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Abstract
The notions of distance and similarity play a key role in many machine learning 
approaches, and artificial intelligence in general, since they can serve as an organizing 
principle by which individuals classify objects, form concepts and make generalizations. 
While distance functions for propositional representations have been thoroughly studied, 
work on distance functions for structured representations, such as graphs, frames or logi-
cal clauses, has been carried out in different communities and is much less understood. 
Specifically, a significant amount of work that requires the use of a distance or similarity 
function for structured representations of data usually employs ad-hoc functions for spe-
cific applications. Therefore, the goal of this paper is to provide an overview of this work 
to identify connections between the work carried out in different areas and point out direc-
tions for future work.
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1 Introduction

The complementary notions of distance and similarity play a key role in many machine 
learning approaches, such as instance-based learning  (Aha et  al. 1991), kernel-based 
methods  (Vert et  al. 2004), case-based reasoning  (Aamodt and Plaza 1994), or cluster-
ing algorithms (Ng et al. 2002; Kaufman and Rousseeuw 1987). Distance and similarity 
functions are also relevant for artificial intelligence (AI) in general, since they can serve 
as an organizing principle by which individuals classify objects, form concepts and make 
generalizations  (Tversky 1977). Specifically this paper presents an overview of distance 
and similarity functions for structured representations of data, such as graphs or frames. 
While distance functions for propositional (i.e. feature-vector) representations have been 
thoroughly studied in the past, work on distance functions for structured representations 
has been carried out in different communities such as graph matching, inductive logic 
programming, case-based reasoning, relational learning or graph mining and is much less 
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understood. Specifically, a significant amount of work that requires the use of a distance or 
similarity function for structured representations of data usually employs ad-hoc functions. 
Therefore, the goal of this paper is to provide an overview of this work in order to have a 
complete view of the field of distance functions for structure representations, and lay foun-
dations for future work.

Structured data representations are important, since, there are many real-world appli-
cation domains for which data of interest is inherently structured and it is hard to repre-
sent it using a propositional representation. Consider, for example, a biomedical domain 
where we are interested on predicting certain properties of chemical molecules. Represent-
ing molecules as feature vectors is problematic, since molecules can be of arbitrary sizes, 
but features vectors are fixed size. In this particular case, a graph-based representation 
might be able to more accurately represent the data of interest. Moreover, this paper only 
focuses on distance and similarity in the context of AI and machine learning. Psychological 
foundations of subjective assessments of similarity are out of scope. Interested readers are 
referred to the relevant cognitive science literature (Tversky 1977; Holyoak and Koh 1987; 
Goldstone et al. 1991). Additionally, while methods for similarity and distance assessment 
are related to areas such as ontology alignment (Kalfoglou and Schorlemmer 2003) or com-
putational analogy (French 2002), here we will focus on the core techniques, and will not 
discuss applications to ontology alignment, or other areas.

The remainder of this paper is structured as follows. Section 2 provides some necessary 
background. After that, the paper overviews the existing literature by dividing the body of 
work into three large classes of structured representations: distance functions for graph-
based representations are discussed in Sect. 3, those for logic-based representations are dis-
cussed in Sect. 4, and finally Sect. 5 focuses on functions for frame-based representations. 
Section 6 discusses connections between those areas of work, and the paper closes with 
conclusions and future research directions.

2  Background

This section presents some basic concepts of distance and similarity functions, as well as 
of structured data representations.

2.1  Distance and similarity functions

Many machine learning and AI methods require assessing how similar or how different two 
objects are. For example, the k-nearest neighbor algorithm (Cover and Hart 1967) uses a 
distance function to determine, out of all the instances in the training set, which ones are 
the most similar to the target, to then predict a label for it, given the labels of the k most 
similar instances. Intuitively, distance functions are mathematical functions that assign a 
numerical value (their distance) to each pair of objects in a given domain. This numerical 
value represents an assessment of how similar they are: two very similar objects would be 
assigned a very low distance, and two very dissimilar objects would be assigned a larger 
distance. Similarity functions are the complementary idea, and assign high similarity val-
ues to similar objects, and low values to dissimilar pairs of objects.

Definition 1 (distance metric) A distance metric d over objects in a set X is a function: 
d ∶ X × X → [0,∞) such that, for each x, y, z ∈ X the following properties are satisfied:
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• d(x, y) ≥ 0 (Non-negativity)
• d(x, y) = 0 ⟺ x = y (Identity)
• d(x, y) = d(y, x) (Symmetry)
• d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

Some definitions replace non-negativity by a minimality property: d(x, y) ≥ d(x, x) . 
Since d(x, x) = 0 due to the identity property, these are equivalent. Moreover, although in 
mathematics, the terms distance, metric and distance function are synonyms, in this paper, 
we will use following convention:

• we will use the term distance metric to refer to a function that satisfies the above defini-
tion,

• we will use the term distance measure to refer to a function that intuitively captures the 
notion of “distance between objects”, but does not satisfy at least one of the four prop-
erties in Definition 1,

• finally, we will use the term distance function as the general term to denote either dis-
tance metrics or distance measures. We will also use the term distance functions to refer 
to similarity and distance functions when context allows, in order to avoid repeating 
“similarity and distance functions” constantly.

Often, some of the properties above are not required (for example, many clustering algo-
rithms such as DBSCAN (Ester et al. 1996) would not be affected if the distance function 
used does not satisfy the triangle inequality). However, when defining new distance func-
tions, it is important to verify if they satisfy all four properties, since some algorithms (e.g., 
the classic Fish’n’Shrink Schaaf 1996) assume that the distance function used is a metric. 
If, for example, a distance function that does not satisfy the triangle inequality were to be 
used in Fish’n’Shrink, any convergence guarantees to a nearest neighbor would be lost, as 
the iterative estimations performed by the algorithm are based precisely on the Triangle 
Inequality.

Moreover, some authors have argued that in some application domains, where we want 
the distance or similarity function to approximate perceptual similarity as would be judged 
by a human, these mathematical properties provide too rigid a framework, and other, alter-
native properties (dominance, consistency and transitivity) have been proposed  (Santini 
and Jain 1999).

Although there is no agreed upon definition of similarity function in the literature, in the 
rest of this paper, we will use the following definition.

Definition 2 (similarity function) A similarity function s over objects in a set X is a func-
tion: s ∶ X × X → [0, u] , where u is an upper bound (i.e., the maximum similarity value, 
usually u = 1 ), and where for each x, y ∈ X the following properties are satisfied:

• d(x, y) ≥ 0 (Non-negativity)
• d(x, y) ≤ u (Boundedness)
• s(x, y) = u ⟺ x = y (Identity)
• s(x, y) = s(y, x) (Symmetry)

Intuitively, a similarity function is the complementary concept to a distance func-
tion. For each distance function d, we can define its associated similarity function as 
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sd(x, y) = u∕(1 + d(x, y)) . Other than being complementary functions (when distance 
grows, similarity decreases), usually distance functions are unbounded, whereas similarity 
functions are bounded to a range [0, u], and also, there is no equivalent property to the tri-
angle inequality for similarity functions, and thus, they are not metrics in the mathematical 
sense. Moreover, similarly as for distance functions, when similarity functions are used to 
capture perceptual similarity, some authors have argued that the symmetry property should 
be dropped, as human perception of similarity seems not to be symmetric (Tversky 1977).

2.2  Standard methods to assess distance and similarity

Because of their importance in AI and other fields, a very large number of distance and 
similarity functions have been defined in the literature. Since many distance functions for 
structured representations are based on more basic notions of similarity between basic rep-
resentations such as vectors or strings, this section presents a list of the most common ways 
to assess similarity between non-structured data representations (a summary of the most 
common functions can be seen in Table 1).

2.2.1  Scalars and vectors

The most common distance functions between scalars and vectors are the different instan-
tiations of the Minkowski distance, and the cosine similarity:

When p = 1 we have the Manhattan distance, when p = 2 we have the Euclid-
ean distance, and when p = ∞ it converges to the Chebyshev distance 

dMinkowski(�, �) =

( ∑
i=1...n

|xi − yi|p
) 1

p

Table 1  Common distance and similarity functions for non-structured data representations

Data representation Common distance and similarity functions

Scalars/vectors Minkowski (Manhattan, Euclidean, Chebyshev)
Cosine similarity

Sets Tverski
Jaccard index
Sørensen’s index (Dice coefficient)

Sequences Edit distances (Levenshtein)
Sequence alignment
Dynamic time warping
Auto-regressive measures
Compression distance

Hierarchies/taxonomies Rada (edge counting)
Resnik (information content)

Probability distributions KL divergence
Wasserstein metric



5313An overview of distance and similarity functions for structured…

1 3

( dChebyshev(�, �) = maxi=1...n|xi − yi| ). Also, when n = 1 (i.e., when comparing scalars), this 
corresponds to the absolute value of their difference.

