
Vol.:(0123456789)

Artificial Intelligence Review (2020) 53:5309–5351
https://doi.org/10.1007/s10462-020-09821-w

1 3

An overview of distance and similarity functions
for structured data

Santiago Ontañón1,2

Published online: 27 February 2020
© Springer Nature B.V. 2020

Abstract
The notions of distance and similarity play a key role in many machine learning
approaches, and artificial intelligence in general, since they can serve as an organizing
principle by which individuals classify objects, form concepts and make generalizations.
While distance functions for propositional representations have been thoroughly studied,
work on distance functions for structured representations, such as graphs, frames or logi-
cal clauses, has been carried out in different communities and is much less understood.
Specifically, a significant amount of work that requires the use of a distance or similarity
function for structured representations of data usually employs ad-hoc functions for spe-
cific applications. Therefore, the goal of this paper is to provide an overview of this work
to identify connections between the work carried out in different areas and point out direc-
tions for future work.

Keywords Distance · Similarity · Structured data · Relational learning

1 Introduction

The complementary notions of distance and similarity play a key role in many machine
learning approaches, such as instance-based learning (Aha et al. 1991), kernel-based
methods (Vert et al. 2004), case-based reasoning (Aamodt and Plaza 1994), or cluster-
ing algorithms (Ng et al. 2002; Kaufman and Rousseeuw 1987). Distance and similarity
functions are also relevant for artificial intelligence (AI) in general, since they can serve
as an organizing principle by which individuals classify objects, form concepts and make
generalizations (Tversky 1977). Specifically this paper presents an overview of distance
and similarity functions for structured representations of data, such as graphs or frames.
While distance functions for propositional (i.e. feature-vector) representations have been
thoroughly studied in the past, work on distance functions for structured representations
has been carried out in different communities such as graph matching, inductive logic
programming, case-based reasoning, relational learning or graph mining and is much less

 * Santiago Ontañón
 santiontanon@google.com; so367@drexel.edu

1 Google Research, Mountain View, CA 94043, USA
2 Drexel University, Philadelphia, PA 19104, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-020-09821-w&domain=pdf

5310 S. Ontañón

1 3

understood. Specifically, a significant amount of work that requires the use of a distance or
similarity function for structured representations of data usually employs ad-hoc functions.
Therefore, the goal of this paper is to provide an overview of this work in order to have a
complete view of the field of distance functions for structure representations, and lay foun-
dations for future work.

Structured data representations are important, since, there are many real-world appli-
cation domains for which data of interest is inherently structured and it is hard to repre-
sent it using a propositional representation. Consider, for example, a biomedical domain
where we are interested on predicting certain properties of chemical molecules. Represent-
ing molecules as feature vectors is problematic, since molecules can be of arbitrary sizes,
but features vectors are fixed size. In this particular case, a graph-based representation
might be able to more accurately represent the data of interest. Moreover, this paper only
focuses on distance and similarity in the context of AI and machine learning. Psychological
foundations of subjective assessments of similarity are out of scope. Interested readers are
referred to the relevant cognitive science literature (Tversky 1977; Holyoak and Koh 1987;
Goldstone et al. 1991). Additionally, while methods for similarity and distance assessment
are related to areas such as ontology alignment (Kalfoglou and Schorlemmer 2003) or com-
putational analogy (French 2002), here we will focus on the core techniques, and will not
discuss applications to ontology alignment, or other areas.

The remainder of this paper is structured as follows. Section 2 provides some necessary
background. After that, the paper overviews the existing literature by dividing the body of
work into three large classes of structured representations: distance functions for graph-
based representations are discussed in Sect. 3, those for logic-based representations are dis-
cussed in Sect. 4, and finally Sect. 5 focuses on functions for frame-based representations.
Section 6 discusses connections between those areas of work, and the paper closes with
conclusions and future research directions.

2 Background

This section presents some basic concepts of distance and similarity functions, as well as
of structured data representations.

2.1 Distance and similarity functions

Many machine learning and AI methods require assessing how similar or how different two
objects are. For example, the k-nearest neighbor algorithm (Cover and Hart 1967) uses a
distance function to determine, out of all the instances in the training set, which ones are
the most similar to the target, to then predict a label for it, given the labels of the k most
similar instances. Intuitively, distance functions are mathematical functions that assign a
numerical value (their distance) to each pair of objects in a given domain. This numerical
value represents an assessment of how similar they are: two very similar objects would be
assigned a very low distance, and two very dissimilar objects would be assigned a larger
distance. Similarity functions are the complementary idea, and assign high similarity val-
ues to similar objects, and low values to dissimilar pairs of objects.

Definition 1 (distance metric) A distance metric d over objects in a set X is a function:
d ∶ X × X → [0,∞) such that, for each x, y, z ∈ X the following properties are satisfied:

5311An overview of distance and similarity functions for structured…

1 3

• d(x, y) ≥ 0 (Non-negativity)
• d(x, y) = 0 ⟺ x = y (Identity)
• d(x, y) = d(y, x) (Symmetry)
• d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

Some definitions replace non-negativity by a minimality property: d(x, y) ≥ d(x, x) .
Since d(x, x) = 0 due to the identity property, these are equivalent. Moreover, although in
mathematics, the terms distance, metric and distance function are synonyms, in this paper,
we will use following convention:

• we will use the term distance metric to refer to a function that satisfies the above defini-
tion,

• we will use the term distance measure to refer to a function that intuitively captures the
notion of “distance between objects”, but does not satisfy at least one of the four prop-
erties in Definition 1,

• finally, we will use the term distance function as the general term to denote either dis-
tance metrics or distance measures. We will also use the term distance functions to refer
to similarity and distance functions when context allows, in order to avoid repeating
“similarity and distance functions” constantly.

Often, some of the properties above are not required (for example, many clustering algo-
rithms such as DBSCAN (Ester et al. 1996) would not be affected if the distance function
used does not satisfy the triangle inequality). However, when defining new distance func-
tions, it is important to verify if they satisfy all four properties, since some algorithms (e.g.,
the classic Fish’n’Shrink Schaaf 1996) assume that the distance function used is a metric.
If, for example, a distance function that does not satisfy the triangle inequality were to be
used in Fish’n’Shrink, any convergence guarantees to a nearest neighbor would be lost, as
the iterative estimations performed by the algorithm are based precisely on the Triangle
Inequality.

Moreover, some authors have argued that in some application domains, where we want
the distance or similarity function to approximate perceptual similarity as would be judged
by a human, these mathematical properties provide too rigid a framework, and other, alter-
native properties (dominance, consistency and transitivity) have been proposed (Santini
and Jain 1999).

Although there is no agreed upon definition of similarity function in the literature, in the
rest of this paper, we will use the following definition.

Definition 2 (similarity function) A similarity function s over objects in a set X is a func-
tion: s ∶ X × X → [0, u] , where u is an upper bound (i.e., the maximum similarity value,
usually u = 1), and where for each x, y ∈ X the following properties are satisfied:

• d(x, y) ≥ 0 (Non-negativity)
• d(x, y) ≤ u (Boundedness)
• s(x, y) = u ⟺ x = y (Identity)
• s(x, y) = s(y, x) (Symmetry)

Intuitively, a similarity function is the complementary concept to a distance func-
tion. For each distance function d, we can define its associated similarity function as

5312 S. Ontañón

1 3

sd(x, y) = u∕(1 + d(x, y)) . Other than being complementary functions (when distance
grows, similarity decreases), usually distance functions are unbounded, whereas similarity
functions are bounded to a range [0, u], and also, there is no equivalent property to the tri-
angle inequality for similarity functions, and thus, they are not metrics in the mathematical
sense. Moreover, similarly as for distance functions, when similarity functions are used to
capture perceptual similarity, some authors have argued that the symmetry property should
be dropped, as human perception of similarity seems not to be symmetric (Tversky 1977).

2.2 Standard methods to assess distance and similarity

Because of their importance in AI and other fields, a very large number of distance and
similarity functions have been defined in the literature. Since many distance functions for
structured representations are based on more basic notions of similarity between basic rep-
resentations such as vectors or strings, this section presents a list of the most common ways
to assess similarity between non-structured data representations (a summary of the most
common functions can be seen in Table 1).

2.2.1 Scalars and vectors

The most common distance functions between scalars and vectors are the different instan-
tiations of the Minkowski distance, and the cosine similarity:

When p = 1 we have the Manhattan distance, when p = 2 we have the Euclid-
ean distance, and when p = ∞ it converges to the Chebyshev distance

dMinkowski(�, �) =

(∑
i=1...n

|xi − yi|p
) 1

p

Table 1 Common distance and similarity functions for non-structured data representations

Data representation Common distance and similarity functions

Scalars/vectors Minkowski (Manhattan, Euclidean, Chebyshev)
Cosine similarity

Sets Tverski
Jaccard index
Sørensen’s index (Dice coefficient)

Sequences Edit distances (Levenshtein)
Sequence alignment
Dynamic time warping
Auto-regressive measures
Compression distance

Hierarchies/taxonomies Rada (edge counting)
Resnik (information content)

Probability distributions KL divergence
Wasserstein metric

5313An overview of distance and similarity functions for structured…

1 3

(dChebyshev(�, �) = maxi=1...n|xi − yi|). Also, when n = 1 (i.e., when comparing scalars), this
corresponds to the absolute value of their difference.

The cosine similarity (Singhal 2001) measures the cosine of the angle between two vec-
tors and is defined as:

Intuitively, the cosine similarity differs from the Minkowski distance in that the magnitude
of the vectors is not considered, and only the angle between them is measured (if they both
point in the same direction, the cosine of the angle is 1, and if they are orthogonal, the
cosine of their angle is 0). This gives them different semantics, making them appropriate in
different applications.

2.2.2 Sets

The most well known measures are Tverski’s (Tversky 1977), the Jaccard index, or
Sørensen’s index (Sørensen 1948) (also known as Dice’s coefficient), with Jaccard being
the most common. Given two sets X and Y, Tverski’s index is defined as:

Whereas Jaccard’s index is the special case where � = � = 0:

Intuitively, this results in a similarity of 1 if both sets are identical (since the size of their
intersection and union would be the same), and a similarity of 0 for two disjoint sets. More-
over, notice that these measures are only well defined for finite sets. Variations of these
measures exist, such as the continuous Jaccard index where elements could belong to a set
with a certain degree represented by a real number (Valls-Vargas et al. 2014).

2.2.3 Sequences

Many distance functions exist for comparing sequences. The most common family of dis-
tances is that of edit distances, where the distance between two sequences is defined as the
number of “edit operations” that one needs to perform to one sequences in order to obtain
the second. The most common edit distance is the Levenshtein distance (Levenshtein
1966), where there are only three edit operations allowed: insertion (inserting a symbol into
the sequence), deletion (removing a symbol from the sequence) and replacement (replacing
a symbol by another symbol). For example, if we consider words as sequences of letters
(i.e., strings) the distance between “hello” and “mellow” is 2, wince we can replace the “h”
by an “m” and then insert an “w” at the end. Extensions exist where different edit opera-
tions have different weights, or where additional edit operations (such as transpositions)
are allowed. Distances such as the longest common subsequence can also be seen as edit
distances (with just insertion and deletion as the edit operations).

Another very common approach is that of sequence alignment (Gollery 2005), which
is very common in biological domains due to the obvious application of comparing

scosine(�, �) =
��

|�||�|

sTverski(X, Y) =
|X ∩ Y|

|X ∪ Y| + �|X − Y| + �|Y − X|

sJaccard(X, Y) =
|X ∩ Y|
|X ∪ Y|

5314 S. Ontañón

1 3

DNA sequences. Specifically, the problem of calculating a global alignment between
two sequences is equivalent to the problem of calculating the edit distance, and thus both
approaches share algorithms, with the Needleman–Wunsch algorithm (Needleman and
Wunsch 1970) being the most common. The only difference between edit distance and
alignment is that when we want to output an alignment, the algorithm needs to keep a
“back trace” so that we can then output which elements fro one sequence correspond to
which other elements of another sequence. A very common alignment algorithm used in
time series matching is Dynamic Time Warping (Itakura 1975), which uses a dynamic
programming approach with very small differences with respect to Needleman–Wunsch’s
algorithm.

Auto-regressive measures are based on learning probabilistic models of sequences,
and then comparing the sequences by comparing the parameters of the learnt models. For
example, Ramoni et al. (2002) propose an approach to cluster time series based on train-
ing a Markov chain for each sequence, and then using the KL divergence (Kullback and
Leibler 1951) as a similarity function between the trained Markov chains as a similarity
function between time series. This idea has also been used to compare agent behaviors in
the context of learning from demonstration (Ontañón et al. 2014).

Finally, another common idea is that of information content. The underlying idea of
these approaches is the notion of Kolmogorov complexity (Kolmogorov 1965): the Kol-
mogorov complexity of a string is the length in bits of the smallest program that can gener-
ate such string as output (e.g., the length of the description of the smallest Turing machine
that generates such string). One idea is to compute the Kolmogorov complexity of comput-
ing one string when the other is given as an auxiliary input (notice that this is also related
to the idea of edit distance). Given that the Kolmogorov complexity is not computable, a
common approximation is to use a compression algorithm C (such as LZW Welch 1984)
as an approximation. This leads to the normalized compression distance (Cilibrasi and
Vitányi 2005):

where C(x) is the size of the resulting compressed version of the sequence x, and C(xy) is
the size of the compressed version of concatenating x and y. Intuitively, the compression
algorithm is used for two purposes: C(x) approximates the Kolmogorov complexity of a
sequence, and C(xy) − min{C(x),C(y)} approximates the length of the smallest program to
generate one sequence given the other as an auxiliary input. Also, if x and y are very simi-
lar, then compressing xy should have almost the same size than compressing one of them.

For the particular case of numerical sequences (time series), a number of specialized
distance functions have been developed beyond those described above. For example, re-
sampling the two time series and using a distance function between vectors (e.g., Euclid-
ean) (Keogh and Kasetty 2003), using Fourier transform coefficients (Agrawal et al. 1993),
time-warped edit distance (Marteau 2009). For a comparison between these measures, the
reader is referred to the work of Serra and Arcos (2014).

2.2.4 Hierarchies or taxonomies

Distance functions between elements in a hierarchy are also a common source for
defining distance functions for structured representations. A hierarchy is defined as
a partially ordered set ⟨X,≤⟩ with elements X ordered by a relation ≤ , where each

dNCD(x, y) =
C(xy) − min{C(x),C(y)}

max{C(x),C(y)}

5315An overview of distance and similarity functions for structured…

1 3

element in X has at most one parent. We say that x is the parent of y if x ≤ y , and
∄x� ∈ X ∶ x� ≠ X ∧ x ≤ x� ≤ y . Usually hierarchies have a special element x⊥ ∈ X such
that ∀x ∈ X ∶ x⊥ ≤ x . x⊥ is called the root of the hierarchy, or the bottom element. Com-
mon examples of hierarchies are class hierarchies in object oriented programming, or some
of the different classifications of words in Wordnet (Miller 1995) such as hypernyms.

The most common distance functions between elements in a hierarchy are:

• Rada’s (Rada et al. 1989) (often referred to as “edge counting”): in this distance func-
tion a hierarchy is seen as a tree, where the parent relation defines the edges between
the elements in the tree:

 where z is the deepest element in the hierarchy of which both x and y are descendants,
and path(x, z) is the number of edges that need to be traversed to reach z from x. z is
also known as the least general generalization, when ≤ is considered to be a more gen-
eral than relation.

• Resnik’s (Resnik 1995, 1999) (often referred to as “information content”): in this simi-
larity function, elements in the hierarchy are seen as concepts, and we have access to a
function p ∶ X → [0, 1] , which, given a concept in the hierarchy, gives us the probabil-
ity of encountering an instance of such concept:

 the main difference between Rada’s and Resnik’s distance functions is that Rada’s
measure considers each edge in the hierarchy to count the same toward the distance of
two concepts, while Resnik’s takes into account that some edges are more important
than others. For example, if there are two concepts x and y,w where x is the parent of y,
but where y is almost identical to x, then p(x) will also be very similar to p(y), and thus,
the edge between them will have little weight in similarity calculations. In practical
applications p can be estimated from a training set of instances.

