] —LFAM
CPU time taken by proposed —0—-BBO[25] —o—BA
algorithms for various channels 104 —A—BB-BC [27] —— BAM
S ~—~BB-BCM  —LBA
$® 84 —<—LBB-BC —¥LBAM
T ——LBB-BCM ——CSA
T ¢]-Fa —+— CSAM
s —O0—FAM —0—FPA
£ o
]
Q
o 24
04

2 4 6 8 10 12 14 16 18 20
Channels (n)

distributed OGR project (http://www.distributed.net/ogr) which took several years of cal-
culations on many computers to prove the optimality of the rulers.

This subsection is devoted to report the experimental average CPU time taken to find
either optimal or near-OGRs by the proposed algorithms and their comparison with the
computation time taken by existing algorithms (Shearer 1990; Rankin 1993; Soliday et al.
1995; Ayari et al. 2010; Bansal 2014, 2017; Bansal and Sharma 2017; Dollas et al. 1998;
http://www.distributed.net/ogr). Figure 11 illustrates the average CPU time taken by pro-
posed metaheuristic algorithms to find near-OGRs up to 20-marks. In (Soliday et al. 1995),
it is identified that to find Golomb rulers from heuristic based exhaustive search algorithm,
the times varied from 0.035 s to 6 weeks for 5- to 13-marks ruler, whereas by non-heuristic
exhaustive search algorithms took approximately 12.57 min for 10-marks, 2.28 years for
12-marks, 2.07 x 10* years for 14-marks, 3.92x 10° years for 16-marks, 1.61 x 10'3 years
for 18-marks and 9.36 x 10% years for 20-marks ruler. In (Ayari et al. 2010), it is reported
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that CPU time taken by TS algorithm to find OGRs is around 0.1 s for 5-marks, 720 s
for 10-marks, 960 s for 11-marks, 1913s for 12-marks and 2516 s (around 41 min) for
13-marks. The OGRs realized by HGA (Ayari et al. 2010) took around 5 h for 11-marks,
8 h for 12-marks, and 11 h for 13-marks. The OGRs realized by the exhaustive search algo-
rithms in (Shearer 1990) for 14- and 16-marks, took nearly one hour and hundred hours
respectively, while 17-, 18- and 19-marks OGRs realized in (Rankin 1993) and (Dollas
et al. 1998), took around 1440, 8600 and 36200 CPU hours (nearly seven months) respec-
tively on a Sun Sparc Classic workstation. Also, the near-OGRs realized up to 20-marks by
algorithms GAs and BBO (Bansal 2014), the maximum execution time was approximately
31 hi.e. nearly 1.3 days, while for BB-BC (Bansal and Sharma 2017) the maximum execu-
tion time was around 28 h i.e. almost 1.1 days.

It is noted that for proposed algorithms, the average CPU time varied from 0.000 s for
3-marks ruler to approximately 27 h for 20-marks ruler. The maximum and minimum
execution time taken by the proposed algorithms for 20-marks ruler is about 27 and 19 h,
respectively. By introducing the concept of mutation and

Lévy flight strategies with the proposed algorithms, the minimum execution time is
reduced to approximately 18 h i.e. less than one day. This represents the improvement
achieved by the use of proposed optimization algorithms and their modified forms to find
near-OGRs. From Fig. 11, it is further observed that algorithm FPAM outperforms the
other algorithms in terms of computational time.

5.7 Maximum computation complexity of proposed algorithms in terms of big O
notation

The nature-inspired metaheuristic algorithms are stochastic process that execute randomly
operations. For this reason, it is not practical to conduct a complexity analysis from a deter-
ministic point of view. However, it is possible to have an idea of this complexity through
the mathematical notation called Big O notation.

To find the optimal solutions, the proposed metaheuristic algorithms have an initializa-
tion stage and a subsequent stage of iterations. The computational complexity of nature-
inspired algorithm depends upon n, Popsize and Maxiter:

Computation complexity = O(n X Popsize X Maxiter) (30)

For all the proposed metaheuristic algorithms, the maximum computational complexity
in terms of Big O notation is

Computation complexity = O(n X 10 x 50 X n) = O(500n%) 31

Thus the computational complexity for all the proposed metaheuristic algorithms is
directly proportional to the square of the input mark/channel value.
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Table7 Comparisonof Algorithm RL TBW(Hz)  CPU time
Wilcoxon rank-sum analysis for (Sec.)