The cosine similarity (Singhal 2001) measures the cosine of the angle between two vec-
tors and is defined as:

Intuitively, the cosine similarity differs from the Minkowski distance in that the magnitude 
of the vectors is not considered, and only the angle between them is measured (if they both 
point in the same direction, the cosine of the angle is 1, and if they are orthogonal, the 
cosine of their angle is 0). This gives them different semantics, making them appropriate in 
different applications.

2.2.2  Sets

The most well known measures are Tverski’s  (Tversky 1977), the Jaccard index, or 
Sørensen’s index (Sørensen 1948) (also known as Dice’s coefficient), with Jaccard being 
the most common. Given two sets X and Y, Tverski’s index is defined as:

Whereas Jaccard’s index is the special case where � = � = 0:

Intuitively, this results in a similarity of 1 if both sets are identical (since the size of their 
intersection and union would be the same), and a similarity of 0 for two disjoint sets. More-
over, notice that these measures are only well defined for finite sets. Variations of these 
measures exist, such as the continuous Jaccard index where elements could belong to a set 
with a certain degree represented by a real number (Valls-Vargas et al. 2014).

2.2.3  Sequences

Many distance functions exist for comparing sequences. The most common family of dis-
tances is that of edit distances, where the distance between two sequences is defined as the 
number of “edit operations” that one needs to perform to one sequences in order to obtain 
the second. The most common edit distance is the Levenshtein distance  (Levenshtein 
1966), where there are only three edit operations allowed: insertion (inserting a symbol into 
the sequence), deletion (removing a symbol from the sequence) and replacement (replacing 
a symbol by another symbol). For example, if we consider words as sequences of letters 
(i.e., strings) the distance between “hello” and “mellow” is 2, wince we can replace the “h” 
by an “m” and then insert an “w” at the end. Extensions exist where different edit opera-
tions have different weights, or where additional edit operations (such as transpositions) 
are allowed. Distances such as the longest common subsequence can also be seen as edit 
distances (with just insertion and deletion as the edit operations).

Another very common approach is that of sequence alignment  (Gollery 2005), which 
is very common in biological domains due to the obvious application of comparing 

scosine(�, �) =
��

|�||�|

sTverski(X, Y) =
|X ∩ Y|

|X ∪ Y| + �|X − Y| + �|Y − X|

sJaccard(X, Y) =
|X ∩ Y|
|X ∪ Y|
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DNA sequences. Specifically, the problem of calculating a global alignment between 
two sequences is equivalent to the problem of calculating the edit distance, and thus both 
approaches share algorithms, with the Needleman–Wunsch algorithm  (Needleman and 
Wunsch 1970) being the most common. The only difference between edit distance and 
alignment is that when we want to output an alignment, the algorithm needs to keep a 
“back trace” so that we can then output which elements fro one sequence correspond to 
which other elements of another sequence. A very common alignment algorithm used in 
time series matching is Dynamic Time Warping  (Itakura 1975), which uses a dynamic 
programming approach with very small differences with respect to Needleman–Wunsch’s 
algorithm.

Auto-regressive measures are based on learning probabilistic models of sequences, 
and then comparing the sequences by comparing the parameters of the learnt models. For 
example, Ramoni et al. (2002) propose an approach to cluster time series based on train-
ing a Markov chain for each sequence, and then using the KL divergence (Kullback and 
Leibler 1951) as a similarity function between the trained Markov chains as a similarity 
function between time series. This idea has also been used to compare agent behaviors in 
the context of learning from demonstration (Ontañón et al. 2014).

Finally, another common idea is that of information content. The underlying idea of 
these approaches is the notion of Kolmogorov complexity  (Kolmogorov 1965): the Kol-
mogorov complexity of a string is the length in bits of the smallest program that can gener-
ate such string as output (e.g., the length of the description of the smallest Turing machine 
that generates such string). One idea is to compute the Kolmogorov complexity of comput-
ing one string when the other is given as an auxiliary input (notice that this is also related 
to the idea of edit distance). Given that the Kolmogorov complexity is not computable, a 
common approximation is to use a compression algorithm C (such as LZW Welch 1984) 
as an approximation. This leads to the normalized compression distance  (Cilibrasi and 
Vitányi 2005):

where C(x) is the size of the resulting compressed version of the sequence x, and C(xy) is 
the size of the compressed version of concatenating x and y. Intuitively, the compression 
algorithm is used for two purposes: C(x) approximates the Kolmogorov complexity of a 
sequence, and C(xy) − min{C(x),C(y)} approximates the length of the smallest program to 
generate one sequence given the other as an auxiliary input. Also, if x and y are very simi-
lar, then compressing xy should have almost the same size than compressing one of them.

For the particular case of numerical sequences (time series), a number of specialized 
distance functions have been developed beyond those described above. For example, re-
sampling the two time series and using a distance function between vectors (e.g., Euclid-
ean) (Keogh and Kasetty 2003), using Fourier transform coefficients (Agrawal et al. 1993), 
time-warped edit distance (Marteau 2009). For a comparison between these measures, the 
reader is referred to the work of Serra and Arcos (2014).

2.2.4  Hierarchies or taxonomies

Distance functions between elements in a hierarchy are also a common source for 
defining distance functions for structured representations. A hierarchy is defined as 
a partially ordered set ⟨X,≤⟩ with elements X ordered by a relation ≤ , where each 

dNCD(x, y) =
C(xy) − min{C(x),C(y)}

max{C(x),C(y)}
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element in X has at most one parent. We say that x is the parent of y if x ≤ y , and 
∄x� ∈ X ∶ x� ≠ X ∧ x ≤ x� ≤ y . Usually hierarchies have a special element x⊥ ∈ X such 
that ∀x ∈ X ∶ x⊥ ≤ x . x⊥ is called the root of the hierarchy, or the bottom element. Com-
mon examples of hierarchies are class hierarchies in object oriented programming, or some 
of the different classifications of words in Wordnet (Miller 1995) such as hypernyms.

The most common distance functions between elements in a hierarchy are:

• Rada’s (Rada et al. 1989) (often referred to as “edge counting”): in this distance func-
tion a hierarchy is seen as a tree, where the parent relation defines the edges between 
the elements in the tree: 

 where z is the deepest element in the hierarchy of which both x and y are descendants, 
and path(x, z) is the number of edges that need to be traversed to reach z from x. z is 
also known as the least general generalization, when ≤ is considered to be a more gen-
eral than relation.

• Resnik’s (Resnik 1995, 1999) (often referred to as “information content”): in this simi-
larity function, elements in the hierarchy are seen as concepts, and we have access to a 
function p ∶ X → [0, 1] , which, given a concept in the hierarchy, gives us the probabil-
ity of encountering an instance of such concept: 

 the main difference between Rada’s and Resnik’s distance functions is that Rada’s 
measure considers each edge in the hierarchy to count the same toward the distance of 
two concepts, while Resnik’s takes into account that some edges are more important 
than others. For example, if there are two concepts x and y,w where x is the parent of y, 
but where y is almost identical to x, then p(x) will also be very similar to p(y), and thus, 
the edge between them will have little weight in similarity calculations. In practical 
applications p can be estimated from a training set of instances.

Other measures in the literature integrate ideas from these two basic functions. For exam-
ple, Jiang and Conrath (1997) define a distance function that integrates both edge count-
ing and information content, showing good results. Wu and Palmer’s conceptual similarity 
function for concepts in WordNet is basically a normalized version of Rada’s function (Wu 
and Palmer 1994).

2.2.5  Probability distributions

The most common way to compare probability distributions is probably using the Kull-
back–Leibler Divergence (KL divergence) (Kullback and Leibler 1951), defined for two 
probability distributions Q and P as follows:

Intuitively this measures the amount of information lost when one uses Q to approximate 
P. When considering continuous distributions, we just need to replace the discrete sum by 
an integral operation. Also, notice that the Kullback–Leibler Divergence is not a distance 
metric, since it does not satisfy the symmetry or the triangle inequality properties.

drada(x, y) = |path(x, z)| + |path(y, z)|

sresnik(x, y) = maxz∈X|z≤x ∧ z≤y[−logp(z)]

dKL(P,Q) = −
∑
i

P(i)log
Q(i)

P(i)
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Another very common distance metric is the Wasserstein metric  (Dobrushin 1970) 
(also known as the earth-mover distance Rubner et al. 2000). The intuitive idea is to see 
two probability distributions as two different ways to pile dirt over an area, and then cal-
culate the amount of work required to move dirt to turn one distribution into the other. 
Thus, this metric requires as input parameter a distance function that defines the area (or 
a pair-wise distance matrix in the case of discrete distributions), that indicates the amount 
of work of moving dirt between two points in this area. Calculating this distance requires 
solving a linear optimization problem to find the optimal “flow” of dirt. This distance has 
also been used to compare images in the context of image retrieval (Rubner et al. 2000).