Other measures in the literature integrate ideas from these two basic functions. For exam-
ple, Jiang and Conrath (1997) define a distance function that integrates both edge count-
ing and information content, showing good results. Wu and Palmer’s conceptual similarity
function for concepts in WordNet is basically a normalized version of Rada’s function (Wu
and Palmer 1994).

2.2.5 Probability distributions

The most common way to compare probability distributions is probably using the Kull-
back–Leibler Divergence (KL divergence) (Kullback and Leibler 1951), defined for two
probability distributions Q and P as follows:

Intuitively this measures the amount of information lost when one uses Q to approximate
P. When considering continuous distributions, we just need to replace the discrete sum by
an integral operation. Also, notice that the Kullback–Leibler Divergence is not a distance
metric, since it does not satisfy the symmetry or the triangle inequality properties.

drada(x, y) = |path(x, z)| + |path(y, z)|

sresnik(x, y) = maxz∈X|z≤x ∧ z≤y[−logp(z)]

dKL(P,Q) = −
∑
i

P(i)log
Q(i)

P(i)

5316 S. Ontañón

1 3

Another very common distance metric is the Wasserstein metric (Dobrushin 1970)
(also known as the earth-mover distance Rubner et al. 2000). The intuitive idea is to see
two probability distributions as two different ways to pile dirt over an area, and then cal-
culate the amount of work required to move dirt to turn one distribution into the other.
Thus, this metric requires as input parameter a distance function that defines the area (or
a pair-wise distance matrix in the case of discrete distributions), that indicates the amount
of work of moving dirt between two points in this area. Calculating this distance requires
solving a linear optimization problem to find the optimal “flow” of dirt. This distance has
also been used to compare images in the context of image retrieval (Rubner et al. 2000).

Other common measures include the �2 statistic, among others. As mentioned in
Sect. 2.2.3, these distance functions have been also been used to calculate distance or simi-
larity between sequences by first representing the sequences as stochastic processes, and
then comparing the probability distributions that govern these processes.

2.2.6 Weighting and metric learning

Notice that all the distance functions presented above just calculate a numerical distance or
similarity between two objects without having in mind the problem at hand. When using
these functions as part of a machine learning algorithm, e.g., k-nn, it might be desirable to
use the information from the labeled data in the training set to adjust the distance function
to the problem at hand. For example, some variable might be completely irrelevant for the
prediction task at hand, and we would not want that variable to play any role in the distance
calculations. Many distance functions allow for such process. For example, the Mahalano-
bis distance generalizes the Euclidean distance by calculating a covariance matrix from
the training data. Edit distances can be extended by defining different weights for the dif-
ferent edit operations. In general this idea is studied in several subfields of machine learn-
ing such as metric learning (Kulis 2013; Bellet et al. 2013) or feature weighting and selec-
tion (Wettschereck et al. 1997). Some distances, such as the normalized compression
distance, do not easily allow for metric learning.

2.3 Structured data representations

The vast majority of machine learning approaches in the literature uses feature-vector rep-
resentations of data (i.e., propositional representations) where each training instance is
represented as a fixed-size vector/tensor of either numeric or categorical values. Moreo-
ver, a very large number of structured representations has been proposed in the literature,
which will be the focus of this paper. We will group them into three major categories:
graph-based representations, logic-based representations, and frame-based representations.
We briefly describe these representations below.

2.3.1 Graph‑based representations

Graph-based representations use graphs in various ways to represent instances. A common
approach is to use directed labeled graphs (DLGs).

Definition 3 (Directed labeled graph) Given a finite set of labels L, a directed labeled
graph g is defined as a tuple g = ⟨V ,E, l⟩ , where:

5317An overview of distance and similarity functions for structured…

1 3

• V = {v1, ..., vn} is a finite set of vertices,
• E = {(vi1 , vj1), ..., (vim , vjm)} is a finite set of directed edges,
• l ∶ V ∪ E → L assigns a label from L to each vertex or edge.

For example, a lot of work in machine learning applied to biochemical domains use
labeled graphs to represent molecules (Bunke and Shearer 1998; Kashima et al. 2003;
Gärtner 2003; Mahé et al. 2005). Another common example of graph-based data is in
computer vision, where graphs and graph matching algorithms have been extensively
used for many tasks such as character or 3d object recognition (Bunke 2000).

Another representation, commonly used in pattern recognition approach is that of
weighted graphs:

Definition 4 (Weighted graph) A weighted graph g is defined as a pair g = ⟨V ,w⟩ , where:

• V = {v1, ..., vn} is a finite set of vertices,
• w ∶ V × V → ℝ

+ is a weighting function that assigns a positive real weight to each
edge (to represent that there is no edge between two vertices, v1 and v2 , we write
w(v1, v2) = 0).

We can distinguish two different ways to use graphs in structured machine learning:

• The one graph-per instance approach: where each training instance is represented
by a complete graph (e.g. a chemical molecule, where each vertex is an atom, and
edges represent chemical bonds). Figure 1b shows an example of this approach, rep-
resenting a small train inspired in the classic trains dataset by Larson and Michalski
(1977), using a DLG.

• The one vertex per instance approach: where each vertex in the graph represents
an instance, and edges represent their relationships. For example, users in a social
network (where each vertex is a user, and edges represent connections or other rela-
tions), scientific paper citation graphs or web pages are commonly represented this
way.

train

car

car

cars

infront

cars

long

engine

short

hexagon

length

length

shape

shape

ψ ::= X1 : train

cars
.=

X2 : car

length

.= long
shape

.= engine
infront

.= X3

X3 : car
length

.= short
shape

.= hexagon

train(t1), car(t1, c1), car(t1, c2),
length(c1, long), shape(c1, engine),
infront(c1, c2), length(c2, short),

Cars = []
Train

Length = "long"
Shape = "engine"
Infront = []

Car

Length = "short"
Shape = "hexagon"
Infront = nil

Car

(a) Train (b) Graph representation
(c) Frame-based

representation

(d) Feature term representation

(e) Horn clause representation

Fig. 1 A small train (inspired by Michalski’s train dataset Larson and Michalski 1977), represented in dif-
ferent structured representation formalisms

5318 S. Ontañón

1 3

The main difference from the point of view of distance functions is that the former
requires distance functions between graphs, and the later distance functions between ver-
tices on a graph. In many approaches the basic theoretical graph definition is extended or
slightly modified. For example, conceptual graphs (Sowa 1979) are hierarchical bipar-
tite graphs where some vertices represent entities and some other represent relations, and
where a vertex could contain a nested subgraph inside of it. Another example are attributed
graphs, where each vertex can have a collection of numerical or symbolic features (Tsai
and Fu 1979). For example, when representing molecules as attributed graphs, we could
have features representing the distances of each bond or the coordinates of each atom in a
3D space (Riesen and Bunke 2008).

2.3.2 Logic‑based representations

Logic-based representations have been studied for decades in the inductive logic program-
ming (Lavrac and Dzeroski 1994) community, as well as in explanation-based learn-
ing (Mitchell et al. 1986). The key idea is to represent the training data using logical
clauses. For example, Fig. 1d, e shows how a small object represented using two different
logical formalisms (feature terms and Horn clauses). Most of these logic-based formalisms
correspond to different subsets of first order logic (FOL). The most common are:

• Horn clauses these are the most common representation in the ILP community. Objects
are represented as conjunctions grounded terms (such as the example in Fig. 1e). Some
times, the object representation is augmented with a theory expressed as Horn clauses,
which can be used to draw additional inferences on the objects being represented.

• Description logics (Baader et al. 2003) common in the semantic web commu-
nity (Baader et al. 2005), description logics (DLs) are a family of knowledge represen-
tation languages that correspond to different subsets of FOL. Many different DLs exist,
representing different tradeoffs between representation power, and computational trac-
tability. The original purpose of DLs was to provide formal semantics to frame-based
representations and semantic networks.

• Feature terms (also known as order-sorted feature structures, or feature logics) (Car-
penter 1992) another subset of FOL, that has been frequently used in the case-based
reasoning community (Plaza 1995) and in natural language processing (Emele and
Zajac 1990; Krieger and Schäfer 1995; Shieber 2003). An example train represented as
a feature term is shown in Fig. 1d.

The main strength of logic-based representations is that the can naturally encode the con-
cept of generalization (via subsumption operations), and inference, and that they naturally
allow for background knowledge to be represented in the form of rules. For example, many
learning systems based on logic-based representations utilize the concept of least-gen-
eral generalization (Plotkin 1970) to induce rules, or even assess distance and similarity
between instances (Ontanón and Plaza 2012; Sánchez-Ruiz et al. 2011).

2.3.3 Frame‑based representations

We will group all the different representations that derive from the original idea of
frames (Minsky 1974) as frame-based representations. These representations are common
in fields such as case-based reasoning (CBR) (Aamodt and Plaza 1994) and statistical

5319An overview of distance and similarity functions for structured…

1 3

relational learning (SRL) (Getoor and Taskar 2007). While in some CBR work, the dis-
tinction is made between frame-based representations and object-oriented representations,
and the former is associated with description logics (Bergmann et al. 2005), given the
nature of the existing work on distance and similarity assessment, we will use the term
frame-based representation to capture all representations such as object-oriented ones,
whose main constructs are “is-a” and “part-of” relations. An example such representation
is shown in Fig. 1c.

Frame-based representations are very common in the CBR literature, specially on the
early days of CBR with systems like CASUEL (Manago et al. 1994) or HOMER (Göker
and Roth-Berghofer 1999). Often, these representations are seen as direct generalizations
of flat feature-vector representations, where objects are represented by a set of attribute-
value pairs (called slots), determined by an object class (where classes form a hierarchy).
The attributes of these objects can be “simple attributes” (which take numerical or sym-
bolic values) or “relational attributes” (which take other objects for values) (Bergmann and
Stahl 1998). This idea of simple and relational attributes is analogous to the idea of attrib-
utes and relationships in entity-relationship (ER) (Chen 1988) models, commonly used to
define relational databases. In the field of SRL, extensions of the ER model to account for
probabilistic data (probabilistic entity-relationship models, or PER) are common, with a
well known example being DAPER (Heckerman et al. 2007).

3 Distance functions for graph‑based representations

This section provides an overview of the large amount of work existing in the literature on
distance and similarity functions for graph-based representations. We classify this work
in four main types of functions: those based on graph matching, those based on the idea
of edit distance, those based on refinement graphs, and finally the attempts to encapsulate
these functions as kernels. Additionally, we will see how some of these ideas are related
(for example, we will see that certain types of graph matching operations are actually
equivalent to edit distances under certain cost functions).

3.1 Graph matching‑based distance functions

Work on graph matching can be traced back to the 1960s with pioneering work on graph
isomorphism by Sussenguth (1964). Significant contributions to the field have been done
since. This section will cover only the work concerning distance and similarity assessment,
for comprehensive overview of the field, the reader is referred to recent overviews by Conte
et al. (2004) or Emmert-Streib et al. (2016).

The most stringent formulation of the graph matching is the well known graph isomor-
phism problem (Babai 2018). Given two graphs g1 and g2 , the problem is to find a bijection
f (i.e., a one-to-one correspondence) between the vertices of both graphs such that two
vertices v and v′ are adjacent in g1 , if and only if f(v) and f (v�) are adjacent in g2 . Moreover,
if graphs are labeled, then the labels of v and f(v) must also match, as well as the labels of
the edges between v and v′ and between f(v) and f (v�) . Intuitively, this amounts to checking
if two graphs are identical structurally. As of the writing of this document, the complexity
of graph isomorphism has not yet been determined, but it has been recently conjectured to
be quasipolynomial by Babai (2018). While graph isomorphism is not particularly useful

5320 S. Ontañón

1 3

for the purpose of distance calculations, relaxations of this problem have been used exten-
sively for assessing distance and similarities between graphs.

The immediate relaxation of graph isomorphism is what is known as subgraph iso-
morphism (Read and Corneil 1977), corresponding to finding if there is a graph isomor-
phism between a graph g1 and any subgraph of another graph g2 . A further relaxation is
the maximally common subgraph (MCS) (Levi 1973), which is particularly interesting
for distance and similarity assessment. The MCS problem consists on finding what is the
largest subgraph of g1 for which we can find a subgraph isomorphism with respect to g2 .
Distance functions for graphs based on the MCS include (all these three functions are dis-
tance metrics):

• Bunke and Shearer (1998) showed that the following distance function based on the
size (in vertices) of the MCS is a metric:

• Wallis et al. (2001) proposed a variation over Bunke and Shearer’s distance normaliz-
ing by the size of the union graph, rather than by the size of the larger graph:

where |g1 ∪ g2| is calculated as |g1| + |g2| − |MCS(g1, g2)| . Thus, notice that if we
interpret the MCS as the intersection of two graphs, this distance is basically the Jac-
card distance (see Sect. 2.2.2), applied to graphs.

• Fernández and Valiente (2001) propose a different variant that involves calculating both
the MCS and the mcs (minimum common supergraph) (which we will write in lower
case, to distinguish from the MCS, and corresponds to the minimum graph g such that
we can find a subgraph isomorphism between both g1 and g1 and g):

However, both subgraph isomorphism and the MCS problem are known to be NP-com-
plete (Bunke 1997). The original algorithm by Levi (1973) had a complexity of O((nm)n)
(where n and m are the number of vertices of the two graphs), and the more recent algo-
rithm by Abu-Khzam et al. (2007) is O(3m∕3(m + 1)c) , where c is the size of the smaller
vertex cover between the two inputs. Therefore, methods based on approximations of the
MCS have algo been proposed. For example, MatchBox (Schädler and Wysotzki 1999)
uses Hopfield-style neural networks to approximate MCS-based graph matching distances
between two labeled graphs.

There is also a significant amount of work on defining distance functions between
graphs using graph matching techniques using slightly different criteria than strict (sub)
graph isomorphism or MCS calculations. Graph isomorphism requires finding a mapping
between two graphs that satisfies a specific set of criteria. If we relax or modify these crite-
ria, a range of different distance functions can be defined. For example:

• Some early work on graph matching by Shapiro and Haralick (1981) proposed the
idea of finding �-homomorphisms between hypergraphs (they considered graphs
with vertices and “relations”, where “relations” could involve 2 or more vertices).

dbs(g1, g2) = 1 −
|MCS(g1, g2)|
max(|g1|, |g2|)

dwskr(g1, g2) = 1 −
|MCS(g1, g2)|

|g1 ∪ g2|

dfv(g1, g2) = |mcs(g1, g2)| − |MCS(g1, g2)|

5321An overview of distance and similarity functions for structured…

1 3

Where � is a measure of dissimilarity beteween 0 and 1. Assuming the existence of a
weighting function for each element in a graph (vertices and relations) such that all
the weights add up to 1, there is an �-homomorphisms between two graphs if we can
find a mapping such that the sum of the elements in the graphs that are mot matched
is less than � . In order to solve this problem, they proposed to use systematic search
using backtracking.

• Poole and Campbell (1995) propose a variation of the MCS approach, where they
find the most interesting common generalization (MICG), defined as the generaliza-
tion of two graphs that maximizes a user-provided measure of interest (which must
satisfy certain properties, such as not to increase if edges or vertices are removed).
The similarity between two graphs, is then defined as:

 In order to find the MICG of two graphs, they employ A∗ search over the product graph
of g1 and g2 to find a consistent subgraph that maximizes the function of interest.

• The similarity function proposed by Champin and Solnon (2003) for multi-labeled
graphs (each vertex or edge can have one or more labels) differs from the stand-
ard MCS-based approaches above in two key ways: 1) they allow for a used-speci-
fied function f to score the mapping (rather than finding the mapping that finds the
MCS), and 2) they do not require the mapping from vertices of one graph to the
other graph to be one-to-one. Their proposal similarity function is as follows:

where splits measures the number of non one-to-one mappings (assuming that we want
to penalize this), g1 ⊓m g2 is the intersection graph, given the mapping m (i.e., a graph
containing only those matched vertices and edges), and f and g are user-defined func-
tions. In order to assess similarity, they propose a greedy algorithm to find the mapping
m that maximizes this similarity.

• Wang and Ishii (1997) propose another similar measure, assuming the existence of a
function W that assigns an importance score to each vertex and edge. Given a map-
ping m, W can be used to define the similarity of two graphs as follows. For each
vertex v in graph g1 that is mapped to a vertex m(v) in g2 , the score of this mapping
is the average of W(v) and W(m(v)) (score for edges is analogous). Let us call Fv to
the sum of the scores of all the vertices, and Fe to the sum of the score of all the
edges, and Mv and Me the maximum score for vertices and edges that is theoretically
possible given the number of vertices of g1 and g1 and the range of W. Similarity is
then assessed as:

• In order to find the mapping that maximizes this function, they propose the use of a
genetic algorithm.