FPAM and other algorithms

pvalue h pvalue h pvalue h

FPAM versus GAs 0.0001 1 <0.0001 1 <0.0001 1
FPAM versus BBO 0.0002 1 <0.0001 1 <0.0001 1
FPAM versus BB-BC 0.002 1 <0.0001 1 <0.0001 1
FPAM versus BB-BCM  0.0078 1 <0.0001 1 0.0001 1
FPAM versus LBB-BC 0.0156 1 <0.0001 1 0.0001 1
FPAM versus LBB-BCM  0.00156 1 0.0001 1 0.0001 1
FPAM versus FA 0.0156 1 0.0001 1 <0.0001 1
FPAM versus FAM 0.0313 1 0.0005 1 0.0001 1
FPAM versus LFA 0.0313 1 0.0039 1 0.0001 1
FPAM versus LFAM 0.125 0 0.0625 0 0.0001 1
FPAM versus BA - - 0.0625 0 <0.0001 1
FPAM versus BAM - - - - 0.0001 1
FPAM versus LBA - - - - <0.0001 1
FPAM versus LBAM - - - - 0.0001 1
FPAM versus CSA - - - - 0.0001 1
FPAM versus CSAM - - - - 0.0001 1
FPAM versus FPA - - - - 0.0001 1

5.8 Wilcoxon rank-sum test of proposed algorithms

In order to validate the proposed algorithms, the non-parametric statistical analysis with
5% significance level is conducted to analyze and rank the algorithms. With the non-par-
ametric statistical analysis, we can make sure that the results are not caused by chance (Li
et al. 2019). The Wilcoxon rank-sum statistical analysis (Garcia et al. 2009) is performed
on RL, TBW and CPU time. The Wilcoxon statistical comparison analysis between FPAM
and other algorithms are listed in Table 7. Since the algorithms BA, CSA, FPA and their
improved forms find same near-OGR sequences at different computational time so the RL
and TBW p value is shown by a dash line in Table 7. In this experiment p value <0.05 and
h=1 indicate that the difference between the two data is significant.

6 Conclusions and future scope
In this paper, WDM channel allocation algorithm by considering the concept of OGRs

is presented. Finding OGRs through conventional computing algorithms is computa-
tionally hard problem because as the number of marks increases, the search for OGRs
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rises exponentially. The aim to use metaheuristic algorithms is not necessarily to pro-
duce perfect solutions, but to produce the near—to—optimal solutions under the given
constraints. Even if exact algorithms are able to find optimal/near-OGRs, they remain
unpractical in terms of computational time. This paper presented the application of five
nature-inspired metaheuristic algorithms (BB-BC, FA, BA, CSA and FPA) to solve
near-OGRs problem. The main technical contribution of this paper was to modify the
nature-inspired metaheuristic algorithms by applying mutation and Lévy flight strate-
gies. The proposed algorithms have been validated and compared with other existing
algorithms to find near-OGRs. It has been observed that modified forms finds near-
OGRs very efficiently and effectively than their simplified forms. The enumerated
near-OGRs were compared with those enumerated through existing conventional and
nature-inspired algorithms in terms of iterations, ruler length, total optical channel
bandwidth and computational time. Simulations and comparison show that the proposed
algorithms are superior to the existing algorithms. From preliminary results it is also
concluded that for large order marks, MFA outperforms FA and MBB-BC, MBA out-
performs MFA and BA, CSAM outperforms MBA and CSA, while FPAM is slightly
outperforms CSAM and FPA in terms of ruler length, total channel bandwidth, experi-
mental computation time and maximum number of iterations needed to find near-OGRs.
The results obtained from simulation experiment and Wilcoxon rank-sum analysis show
that the proposed FPAM is potentially more superior in terms of exploitation and explo-
ration abilities, success rate and convergence speed compared with the other algorithms
in solving such a NP—complete problem.

To date, none of the researchers show the implementation of their algorithm in real opti-
cal WDM systems in order to see the complexity of realizing the unequal channel spacing.
Although numerous algorithms have been suggested for finding near-OGRs, yet there is
no uniformly accepted formulation. So, in order for these algorithms to be of practical use,
it is desired that the performance of these algorithms for higher order OGRs up to about
several thousand channels may be evaluated and may be used to provide unequal channel
spacing in real WDM system. Though this process will be very time consuming yet this
needs be done for this work to be of some use in the field of communication engineering.

Appendix

Tables 8 and 9 lists the near-OGRs found by proposed algorithms for various marks.
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