Other common measures include the �2 statistic, among others. As mentioned in 
Sect. 2.2.3, these distance functions have been also been used to calculate distance or simi-
larity between sequences by first representing the sequences as stochastic processes, and 
then comparing the probability distributions that govern these processes.

2.2.6  Weighting and metric learning

Notice that all the distance functions presented above just calculate a numerical distance or 
similarity between two objects without having in mind the problem at hand. When using 
these functions as part of a machine learning algorithm, e.g., k-nn, it might be desirable to 
use the information from the labeled data in the training set to adjust the distance function 
to the problem at hand. For example, some variable might be completely irrelevant for the 
prediction task at hand, and we would not want that variable to play any role in the distance 
calculations. Many distance functions allow for such process. For example, the Mahalano-
bis distance generalizes the Euclidean distance by calculating a covariance matrix from 
the training data. Edit distances can be extended by defining different weights for the dif-
ferent edit operations. In general this idea is studied in several subfields of machine learn-
ing such as metric learning (Kulis 2013; Bellet et al. 2013) or feature weighting and selec-
tion  (Wettschereck et  al. 1997). Some distances, such as the normalized compression 
distance, do not easily allow for metric learning.

2.3  Structured data representations

The vast majority of machine learning approaches in the literature uses feature-vector rep-
resentations of data (i.e., propositional representations) where each training instance is 
represented as a fixed-size vector/tensor of either numeric or categorical values. Moreo-
ver, a very large number of structured representations has been proposed in the literature, 
which will be the focus of this paper. We will group them into three major categories: 
graph-based representations, logic-based representations, and frame-based representations. 
We briefly describe these representations below.

2.3.1  Graph‑based representations

Graph-based representations use graphs in various ways to represent instances. A common 
approach is to use directed labeled graphs (DLGs).

Definition 3 (Directed labeled graph) Given a finite set of labels L, a directed labeled 
graph g is defined as a tuple g = ⟨V ,E, l⟩ , where:
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• V = {v1, ..., vn} is a finite set of vertices,
• E = {(vi1 , vj1 ), ..., (vim , vjm )} is a finite set of directed edges,
• l ∶ V ∪ E → L assigns a label from L to each vertex or edge.

For example, a lot of work in machine learning applied to biochemical domains use 
labeled graphs to represent molecules (Bunke and Shearer 1998; Kashima et al. 2003; 
Gärtner 2003; Mahé et al. 2005). Another common example of graph-based data is in 
computer vision, where graphs and graph matching algorithms have been extensively 
used for many tasks such as character or 3d object recognition (Bunke 2000).

Another representation, commonly used in pattern recognition approach is that of 
weighted graphs:

Definition 4 (Weighted graph) A weighted graph g is defined as a pair g = ⟨V ,w⟩ , where:

• V = {v1, ..., vn} is a finite set of vertices,
• w ∶ V × V → ℝ

+ is a weighting function that assigns a positive real weight to each 
edge (to represent that there is no edge between two vertices, v1 and v2 , we write 
w(v1, v2) = 0).

We can distinguish two different ways to use graphs in structured machine learning:

• The one graph-per instance approach: where each training instance is represented 
by a complete graph (e.g. a chemical molecule, where each vertex is an atom, and 
edges represent chemical bonds). Figure 1b shows an example of this approach, rep-
resenting a small train inspired in the classic trains dataset by Larson and Michalski 
(1977), using a DLG.

• The one vertex per instance approach: where each vertex in the graph represents 
an instance, and edges represent their relationships. For example, users in a social 
network (where each vertex is a user, and edges represent connections or other rela-
tions), scientific paper citation graphs or web pages are commonly represented this 
way.

train

car

car

cars

infront

cars

long

engine

short

hexagon

length

length

shape

shape

ψ ::= X1 : train



cars
.=






X2 : car
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.= long
shape

.= engine
infront

.= X3





X3 : car
length

.= short
shape

.= hexagon




train(t1), car(t1, c1), car(t1, c2), 
length(c1, long), shape(c1, engine), 
infront(c1, c2), length(c2, short), 

Cars = [     ]
Train

Length = "long"
Shape = "engine"
Infront = [    ]

Car

Length = "short"
Shape = "hexagon"
Infront = nil

Car

(a) Train (b) Graph representation
(c) Frame-based 

representation

(d) Feature term representation

(e) Horn clause representation

Fig. 1  A small train (inspired by Michalski’s train dataset Larson and Michalski 1977), represented in dif-
ferent structured representation formalisms
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The main difference from the point of view of distance functions is that the former 
requires distance functions between graphs, and the later distance functions between ver-
tices on a graph. In many approaches the basic theoretical graph definition is extended or 
slightly modified. For example, conceptual graphs  (Sowa 1979) are hierarchical bipar-
tite graphs where some vertices represent entities and some other represent relations, and 
where a vertex could contain a nested subgraph inside of it. Another example are attributed 
graphs, where each vertex can have a collection of numerical or symbolic features  (Tsai 
and Fu 1979). For example, when representing molecules as attributed graphs, we could 
have features representing the distances of each bond or the coordinates of each atom in a 
3D space (Riesen and Bunke 2008).

2.3.2  Logic‑based representations

Logic-based representations have been studied for decades in the inductive logic program-
ming  (Lavrac and Dzeroski 1994) community, as well as in explanation-based learn-
ing  (Mitchell et  al. 1986). The key idea is to represent the training data using logical 
clauses. For example, Fig. 1d, e shows how a small object represented using two different 
logical formalisms (feature terms and Horn clauses). Most of these logic-based formalisms 
correspond to different subsets of first order logic (FOL). The most common are:

• Horn clauses these are the most common representation in the ILP community. Objects 
are represented as conjunctions grounded terms (such as the example in Fig. 1e). Some 
times, the object representation is augmented with a theory expressed as Horn clauses, 
which can be used to draw additional inferences on the objects being represented.

• Description logics  (Baader et  al. 2003) common in the semantic web commu-
nity (Baader et al. 2005), description logics (DLs) are a family of knowledge represen-
tation languages that correspond to different subsets of FOL. Many different DLs exist, 
representing different tradeoffs between representation power, and computational trac-
tability. The original purpose of DLs was to provide formal semantics to frame-based 
representations and semantic networks.

• Feature terms (also known as order-sorted feature structures, or feature logics) (Car-
penter 1992) another subset of FOL, that has been frequently used in the case-based 
reasoning community  (Plaza 1995) and in natural language processing  (Emele and 
Zajac 1990; Krieger and Schäfer 1995; Shieber 2003). An example train represented as 
a feature term is shown in Fig. 1d.

The main strength of logic-based representations is that the can naturally encode the con-
cept of generalization (via subsumption operations), and inference, and that they naturally 
allow for background knowledge to be represented in the form of rules. For example, many 
learning systems based on logic-based representations utilize the concept of least-gen-
eral generalization  (Plotkin 1970) to induce rules, or even assess distance and similarity 
between instances (Ontanón and Plaza 2012; Sánchez-Ruiz et al. 2011).

2.3.3  Frame‑based representations

We will group all the different representations that derive from the original idea of 
frames (Minsky 1974) as frame-based representations. These representations are common 
in fields such as case-based reasoning (CBR)  (Aamodt and Plaza 1994) and statistical 
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relational learning (SRL) (Getoor and Taskar 2007). While in some CBR work, the dis-
tinction is made between frame-based representations and object-oriented representations, 
and the former is associated with description logics  (Bergmann et  al. 2005), given the 
nature of the existing work on distance and similarity assessment, we will use the term 
frame-based representation to capture all representations such as object-oriented ones, 
whose main constructs are “is-a” and “part-of” relations. An example such representation 
is shown in Fig. 1c.

Frame-based representations are very common in the CBR literature, specially on the 
early days of CBR with systems like CASUEL (Manago et al. 1994) or HOMER (Göker 
and Roth-Berghofer 1999). Often, these representations are seen as direct generalizations 
of flat feature-vector representations, where objects are represented by a set of attribute-
value pairs (called slots), determined by an object class (where classes form a hierarchy). 
The attributes of these objects can be “simple attributes” (which take numerical or sym-
bolic values) or “relational attributes” (which take other objects for values) (Bergmann and 
Stahl 1998). This idea of simple and relational attributes is analogous to the idea of attrib-
utes and relationships in entity-relationship (ER) (Chen 1988) models, commonly used to 
define relational databases. In the field of SRL, extensions of the ER model to account for 
probabilistic data (probabilistic entity-relationship models, or PER) are common, with a 
well known example being DAPER (Heckerman et al. 2007).