Other examples include the work of Mishne and De Rijke (2004), where they do not
impose some of the usual isomorphism constraints on the mapping they find, and

spc(g1, g2) =
interest(MICG(g1, g2))

max(interest(g1), interest(g2))

scs
m
(g1, g2) =

f (g1 ⊓m g2) − g(splits(m))

f (g1 ∪ g2)

swi
m
(g1, g2) =

Fv + Fe

Mv +Me

5322 S. Ontañón

1 3

just mapping each vertex to the most similar vertex on the other graph, given a con-
strained neighborhood with radius n, making the problem O(n3) . They use this approach
to develop a similarity function to retrieve source code, representing it as conceptual
graphs.

One final common approach is to use spectral methods. Spectral methods are applied
to weighted graphs (see Sect. 2.3.1), giving rise to the weighted graph matching problem
(WGMP). Given two weighted graphs g1 = ⟨V1,w1⟩ and g2 = ⟨V2,w2⟩ , and a mapping of
vertices from g1 to g2 , we can define a distance function as follows:

The WGMP is thus defined as the problem of finding the mapping that minimizes this
distance (however, other objective functions are possible). Given the adjacency matrix of
a graph (a matrix where each row and column corresponds to a vertex and the different
positions of the matrix contain the weights of the corresponding edges), the key ida behind
spectral methods is that the eigenvectors of the adjacency matrix are invariant respect to
node permutations, thus, if two graphs are isomorphic, their adjacency matrices will have
the same eigenvalues/vectors (Conte et al. 2004) (the converse is not true, however). Given
that calculating eigenvectors can be done in polynomial time, this is a very attractive idea
to solve the WGMP.

Spectral methods to solve the WGMP can be traced back to the work of Umeyama
(1988), who presented an initial limited approach that could only handle comparisons
between graphs of equal size. Another example is the work of Almohamad and Duffuaa
(1993), who formulate the problem using linear programming. Later approaches, include
the work of Xu and King (2001), who generalized the approach to being able to compare
graphs of arbitrary size. They formulate the problem as a continuous optimization problem
that can be solved via gradient descent using a loss function based on PCA.

The concept of graph matching is also related to the idea of analogical mapping. For
example, in order to calculate analogical mappings, Leishman (1989) compute what they
call minimal common generalization of two graphs, which is a similar concept to the
MCS, except that instead of calculating the maximum subgraph, they calculate the maxi-
mum subgraph that maximizes some measure of analogical mapping score. A very well
known approach related to this is the structure mapping engine (SME) (Falkenhainer
et al. 1989), which calculates analogical mappings that maximize a scoring function based
on structure mapping theory (Gentner 1983). The concept of analogical mapping is very
related to that of similarity (Holyoak and Koh 1987), and specifically, the score used by
SME has been used in the literature as a measure of similarity between graphs (Ontañón
and Zhu 2011).

To conclude this section, we would like to point out relations to other ideas of distance
and similarity. Specifically:

• The idea of calculating the MCS, or some variant, and use a measure of size on it to
assess similarity or distance between graphs is both related to the idea of the Jaccard
similarity (as pointed out above), as well as to the idea of distance functions in hierar-
chies. If we see each graph as an element of a hierarchy, and the subgraph-isomorphism
relation as the parent relation, then many of the ideas of similarity presented in this
section can be seen as versions of Rada’s or Resnik’s distances presented in Sect. 2.2.4
(with measures based on the size of the MCS being related to Rada’s and measures,

dm(g1, g2) =
∑
v∈V1

∑
w∈V1

(w1(v,w) − w2(m(v),m(w))
2

5323An overview of distance and similarity functions for structured…

1 3

such as Poole and Campbells, based on information content or interest, related to
Resnik’s). This will be made more clear below in Sect. 3.3.

• It has been shown in the literature that the problem of calculating the MCS, is a special
case of calculating the edit distance between graphs (Bunke 1997) (described below).

3.2 Graph edit distance functions

The idea of adapting the edit distance (described in Sect. 2.2.3) to graphs) can be traced
back to the early work of Sanfeliu and Fu (1983). The basic idea is the following. Given
two graphs g1 = ⟨V1,E1, l1⟩ and g2 = ⟨V2,E2, l2⟩ , let m ∶ V �

1
→ V �

2
 be a bijective map-

ping between a subset of vertices V ′
1
⊆ V1 of g1 and a subset of vertices V ′

2
⊆ V2 of g2 .

We will call E′
1
⊆ E1 to the subset of edges of g1 involving vertices in V ′

1
 , and define

m((v1, v2) = (m(v1),m(v2)) . The cost of a mapping m is defined as:

where cd , ci , cs , and cs are predefined cost functions for deleting vertices, inserting vertices,
substituting a vertex by another, and substituting an edge by another, respectively. The cost
of the optimal mapping m (the one with the lowest cost) is called the graph edit distance
between g1 and g2 (Bunke 1999). Calculating the edit distance is NP-complete (Bunke
1997), and is usually done using tree search algorithms. Additionally, as Bunke (1999)
demonstrated, graph isomorphism, subgraph isomorphism and finding the MCS are special
cases of calculating the edit distance under particular cost functions.

Given the high computational complexity of the graph edit distance, several approaches
exist to attempt to approximate it via different types of simplifications. For example,
Riesen and Bunke (2009) propose an approximate graph edit distance approach based on
the Hungarian algorithm (Munkres 1957), with polynomial complexity (O(n3) , where n
is the number of vertices in the graphs). The Hungarian algorithm is designed to solve the
assignment problem, i.e., given a set of n “variables”, each of which can take m different
“values”, and where we have a cost matrix specifying the cost of assigning each different
value to each different variable, finding the optimal value assignment to each variable, such
that no two variables have the same value. In order to frame the graph edit distance within
this framework, Riesen and Bunke propose a cost matrix constructed in such a way that
graphs of different sizes can be compared, and where the cost of mapping vertices of one
graph (the “variables”) to vertices of the other graph (the “values”) takes into account the
labels of the vertices in question, and also the edges coming in and out of those vertices.
In other words, this approximation considers only the local structure around each vertex in
order to find the best mapping from g1 to g2 , rather than the global structure. Experimental
results show significant reduction of computation time with only a small performance pen-
alty. Other approximation methods exist, as surveyed by Gao et al. (2010).

If the data of interest can be represented as trees, more efficient algorithms for tree data
exist to calculate the tree edit distance. When trees are ordered, the problem becomes
tractable (polynomial complexity) (Tai 1979), but it remains NP-complete for unordered
trees (Zhang 1989). Many polynomial algorithms exist for the case of ordered trees, such
as that of Klein (1998). The reader is referred to the comprehensive overview by Bille
(2005), for a complete list of approaches.

Additionally, the idea of graph edit distances has been employed to define similar-
ity between other graph-related structures such as processes. For example, the work of

�(g1, g2,m) =
∑

v∈V1−V
�
1

cd(v) +
∑

w∈V2−V
�
2

ci(w) +
∑
v∈V �

1

cs(v,m(v)) +
∑
e∈E�

1

cs(e,m(e))

5324 S. Ontañón

1 3

Montani et al. (2015) combines domain knowledge (to define the edit costs between dif-
ferent types of vertices) with graph edit distances to define a similarity function between
processes (represented as graphs by having the different steps in a process represented as
vertices, and the dependencies between these steps as edges, with some control structures,
such as loops, also often represented as vertices).

Graph edit distances require setting, in advance, the edit operation costs. While this can
be done manually, recent work from the field of metric learning (Yang and Jin 2006). Met-
ric learning focuses on the problem of learning a distance or similarity function given a
training set. In the most common setting, a labeled training set of feature-vector instances
is provided, and the problem is to learn a metric (typically a Mahalanobis distance) that is
minimized for pairs instances with the same label, and maximized for pairs of instances
with different labels. While most metric learning work has focused on feature-vector repre-
sentations, some work exists on structured representations. Many of these approaches (e.g.
the work of Neuhaus and Bunke 2007) are based on the expectation-maximization (EM)
algorithm (Dempster et al. 1977), and, although they can be used for trees, become intrac-
table for general graphs (Bellet et al. 2013). However, some relatively recent work has
started to produce practical approaches to learn metrics for graph data. For example, Good
Edit Similarity Learning (GESL) (Bellet et al. 2012) learns edit costs in the following
way. Given a training set consisting of graphs with different labels, it first precomputes the
number of the different types of edit operations (insertion, deletions, substitutions) required
to match each pair of graphs in the training set. Then, an optimization process optimizes
a cost matrix based on these numbers to maximally separate graphs with different labels,
and keep graphs with the same labels close together. In this way, although the learned cost
matrix might not be the optimal, there is no need to recalculate edit distances during the
optimization process, as previous approaches required.

3.3 Refinement graph‑based functions

Most structured distance and similarity functions described in this paper are specific to a
given representation formalism (i.e., distances for Horn clauses cannot be used for labeled
graphs or viceversa). Refinement operators, however, have been proposed as a way to
define distance functions that apply to a large set of structured representations.

The key idea is to abstract away from the underlying representation, and assume just the
existence of a few constructs:

• Subsumption relation1: given two structured instances x1 and x2 , we say that x1 sub-
sumes x2 (written x1 ⊑ x2) if x1 is more general than x2 . For example, in the case of
graphs, subsumption could be defined as checking if x1 is a subgraph of x2.

• Refinement operator: a downward refinement operator is a function � that, given an
instance x, generates other instances (refinements) that are more specific than x, i.e.
instances that are subsumed by x (van der Laag and Nienhuys-Cheng 1998). A refine-
ment operator is locally finite when it generates a finite amount of refinements; it is

1 Notice that in the description logics notation, subsumption is written in the reverse order since it is seen
as “set inclusion” of their interpretations. Here, x

1
⊑ x

2
 means that x

1
 is more general than x

2
 , while in

description logics it has the opposite meaning.

5325An overview of distance and similarity functions for structured…

1 3

complete if all the instances that are more specific than x can be generated by iterated
refinement of x, and proper if x ∉ �(x).

In our previous work (Ontañón and Shokoufandeh 2016), we defined a collection of sub-
sumption relations for labeled graphs with different semantics, and their corresponding
refinement operators. The base subsumption relation was defined as “ g1 subsumes g2 if a
subgraph of g2 is isomorphic to g1 ”. The refinement operator basically takes in a graph and
generates all the possible graphs that can be formed by adding one more vertex or edge
and assigning them a new label. In case the labels are organized in a hierarchy, refine-
ment operators that can specialize the labels in the graph were also defined. These two con-
structs define what is known as the refinement graph, a directed graph where each vertex is
a graph, and where edges represent refinement. The refinement graph is a semi-lattice, with
a special element g⊥ which is the graph with no edges and no vertices, and all other graphs
can be generated by iterative refinement starting from g⊥ . Therefore, we can now see the
problem of assessing distance or similarity between graphs as that of assessing similarity
between elements in a hierarchy, and use all the measures described in Sect. 2.2.4, among
others. For example:

• Antiunification-based similarity (S�) given two graphs g1 and g2 , it calculates their
most specific ancestor in the refinement graph (their anti-unifier, g1 ⊓ g2), which is
equivalent to the MCS if subsumption is defined as graph-isomorphism, and assesses
similarity as:

where |g1
�
�����→ g2| represents the length of a refinement path that starts in g1 and goes

to g2 by repeated application of the refinement operator � . Notice that the number of
refinement steps necessary from g⊥ to a graph g can be seen as a measure of size, and
thus, this measure is equivalent to the one presented by Wallis et al. (2001) (described
above) if subsumption is defined as graph-isomorphism, since the denominator is basi-
cally the size of the union graph.

• Property-based similarity (S�) A major issue with S� is that it is computationally
impractical, except for very small graphs (as expected, since the MCS calculation can
be seen as a special case of it). The key idea of the property-based similarity measure
is to decompose each graph into a collection of smaller graphs (called properties), and
then count how many of these properties are shared between two given graphs. The key
advantages of this similarity function are that: (1) the re-representation of graphs into
sets of properties (which is the expensive operation) only needs to be done once, and
after that, assessing similarity has a lower computational cost, and (2) each of these
properties can be seen as a feature, and thus, feature weighting methods can be applied
in order to improve accuracy in the context of machine learning methods. Decompos-
ing a graph into a collection of properties is done via an operation called disintegra-
tion (Ontanón and Plaza 2012), which, depending on the structure of the refinement
graph, ensures that we can reconstruct the original graph by integrating all the proper-
ties again into a single graph using the unification operation. Once the graph g1 and g2
have been disintegrated, into a set of properties D(g1) and D(g2) respectively, similarity
is defined as:

S𝜆(g1, g2) =
|g⊤

𝜌
�����→ (g1 ⊓ g2)|

|g⊤
𝜌
�����→ (g1 ⊓ g2)| + |(g1 ⊓ g2)

𝜌
�����→ g1| + |(g1 ⊓ g2)

𝜌
�����→ g2|

5326 S. Ontañón

1 3

 where P = D(g1) ∪ D(g2) . Moreover, a weighted version of this similarity function
(Sw�) can be defined if a weight is defined for each property, and instead of counting the
number of shared properties, we add their weights.

Refinement operator-based distance functions are related to hierarchy-based distance
functions, as well as to MCS-based functions as described above. However, they are also
very related to edit distances. A refinement operator can be seen as a function that gener-
ates new graphs by performing edits on it. A downward refinement operator only gener-
ates graphs that are more specific. The complementary concept of an upwards refinement
operator generates graphs that are more general. Thus, by combining upward with down-
ward refinement operators, we can generate the complete set of edit operations required
for defining an edit distance. Since upwards refinement operators are basically the inver-
sion of downward refinement operators, we could define the edit distance between two
graphs as |(g1 ⊓ g2)

𝜌
�����→ g1| + |(g1 ⊓ g2)

𝜌
�����→ g2| , with obvious connections to S� . Moreover,

as described in our previous work (Ontanón and Plaza 2012), S� and S� are equivalent if the
refinement graph satisfies certain properties.

In summary, refinement operator-based distance functions can be seen as a way to use
ideas from distance functions for hierarchies to define those for graphs by means of the
intermediate concept of the refinement graph.

3.4 Graph kernels

Kernel methods, and support vector machines (Hearst et al. 1998) in particular, rose a few
decades ago as a powerful family of machine learning methods that could be applied to a
larte type of representation formalisms, given an appropriate kernel exists. The key idea
behind these methods is that the core optimization processes required for performing clas-
sification, regression or even clustering can be formulated in terms of inner products (e.g.,
the usual dot product, when we are talking about Euclidean spaces). Given data in some
representation formalism, e.g. graphs, we could define machine learning algorithms by first
transforming this data into some feature-vector representation with some mapping function
� and then operating using inner products over this feature vector representation. A kernel
function k is a function that given two data points x1 and x2 in some representation formal-
ism, calculates the result of mapping these data points to a implicit feature-vector space
and then calculating their inner product: k(x1, x2) = ⟨�(x1),�(x2)⟩ (where ⟨⋅, ⋅⟩ represents
the inner product). In this way, given a proper kernel function, the same learning algorithm
can be applied to graph data, feature vector data, tree data, etc.

Kernel functions can be seen as similarity functions (since, the more similar two data
points are, the higher their inner product). However, kernels must satisfy the property of
being positive definite, which intuitively means that, for a given kernel, a finite or infinite
feature-vector space must exist such that the kernel is equivalent to transforming the data to
this space and then calculating an inner product in this space (the reader is referred to exist-
ing overviews of kernel methods for a formal definition of kernel functions (Gärtner 2003;
Ralaivola et al. 2005) for a formal definition of kernels). Therefore, while all kernel func-
tions can be seen as similarity functions, not all similarity functions are kernel functions.
Thus, a significant amount of work exists in defining kernel functions that encapsulate or

S𝜋(g1, g2) =
|{𝜋 ∈ P | 𝜋 ⊑ g1 ∧ 𝜋 ⊑ g2}|

|P|

5327An overview of distance and similarity functions for structured…

1 3

approximate edit distances, and other of the distance and similarity functions described
above.

Graph kernels can be classified along many different axis. Gärtner (2003) differentiate
model-driven from syntax-driven kernels, and Ralaivola et al. (2005) distinguish between
adjacency matrix-kernels, marginalized graph kernels, and others. For the purposes of this
paper, we will classify them by whether they apply to general graphs or to trees, and intro-
duce the key ideas behind most kernels in the literature:

• Tree kernels the two most common ideas for defining tree kernels are.

• Tree traversal kernels (Smola and Vishwanathan 2003) the key idea is to transform
a tree into a string by using a depth-first traversal of the tree. If the tree is unordered,
we can assume a lexicographical order on the labels of the tree vertices and use it
to define the tree traversal. After that, string kernels can be used to compare trees.
Assuming the trees are not too unbalanced, tree traversal kernels are O(n) (where n
is the number of vertices of the trees).

• Subtree occurrence kernels these are a particular type of convolution ker-
nels (Haussler 1999) (where object are divided into parts, and kernels are defied
over these parts) applied to trees. For example Collins and Duffy (2002) propose
a kernel based on counting how many subtrees two given trees share, and propose
an efficient way to calculate this, as follows. Given a set of possible subtrees T, the
kernel function for two trees t1 = ⟨V1,E1, l1⟩ , and t2 = ⟨V2,E2, l2⟩ is defined as:

where C(v1, v2) =
∑

t∈T It(v1)It(v2) , and It(v1) = 1 if the subtree rooted at v1 is identi-
cal to t, and 0, otherwise. So, basically, C(v1, v2) is the number of common subtrees
of t that can be found rooted both at v1 and v2 . This kernel, however, has the limita-
tion that it can only be applied to trees where children of a vertex are distinguish-
able. Extensions of this kernel to lift this limitation were introduced by Kashima
and Koyanagi (2002).

• Graph kernels many different types of graph kernels have been proposed in the litera-
ture. However, most of them follow one of the following ideas.

• Subgraph occurrence kernels like subtree occurrence kernels, the key idea is to
define a latent feature space consisting of all possible graphs, and then define the
kernel function between two graphs g1 and g2 , based on how many of those graphs
do they share. Gärtner et al. (2003) showed that this computation is NP-hard for
the general case of labeled graphs. Since subgraph occurrence kernels are compu-
tationally unfeasible, rather than considering all possible subgraphs, approaches
that consider only certain types of structures, such as trees or cycles have been
proposed (Horváth et al. 2004). A particularly common type of such types of
approaches are marginalized kernels, based on “random walks”, described below.

• Marginalized kernels marginalized kernels are also a particular type of convolu-
tion kernels that derive from marginalized sequence kernels (Tsuda et al. 2002).
The key idea is to count the number of labeled walks two graphs share. Thus, the
underlying infinite feature space is the set of all possible label sequences of length
between 1 and ∞ . Given two graphs g1 = ⟨V1,E1, l1⟩ , and g2 = ⟨V2,E2, l2⟩ , the basic
formulation (Ralaivola et al. 2005) of this kernel is as follows:

kcd(t1, t2) =
∑
v1∈V1

∑
v2∈V2

C(v1, v2)

5328 S. Ontañón

1 3

where Si
j
 is the set of all possible vertex sequences of length i in graph gj , lj(�) is the

sequence of labels of a given vertex sequence � in graph gj , p(�j|gj) is the probabil-
ity of such vertex sequence given a user-defined transition probability function, and
klabel is a kernel between label sequences. Kashima et al. (2003) proposed an effi-
cient way to calculate this kernel via solving a set of simultaneous linear equations.
Several enhancements to the basic kernel by Kashima et al. have been proposed in
the literature such as enhancements for graphs (such as those appearing in chemis-
try) with lots of repeated labels, or removing the possibility of paths that “go back”
on themselves (Mahé et al. 2005). Many other graph kernels based on random walks
exist, such as the recent work by Zhang et al. (2018) based on the idea of the return
probability of a random walk. Finally, as pointed out by several authors (Tsuda et al.
2002; Ralaivola et al. 2005) some other common types of kernels, such as Fisher
kernels (Jaakkola and Haussler 1999), are particular cases of marginalized kernels.

• Fingerprint kernels two types of kernels are referred to as fingerprint kernels in
the literature. Traditional fingerprints are commonly used in chemoinformatics
and consist of bit vectors, where each bit corresponds to a chemical substructure
(the list of chemical substructures to consider is usually set by hand using scientific
literature on chemistry). The fingerprint of a molecule is calculated by setting to 1
all the bits corresponding to the substructures that the given molecule contains. Ker-
nels are then just the inner standard product in the fingerprint vector space (notice
that this is basically the same ideas as a subgraph occurrence kernel, but consid-
ering only a curated predefined set of subgraphs). On the other hand, hashed fin-
gerprints are a rather different type of kernel, where there is no predefined set of
chemical structures. Instead, given a graph g (usually representing a molecule), all
possible paths starting from each vertex are computed, and for each path the cor-
responding label sequence (with the labels of all the vertices and maybe also edges
traversed by the path) is determined. Then, each sequence of labels is used to calcu-
late a has value v, used to generate a fixed sequence of bits. The final fingerprint of
the graph is calculated as the bit-wise OR operation between al the bit sequences for
each path. Ralaivola et al. (2005) present an efficient way to calculate these finger-
prints when considering all the paths from length 1 to infinity, and use it to define
three three kernels based on these bit vectors (the Tanimoto kernel, the MinMax
kernel and a Hybrid kernel that is just a linear combination of the previous two).
For example, the Tanimoto kernel is defined as:

where fp is the bit vector with the fingerprint of a given graph, and k is a regular
kernel between vectors.

• Edit-distance kernels although the edit distance between two graphs does not
satisfy the necessary conditions to define a kernel, several kernels have been pro-
posed inspired by edit distances. For example, Neuhaus and Bunke (2006b) present
a “pseudo-kernel” (since the resulting function is not guaranteed to be a kernel),
based on selecting a reference graph g0 and calculating the kernel function for two
graphs as a function of their edit distances with respect to g0 . Although interesting,

km(g1, g2) =

∞∑
i=1

∑
�1∈Si

1
,�2∈Si

2

klabel(l1(�
1), l2(�

2))p(�1|g1)p(�2|g2)

ktm(g1, g2) =
k(fp(g1), fp(g2))

k(fp(g1), fp(g1)) + k(fp(g2), fp(g2)) − k(fp(g1), fp(g2))

5329An overview of distance and similarity functions for structured…

1 3

the main issue of this function is that it cannot be guaranteed to be positive definite.
Another approach by the same authors is the convolution edit kernel (Neuhaus and
Bunke 2006a) which is guaranteed to be positive definite, and is defined as follows.
Let us assume that given a graph, we impose some arbitrary order over its vertices.
Now, each graph is represented as a sequence of vertices. Given two graphs and
their sequence of vertices, if we consider two subsequences (one from each graph)
of the same length, they can be seen as defining a mapping between vertices of the
two graphs (where the first vertex of the first subsequence is mapped to the first ver-
tex of the other graph, and so on). We can not define the kernel as:

where R is the set of all possible subsequences of vertices of a graph, kval is 1 is the
subsequences x1 and x2 are the same length and 0 otherwise, and ksubst is the substi-
tution cost of substituting a vertex in one graph by a vertex in the other. While this
is not equivalent to a full edit distance, it is a reasonable approximation in order to
satisfy positive definiteness, and which has been shown experimentally to perform
better (when used in a support vector machine) than a traditional edit distance in
a k-nearest neighbor framework (Neuhaus and Bunke 2006a) for some image and
character recognition tasks.

• Weisfeiler–Lehman kernels finally, we would also like to highlight kernels based
on the Weisfeiler–Lehman (WL) test for isomorphism (Weisfeiler and Lehman
1968). The key idea of the WL test for isomorphism between labeled graphs is as
follows: given two graphs, we construct, for each graph, the set of labels of their
vertices. If these sets are different, we already know the graphs are not isomorphic.
If they are, we can re-label the graphs by assigning to each vertex a label that is
made out of their label and the labels of all their neighbors. We can then repeat
the process for h iterations. If at any point in the process the sets of labels of the
two graphs are different, we know they are not isomorphic. If after h iterations the
sets remain the same, they are either isomorphic, or the test cannot separate them2.
Although this is not an exact test, it has the attractive property that its complexity
is O(hn), where n is the number of vertices in the graphs. Given two graphs g1 and
g2 , let g1

1
, g2

1
, ..., gh

1
 and g1

2
, g2

2
, ..., gh

2
 be the sequences of graphs that we would obtain

for g1 and g2 respectively with h iterations of the relabeling process of the WL test.
Weisfeiler–Lehman kernels (Shervashidze et al. 2011) are then defined as follows:

where k is a base kernel. If k is positive semidefinite, then kh
WL

 is so as well. Many
variants of WL kernels exist, such as the Weisfeiler–Lehman subtree kernel (closely
related to other subtree kernels, see above, such as that defined by Ramon and Gärt-
ner 2003), Weisfeiler–Lehman edge kernel or Weisfeiler–Lehman shortest path ker-
nel (Shervashidze et al. 2011).

kcek(g1, g2) =
∑

x1∈R(g1),x2∈R(g2)

kval(x1, x2)
∏

i=1,...,length(x1)

ksubst(x1[i], x2[i])

kh
WL

(g1, g2) = k(g1
1
, g2

2
) + k(g2

1
, g2

2
) +⋯ + k(gh

1
, gh

2
)

2 Interestingly, the Weisfeiler–Lehman test is related to the expressive power of Graph Neural Networks
(discussed in Sect. 3.5), as it has been shown that a some classes of GNNs are at least as powerful as the
Weisfeiler–Lehman in detecting graph isomorphism (Xu et al. 2018).

5330 S. Ontañón

1 3

The list above captures some of the historically most common ideas used in graph kernels.
However, Many other graph kernels have been proposed in the literature, such as those
based on adjacency matrices (Gärtner et al. 2003), among others. For example, recent work
has proposed embedding each graph vertex using the adjacency matrix, and then using
a distance metric, such as the earth-moved distance described above between the result-
ing embeddings (Luss and d’Aspremont 2008). This does not result in a positive definite
kernel, but can be combined with indefinite kernel SVM methods (Luss and d’Aspremont
2008) to achieve state of the art performance.

Another recent idea is that of using the idea is that of using the k-core decomposition
of a graph (Nikolentzos et al. 2018), which decomposes a graph g into a series of nested
graphs: g ⊇ c0 ⊇ c1, ... , where ck is the k-core of g (a largest subgraph of g where all ver-
tices have at least k edges). This k-core decomposition captures the structure of a graph
at different levels of granularity. Thus, the idea is to assess similarity between graphs at
different granularities, since graphs might exhibit different structures at different levels of
granularities.

3.5 Graph neural networks

A recent approach to assess similarity between graphs focuses on using graph neural net-
works (GNNs). A GNN is a particular type of neural network capable of learning rep-
resentations of graphs or vertices from graphs and that can be used for many supervised
learning problems with graph data (Battaglia et al. 2018). Specifically, in order to use them
for similarity function learning, GNNs have been used to embed graphs into vector space.
This embedding is learned end-to-end in a supervised learning fashion, given a training
set of graphs with annotations of which should be considered similar and which should
be considered dissimilar. The resulting neural networks are called graph matching net-
works (Li et al. 2019).

Two advantages of this approach are: (1) the embedding is learned directly from data,
and thus the resulting similarity function is fitted to the task at hand similar to metric learn-
ing methods (see Sect. 2.2.6); and (2) once the graph embedding has been learned, similar-
ity is computed only in the vector space, thus allowing for efficient retrieval techniques.

3.6 Graph vertices

Finally, a very different family of distance or similarity functions concern comparing ver-
tices within a graph. The problem of comparing vertices in a graph arises naturally when
we think of graphs representing web pages (with edges representing links), or academic
publications (with edges representing citations). These functions are very different from
all the functions presented above, since the data being compared is itself not a graph, but
rather lies within a graph.

The underlying assumption of this line of work is that we do not have access to a set of
features describing the vertices to be compared, and we need to compare them based on the
graph structure. We will discuss some of the most common functions here for complete-
ness, and refer the reader to Section 3 of the overview by Lü and Zhou (2011) for a more
comprehensive list.

Many similarity functions have been proposed between graph vertices, which can be
roughly classified into local vs global functions depending on whether they utilize only

5331An overview of distance and similarity functions for structured…

1 3

information concerning the immediate neighborhood of a vertex, or if they utilize the
whole graph structure in order to calculate similarity.

Given two vertices v1 and v2 , local similarity functions between graph vertices are usu-
ally defined by assessing similarity between the neighborhood sets Γ(v1) and Γ(v2) , con-
taining all the vertices that are connected via a direct edge to v1 and v2 respectively. Given
these two sets, vertex similarity is then usually assessed via the use of set similarity func-
tions (like the Jaccard index, or the Sørensen’s Index described above). Early work in this
direction can be traced back to the early work of Small (1973), who proposed the idea of
co-citation as a means to measure the relationship between two scientific documents. The
co-citation index between two documents v1 and v2 is the number of documents that con-
tain cites to both v1 and v2 . Assuming both v1 and v2 are vertices on a graph g1 = ⟨V ,E, l⟩:

Notice that co-citation is basically measuring the size of the intersection of the directed
neighborhoods of two vertices.

In contrast, global similarity functions between graph vertices are defined using global
properties of a graph, such as paths between vertices. An early example of these functions
is the Katz index Katz (1953), which counts the number of paths of different lengths that
connect two given vertices, using a decay function on the length of these paths:

where 0 < 𝛽 < 1 is a decay constant, and pathsl
v1→v2

 is the set of all possible paths from v1
to v2 of length l.

More recent work includes the SimRank algorithm (Jeh and Widom 2002) (called Sim-
Rank for its underlying similarity with PageRank Page et al. 1999). SimRank assesses sim-
ilarity between vertices based on the idea that vertices with similar connections (edges) are
similar. The basic recursive formulation of SimRank is as follows:

where: I(v) is the set of in-neighbors (vertices with an edge pointing to v), C is a constant
between 0 and 1, and sim(v1, v2) = 1 when v = w , and sim(v1, v2) = 0 if |I(v1)||I(v2)| = 0.

SimRank can be interpreted as the probability that two random walkers starting at the
two nodes in question would meet if walking the graph backwards (Jeh and Widom 2002).
This idea of random walks, has been explored in several other similarity function. For
examples Pons and Latapy (2005) proposed the following distance function between two
vertices v1 and v2 in a graph:

where |I(vk)| is the number of incoming edges in vk , t is a parameter of the distance deter-
mining the length of the random walks, and Pt

i→j
 is the probability that a random walk of

length t starting in vi ends in vj . The idea is that if two vertices belong to the same neigh-
borhood in a graph (and should thus be considered similar), the probabilities of reaching all

sco−citation(v1, v2) = |{v ∈ V|(v, v1) ∈ E ∧ (v, v2) ∈ E}|

sKatz(v1, v2) =

∞∑
l=1

� l|pathsl
v1→v2

|

sim(v1, v2) =
C

|I(v1)||I(v2)|
|I(v1)|∑
i=1

|I(v2)|∑
j=1

sim(Ii(v1), Ij(v2))

dPL(v1, v2, t) =

√√√√ n∑
k=1

(Pt
1→k

− Pt
2→k

)2

|I(vk)|

5332 S. Ontañón

1 3

the other vertices in the graph should be similar. Pons and Latapy then proposed efficient
ways to approximate such distance and used then to define an algorithm called Walktrap to
identify the different “communities” (or clusters) of vertices in a graph in a computation-
ally efficient way.

Other global distance functions exist, such as those based on spectral graph the-
ory (Spielman 2010) (which studies properties of graphs by studying the eigenvectors of
matrices associated with the graphs, such as the Laplacian). For example, the effective
resistance between vertices is a distance metric between vertices in weighted graphs aris-
ing from interpreting graphs as graphs of resistors (as if they were electrical circuits). The
effective resistance is interesting, as it is related to other distances between vertices, such as
the expected time a random walk starting from a vertex v will take to reach a vertex w, and
then come back to v (Doyle and Snell 1984).

4 Distance functions for logic‑based representations

Research on distance functions for logic representations has occurred fairly independently
in different communities, each focusing on a different logical formalism, with little interac-
tion. Specifically, the three representation formalisms that have received more attention are
Horn clauses, description logics and feature terms. Moreover, even if work has been car-
ried out independently, many of the key underlying ideas are shared across these different
pieces of work.