3  Distance functions for graph‑based representations

This section provides an overview of the large amount of work existing in the literature on 
distance and similarity functions for graph-based representations. We classify this work 
in four main types of functions: those based on graph matching, those based on the idea 
of edit distance, those based on refinement graphs, and finally the attempts to encapsulate 
these functions as kernels. Additionally, we will see how some of these ideas are related 
(for example, we will see that certain types of graph matching operations are actually 
equivalent to edit distances under certain cost functions).

3.1  Graph matching‑based distance functions

Work on graph matching can be traced back to the 1960s with pioneering work on graph 
isomorphism by Sussenguth (1964). Significant contributions to the field have been done 
since. This section will cover only the work concerning distance and similarity assessment, 
for comprehensive overview of the field, the reader is referred to recent overviews by Conte 
et al. (2004) or Emmert-Streib et al. (2016).

The most stringent formulation of the graph matching is the well known graph isomor-
phism problem (Babai 2018). Given two graphs g1 and g2 , the problem is to find a bijection 
f (i.e., a one-to-one correspondence) between the vertices of both graphs such that two 
vertices v and v′ are adjacent in g1 , if and only if f(v) and f (v�) are adjacent in g2 . Moreover, 
if graphs are labeled, then the labels of v and f(v) must also match, as well as the labels of 
the edges between v and v′ and between f(v) and f (v�) . Intuitively, this amounts to checking 
if two graphs are identical structurally. As of the writing of this document, the complexity 
of graph isomorphism has not yet been determined, but it has been recently conjectured to 
be quasipolynomial by Babai (2018). While graph isomorphism is not particularly useful 



5320 S. Ontañón 

1 3

for the purpose of distance calculations, relaxations of this problem have been used exten-
sively for assessing distance and similarities between graphs.

The immediate relaxation of graph isomorphism is what is known as subgraph iso-
morphism (Read and Corneil 1977), corresponding to finding if there is a graph isomor-
phism between a graph g1 and any subgraph of another graph g2 . A further relaxation is 
the maximally common subgraph (MCS)  (Levi 1973), which is particularly interesting 
for distance and similarity assessment. The MCS problem consists on finding what is the 
largest subgraph of g1 for which we can find a subgraph isomorphism with respect to g2 . 
Distance functions for graphs based on the MCS include (all these three functions are dis-
tance metrics):

• Bunke and Shearer (1998) showed that the following distance function based on the 
size (in vertices) of the MCS is a metric: 

• Wallis et al. (2001) proposed a variation over Bunke and Shearer’s distance normaliz-
ing by the size of the union graph, rather than by the size of the larger graph: 

where |g1 ∪ g2| is calculated as |g1| + |g2| − |MCS(g1, g2)| . Thus, notice that if we 
interpret the MCS as the intersection of two graphs, this distance is basically the Jac-
card distance (see Sect. 2.2.2), applied to graphs.

• Fernández and Valiente (2001) propose a different variant that involves calculating both 
the MCS and the mcs (minimum common supergraph) (which we will write in lower 
case, to distinguish from the MCS, and corresponds to the minimum graph g such that 
we can find a subgraph isomorphism between both g1 and g1 and g): 

However, both subgraph isomorphism and the MCS problem are known to be NP-com-
plete (Bunke 1997). The original algorithm by Levi (1973) had a complexity of O((nm)n) 
(where n and m are the number of vertices of the two graphs), and the more recent algo-
rithm by Abu-Khzam et al. (2007) is O(3m∕3(m + 1)c) , where c is the size of the smaller 
vertex cover between the two inputs. Therefore, methods based on approximations of the 
MCS have algo been proposed. For example, MatchBox  (Schädler and Wysotzki 1999) 
uses Hopfield-style neural networks to approximate MCS-based graph matching distances 
between two labeled graphs.

There is also a significant amount of work on defining distance functions between 
graphs using graph matching techniques using slightly different criteria than strict (sub)
graph isomorphism or MCS calculations. Graph isomorphism requires finding a mapping 
between two graphs that satisfies a specific set of criteria. If we relax or modify these crite-
ria, a range of different distance functions can be defined. For example:

• Some early work on graph matching by Shapiro and Haralick (1981) proposed the 
idea of finding �-homomorphisms between hypergraphs (they considered graphs 
with vertices and “relations”, where “relations” could involve 2 or more vertices). 

dbs(g1, g2) = 1 −
|MCS(g1, g2)|
max(|g1|, |g2|)

dwskr(g1, g2) = 1 −
|MCS(g1, g2)|

|g1 ∪ g2|

dfv(g1, g2) = |mcs(g1, g2)| − |MCS(g1, g2)|
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Where � is a measure of dissimilarity beteween 0 and 1. Assuming the existence of a 
weighting function for each element in a graph (vertices and relations) such that all 
the weights add up to 1, there is an �-homomorphisms between two graphs if we can 
find a mapping such that the sum of the elements in the graphs that are mot matched 
is less than � . In order to solve this problem, they proposed to use systematic search 
using backtracking.

• Poole and Campbell (1995) propose a variation of the MCS approach, where they 
find the most interesting common generalization (MICG), defined as the generaliza-
tion of two graphs that maximizes a user-provided measure of interest (which must 
satisfy certain properties, such as not to increase if edges or vertices are removed). 
The similarity between two graphs, is then defined as: 

 In order to find the MICG of two graphs, they employ A∗ search over the product graph 
of g1 and g2 to find a consistent subgraph that maximizes the function of interest.

• The similarity function proposed by Champin and Solnon (2003) for multi-labeled 
graphs (each vertex or edge can have one or more labels) differs from the stand-
ard MCS-based approaches above in two key ways: 1) they allow for a used-speci-
fied function f to score the mapping (rather than finding the mapping that finds the 
MCS), and 2) they do not require the mapping from vertices of one graph to the 
other graph to be one-to-one. Their proposal similarity function is as follows: 

where splits measures the number of non one-to-one mappings (assuming that we want 
to penalize this), g1 ⊓m g2 is the intersection graph, given the mapping m (i.e., a graph 
containing only those matched vertices and edges), and f and g are user-defined func-
tions. In order to assess similarity, they propose a greedy algorithm to find the mapping 
m that maximizes this similarity.

• Wang and Ishii (1997) propose another similar measure, assuming the existence of a 
function W that assigns an importance score to each vertex and edge. Given a map-
ping m, W can be used to define the similarity of two graphs as follows. For each 
vertex v in graph g1 that is mapped to a vertex m(v) in g2 , the score of this mapping 
is the average of W(v) and W(m(v)) (score for edges is analogous). Let us call Fv to 
the sum of the scores of all the vertices, and Fe to the sum of the score of all the 
edges, and Mv and Me the maximum score for vertices and edges that is theoretically 
possible given the number of vertices of g1 and g1 and the range of W. Similarity is 
then assessed as: 

• In order to find the mapping that maximizes this function, they propose the use of a 
genetic algorithm.

Other examples include the work of Mishne and De Rijke (2004), where they do not 
impose some of the usual isomorphism constraints on the mapping they find, and 

spc(g1, g2) =
interest(MICG(g1, g2))

max(interest(g1), interest(g2))

scs
m
(g1, g2) =

f (g1 ⊓m g2) − g(splits(m))

f (g1 ∪ g2)

swi
m
(g1, g2) =

Fv + Fe

Mv +Me
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just mapping each vertex to the most similar vertex on the other graph, given a con-
strained neighborhood with radius n, making the problem O(n3) . They use this approach 
to develop a similarity function to retrieve source code, representing it as conceptual 
graphs.

One final common approach is to use spectral methods. Spectral methods are applied 
to weighted graphs (see Sect. 2.3.1), giving rise to the weighted graph matching problem 
(WGMP). Given two weighted graphs g1 = ⟨V1,w1⟩ and g2 = ⟨V2,w2⟩ , and a mapping of 
vertices from g1 to g2 , we can define a distance function as follows:

The WGMP is thus defined as the problem of finding the mapping that minimizes this 
distance (however, other objective functions are possible). Given the adjacency matrix of 
a graph (a matrix where each row and column corresponds to a vertex and the different 
positions of the matrix contain the weights of the corresponding edges), the key ida behind 
spectral methods is that the eigenvectors of the adjacency matrix are invariant respect to 
node permutations, thus, if two graphs are isomorphic, their adjacency matrices will have 
the same eigenvalues/vectors (Conte et al. 2004) (the converse is not true, however). Given 
that calculating eigenvectors can be done in polynomial time, this is a very attractive idea 
to solve the WGMP.

Spectral methods to solve the WGMP can be traced back to the work of Umeyama 
(1988), who presented an initial limited approach that could only handle comparisons 
between graphs of equal size. Another example is the work of Almohamad and Duffuaa 
(1993), who formulate the problem using linear programming. Later approaches, include 
the work of Xu and King (2001), who generalized the approach to being able to compare 
graphs of arbitrary size. They formulate the problem as a continuous optimization problem 
that can be solved via gradient descent using a loss function based on PCA.

The concept of graph matching is also related to the idea of analogical mapping. For 
example, in order to calculate analogical mappings, Leishman (1989) compute what they 
call minimal common generalization of two graphs, which is a similar concept to the 
MCS, except that instead of calculating the maximum subgraph, they calculate the maxi-
mum subgraph that maximizes some measure of analogical mapping score. A very well 
known approach related to this is the structure mapping engine (SME)  (Falkenhainer 
et al. 1989), which calculates analogical mappings that maximize a scoring function based 
on structure mapping theory (Gentner 1983). The concept of analogical mapping is very 
related to that of similarity  (Holyoak and Koh 1987), and specifically, the score used by 
SME has been used in the literature as a measure of similarity between graphs (Ontañón 
and Zhu 2011).

To conclude this section, we would like to point out relations to other ideas of distance 
and similarity. Specifically:

• The idea of calculating the MCS, or some variant, and use a measure of size on it to 
assess similarity or distance between graphs is both related to the idea of the Jaccard 
similarity (as pointed out above), as well as to the idea of distance functions in hierar-
chies. If we see each graph as an element of a hierarchy, and the subgraph-isomorphism 
relation as the parent relation, then many of the ideas of similarity presented in this 
section can be seen as versions of Rada’s or Resnik’s distances presented in Sect. 2.2.4 
(with measures based on the size of the MCS being related to Rada’s and measures, 

dm(g1, g2) =
∑
v∈V1

∑
w∈V1

(w1(v,w) − w2(m(v),m(w))
2
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such as Poole and Campbells, based on information content or interest, related to 
Resnik’s). This will be made more clear below in Sect. 3.3.

• It has been shown in the literature that the problem of calculating the MCS, is a special 
case of calculating the edit distance between graphs (Bunke 1997) (described below).

3.2  Graph edit distance functions

The idea of adapting the edit distance (described in Sect. 2.2.3) to graphs) can be traced 
back to the early work of Sanfeliu and Fu (1983). The basic idea is the following. Given 
two graphs g1 = ⟨V1,E1, l1⟩ and g2 = ⟨V2,E2, l2⟩ , let m ∶ V �

1
→ V �

2
 be a bijective map-

ping between a subset of vertices V ′
1
⊆ V1 of g1 and a subset of vertices V ′

2
⊆ V2 of g2 . 

We will call E′
1
⊆ E1 to the subset of edges of g1 involving vertices in V ′

1
 , and define 

m((v1, v2) = (m(v1),m(v2)) . The cost of a mapping m is defined as:

where cd , ci , cs , and cs are predefined cost functions for deleting vertices, inserting vertices, 
substituting a vertex by another, and substituting an edge by another, respectively. The cost 
of the optimal mapping m (the one with the lowest cost) is called the graph edit distance 
between g1 and g2  (Bunke 1999). Calculating the edit distance is NP-complete  (Bunke 
1997), and is usually done using tree search algorithms. Additionally, as Bunke (1999) 
demonstrated, graph isomorphism, subgraph isomorphism and finding the MCS are special 
cases of calculating the edit distance under particular cost functions.

Given the high computational complexity of the graph edit distance, several approaches 
exist to attempt to approximate it via different types of simplifications. For example, 
Riesen and Bunke (2009) propose an approximate graph edit distance approach based on 
the Hungarian algorithm (Munkres 1957), with polynomial complexity ( O(n3) , where n 
is the number of vertices in the graphs). The Hungarian algorithm is designed to solve the 
assignment problem, i.e., given a set of n “variables”, each of which can take m different 
“values”, and where we have a cost matrix specifying the cost of assigning each different 
value to each different variable, finding the optimal value assignment to each variable, such 
that no two variables have the same value. In order to frame the graph edit distance within 
this framework, Riesen and Bunke propose a cost matrix constructed in such a way that 
graphs of different sizes can be compared, and where the cost of mapping vertices of one 
graph (the “variables”) to vertices of the other graph (the “values”) takes into account the 
labels of the vertices in question, and also the edges coming in and out of those vertices. 
In other words, this approximation considers only the local structure around each vertex in 
order to find the best mapping from g1 to g2 , rather than the global structure. Experimental 
results show significant reduction of computation time with only a small performance pen-
alty. Other approximation methods exist, as surveyed by Gao et al. (2010).

If the data of interest can be represented as trees, more efficient algorithms for tree data 
exist to calculate the tree edit distance. When trees are ordered, the problem becomes 
tractable (polynomial complexity)  (Tai 1979), but it remains NP-complete for unordered 
trees (Zhang 1989). Many polynomial algorithms exist for the case of ordered trees, such 
as that of  Klein (1998). The reader is referred to the comprehensive overview by  Bille 
(2005), for a complete list of approaches.

Additionally, the idea of graph edit distances has been employed to define similar-
ity between other graph-related structures such as processes. For example, the work of 

�(g1, g2,m) =
∑

v∈V1−V
�
1

cd(v) +
∑

w∈V2−V
�
2

ci(w) +
∑
v∈V �

1

cs(v,m(v)) +
∑
e∈E�

1

cs(e,m(e))
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Montani et al. (2015) combines domain knowledge (to define the edit costs between dif-
ferent types of vertices) with graph edit distances to define a similarity function between 
processes (represented as graphs by having the different steps in a process represented as 
vertices, and the dependencies between these steps as edges, with some control structures, 
such as loops, also often represented as vertices).

Graph edit distances require setting, in advance, the edit operation costs. While this can 
be done manually, recent work from the field of metric learning (Yang and Jin 2006). Met-
ric learning focuses on the problem of learning a distance or similarity function given a 
training set. In the most common setting, a labeled training set of feature-vector instances 
is provided, and the problem is to learn a metric (typically a Mahalanobis distance) that is 
minimized for pairs instances with the same label, and maximized for pairs of instances 
with different labels. While most metric learning work has focused on feature-vector repre-
sentations, some work exists on structured representations. Many of these approaches (e.g. 
the work of Neuhaus and Bunke 2007) are based on the expectation-maximization (EM) 
algorithm (Dempster et al. 1977), and, although they can be used for trees, become intrac-
table for general graphs  (Bellet et  al. 2013). However, some relatively recent work has 
started to produce practical approaches to learn metrics for graph data. For example, Good 
Edit Similarity Learning (GESL)  (Bellet et  al. 2012) learns edit costs in the following 
way. Given a training set consisting of graphs with different labels, it first precomputes the 
number of the different types of edit operations (insertion, deletions, substitutions) required 
to match each pair of graphs in the training set. Then, an optimization process optimizes 
a cost matrix based on these numbers to maximally separate graphs with different labels, 
and keep graphs with the same labels close together. In this way, although the learned cost 
matrix might not be the optimal, there is no need to recalculate edit distances during the 
optimization process, as previous approaches required.

3.3  Refinement graph‑based functions

Most structured distance and similarity functions described in this paper are specific to a 
given representation formalism (i.e., distances for Horn clauses cannot be used for labeled 
graphs or viceversa). Refinement operators, however, have been proposed as a way to 
define distance functions that apply to a large set of structured representations.

The key idea is to abstract away from the underlying representation, and assume just the 
existence of a few constructs:

• Subsumption relation1: given two structured instances x1 and x2 , we say that x1 sub-
sumes x2 (written x1 ⊑ x2 ) if x1 is more general than x2 . For example, in the case of 
graphs, subsumption could be defined as checking if x1 is a subgraph of x2.

• Refinement operator: a downward refinement operator is a function � that, given an 
instance x, generates other instances (refinements) that are more specific than x, i.e. 
instances that are subsumed by x (van der Laag and Nienhuys-Cheng 1998). A refine-
ment operator is locally finite when it generates a finite amount of refinements; it is 

1 Notice that in the description logics notation, subsumption is written in the reverse order since it is seen 
as “set inclusion” of their interpretations. Here, x

1
⊑ x

2
 means that x

1
 is more general than x

2
 , while in 

description logics it has the opposite meaning.
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complete if all the instances that are more specific than x can be generated by iterated 
refinement of x, and proper if x ∉ �(x).