Logical representations distinguish between syntax and semantics (given a target
domain, the syntax defines the rules that determine which logical expressions can be writ-
ten in a given logical formalism, and semantics determines the sets of individuals in the
target domain that are covered by the different logical expressions). Thus, work exists on
distance measures between logical expressions (clauses) and also between individuals.
However, work on similarity between clauses is the most common (and most work on simi-
larity between individuals actually first calculates what is known as the most specific con-
cept, the clause the most closely represents an individual, and then uses distance between
clauses).

Most distance functions between logical clauses can be classified in two broad cate-
gories: syntactic (or intensional), and semantic (or extensional). The former are based on
comparing the syntactic descriptions of logical clauses, and the latter are based on compar-
ing the sets of individuals covered by the logical descriptions. Additionally, some distance
functions combine ideas of both. Finally, there has also been work on trying to capture
some of these ideas of distance and similarity as kernels, which we will cover at the end of
this section.

The key difference between logic-based representations and graph-based representations is
that logic-based representations afford inference processes to be performed over instances. For
example, given an instance described as a logical clause, if background knowledge is avail-
able, additional facts about the instance can be potentially inferred. Thus, even if it’s always
possible to take a logical clause and represent it as a graph (having constants and functors
be the vertices, and using edges to represent which functors and constants are the parame-
ters of which other functors), this transformation loses the ability to perform inference. Thus,
additional desirable properties have been proposed in the literature for similarity functions for
logical representations. Below, we provide formal definitions of the three properties infor-
mally proposed by d’Amato et al. (2008). Let I be the interpretation function that defines the

5333An overview of distance and similarity functions for structured…

1 3

semantics of a given logic formalism (that maps logical clauses to the sets of individuals cov-
ered by them), let x1 , x2 and x3 be three clauses, d be a distance function, and s a similarity
function.

1. Soundness if (I(x1) ∩ I(x3)) ⊆ (I(x2) ∩ I(x3)) then d(x1, x3) ≥ d(x2, x3) . Intuitively, this
means that if all the individuals covered by x1 and x3 are also covered by x2 , but that x2
covers some additional individuals also covered by x3 , then x2 is semantically closer to
x3 , and thus the distance between x2 and x3 should be lower than that between x1 and x3 .
Analogously, s(x1, x3) ≤ s(x2, x3)

2. Equivalence soundness if I(x1) = I(x2) then d(x1, x3) = d(x2, x3) . And, of course
s(x1, x3) = s(x2, x3) . Intuitively, if x1 and x2 are semantically equivalent given the logic
at hand (i.e. their set of interpretations is the same), then the similarity between x1 and
x2 to any other instance should be equal.

3. Disjointness incompatibility imagine that I(x1) ∩ I(x3) = � and that I(x2) ∩ I(x3) = � ,
all distance functions based on semantics will assess the distance between x1 and x3 and
between x2 and x3 to be maximal, since their interpretations are disjoint, i.e., there is no
individual that is covered at the same time by x1 and by x3 . However, consider the fol-
lowing example: x1 represents flights coming out of Berlin going to Frankfurt, x2 flights
coming out of Barcelona going to Philadelphia, and x3 flights coming out of London
going to Philadelphia. Clearly, their interpretations are disjoint, but x2 and x3 share the
fact that flights go to the same destination. Distance functions that are able to capture
this similarity even when the interpretations of the two clauses are disjoint are said to
be able to handle disjointness incompatibility.

Let us now summarize the existing work on distance and similarity functions for logical rep-
resentation formalisms in view of these new properties, and also compared to the work pre-
sented before for graph-based representations.

4.1 Syntactic distance functions

Syntactic distance functions compare instances by directly comparing the logical expression
used to represent them. Let us classify the work based on the logical representation formalism
used.

4.1.1 Horn clauses

An early representative method of this idea is that of Hutchinson (1997), who studied metrics
between logical terms and logical clauses.

Given an alphabet of variables X, a an alphabet of function symbols F, a term is either a
variable in X, or an expression of the form f (t1, ..., tn) , where f ∈ F and t1, ..., tn are terms (a
constant is just a term or zero arity). Hutchinson proposed to measure the distance between
two terms by using the ideas of variable substitutions and least general generalizations (lgg).
Given two terms, t1 and t2 , and their lgg, t∗ , let �1 and �2 be the variable substitutions that turn t∗
into t1 and t∗ into t2 respectively. The distance between two terms is then defined as:

where | ⋅ | is some size function on variable substitutions (e.g., the number of variables
being substituted). This idea can be extended to literals (a literal is a term that can be

dH(t1, t2) = |�1| + |�2|

5334 S. Ontañón

1 3

negated) by considering the negation symbol to be just a regular function symbol. And
then, to clauses by considering that clauses are just sets of literals and then using the Haus-
dorff distance. Thus, given two clauses C1 and C2 , their distance can be assessed as:

Terms and clauses often refer to individuals, e.g. the term mother(alice, bob), intuitively
states that the individual named alice is the mother of the individual named bob. So, it is
often useful to assess the distance between individuals referred to by terms, rather than
the distance between terms themselves. Early work in this direction is the work of Bisson
(1990). Consider a knowledge base consisting of a set of terms. Given an individual x, let
(f, n), where f is a function symbol and n is an integer, be an occurrence of x if there is a
term in the knowledge base with function symbol f and where x appears as the n-th argu-
ment. Let now occurrences(x) be the set of all occurrences of an individual x in the knowl-
edge base. Bisson’s similarity function between individuals is defined as:

in other words, their similarity is defined as a pseudo-Jaccard index (replacing the size of
the union in the denominator by the max size) of their sets of occurrences.

This work was later extended to account for similarity between the different occur-
rences (Bisson 1992). In this extension, the similarity between two entities (SIM) is calcu-
lated as the average of the similarity of the terms in their common occurrences (T-SIM).
Incidentally, SIM depends on T-SIM, and T-SIM depends on SIM. So, this results on a sys-
tem of equations that needs to be solved in order to assess the similarity between two enti-
ties. This system of equations is often non-linear, and thus Bisson proposed to use Jacobi’s
method (Golub and Van Loan 2012) to solve it.

Probably one of the best known similarity functions for logic-based representations is
in RIBL (Relational Instance-Based Learning) (Emde and Wettschereck 1996). RIBL’s
measure is a modification of Bison’s similarity function (Bisson 1992) so that rather than
considering a network of predicates (thus requiring Jacobi’s method to solve a system of
equations), it builds a hierarchical representation in the form of a tree that is a string gen-
eralization of standard similarity functions for feature vectors. Specifically, this similarity
function is defined for Horn-clause style representations (such as the one shown in Fig. 1e)
and works as follows. Given two entities, each described by a logical term, where some of
the attributes of the terms are primitive values (e.g., numbers), and some others are refer-
ences to other objects, the similarity of the two entities is assessed as the similarity of their
attribute’s values. If some of these attributes are references to other objects, then their simi-
larity is assessed recursively:

where Input-Args(f) is the subset of arguments of f that are considered “input arguments”
(RIBL distinguished between input and output arguments in predicates), type(f, i) is
the “data type” of the argument i of functor f (numeric, symbolic, reference to another
object, etc.), and sim-atype(f ,i) is a collection of functions (one per different data type of the

dH(C1,V2) = max

(
max
t1∈C1

min
t2∈C2

dH(t1, t2), max
t2∈C2

min
t1∈C1

dH(t1, t2)

)

sB(x1, x2) =
|occurrences (x1) ∩ occurrences(x2)|

max(|occurrences (x1)|, |occurrences(x2)|)

sim-e(f (t1,1, ..., t1,m), f (t2,1, ..., t2,m))

=

∑m

i=1,i∈Input-Args(f)
sim-atype(f ,i)(t1,i, t2,i, 0)

�Input-Args(f)�

5335An overview of distance and similarity functions for structured…

1 3

arguments) that recursively assess the similarity of the arguments. Thus, notice that if all
arguments are numeric or symbolic, this is basically a standard feature vector similarity
function (the average similarity of all the attributes), but if any attribute is a reference, then
sim-atype(f ,i) will recursively call sim-e . The 0 as the third parameter of sim-atype(f ,i) refers to
the depth at which we are doing recursive calls, since usually a maximum depth limit is set
for RIBL, to prevent infinite recursion.

The basic idea of RIBL was extended in the work of Horváth et al. (2001), defining
additional versions of sim-atype(f ,i) that support arguments of type list or term using edit dis-
tances. Thus, notice that the key idea of RIBL is just to assess the similarity of predicates
by the similarity of their attributes, which is then assessed recursively in case any attrib-
ute is in itself a reference to another entity, by assessing the similarity of the predicates
describing those entities. This is a representative example the idea of hierarchical aggre-
gation, which many other distance functions we will describe below follow. Also, notice
that RIBL requires specific similarity functions for every data type that is to be used in the
definition of the logical predicates.

Other hierarchical aggregation measures include the work of Nienhuys-Cheng (1997)
where a distance function between ground atoms is presented, based on considering atoms
to be trees, and using a hierarchical recursive definition. Then this distance is extended to
clauses using the same idea of the Hausdorff distance used by Hutchinson as explained
above. This work was extended by Ramon and Bruynooghe (1998), to allow for non-
ground atoms.

4.1.2 Feature terms

Another framework for assessing similarity using the idea of hierarchical aggregation is
the work of Armengol and Plaza (2001, 2002) with their LAUD and SHAUD similarity
functions. These functions focus on a logical formalism called em feature terms (Carpenter
1992). Specifically, SHAUD (which is an improvement over the previous LAUD similarity
function), works as follows. Given two instances c1 and c2 represented as feature terms (see
Fig. 1.d for an example feature term), their similarity is defined as:

where r is a normalization value to make the similarity take values between 0 and 1,
CS refers to the “common structure” between c1 and c2 , i.e., the set of attributes that the
roots of c1 and c2 share (for example, in the feature term in Fig. 1.d, the common structure
between X2 and X3 are the length and shape attributes). T is a function that for each shared
attribute f computes a tuple ⟨si,wi, ri⟩ , where si is the similarity of c1.f and c2.f , and wi and
ri are a measure of the “size” of c1.f and c2.f : wi measures the number of variables in their
shared structure (e.g., the size of their intersection) and ri measures the total size (i.e., the
size of their union).

In order to calculate si , SHAUD, like RIBL, uses a hierarchical process, where if c1.f
and c2.f are numerical or categorical values, special similarity functions are used, but if
they are structured terms, the SHAUD similarity is called recursively.

As we noted in our previous work (Ontanón and Plaza 2012), hierarchical aggregation
methods like RIBL and SHAUD make two underlying assumptions: (1) that data is organ-
ized hierarchically in a tree form (for example, RIBL requires a maximum depth parameter to
avoid infinite recursion in case data forms loops, and similarly SHAUD would get stuck in an

simSHAUD(c1, c2) =
1

r

�
⟨si,wi,ri⟩∈T(CS(c1,c2))

si ∗ wi

5336 S. Ontañón

1 3

infinite recursion with feature terms that contain cycles); (2) they implicitly assume that infor-
mation that is “deeper” in the tree is less important than information that is found earlier in the
tree, which is an arbitrary assumption in many real-world datasets.

4.1.3 Description logics

A significant amount of work has been done on similarity functions for Description Log-
ics (Baader et al. 2003). Concerning syntactic functions, one of the earliest examples is the
similarity function proposed by González-Calero et al. (1999), where they proposed to assess
the similarity between two individuals as the sum of the similarity between the most specific
concepts of which those individuals are instances of, and the similarity of their roles (where
“role” is the term used in Description Logics to refer to the concept of attributes or features of
individuals). Specifically, the proposed similarity function between two individuals x1 and x2
is defined as:

where t(x) is the most specific concept of which an individual x is an instance, R is the set
of all possible roles, and x.r is the set of individuals connected to x via role r. If x.r is a set,
and not just one individual, sim(x1.r, x2.r) is defined by calculating the sum of the similari-
ties between each individual of x1.r and the corresponding individual in x2.r with the maxi-
mum similarity. Notice that this definition might contain infinite loops. In order to prevent
this, roles that cause circular cycles are not considered as part of the similarity calculations.

Another example is the work of Janowicz (2006), who present a similarity framework
called SIM-DL for comparing ALCNR concept descriptions. Concept descriptions in
ALCNR normal form are represented as disjunctions of other concepts. Given two concept
definitions: C = C1 ⊔ ... ⊔ Cn and D = D1 ⊔ ... ⊔ Dm , SIM-DL assesses their similarity as:

where simu stands for similarity between concepts described as the union of concepts, and
simi is a recursive call for concepts represented as the intersection of other concept defi-
nitions. Similarly, simi recursively calls to simp (between primitive concepts), and other
functions for existential quantifier definitions, role definitions and value restrictions. Also,
when comparing definitions between concepts in simu , SIM-DL first calculates the similar-
ity between each pair in the Cartesian product of C1, ...,Cn and D1, ...,Dn . Then, for each
Ci , the corresponding Dj with the highest similarity is selected. The selected pairs form the
set SI. Finally, the weights wij have to be set so that they add up to 1, but the authors leave
the specific weighting function open, and just mention that they could be computed, for
example out of the set cardinality of the individuals covered by each concept. Finally, given
the non-symmetry of the step concerning the selection of pairs for SI, SIM-DL does not
directly satisfy the symmetry property from Definition 2. However, notice that this is not a
crucial property, since any non-symmetric similarity function can be turned into a symmet-
ric one by calculating (s(x, y) + s(y, x))∕2.

simGC(x1, x2) =

⎧⎪⎨⎪⎩

sim(t(x1), t(x2)) if ∀r ∈ R ∶
x1.r = x2.r = ��

sim(t(x1),t(x2))+
∑
r∈Rsim(x1.r,x2.r)

�{r∈R∶x1.r≠�∧x2.r≠�}�
�

2
otherwise

simu(C,D) =
∑

(Ci ,Dj)∈SI

wij × simi(Ci,Dj)

5337An overview of distance and similarity functions for structured…

1 3

In summary, notice that SIM-DL is basically a recursive syntactic similarity function simi-
lar to the work of González-Calero et al. (1999), but working over concept definitions, rather
than over individuals.

4.2 Semantic distance functions

The key characteristic of semantic distance functions is that rather than using the syntactic
representation of a concept to assess similarity, they assess similarity based on the set of indi-
viduals covered by concept definitions (i.e., their semantics). These measures are sometimes
referred to as “extensionality-based similarities” (d’Amato et al. 2008), as they are based
on enumerating the set of individuals covered by a concept (their “extension”). The basic
idea behind these semantic or extensional measures is Resnik’s idea of information content
described in Sect. 2.2.4.

An early example of a semantic distance function can be found in the work of Sebag
(1997). Sebag proposed DISTILL, one of the first distance functions that was not based on
the syntax of the description of a given instance, but on inducing a collection of discriminant
hypotheses. The idea is to pick random pairs of examples of different classes, and find hypoth-
eses (concept descriptions) that separate them. After this, each instance is re-represented as a
boolean vector (with one position per hypothesis, representing whether the instance satisfies
the hypothesis or not). Distance between instances can then be defined as a Hamming distance
between these vectors.

Sebag’s idea is related to what has later been referred to as fingerprinting similarity func-
tions (see fingerprinting kernels described above in Sect. 3.4), or as binary hashing (Datar
et al. 2004), which are common in the literature of computational biology, and on information
retrieval. Also, notice that this idea is also related to the idea of the property-based similarity
described in Sect. 3.3.

A significant amount of work on semantic distance functions has been carried out within
the Description Logic community (see for example an early review by Borgida et al. 2005). An
example of this line of work is the work of Hu et al. (2006). They proposed the idea of unfold-
ing concepts, which means taking a concept definition and transforming it into a description
that only contains “primitive concepts” from a Description Logic ontology via the application
of a set of transformation rules (and forbidding circular concept definitions in the ontology to
ensure termination). Once unfolded, concepts descriptions can be transformed into a signature
vector with one position per primitive concept in the ontology, and where the value corre-
sponds to the number of times that each concept appears in the unfolded concept definition.
Computing distances between concepts is then reduced to computing the distance between
these vectors. Specifically, they propose to calculate a weight for each vector position using
term frequency-inverse document frequency (TF-IDF) (Singhal 2001). One particularity of
this distance function is that, in order to capture negation, they reverse the sign of the weights
for concepts appearing with a negation in a concept definition, thus, using their proposed simi-
larity function equation, some concepts might have negative similarity, which violates some of
the basic properties of similarity and distance functions (see Definition 2):

where C1 and C2 are two signature vectors representing two concepts, and wi represent the
TF-IDF weights for each of the primitive concepts in the ontology for each of the two

sHu(C1,C2) =

∑
wi∈C1,w

�
i
∈C2

wi × w�
i�∑

wi∈C1
w2
i

�∑
w�
i
∈C2

w�
i

2

5338 S. Ontañón

1 3

signature vectors (notice that these weights are negative if the primitive concept appears
negated in the definition).

A hybrid measure that integrates syntactic and semantic information was proposed by
d’Amato et al. (2006) to compare concepts in the ALC Description Logic. Specifically, they
propose a distance function defined recursively (such as the syntactic measures described
above), but that is employs a Resnik-style semantic measure to compare primitive concepts.
For example, to compare two concept definitions C = C1 ⊔ ... ⊔ Cn and D = D1 ⊔ ... ⊔ Dm
defined as the union of sets of more primitive concepts, the distance function is defined as
follows (similar to the syntactic measures above):

This definition then recursively calls f⊓ , etc. decomposing the distance function based on
the different Description Logic constructs to define concepts. In the end, when comparing
primitive concepts, the distance function is defined as:

where IC stands for information content and is assessed as IC(C) = logP(C)), where P(C)
is the probability of encountering an instance of concept C, which is estimated using the
individuals in the ABox. Thus, as can be seen, this function combines both syntactic and
semantic elements to compare concept descriptions in Description Logic. The proposed
approach can be extended to compare individuals by using the idea of the MSC (most spe-
cific concept), which is the most specific concept description that covers an individual. So,
to compare two individuals, we compute their MSCs, and then assess the distance between
them.

An interesting note is that semantic distance and similarity functions tend to violate the
disjointness incompatibility property discussed above, whereas syntactic functions do not.

4.3 Propositionalization

Another traditional approach to apply machine learning methods in general in structured
representations is that of propositionalizarion (Kramer et al. 2001; Krogel et al. 2003).
Propositionalization consists of translating a structured representation into a flat proposi-
tional (usually a Boolean fixed-size feature vector, but some approaches can create non-
Boolean features), so that standard machine learning methods, or in our case distance func-
tions for propositional data, can be applied. Propositionalization is related to the ideas of
predicate construction or predicate invention (Kok and Domingos 2007).

A representative example of this approach is the SINUS system (Krogel et al. 2003),
which constructs features by systematically considering conjunctions of literals, and then
evaluating them using a “quality measure” to filter out features that are not useful.

Although propositionalization has not had widespread use for defining distance func-
tions, it has been used implicitly for this purpose in the context of clustering. For exam-
ple the COING system (Bournaud et al. 2002) clustered graph-based data by increasingly

f⊔(C,D) =

⎧⎪⎨⎪⎩

0 if C ≡ D

∞ if C ⊓ D = ⊥

maxi∈[1,..,n],j∈[1,...,m]f⊓(Ci,Di) otherwise

fprimitive(C,D) =

{
∞ if C ⊓ D = ⊥
IC(C⊓D)+1

IC(C⊔D)+1
otherwise

5339An overview of distance and similarity functions for structured…

1 3

enlarging a propositional representation using propositionalization until a satisfactory clus-
tering of the data has been reached.

4.4 Refinement graphs

As mentioned above, distance functions defined over refinement graphs, are applicable to a
large set of structured representations, given that appropriate refinement operators and sub-
sumption relation are available. Both similarity functions described in Sect. 3.3 are appli-
cable, and have been applied, to logic-based representations.

For example, Ontanón and Plaza (2012) defined refinement operators for feature terms
and used them to define similarity functions, Sánchez-Ruiz et al. (2011) did the same for
the EL description logic, and Sánchez-Ruiz et al. (2016) for description logic conjunctive
queries. Moreover, refinement operators for other logical representations have been pro-
posed in the literature, and can be used to define distance functions, for example: for LC
description logic (Lehmann and Hitzler 2007), EL description logic (Lehmann and Haase
2009), ALER description logic (Badea and Nienhuys-Cheng 1999).

As with the distance functions based on refinement operators for graphs-based data, the
main drawback of distance functions defined for logic-based representations is the com-
putational complexity, as subsumption (required for distance calculations) tends to be an
expensive operation.

Distance functions defined based on refinement graphs could be considered as syntactic
or as semantic depending on how the subsumption relation used is defined. If subsumption
is defined over the syntax of the descriptions, then these are syntactic, and if it is defined
over the interpretations of the descriptions, then these are semantic.

4.5 Kernels for logic‑based representations

Finally, there has also been a significant amount of work on defining kernels for logic-
based representations, or encapsulating existing distance functions for logic-based repre-
sentations into kernels.

An early example of this line of research is the work of Gärtner et al. (2002), who
defined a kernel for a typed higher-order logic based on an extension of Church’s sim-
ple theory of types (Church 1940) with type constructors, terms, and functions. The key
idea is to assume the existence of a set of base kernels for the different data constructors
of their logic representation. For example, for the data constructor Nat, representing the
natural numbers, the product kernel (kNat(m, n) = mn) can be used. Then, given two terms
s = fs(s1, ..., sn) and t = ft(t1, ..., tn) , with functors of type F, the kernel is defined as follows:

If s and t are two functions with type S → I , then the kernel is defined as:

where supp(s) and supp(t) represent the support of s and t respectively. Thus, notice that
this kernel is basically another instance of the idea of hierarchical aggregation that was
already present in distance functions such as RIBL or SHAUD, but in the form of a kernel.

k(t1, t2) =

�
kF(fs, ft) if fs ≠ ft
kF(fs, fs) +

∑
i=1,...n k(si, ti) otherwise

k(s, t) =
∑

u∈supp(s),v∈supp(t)

k(s(u), t(v))k(u, v)

5340 S. Ontañón

1 3

SVILP (Support Vector Inductive Logic Programming) (Muggleton et al. 2005)
is a framework based on kernels for Horn clauses. The main difference with the kernel
described in the previous paragraph is that the kernel in SVILP uses logical background
knowledge. Thus, while Gärtner et al. (2002) kernel is syntactic and only considers the
syntactic representation of terms, SVILP’s kernel considers that there might be background
knowledge B in the form of logical rules, with which inferences can be drawn that affect
the similarity calculations. Specifically, the kernel is defined as follows. Given a hypothesis
space H (where every hypothesis is a logical clause), we say that a hypothesis h ∈ H cov-
ers a specific instance x if B, h ⊨ x (i.e., if the instance is entailed by the hypothesis and the
background knowledge). Now, given a set of hypothesis H ⊆ H , and a probability distribu-
tion over these hypotheses: � ∶ H → [0, 1] such that

∑
h∈H �(h) = 1 , the kernel is defined

as:

where 𝜏(x) = {h ∈ H|B, h ⊨ x} , and f (H�) =
∑

h∈H� �(h) . Thus, the kernel is defined as the
sum of the probabilities of the hypotheses that cover both instances (which can be shown to
be a positive definite kernel).

Kernels have also been defined for Description Logics. For example, Fanizzi and
d’Amato (2006) defined a kernel for descriptions in the ALC Description Logic. The
proposed kernel uses a very similar definition to the distance function by d’Amato et al.
(2006). In order to go beyond the kernel being a mere syntactic measure, they require con-
cepts to be expressed in a normal form. Given this normal form, the kernel is then defined
recursively depending on whether the top operator in the expressions is a disjunction, a
conjunction or if we are down to the level of primitive concepts. Given two descriptions in
normal form D1 = ⊔i=1...nC

1
i
 and D2 = ⊔i=1...mC

2
i
 , the kernel is defined as:

where � ∈ (0, 1] is used to lower the weight of comparisons done deep into the descriptions,
and thus, it decreases with every recursive call of the kernel. At each recursive call, either
the definition for disjunctions (shown above) or that for conjunctions is used, depending
on the top operator of the descriptions, until reaching the level of primitive concepts, for
which the set kernel defined by Gärtner et al. (2004) is used to compare the interpretations
of the primitive concepts (which are the sets of individuals from the ABox covered by the
concepts). An extension of this kernel for the ALCN Description Logic was presented by
Fanizzi and d’Amato (2008).

Finally, another idea that has been used is to represent Description Logic expressions as
graphs, and then use graph kernels. For example de Vries and de Rooij (2015) compared
several of the kernels described in Sect. 3.4 such as subtree occurrence kernels, marginal-
ized kernels, and compared them against simple bag of labels baseline kernels, showing
that subtree occurrence kernels had the best performance.

5 Distance functions for frame‑based representations

Most work on frame-based or object-oriented representations has been inspired by the so
called local-global principle (Wess 1995), where similarity is assessed using two sepa-
rate functions: a local similarity function is defined for individual properties or slots of the

k(x1, x2) = f (�(x1) ∩ �(x2))

k(D1,D2) = �
∑
i=1...n

∑
j=1...m

k(C1
i
,C2

j
)

5341An overview of distance and similarity functions for structured…

1 3

descriptions being compared, and a global similarity function is used to aggregate these
local similarities. Notice that this idea is basically the same as the hierarchical aggregation
idea described in Sect. 4.1, and thus distance functions based on the local-global principle
are based on the same ideas as most syntactic similarity functions between logical repre-
sentations described above.

One of the best known local-global principle-based similarity function was presented
by Bergmann and Stahl (1998), dividing the similarity function calculation between two
object-oriented representations in two steps: intra-class similarity and inter-class similar-
ity). Intra-class similarity between two instances x1 and x2 is defined as:

where Φ is an aggregation function (e.g., the average, or the sum), slocal is a similarity
function between attribute values, and a1 , ..., an are the shared attributes between the two
instances. Inter-class similarity is assessed as:

where class(x1) represents the class of a given instance, and class(x1) ⊓ class(x2)
refers to the most specific common parent of the classes of both instances. In the work
of Bergman and Stahl, they propose to annotate the class hierarchies with a similar-
ity value SC for each class C. Similarity between two instances is then defined as
s(x1, x2) = sintra(x1, x2) ∗ sinter(x1, x2).

Notice that, although not noted by the original authors, sinter is basically a similarity
function between elements in a hierarchy (Sect. 2.2.4), and thus, Rada’s or Resnik’s ideas
can be used to define the SC values. Also notice that, as mentioned above, some logic-based
similarity functions are very related to these ideas, and in particular, the LAUD similarity
function mentioned in Sect. 4.1.2 is a particular case of Bergman and Stahl’s similarity
function.

Several other similarity functions have been defined that follow the same idea. For
example, Assali et al. (2009) propose a similarity function that is a particular case Berg-
man and Stahl’s, by defining Φ to be the average, and defining SC as:

where depth is a function that determines the depth of a given class in the class hierarchy
(with the root node having depth 0). Moreover, Assali et al. consider a framework where
instances are represented as sets of descriptions (each of them an object-oriented descrip-
tion), and thus, to assess similarity they first need to find a mapping between descriptions
of two instances, and then apply the equations above.

Additionally, even of similarity functions between workflows are better characterized as
graph-based similarities, Bergmann and Gil (2014) propose a measure that is a direct appli-
cation of the local-global principle to comparing workflows. A workflow can be seen as a
graph, where vertices represent processes, and edges represent control or data flow. In their
framework they consider a graph-based representation of workflows where each edge and
vertex is annotated with a Description Logic description. Thus, they use a local similarity
function between edges and vertices, based on similarity functions for Description Logics,
and a global similarity function based on finding a mapping between two workflows and

sintra(x1, x2) = Φ(slocal(x1.a1, x2, a1), ..., slocal(x1.an, x2, an))

sinter(x1, x2) =

{
1 id class(x1) = class(x2)
Sclass(x1)⊓class(x2) otherwise

sC(x1, x2) =
2 × depth(class(x1) ⊓ class(x2))

depth(class(x1)) + depth(class(x2))

5342 S. Ontañón

1 3

then adding the similarity values of the pairs, normalized by the number of edges and ver-
tices. As is well known from the graph matching literature (see above), finding this global
mapping is intractable. The authors use an A∗ algorithm to calculate, but other modern
graph matching algorithm could be used instead

Finally, the work on similarity functions for feature term representations above
(Sect. 4.1.2) can be considered as distance functions for frame-based representations, since
feature terms were conceived as a formalization of object oriented representations. Thus,
measures such as LAUD, SHAUD or those based on refinement operators should also be
considered to fit within this category.

6 Discussion

Sections 3, 4, and 5 have summarized existing work on distance and similarity functions
for different structured representations. Although the literature on structured similarity
assessment is vast, there are clear common themes that arise when looking at the body of
work as a whole, which we will try to summarize in this section.

The first is that although the work has been classified along graph-based, logic-based
and frame-based representations (with the purpose of providing structure to this paper),
there is clear overlap between these areas. For example, frame-based representations are
tightly coupled with logic-based ones. For example, the formalism called feature terms was
precisely defined to provide a logical substrate to frame-based representations. As a matter
of fact, frame-based similarity and distance functions are mostly based on ideas from syn-
tactic similarity functions for logic-based frameworks such as “hierarchical aggregation”.

A simple way to understand where does this overlap between the work on all three rep-
resentations comes from is to analyze the basic underlying ideas that give rise to the differ-
ent distance functions covered in this paper. Although there is a very large number of dis-
tance functions proposed in the literature, they all stem from a small set of common ideas.
Some of the most prevalent ones are:

• Quantify the amount of shared structure: ideas such as the Jaccard similarity, all the
edge-counting functions, and those based on the calculation of the MCS or antiuni-
fication are instances of this idea. They are all based around determining the shared
structure (MCS, antiunification, intersection, etc.), and then applying some metric to it
to measure its size. Edit distances can also be seen as a variation of this idea (where the
differences, rather than the similarities are counted), and as explained above, in some
cases, it can be seen that edit distances and calculating shared structure (e.g., MCS) are
equivalent.

• Measure information content: this idea stems from the realization that not all shared
structure is equally important. There might be shared features that are not relevant for
the task at hand. Thus, information content-based measures use information theoretical
measures to determine the amount of information that is shared between two structures.

• Fingerprinting: i.e., the idea of transforming a structured object into a (usually binary)
vectors where each position corresponds to whether the object satisfies a certain test
or not, is another idea that appears in a significant amount of work, not just in kernel-
based measures, but propositionalization techniques and some of the early semantic dis-
tance functions for logical structures can be seen as a particular instance of this.

5343An overview of distance and similarity functions for structured…

1 3

Also, we should note that most of these ideas come from non-structured representations.
For example, the idea of quantifying the amount of shared structure can be seen as a gen-
eralization of the Jaccard-style similarity functions for sets to structured representations,
and information content measures stem from distance functions between elements in a
taxonomy.

Thus, many of the different functions covered in this paper can be seen as the different
instantiations of these shared ideas, which take different forms in different representation
formalisms. For example, while to measure similarity between sets using the Jaccard simi-
larity, we need to calculate the “intersection” between sets, if we are doing so for graphs,
we need to compute the MCS, and if we are doing so for logical expressions, then we
need to calculate an antiunifier. Another example is the local-global distance functions for
frame-based representations (Wess 1995), which are basically a direct generalization of
Euclidean distances for vectors.

These ideas and their relations are summarized in Fig. 2, where we can see that there are
several ideas (like edit-distances, refinement operators or kernels) that apply across all rep-
resentation formalisms. The advantage of these general ideas is that they are universal and
can be applied to any type of data. For example, the same exact formulation of a refinement
operator-based distance function can be applied to graphs, frames or logical expressions.
However, the price to pay is computational complexity, as refinement operator distances, or
edit distances are computationally very expensive. Thus the work on numerical approxima-
tions to these functions.

Figure 2 also makes explicit how the different basic ideas of similarity for non-struc-
tured data types have influenced the work on structured distance and similarity functions.
For example, the basic idea of edge counting, originally proposed for defining distance
functions between elements of a taxonomy, when instantiated for different structured data
representations gives rise to graph edit distances (where “edge counting” transforms into
“edit operation counting”), or antiunification-based distances (where we see the subsump-
tion graph as a taxonomy and directly apply edge counting), among others.