In our previous work (Ontañón and Shokoufandeh 2016), we defined a collection of sub-
sumption relations for labeled graphs with different semantics, and their corresponding 
refinement operators. The base subsumption relation was defined as “ g1 subsumes g2 if a 
subgraph of g2 is isomorphic to g1 ”. The refinement operator basically takes in a graph and 
generates all the possible graphs that can be formed by adding one more vertex or edge 
and assigning them a new label. In case the labels are organized in a hierarchy, refine-
ment operators that can specialize the labels in the graph were also defined. These two con-
structs define what is known as the refinement graph, a directed graph where each vertex is 
a graph, and where edges represent refinement. The refinement graph is a semi-lattice, with 
a special element g⊥ which is the graph with no edges and no vertices, and all other graphs 
can be generated by iterative refinement starting from g⊥ . Therefore, we can now see the 
problem of assessing distance or similarity between graphs as that of assessing similarity 
between elements in a hierarchy, and use all the measures described in Sect. 2.2.4, among 
others. For example:

• Antiunification-based similarity ( S� ) given two graphs g1 and g2 , it calculates their 
most specific ancestor in the refinement graph (their anti-unifier, g1 ⊓ g2 ), which is 
equivalent to the MCS if subsumption is defined as graph-isomorphism, and assesses 
similarity as: 

where |g1
�
�����→ g2| represents the length of a refinement path that starts in g1 and goes 

to g2 by repeated application of the refinement operator � . Notice that the number of 
refinement steps necessary from g⊥ to a graph g can be seen as a measure of size, and 
thus, this measure is equivalent to the one presented by Wallis et al. (2001) (described 
above) if subsumption is defined as graph-isomorphism, since the denominator is basi-
cally the size of the union graph.

• Property-based similarity ( S� ) A major issue with S� is that it is computationally 
impractical, except for very small graphs (as expected, since the MCS calculation can 
be seen as a special case of it). The key idea of the property-based similarity measure 
is to decompose each graph into a collection of smaller graphs (called properties), and 
then count how many of these properties are shared between two given graphs. The key 
advantages of this similarity function are that: (1) the re-representation of graphs into 
sets of properties (which is the expensive operation) only needs to be done once, and 
after that, assessing similarity has a lower computational cost, and (2) each of these 
properties can be seen as a feature, and thus, feature weighting methods can be applied 
in order to improve accuracy in the context of machine learning methods. Decompos-
ing a graph into a collection of properties is done via an operation called disintegra-
tion  (Ontanón and Plaza 2012), which, depending on the structure of the refinement 
graph, ensures that we can reconstruct the original graph by integrating all the proper-
ties again into a single graph using the unification operation. Once the graph g1 and g2 
have been disintegrated, into a set of properties D(g1) and D(g2) respectively, similarity 
is defined as: 

S𝜆(g1, g2) =
|g⊤

𝜌
�����→ (g1 ⊓ g2)|

|g⊤
𝜌
�����→ (g1 ⊓ g2)| + |(g1 ⊓ g2)

𝜌
�����→ g1| + |(g1 ⊓ g2)

𝜌
�����→ g2|
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 where P = D(g1) ∪ D(g2) . Moreover, a weighted version of this similarity function 
( Sw� ) can be defined if a weight is defined for each property, and instead of counting the 
number of shared properties, we add their weights.

Refinement operator-based distance functions are related to hierarchy-based distance 
functions, as well as to MCS-based functions as described above. However, they are also 
very related to edit distances. A refinement operator can be seen as a function that gener-
ates new graphs by performing edits on it. A downward refinement operator only gener-
ates graphs that are more specific. The complementary concept of an upwards refinement 
operator generates graphs that are more general. Thus, by combining upward with down-
ward refinement operators, we can generate the complete set of edit operations required 
for defining an edit distance. Since upwards refinement operators are basically the inver-
sion of downward refinement operators, we could define the edit distance between two 
graphs as |(g1 ⊓ g2)

𝜌
�����→ g1| + |(g1 ⊓ g2)

𝜌
�����→ g2| , with obvious connections to S� . Moreover, 

as described in our previous work (Ontanón and Plaza 2012), S� and S� are equivalent if the 
refinement graph satisfies certain properties.

In summary, refinement operator-based distance functions can be seen as a way to use 
ideas from distance functions for hierarchies to define those for graphs by means of the 
intermediate concept of the refinement graph.

3.4  Graph kernels

Kernel methods, and support vector machines (Hearst et al. 1998) in particular, rose a few 
decades ago as a powerful family of machine learning methods that could be applied to a 
larte type of representation formalisms, given an appropriate kernel exists. The key idea 
behind these methods is that the core optimization processes required for performing clas-
sification, regression or even clustering can be formulated in terms of inner products (e.g., 
the usual dot product, when we are talking about Euclidean spaces). Given data in some 
representation formalism, e.g. graphs, we could define machine learning algorithms by first 
transforming this data into some feature-vector representation with some mapping function 
� and then operating using inner products over this feature vector representation. A kernel 
function k is a function that given two data points x1 and x2 in some representation formal-
ism, calculates the result of mapping these data points to a implicit feature-vector space 
and then calculating their inner product: k(x1, x2) = ⟨�(x1),�(x2)⟩ (where ⟨⋅, ⋅⟩ represents 
the inner product). In this way, given a proper kernel function, the same learning algorithm 
can be applied to graph data, feature vector data, tree data, etc.

Kernel functions can be seen as similarity functions (since, the more similar two data 
points are, the higher their inner product). However, kernels must satisfy the property of 
being positive definite, which intuitively means that, for a given kernel, a finite or infinite 
feature-vector space must exist such that the kernel is equivalent to transforming the data to 
this space and then calculating an inner product in this space (the reader is referred to exist-
ing overviews of kernel methods for a formal definition of kernel functions (Gärtner 2003; 
Ralaivola et al. 2005) for a formal definition of kernels). Therefore, while all kernel func-
tions can be seen as similarity functions, not all similarity functions are kernel functions. 
Thus, a significant amount of work exists in defining kernel functions that encapsulate or 

S𝜋(g1, g2) =
|{𝜋 ∈ P | 𝜋 ⊑ g1 ∧ 𝜋 ⊑ g2}|

|P|
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approximate edit distances, and other of the distance and similarity functions described 
above.

Graph kernels can be classified along many different axis. Gärtner (2003) differentiate 
model-driven from syntax-driven kernels, and Ralaivola et al. (2005) distinguish between 
adjacency matrix-kernels, marginalized graph kernels, and others. For the purposes of this 
paper, we will classify them by whether they apply to general graphs or to trees, and intro-
duce the key ideas behind most kernels in the literature:

• Tree kernels the two most common ideas for defining tree kernels are.

• Tree traversal kernels (Smola and Vishwanathan 2003) the key idea is to transform 
a tree into a string by using a depth-first traversal of the tree. If the tree is unordered, 
we can assume a lexicographical order on the labels of the tree vertices and use it 
to define the tree traversal. After that, string kernels can be used to compare trees. 
Assuming the trees are not too unbalanced, tree traversal kernels are O(n) (where n 
is the number of vertices of the trees).

• Subtree occurrence kernels these are a particular type of convolution ker-
nels  (Haussler 1999) (where object are divided into parts, and kernels are defied 
over these parts) applied to trees. For example Collins and Duffy (2002) propose 
a kernel based on counting how many subtrees two given trees share, and propose 
an efficient way to calculate this, as follows. Given a set of possible subtrees T, the 
kernel function for two trees t1 = ⟨V1,E1, l1⟩ , and t2 = ⟨V2,E2, l2⟩ is defined as: 

where C(v1, v2) =
∑

t∈T It(v1)It(v2) , and It(v1) = 1 if the subtree rooted at v1 is identi-
cal to t, and 0, otherwise. So, basically, C(v1, v2) is the number of common subtrees 
of t that can be found rooted both at v1 and v2 . This kernel, however, has the limita-
tion that it can only be applied to trees where children of a vertex are distinguish-
able. Extensions of this kernel to lift this limitation were introduced by Kashima 
and Koyanagi (2002).

• Graph kernels many different types of graph kernels have been proposed in the litera-
ture. However, most of them follow one of the following ideas.

• Subgraph occurrence kernels like subtree occurrence kernels, the key idea is to 
define a latent feature space consisting of all possible graphs, and then define the 
kernel function between two graphs g1 and g2 , based on how many of those graphs 
do they share. Gärtner et  al. (2003) showed that this computation is NP-hard for 
the general case of labeled graphs. Since subgraph occurrence kernels are compu-
tationally unfeasible, rather than considering all possible subgraphs, approaches 
that consider only certain types of structures, such as trees or cycles have been 
proposed  (Horváth et  al. 2004). A particularly common type of such types of 
approaches are marginalized kernels, based on “random walks”, described below.

• Marginalized kernels marginalized kernels are also a particular type of convolu-
tion kernels that derive from marginalized sequence kernels (Tsuda et  al. 2002). 
The key idea is to count the number of labeled walks two graphs share. Thus, the 
underlying infinite feature space is the set of all possible label sequences of length 
between 1 and ∞ . Given two graphs g1 = ⟨V1,E1, l1⟩ , and g2 = ⟨V2,E2, l2⟩ , the basic 
formulation (Ralaivola et al. 2005) of this kernel is as follows: 

kcd(t1, t2) =
∑
v1∈V1

∑
v2∈V2

C(v1, v2)
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where Si
j
 is the set of all possible vertex sequences of length i in graph gj , lj(�) is the 

sequence of labels of a given vertex sequence � in graph gj , p(�j|gj) is the probabil-
ity of such vertex sequence given a user-defined transition probability function, and 
klabel is a kernel between label sequences. Kashima et al. (2003) proposed an effi-
cient way to calculate this kernel via solving a set of simultaneous linear equations. 
Several enhancements to the basic kernel by Kashima et al. have been proposed in 
the literature such as enhancements for graphs (such as those appearing in chemis-
try) with lots of repeated labels, or removing the possibility of paths that “go back” 
on themselves (Mahé et al. 2005). Many other graph kernels based on random walks 
exist, such as the recent work by Zhang et al. (2018) based on the idea of the return 
probability of a random walk. Finally, as pointed out by several authors (Tsuda et al. 
2002; Ralaivola et al. 2005) some other common types of kernels, such as Fisher 
kernels (Jaakkola and Haussler 1999), are particular cases of marginalized kernels.

• Fingerprint kernels two types of kernels are referred to as fingerprint kernels in 
the literature. Traditional fingerprints are commonly used in chemoinformatics 
and consist of bit vectors, where each bit corresponds to a chemical substructure 
(the list of chemical substructures to consider is usually set by hand using scientific 
literature on chemistry). The fingerprint of a molecule is calculated by setting to 1 
all the bits corresponding to the substructures that the given molecule contains. Ker-
nels are then just the inner standard product in the fingerprint vector space (notice 
that this is basically the same ideas as a subgraph occurrence kernel, but consid-
ering only a curated predefined set of subgraphs). On the other hand, hashed fin-
gerprints are a rather different type of kernel, where there is no predefined set of 
chemical structures. Instead, given a graph g (usually representing a molecule), all 
possible paths starting from each vertex are computed, and for each path the cor-
responding label sequence (with the labels of all the vertices and maybe also edges 
traversed by the path) is determined. Then, each sequence of labels is used to calcu-
late a has value v, used to generate a fixed sequence of bits. The final fingerprint of 
the graph is calculated as the bit-wise OR operation between al the bit sequences for 
each path. Ralaivola et al. (2005) present an efficient way to calculate these finger-
prints when considering all the paths from length 1 to infinity, and use it to define 
three three kernels based on these bit vectors (the Tanimoto kernel, the MinMax 
kernel and a Hybrid kernel that is just a linear combination of the previous two). 
For example, the Tanimoto kernel is defined as: 

where fp is the bit vector with the fingerprint of a given graph, and k is a regular 
kernel between vectors.

• Edit-distance kernels although the edit distance between two graphs does not 
satisfy the necessary conditions to define a kernel, several kernels have been pro-
posed inspired by edit distances. For example, Neuhaus and Bunke (2006b) present 
a “pseudo-kernel” (since the resulting function is not guaranteed to be a kernel), 
based on selecting a reference graph g0 and calculating the kernel function for two 
graphs as a function of their edit distances with respect to g0 . Although interesting, 

km(g1, g2) =

∞∑
i=1

∑
�1∈Si

1
,�2∈Si

2

klabel(l1(�
1), l2(�

2))p(�1|g1)p(�2|g2)

ktm(g1, g2) =
k(fp(g1), fp(g2))

k(fp(g1), fp(g1)) + k(fp(g2), fp(g2)) − k(fp(g1), fp(g2))
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the main issue of this function is that it cannot be guaranteed to be positive definite. 
Another approach by the same authors is the convolution edit kernel (Neuhaus and 
Bunke 2006a) which is guaranteed to be positive definite, and is defined as follows. 
Let us assume that given a graph, we impose some arbitrary order over its vertices. 
Now, each graph is represented as a sequence of vertices. Given two graphs and 
their sequence of vertices, if we consider two subsequences (one from each graph) 
of the same length, they can be seen as defining a mapping between vertices of the 
two graphs (where the first vertex of the first subsequence is mapped to the first ver-
tex of the other graph, and so on). We can not define the kernel as: 

where R is the set of all possible subsequences of vertices of a graph, kval is 1 is the 
subsequences x1 and x2 are the same length and 0 otherwise, and ksubst is the substi-
tution cost of substituting a vertex in one graph by a vertex in the other. While this 
is not equivalent to a full edit distance, it is a reasonable approximation in order to 
satisfy positive definiteness, and which has been shown experimentally to perform 
better (when used in a support vector machine) than a traditional edit distance in 
a k-nearest neighbor framework  (Neuhaus and Bunke 2006a) for some image and 
character recognition tasks.

• Weisfeiler–Lehman kernels finally, we would also like to highlight kernels based 
on the Weisfeiler–Lehman (WL) test for isomorphism  (Weisfeiler and Lehman 
1968). The key idea of the WL test for isomorphism between labeled graphs is as 
follows: given two graphs, we construct, for each graph, the set of labels of their 
vertices. If these sets are different, we already know the graphs are not isomorphic. 
If they are, we can re-label the graphs by assigning to each vertex a label that is 
made out of their label and the labels of all their neighbors. We can then repeat 
the process for h iterations. If at any point in the process the sets of labels of the 
two graphs are different, we know they are not isomorphic. If after h iterations the 
sets remain the same, they are either isomorphic, or the test cannot separate them2. 
Although this is not an exact test, it has the attractive property that its complexity 
is O(hn), where n is the number of vertices in the graphs. Given two graphs g1 and 
g2 , let g1

1
, g2

1
, ..., gh

1
 and g1

2
, g2

2
, ..., gh

2
 be the sequences of graphs that we would obtain 

for g1 and g2 respectively with h iterations of the relabeling process of the WL test. 
Weisfeiler–Lehman kernels (Shervashidze et al. 2011) are then defined as follows: 

where k is a base kernel. If k is positive semidefinite, then kh
WL

 is so as well. Many 
variants of WL kernels exist, such as the Weisfeiler–Lehman subtree kernel (closely 
related to other subtree kernels, see above, such as that defined by Ramon and Gärt-
ner 2003), Weisfeiler–Lehman edge kernel or Weisfeiler–Lehman shortest path ker-
nel (Shervashidze et al. 2011).

kcek(g1, g2) =
∑

x1∈R(g1),x2∈R(g2)

kval(x1, x2)
∏

i=1,...,length(x1)

ksubst(x1[i], x2[i])

kh
WL

(g1, g2) = k(g1
1
, g2

2
) + k(g2

1
, g2

2
) +⋯ + k(gh

1
, gh

2
)

2 Interestingly, the Weisfeiler–Lehman test is related to the expressive power of Graph Neural Networks 
(discussed in Sect. 3.5), as it has been shown that a some classes of GNNs are at least as powerful as the 
Weisfeiler–Lehman in detecting graph isomorphism (Xu et al. 2018).
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The list above captures some of the historically most common ideas used in graph kernels. 
However, Many other graph kernels have been proposed in the literature, such as those 
based on adjacency matrices (Gärtner et al. 2003), among others. For example, recent work 
has proposed embedding each graph vertex using the adjacency matrix, and then using 
a distance metric, such as the earth-moved distance described above between the result-
ing embeddings (Luss and d’Aspremont 2008). This does not result in a positive definite 
kernel, but can be combined with indefinite kernel SVM methods (Luss and d’Aspremont 
2008) to achieve state of the art performance.

Another recent idea is that of using the idea is that of using the k-core decomposition 
of a graph (Nikolentzos et al. 2018), which decomposes a graph g into a series of nested 
graphs: g ⊇ c0 ⊇ c1, ... , where ck is the k-core of g (a largest subgraph of g where all ver-
tices have at least k edges). This k-core decomposition captures the structure of a graph 
at different levels of granularity. Thus, the idea is to assess similarity between graphs at 
different granularities, since graphs might exhibit different structures at different levels of 
granularities.

3.5  Graph neural networks

A recent approach to assess similarity between graphs focuses on using graph neural net-
works (GNNs). A GNN is a particular type of neural network capable of learning rep-
resentations of graphs or vertices from graphs and that can be used for many supervised 
learning problems with graph data (Battaglia et al. 2018). Specifically, in order to use them 
for similarity function learning, GNNs have been used to embed graphs into vector space. 
This embedding is learned end-to-end in a supervised learning fashion, given a training 
set of graphs with annotations of which should be considered similar and which should 
be considered dissimilar. The resulting neural networks are called graph matching net-
works (Li et al. 2019).

Two advantages of this approach are: (1) the embedding is learned directly from data, 
and thus the resulting similarity function is fitted to the task at hand similar to metric learn-
ing methods (see Sect. 2.2.6); and (2) once the graph embedding has been learned, similar-
ity is computed only in the vector space, thus allowing for efficient retrieval techniques.