Additionally, by looking at all of these distance and similarity concepts side by side, we
can also identify other types of relations between them. For example, as we saw in Sect. 3,
the Jaccard index and the idea of edge counting in taxonomies are very related ideas: both

kernels

graphs Logic

Frames

Hierarchies /
Taxonomies

Scalars /
Vectors

Sets Sequences
Probability

Distributions

graph
isomorphism

MCS

approxi-
mations

variations

graph edit
distance

approxi-
mations

special
case of

graphs

graph
kernels

subgraph
occurrence

marginalized

edit distance

graph
nodes

syntactic semantic

hierarchical
aggregation

normal forms

information
content

logic
kernels

local / global

Jaccard
Minkowski /
Euclidean

edit distance

properties

KL
divergence

Wasserstein cosine

N
o
n
-s
tr
u
ct
u
re
d

R
ep

re
se

n
ta
ti
o
n
s

S
tr
u
ct
u
re
d

R
ep

re
se

n
ta
ti
o
n
s

edge
counting

Local Global

Fig. 2 An overview of the main distance and similarity ideas reported in this paper, and how do they relate
to each other

5344 S. Ontañón

1 3

count the size of what do two objects have in common (the intersection in the case of sets,
or their common ancestor in the case of taxonomies). Thus, when instantiating these two
ideas in data structures like graphs, they correspond to MCS-type functions.

Moreover, the key difference between each of these similarity or distance functions
is their bias. The bias of a machine learning method (often called the inductive bias) is
defined as the mechanisms and preferences that are intrinsic to a particular algorithm and
that given some training data make it select a specific given hypothesis or model of the
data from all the other equally good models in the hypothesis space (Mitchell 1980). In the
same way, distance and similarity functions encode their own biases. For example, hier-
archical aggregation methods for tree-based representations consider that the information
that is deeper in the tree is less important that that on the shallower levels of the tree. While
this could suit some domains, it might not suit others. Thus, it is important to understand
the types of similarities and differences each function considers, and which biases it intro-
duces, since one or another might be better suited for a particular application domain (as
could be expected, given the no free lunch theorem Wolpert 1996).

This is not unique to distance functions for structured data, as the same is true for clas-
sic distance functions. Consider, for example, the case of the Euclidean distance and the
Cosine similarity. While both are designed to compare real valued vectors, the Cosine sim-
ilarity is “blind” to the magnitude of the vectors and only considers their relative orienta-
tion. In some application domains, this is convenient, as the magnitude of the vectors might
be irrelevant, but in some others the magnitude might be relevant, and thus Euclidean dis-
tance will be more appropriate. Thus, in summary, it is important to understand what is it
that a given similarity or distance function is exactly measuring, as this will introduce a
bias, which will suit some tasks but not others.

To this extend, functions that allow for fitting, i.e., those that contain parameters that
can be trained given some training data, are interesting, since they can, to some extend
adapt their implicit bias to specific domains (although, as is well known in machine learn-
ing, bias cannot be completely eliminated, as even the choice of knowledge representation
used introduces a certain bias). This is not specific to structure representations. For exam-
ple, in feature vectors, when deciding between when to use, say cosine similarity or Euclid-
ean distance, the key is wether the magnitude of the vectors is important in our application
domain (which is ignored by cosine similarity, but considered by Euclidean distance, thus
introducing a different type of bias).

7 Conclusions and open research questions

This paper has presented an overview of existing work on distance and similarity func-
tions for structured data representations. This is an important line of work, as data in many
real world applications, such as in biomedical domains, is inherently structured. Specifi-
cally, we have organized the existing work along three types of representation formalisms:
graphs, logic and frames, and discussed the different ideas existing in the literature con-
cerning distance and similarity.

Despite the large body of work in structure similarity assessment, there are still a num-
ber of open research questions that need addressing. Some of these include:

Scalability many of the most powerful distance functions (such as edit distances and
refinement operator-based ones), have a prohibitive computational complexity when
dealing with either graph-based representations or complex logic-based ones. Although

5345An overview of distance and similarity functions for structured…

1 3

efficient approximations exist for some cases, this is not true in general. An interesting
research direction would be the potential to exploit recent ideas of graph embeddings using
neural networks to learn approximations to some of these distance functions, or to directly
define fitted distance functions given a training set that would be efficient to calculate once
the embedding network has been trained. An important related idea is that of graph net-
works (Battaglia et al. 2018), a family of neural networks designed to handle relational and
graph data that has emerged over the past decade or so. Integrating classic ideas of distance
and similarity with modern machine learning techniques might allow to scale up and har-
ness very large amounts of data is thus a very promising future research direction.

Promising results on this direction were recently published by Li et al. (2019), as dis-
cussed in Sect. 3.5.

Cross-representation functions another open problem is that of defining general dis-
tance and similarity functions. Most of the work on distance function definition reported
in this paper comes from separate communities (such as graph matching, inductive logic
programming, machine learning, case-based reasoning). As a consequence, many of the
ideas have been reinvented in these different fields. A unified theory of distance or simi-
larity assessment for structured representations that could unify all of this work does not
exist, and distance functions that are independent of the underlying representation formal-
ism also do not exist.

Metric learning as discussed in several parts of this paper, different distance functions
just capture different biases on assessing what is or not similar between two instances.
However, without specifying a particular task at hand, choosing between one distance
function or another is arbitrary, as different functions would be better suited for different
tasks. Thus, research (such as metric learning) in defining distance functions that can be
fitted to a given specific domain given training data is a very important research direction.
Although work on metric learning for structured representations has started, more work is
needed in order to have practical alternatives that can scale to large structured representa-
tions. Again, the idea of graph networks mentioned above can play an important role in
future work in this direction.

Interpretability finally, many distance functions are black boxes, and it is hard to
understand why have they produced a given distance value. While some work (e.g., that
of Plaza et al. 2005) has worked on producing symbolic similarity values that are human
interpretable, in general, most distance functions are still opaque. Research into how to
explain predictions mace by distance function-based machine learning algorithms is thus
needed.

References

Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and sys-
tem approaches. Artif Intell Commun 7(1):39–59

Abu-Khzam FN, Samatova NF, Rizk MA, Langston MA (2007) The maximum common subgraph problem:
faster solutions via vertex cover. In: IEEE/ACS international conference on computer systems and
applications, 2007. AICCSA’07. IEEE, pp 367–373

Agrawal R, Faloutsos C, Swami A (1993) Efficient similarity search in sequence databases. In: International
conference on foundations of data organization and algorithms. Springer, pp 69–84

Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66
Almohamad H, Duffuaa SO (1993) A linear programming approach for the weighted graph matching prob-

lem. IEEE Trans Pattern Anal Mach Intell 15(5):522–525
Armengol E, Plaza E (2001) Similarity assessment for relational cbr. In: International conference on case-

based reasoning. Springer, pp 44–58

5346 S. Ontañón

1 3

Armengol E, Plaza E (2002) Similarity of structured cases in CBR. In: Proceedings from the CCIA held in
Castellon, Spain

Assali AA, Lenne D, Debray B (2009) Case retrieval in ontology-based cbr systems. In: Annual conference
on artificial intelligence. Springer, pp 564–571

Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (eds) (2003) The description logic
handbook: theory, implementation, and applications. Cambridge University Press, Cambridge

Baader F, Horrocks I, Sattler U (2005) Description logics as ontology languages for the semantic web. In:
Hutter D, Stephan W (eds) Mechanizing mathematical reasoning. Springer, pp 228–248

Babai L (2018) Groups, graphs, algorithms: the graph isomorphism problem. In: Proceedings of interna-
tional congress of mathematicians 2018

Badea L, Nienhuys-Cheng SH (1999) A refinement operator for description logics. In: Cussens J, Frisch
A (eds) Inductive logic programming, no. 1866 in Lecture notes in computer science. Springer, pp
40–59

Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo
D, Santoro A, Faulkner R et al (2018) Relational inductive biases, deep learning, and graph networks.
arXiv:180601261

Bellet A, Habrard A, Sebban M (2012) Good edit similarity learning by loss minimization. Mach Learn
89(1–2):5–35

Bellet A, Habrard A, Sebban M (2013) A survey on metric learning for feature vectors and structured data.
arXiv:13066709

Bergmann R, Stahl A (1998) Similarity measures for object-oriented case representations. In: Advances in
case-based reasoning, pp 25–36

Bergmann R, Gil Y (2014) Similarity assessment and efficient retrieval of semantic workflows. Inf Syst
40:115–127

Bergmann R, Kolodner J, Plaza E (2005) Representation in case-based reasoning. Knowl Eng Rev
20(3):209–213

Bille P (2005) A survey on tree edit distance and related problems. Theor Comput Sci 337(1):217–239
Bisson G (1990) Kbg: a knowledge based generalizer. In: Porter B, Mooney R (eds) Machine learning pro-

ceedings 1990. Elsevier, Amsterdam, pp 9–15
Bisson G (1992) Learing in FOL with a similarity measure. In: Proceedings of AAAI, vol 1992, pp 82–87
Borgida A, Walsh TJ, Hirsh H et al (2005) Towards measuring similarity in description logics. Descr Log

147
Bournaud I, Courtine M, Jean-Daniel Z (2002) Propositionalization for clustering symbolic relational

descriptions. In: International conference on inductive logic programming. Springer, pp 1–16
Bunke H (1997) On a relation between graph edit distance and maximum common subgraph. Pattern Rec-

ogn Lett 18(8):689–694
Bunke H (1999) Error correcting graph matching: on the influence of the underlying cost function. IEEE

Trans Pattern Anal Mach Intell 21(9):917–922
Bunke H (2000) Graph matching: theoretical foundations, algorithms, and applications. Proc Vis Interface

2000:82–88
Bunke H, Shearer K (1998) A graph distance metric based on the maximal common subgraph. Pattern Rec-

ogn Lett 19(3):255–259
Carpenter B (1992) The logic of typed feature structures. Cambridge University Press, New York
Champin PA, Solnon C (2003) Measuring the similarity of labeled graphs. In: International conference on

case-based reasoning, ICCBR. Springer
Chen PPS (1988) The entity-relationship model—toward a unified view of data. Readings in artificial intel-

ligence and databases. Elsevier, Amsterdam, pp 98–111
Church A (1940) A formulation of the simple theory of types. J Symb Log 5(2):56–68
Cilibrasi R, Vitányi PM (2005) Clustering by compression. IEEE Trans Inf Theory 51(4):1523–1545
Collins M, Duffy N (2002) Convolution kernels for natural language. In: Becker S, Thrun S, Obermayer K

(eds) Advances in neural information processing systems. Vancouver, Canada, pp 625–632
Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of graph matching in pattern recognition. Int J

Pattern Recogn Artif Intell 18(03):265–298
Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27
d’Amato C, Fanizzi N, Esposito F (2006) A dissimilarity measure for alc concept descriptions. In: Proceed-

ings of the 2006 ACM symposium on applied computing. ACM, pp 1695–1699
d’Amato C, Staab S, Fanizzi N (2008) On the influence of description logics ontologies on conceptual simi-

larity. In: Proceedings of the 16th international conference on knowledge engineering. Lecture notes
in computer science, vol 5268. Springer, pp 48–63

5347An overview of distance and similarity functions for structured…

1 3

Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable
distributions. In: Proceedings of the twentieth annual symposium on computational geometry. ACM,
pp 253–262

de Vries GKD, de Rooij S (2015) Substructure counting graph kernels for machine learning from rdf data.
Web Semant Sci Serv Agents World Wide Web 35:71–84

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algo-
rithm. Journal R Stat Soc Ser B (Methodol) 39:1–38

Dobrushin RL (1970) Prescribing a system of random variables by conditional distributions. Theory Probab
Appl 15(3):458–486

Doyle PG, Snell JL (1984) Random walks and electric networks, vol 22. American Mathematical Society,
Providence

Emde W, Wettschereck D (1996) Relational instance based learning. In: Saitta L (ed) Machine learning—
proceedings 13th international conference on machine learning. Morgan Kaufmann Publishers, pp
122–130

Emele MC, Zajac R (1990) Typed unification grammars. In: Proceedings of the 13th conference on compu-
tational linguistics, vol 3. Association for Computational Linguistics, pp 293–298

Emmert-Streib F, Dehmer M, Shi Y (2016) Fifty years of graph matching, network alignment and network
comparison. Inf Sci 346:180–197

Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large
spatial databases with noise. Kdd 96:226–231

Falkenhainer B, Forbus KD, Gentner D (1989) The structure-mapping engine: algorithm and examples.
Artif intell 41(1):1–63

Fanizzi N, d’Amato C (2006) A declarative kernel for \cal{ALC} concept descriptions. In: International
symposium on methodologies for intelligent systems. Springer, pp 322–331

Fanizzi N, d’Amato C, Esposito F (2008) Learning with kernels in description logics. In: Zelezny F, Lavrac
N (eds) Inductive logic programming. Springer, pp 210–225

Fernández ML, Valiente G (2001) A graph distance metric combining maximum common subgraph and
minimum common supergraph. Pattern Recognition Letters 22(6):753–758

French RM (2002) The computational modeling of analogy-making. Trends Cogn Sci 6(5):200–205
Gao X, Xiao B, Tao D, Li X (2010) A survey of graph edit distance. Pattern Anal Appl 13(1):113–129
Gärtner T (2003) A survey of kernels for structured data. ACM SIGKDD Explor Newsl 5(1):49–58
Gärtner T, Lloyd JW, Flach PA (2002) Kernels for structured data. Springer, Berlin
Gärtner T, Flach P, Wrobel S (2003) On graph kernels: Hardness results and efficient alternatives. In:

Schölkopf B, Warmuth MK (eds) Learning theory and kernel machines. Springer, Berlin, pp 129–143
Gärtner T, Lloyd JW, Flach PA (2004) Kernels and distances for structured data. Mach Learn 57(3):205–232
Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7(2):155–170
Getoor L, Taskar B (2007) Introduction to statistical relational learning. MIT Press, Cambridge
Göker MH, Roth-Berghofer T (1999) The development and utilization of the case-based help-desk support

system homer. Eng Appl Artif Intell 12(6):665–680
Goldstone RL, Medin DL, Gentner D (1991) Relational similarity and the nonindependence of features in

similarity judgments. Cogn Psychol 23(2):222–262
Gollery M (2005) Bioinformatics: sequence and genome analysis. Clin Chem 51(11):2219–2219
Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press, Baltimore
González-Calero PA, Díaz-Agudo B, Gómez-Albarrán M et al (1999) Applying dls for retrieval in case-

based reasoning. In: In Proceedings of the 1999 description logics workshop (Dl’99). Linkopings
Universitet, Citeseer

Haussler D (1999) Convolution kernels on discrete structures. Technical report, Department of Computer
Science, University of California at Santa Cruz

Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998) Support vector machines. IEEE Intell Syst
Their Appl 13(4):18–28

Heckerman D, Meek C, Koller D (2007) Probabilistic entity-relationship models, prms, and plate models.
In: Getoor L, Taskar B (eds) Introduction to statistical relational learning, MIT Press, pp 201–238

Holyoak KJ, Koh K (1987) Surface and structural similarity in analogical transfer. Mem Cogn
15(4):332–340

Horváth T, Wrobel S, Bohnebeck U (2001) Relational instance-based learning with lists and terms. Mach
Learn 43(1–2):53–80

Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern kernels for predictive graph mining. In: Proceedings
of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM,
pp 158–167

5348 S. Ontañón

1 3

Hu B, Kalfoglou Y, Alani H, Dupplaw D, Lewis P, Shadbolt N (2006) Semantic metrics. In: Interna-
tional conference on knowledge engineering and knowledge management. Springer, pp 166–181

Hutchinson A (1997) Metrics on terms and clauses. In: ECML ’97: proceedings of the 9th European con-
ference on machine learning. Lecture notes in computer science, vol 1224. Springer, pp 138–145

Itakura F (1975) Minimum prediction residual principle applied to speech recognition. IEEE Trans
Acoust Speech Signal Process 23(1):67–72

Jaakkola T, Haussler D (1999) Exploiting generative models in discriminative classifiers. In: Solla SA,
Leen TK, Müller K-R (eds) Advances in neural information processing systems. MIT Press, Den-
ver, Colarado, pp 487–493

Janowicz K (2006) Sim-dl: towards a semantic similarity measurement theory for the description logic
\cal{ALCNR} in geographic information retrieval. In: OTM confederated international confer-
ences “on the move to meaningful internet systems. Springer, pp 1681–1692

Jeh G, Widom J (2002) Simrank: a measure of structural-context similarity. In: Proceedings of the eighth
ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp
538–543

Jiang JJ, Conrath DW (1997) Semantic similarity based on corpus statistics and lexical taxonomy.
arXiv:cmp-lg/9709008

Kalfoglou Y, Schorlemmer M (2003) Ontology mapping: the state of the art. Knowl Eng Rev 18(1):1–31
Kashima H, Koyanagi T (2002) Kernels for semi-structured data. ICML 2:291–298
Kashima H, Tsuda K, Inokuchi A (2003) Marginalized kernels between labeled graphs. In: Proceedings

of the twentieth international conference (ICML 2003). AAAI Press, pp 321–328
Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43
Kaufman L, Rousseeuw P (1987) Clustering by means of medoids. North-Holland, Amsterdam
Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical

demonstration. Data Min Knowl Discov 7(4):349–371
Klein PN (1998) Computing the edit-distance between unrooted ordered trees. In: European symposium

on algorithms. Springer, pp 91–102
Kok S, Domingos P (2007) Statistical predicate invention. In: Proceedings of the 24th international con-

ference on machine learning. ACM, pp 433–440
Kolmogorov AN (1965) Three approaches to the quantitative definition of information. Probl Inf Transm

1(1):1–7
Kramer S, Lavrač N, Flach P (2001) Propositionalization approaches to relational data mining. In: Dze-

roski S, Lavrac N (eds) Relational data mining. Springer, pp 262–291
Krieger HU, Schäfer U (1995) Efficient parameterizable type expansion for typed feature formalisms
Krogel MA, Rawles S, Železnỳ F, Flach PA, Lavrač N, Wrobel S (2003) Comparative evaluation of

approaches to propositionalization. In: International conference on inductive logic programming.
Springer, pp 197–214

Kulis B, et al (2013) Metric learning: a survey. Found Trends® Mach Learn 5(4):287–364
Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86
Larson J, Michalski RS (1977) Inductive inference of VL decision rules. SIGART Bull 63(63):38–44.

https ://doi.org/10.1145/10453 43.10453 69
Lavrac N, Dzeroski S (1994) Inductive logic programming. In: Fuchs NE, Gottlob G (eds) WLP.

Springer, Berlion, pp 146–160
Lehmann J, Hitzler P (2007) A refinement operator based learning algorithm for the LC description

logic. In: Blockeel H, Ramon J, Shavlik JW, Tadepalli P (eds) ILP. Lecture notes in computer sci-
ence, vol 4894. Springer, Berlin, pp 147–160

Lehmann J, Haase C (2009) Ideal downward refinement in the EL description logic. In: Raedt LD (ed)
ILP. Lecture notes in computer science, vol 5989. Springer, Berlin pp 73–87

Leishman D (1989) Analogy as a constrained partial correspondence over conceptual graphs. In: KR, pp
223–234

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys
Dokl 10:707–710

Levi G (1973) A note on the derivation of maximal common subgraphs of two directed or undirected
graphs. Calcolo 9(4):341

Li Y, Gu C, Dullien T, Vinyals O, Kohli P (2019) Graph matching networks for learning the similarity of
graph structured objects. arXiv preprint arXiv:190412787

Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Phys A Stat Mech Its Appl
390(6):1150–1170

Luss R, d’Aspremont A (2008) Support vector machine classification with indefinite kernels. In:
Advances in neural information processing systems, pp 953–960

https://doi.org/10.1145/1045343.1045369

5349An overview of distance and similarity functions for structured…

1 3

Mahé P, Ueda N, Akutsu T, Perret JL, Vert JP (2005) Graph kernels for molecular structure–activity
relationship analysis with support vector machines. J Chem Inf Model 45(4):939–951

Manago M, Bergmann R, Conruyt N, Traphöner R, Pasley J, Le Renard J, Maurer F, Wess S, Althoff KD,
Dumont S (1994) Casuel: a common case representation language. INRECA Consortium Available
on the World-Wide Web at http://wwwagr informatik unikl de/bergmann/casuel/CASUEL toc2 4

Marteau PF (2009) Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans
Pattern Anal Mach Intell 31(2):306–318

Miller GA (1995) Wordnet: a lexical database for english. Commun ACM 38(11):39–41
Minsky M (1974) A framework for representing knowledge, MIT-AI LAboratory Memo 306
Mishne G, De Rijke M (2004) Source code retrieval using conceptual similarity. In: Coupling approaches,

coupling media and coupling languages for information retrieval, pp 539–554
Mitchell TM (1980) The need for biases in learning generalizations. Department of Computer Science, Lab-

oratory for Computer Science Research, Rutgers Univ, New Jersey
Mitchell TM, Keller RM, Kedar-Cabelli ST (1986) Explanation-based generalization: a unifying view.

Mach Learn 1(1):47–80
Montani S, Leonardi G, Quaglini S, Cavallini A, Micieli G et al (2015) A knowledge-intensive approach to

process similarity calculation. Expert Syst Appl 42(9):4207–4215
Muggleton S, Lodhi H, Amini A, Sternberg MJ (2005) Support vector inductive logic programming. In:

International conference on discovery science. Springer, pp 163–175
Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math

5(1):32–38
Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino

acid sequence of two proteins. J Mol Biol 48(3):443–453
Neuhaus M, Bunke H (2006a) A convolution edit kernel for error-tolerant graph matching. In: 18th interna-

tional conference on pattern recognition, 2006. ICPR 2006, vol 4. IEEE, pp 220–223
Neuhaus M, Bunke H (2006b) Edit distance-based kernel functions for structural pattern classification. Pat-

tern Recogn 39(10):1852–1863
Neuhaus M, Bunke H (2007) Automatic learning of cost functions for graph edit distance. Inf Sci

177(1):239–247
Ng AY, Jordan MI, Weiss Y et al (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf

Process Syst 2:849–856
Nienhuys-Cheng SH (1997) Distance between Herbrand interpretations: a measure for approximations to

a target concept. In: Lavrac N, Dzeroski S (eds) Inductive logic programming. Springer, Berlin, pp
213–226

Nikolentzos G, Meladianos P, Limnios S, Vazirgiannis M (2018) A degeneracy framework for graph simi-
larity. Proc IJCAI 2018:2595–2601

Ontañón S, Zhu J (2011) The SAM algorithm for analogy-based story generation. In: Seventh artificial intel-
ligence and interactive digital entertainment conference

Ontanón S, Plaza E (2012) Similarity measures over refinement graphs. Mach Learn 87:57–92
Ontañón S, Shokoufandeh A (2016) Refinement-based similarity measures for directed labeled graphs. In:

International conference on case-based reasoning. Springer, pp 311–326
Ontañón S, Montaña JL, Gonzalez AJ (2014) A dynamic-bayesian network framework for modeling and

evaluating learning from observation. Expert Syst Appl 41(11):5212–5226
Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web.

Technical report, Stanford InfoLab
Plaza E (1995) Cases as terms: a feature term approach to the structured representation of cases. In: Interna-

tional conference on case-based reasoning. Springer, pp 265–276
Plaza E, Armengol E, Ontañón S (2005) The explanatory power of symbolic similarity in case-based rea-

soning. Artif Intell Rev 24(2):145–161
Plotkin GD (1970) A note on inductive generalization. In: Meltzer B, Michie D (eds) Machine intelligence,

vol 5. Edinburgh University Press, Edinburgh, pp 153–163
Pons P, Latapy M (2005) Computing communities in large networks using random walks. In: International

symposium on computer and information sciences. Springer, pp 284–293
Poole J, Campbell J (1995) A novel algorithm for matching conceptual and related graphs. In: International

conference on conceptual structures. Springer, pp 293–307
Rada R, Mili H, Bicknell E, Blettner M (1989) Development and application of a metric on semantic nets.

IEEE Trans Syst Man Cybern 19(1):17–30
Ralaivola L, Swamidass SJ, Saigo H, Baldi P (2005) Graph kernels for chemical informatics. Neural Netw

18(8):1093–1110

5350 S. Ontañón

1 3

Ramon J, Bruynooghe M (1998) A framework for defining distances between first-order logic objects. In:
International conference on inductive logic programming. Springer, pp 271–280

Ramon J, Gärtner T (2003) Expressivity versus efficiency of graph kernels. In: Proceedings of the first inter-
national workshop on mining graphs, trees and sequences, pp 65–74

Ramoni M, Sebastiani P, Cohen P (2002) Bayesian clustering by dynamics. Mach Learn 47(1):91–121
Read RC, Corneil DG (1977) The graph isomorphism disease. J Graph Theory 1(4):339–363
Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy.

arXiv:cmp-lg/9511007
Resnik P et al (1999) Semantic similarity in a taxonomy: an information-based measure and its applica-

tion to problems of ambiguity in natural language. J Artif Intell Res: JAIR 11:95–130
Riesen K, Bunke H (2008) Iam graph database repository for graph based pattern recognition and

machine learning. In: da Vitoria Lobo N, Kasparis T, Roli F, Kwok JT, Georgiopoulos M, Anag-
nostopoulos GC, Loog M (eds) Structural, syntactic, and statistical pattern recognition. Springer,
Orlando, pp 287–297

Riesen K, Bunke H (2009) Approximate graph edit distance computation by means of bipartite graph
matching. Image Vis Comput 27(7):950–959

Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J
Comput Vis 40(2):99–121

Sánchez-Ruiz AA, Ontañón S, González-Calero PA, Plaza E (2011) Measuring similarity in description
logics using refinement operators. In: ICCBR, pp 289–303

Sánchez-Ruiz AA, Ontañón S, González-Calero PA, Plaza E (2016) Measuring similarity of indi-
viduals in description logics over the refinement space of conjunctive queries. J Intell Inf Syst
47(3):447–467

Sanfeliu A, Fu KS (1983) A distance measure between attributed relational graphs for pattern recogni-
tion. IEEE Trans Syst Man Cybern 3:353–362

Santini S, Jain R (1999) Similarity measures. IEEE Trans Pattern Anal Mach Intell 21(9):871–883
Schaaf JW (1996) Fish and shrink. A next step towards efficient case retrieval in large scaled case bases.

In: European workshop on advances in case-based reasoning. Springer, pp 362–376
Schädler K, Wysotzki F (1999) Comparing structures using a hopfield-style neural network. Appl Intell

11(1):15–30
Sebag M (1997) Distance induction in first order logic. In: International conference on inductive logic

programming. Springer, pp 264–272
Serra J, Arcos JL (2014) An empirical evaluation of similarity measures for time series classification.

Knowl Based Syst 67:305–314
Shapiro LG, Haralick RM (1981) Structural descriptions and inexact matching. IEEE Trans Pattern Anal

Mach Intell 5:504–519
Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler–Lehman

graph kernels. J Mach Learn Res 12(1):2539–2561
Shieber SM (2003) An introduction to unification-based approaches to grammar. Microtome Publishing,

New York
Singhal A (2001) Modern information retrieval: a brief overview. IEEE Data Eng Bull 24(4):35–43
Small H (1973) Co-citation in the scientific literature: a new measure of the relationship between two

documents. J Assoc Inf Sci Technol 24(4):265–269
Smola AJ, Vishwanathan S (2003) Fast kernels for string and tree matching. In: Thrun S, Saul LK,

Schölkopf B (eds) Advances in neural information processing systems. MIT Press, Vancouver,
Canada, pp 585–592

Sørensen TJ (1948) A method of establishing groups of equal amplitude in plant sociology based on
similarity of species content. Kongelige Danske Videnskabernes Selskab 5(1–34):4–7

Sowa JF (1979) Semantics of conceptual graphs. In: Proceedings of the 17th annual meeting on Associa-
tion for Computational Linguistics. Association for Computational Linguistics, pp 39–44

Spielman DA (2010) Algorithms, graph theory, and linear equations in laplacian matrices. In: Proceed-
ings of the international congress of mathematicians 2010 (ICM 2010) (In 4 Volumes) vol I: ple-
nary lectures and ceremonies vols. II–IV: invited lectures. World Scientific, pp 2698–2722

Sussenguth EH (1964) Structure matching in information processing. Harvard University, Cambridge
Tai KC (1979) The tree-to-tree correction problem. J ACM: JACM 26(3):422–433
Tsai WH, Fu KS (1979) Error-correcting isomorphisms of attributed relational graphs for pattern analy-

sis. IEEE Trans Syst Man Cybern 9(12):757–768
Tsuda K, Kin T, Asai K (2002) Marginalized kernels for biological sequences. Bioinformatics 18(Suppl

1):S268–S275
Tversky A (1977) Features of similarity. Psychol Rev 84:327–352

5351An overview of distance and similarity functions for structured…

1 3

Umeyama S (1988) An eigendecomposition approach to weighted graph matching problems. IEEE Trans
Pattern Anal Machine Intell 10(5):695–703

Valls-Vargas J, Ontanón S, Zhu J (2014) Toward automatic character identification in unannotated narra-
tive text. In: Seventh intelligent narrative technologies workshop

van der Laag PRJ, Nienhuys-Cheng SH (1998) Completeness and properness of refinement operators in
inductive logic programming. J Log Program 34(3):201–225

Vert JP, Tsuda K, Schölkopf B (2004) A primer on kernel methods. Kernel Methods Comput Biol 47:35–70
Wallis WD, Shoubridge P, Kraetz M, Ray D (2001) Graph distances using graph union. Pattern Recogn Lett

22(6):701–704
Wang Y, Ishii N (1997) A method of similarity metrics for structured representations. Expert Syst Appl

12(1):89–100
Weisfeiler B, Lehman AA (1968) A reduction of a graph to a canonical form and an algebra arising during

this reduction. Nauchno-Technicheskaya Informatsia 2(9):12–16
Welch TA (1984) A technique for high-performance data compression. Computer 6(17):8–19
Wess S (1995) Fallbasiertes Problemlösen in wissensbasierten systemen zur entscheidungsunterst ützung

und diagnostik
Wettschereck D, Aha DW, Mohri T (1997) A review and empirical evaluation of feature weighting methods

for a class of lazy learning algorithms. Artif Intell Rev 11(1–5):273–314
Wolpert DH (1996) The lack of a priori distinctions between learning algorithms. Neural Comput

8(7):1341–1390
Wu Z, Palmer M (1994) Verbs semantics and lexical selection. In: Proceedings of the 32nd annual meet-

ing on Association for Computational Linguistics. Association for Computational Linguistics, pp
133–138

Xu L, King I (2001) A pca approach for fast retrieval of structural patterns in attributed graphs. IEEE Trans
Syst Man Cybern Part B (Cybern) 31(5):812–817

Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural networks? arXiv:181000826
Yang L, Jin R (2006) Distance metric learning: a comprehensive survey. Mich State Univ 2(2):4
Zhang K (1989) The editing distance between trees: algorithms and applications. PhD thesis from the New

York University
Zhang Z, Wang M, Xiang Y, Huang Y, Nehorai A (2018) Retgk: graph kernels based on return probabilities

of random walks. In: Bengio S, Wallach HM, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R,
Neural Information Processing Systems Conference (eds) Advances in neural information processing
systems, Vancouver, Canada, pp 3964–3974

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	An overview of distance and similarity functions for structured data
	Abstract
	1 Introduction
	2 Background
	2.1 Distance and similarity functions
	2.2 Standard methods to assess distance and similarity
	2.2.1 Scalars and vectors
	2.2.2 Sets
	2.2.3 Sequences
	2.2.4 Hierarchies or taxonomies
	2.2.5 Probability distributions
	2.2.6 Weighting and metric learning

	2.3 Structured data representations
	2.3.1 Graph-based representations
	2.3.2 Logic-based representations
	2.3.3 Frame-based representations

	3 Distance functions for graph-based representations
	3.1 Graph matching-based distance functions
	3.2 Graph edit distance functions
	3.3 Refinement graph-based functions
	3.4 Graph kernels
	3.5 Graph neural networks
	3.6 Graph vertices

	4 Distance functions for logic-based representations
	4.1 Syntactic distance functions
	4.1.1 Horn clauses
	4.1.2 Feature terms
	4.1.3 Description logics

	4.2 Semantic distance functions
	4.3 Propositionalization
	4.4 Refinement graphs
	4.5 Kernels for logic-based representations

	5 Distance functions for frame-based representations
	6 Discussion
	7 Conclusions and open research questions
	References