3.6  Graph vertices

Finally, a very different family of distance or similarity functions concern comparing ver-
tices within a graph. The problem of comparing vertices in a graph arises naturally when 
we think of graphs representing web pages (with edges representing links), or academic 
publications (with edges representing citations). These functions are very different from 
all the functions presented above, since the data being compared is itself not a graph, but 
rather lies within a graph.

The underlying assumption of this line of work is that we do not have access to a set of 
features describing the vertices to be compared, and we need to compare them based on the 
graph structure. We will discuss some of the most common functions here for complete-
ness, and refer the reader to Section 3 of the overview by Lü and Zhou (2011) for a more 
comprehensive list.

Many similarity functions have been proposed between graph vertices, which can be 
roughly classified into local vs global functions depending on whether they utilize only 
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information concerning the immediate neighborhood of a vertex, or if they utilize the 
whole graph structure in order to calculate similarity.

Given two vertices v1 and v2 , local similarity functions between graph vertices are usu-
ally defined by assessing similarity between the neighborhood sets Γ(v1) and Γ(v2) , con-
taining all the vertices that are connected via a direct edge to v1 and v2 respectively. Given 
these two sets, vertex similarity is then usually assessed via the use of set similarity func-
tions (like the Jaccard index, or the Sørensen’s Index described above). Early work in this 
direction can be traced back to the early work of Small (1973), who proposed the idea of 
co-citation as a means to measure the relationship between two scientific documents. The 
co-citation index between two documents v1 and v2 is the number of documents that con-
tain cites to both v1 and v2 . Assuming both v1 and v2 are vertices on a graph g1 = ⟨V ,E, l⟩:

Notice that co-citation is basically measuring the size of the intersection of the directed 
neighborhoods of two vertices.

In contrast, global similarity functions between graph vertices are defined using global 
properties of a graph, such as paths between vertices. An early example of these functions 
is the Katz index Katz (1953), which counts the number of paths of different lengths that 
connect two given vertices, using a decay function on the length of these paths:

where 0 < 𝛽 < 1 is a decay constant, and pathsl
v1→v2

 is the set of all possible paths from v1 
to v2 of length l.

More recent work includes the SimRank algorithm (Jeh and Widom 2002) (called Sim-
Rank for its underlying similarity with PageRank Page et al. 1999). SimRank assesses sim-
ilarity between vertices based on the idea that vertices with similar connections (edges) are 
similar. The basic recursive formulation of SimRank is as follows:

where: I(v) is the set of in-neighbors (vertices with an edge pointing to v), C is a constant 
between 0 and 1, and sim(v1, v2) = 1 when v = w , and sim(v1, v2) = 0 if |I(v1)||I(v2)| = 0.

SimRank can be interpreted as the probability that two random walkers starting at the 
two nodes in question would meet if walking the graph backwards (Jeh and Widom 2002). 
This idea of random walks, has been explored in several other similarity function. For 
examples Pons and Latapy (2005) proposed the following distance function between two 
vertices v1 and v2 in a graph:

where |I(vk)| is the number of incoming edges in vk , t is a parameter of the distance deter-
mining the length of the random walks, and Pt

i→j
 is the probability that a random walk of 

length t starting in vi ends in vj . The idea is that if two vertices belong to the same neigh-
borhood in a graph (and should thus be considered similar), the probabilities of reaching all 

sco−citation(v1, v2) = |{v ∈ V|(v, v1) ∈ E ∧ (v, v2) ∈ E}|

sKatz(v1, v2) =

∞∑
l=1

� l|pathsl
v1→v2

|

sim(v1, v2) =
C

|I(v1)||I(v2)|
|I(v1)|∑
i=1

|I(v2)|∑
j=1

sim(Ii(v1), Ij(v2))

dPL(v1, v2, t) =

√√√√ n∑
k=1

(Pt
1→k

− Pt
2→k

)2

|I(vk)|
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the other vertices in the graph should be similar. Pons and Latapy then proposed efficient 
ways to approximate such distance and used then to define an algorithm called Walktrap to 
identify the different “communities” (or clusters) of vertices in a graph in a computation-
ally efficient way.

Other global distance functions exist, such as those based on spectral graph the-
ory (Spielman 2010) (which studies properties of graphs by studying the eigenvectors of 
matrices associated with the graphs, such as the Laplacian). For example, the effective 
resistance between vertices is a distance metric between vertices in weighted graphs aris-
ing from interpreting graphs as graphs of resistors (as if they were electrical circuits). The 
effective resistance is interesting, as it is related to other distances between vertices, such as 
the expected time a random walk starting from a vertex v will take to reach a vertex w, and 
then come back to v (Doyle and Snell 1984).

4  Distance functions for logic‑based representations

Research on distance functions for logic representations has occurred fairly independently 
in different communities, each focusing on a different logical formalism, with little interac-
tion. Specifically, the three representation formalisms that have received more attention are 
Horn clauses, description logics and feature terms. Moreover, even if work has been car-
ried out independently, many of the key underlying ideas are shared across these different 
pieces of work.

Logical representations distinguish between syntax and semantics (given a target 
domain, the syntax defines the rules that determine which logical expressions can be writ-
ten in a given logical formalism, and semantics determines the sets of individuals in the 
target domain that are covered by the different logical expressions). Thus, work exists on 
distance measures between logical expressions (clauses) and also between individuals. 
However, work on similarity between clauses is the most common (and most work on simi-
larity between individuals actually first calculates what is known as the most specific con-
cept, the clause the most closely represents an individual, and then uses distance between 
clauses).

Most distance functions between logical clauses can be classified in two broad cate-
gories: syntactic (or intensional), and semantic (or extensional). The former are based on 
comparing the syntactic descriptions of logical clauses, and the latter are based on compar-
ing the sets of individuals covered by the logical descriptions. Additionally, some distance 
functions combine ideas of both. Finally, there has also been work on trying to capture 
some of these ideas of distance and similarity as kernels, which we will cover at the end of 
this section.

The key difference between logic-based representations and graph-based representations is 
that logic-based representations afford inference processes to be performed over instances. For 
example, given an instance described as a logical clause, if background knowledge is avail-
able, additional facts about the instance can be potentially inferred. Thus, even if it’s always 
possible to take a logical clause and represent it as a graph (having constants and functors 
be the vertices, and using edges to represent which functors and constants are the parame-
ters of which other functors), this transformation loses the ability to perform inference. Thus, 
additional desirable properties have been proposed in the literature for similarity functions for 
logical representations. Below, we provide formal definitions of the three properties infor-
mally proposed by d’Amato et al. (2008). Let I be the interpretation function that defines the 
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semantics of a given logic formalism (that maps logical clauses to the sets of individuals cov-
ered by them), let x1 , x2 and x3 be three clauses, d be a distance function, and s a similarity 
function. 

1. Soundness if (I(x1) ∩ I(x3)) ⊆ (I(x2) ∩ I(x3)) then d(x1, x3) ≥ d(x2, x3) . Intuitively, this 
means that if all the individuals covered by x1 and x3 are also covered by x2 , but that x2 
covers some additional individuals also covered by x3 , then x2 is semantically closer to 
x3 , and thus the distance between x2 and x3 should be lower than that between x1 and x3 . 
Analogously, s(x1, x3) ≤ s(x2, x3)

2. Equivalence soundness if I(x1) = I(x2) then d(x1, x3) = d(x2, x3) . And, of course 
s(x1, x3) = s(x2, x3) . Intuitively, if x1 and x2 are semantically equivalent given the logic 
at hand (i.e. their set of interpretations is the same), then the similarity between x1 and 
x2 to any other instance should be equal.

3. Disjointness incompatibility imagine that I(x1) ∩ I(x3) = � and that I(x2) ∩ I(x3) = � , 
all distance functions based on semantics will assess the distance between x1 and x3 and 
between x2 and x3 to be maximal, since their interpretations are disjoint, i.e., there is no 
individual that is covered at the same time by x1 and by x3 . However, consider the fol-
lowing example: x1 represents flights coming out of Berlin going to Frankfurt, x2 flights 
coming out of Barcelona going to Philadelphia, and x3 flights coming out of London 
going to Philadelphia. Clearly, their interpretations are disjoint, but x2 and x3 share the 
fact that flights go to the same destination. Distance functions that are able to capture 
this similarity even when the interpretations of the two clauses are disjoint are said to 
be able to handle disjointness incompatibility.

Let us now summarize the existing work on distance and similarity functions for logical rep-
resentation formalisms in view of these new properties, and also compared to the work pre-
sented before for graph-based representations.

4.1  Syntactic distance functions

Syntactic distance functions compare instances by directly comparing the logical expression 
used to represent them. Let us classify the work based on the logical representation formalism 
used.

4.1.1  Horn clauses

An early representative method of this idea is that of Hutchinson (1997), who studied metrics 
between logical terms and logical clauses.

Given an alphabet of variables X, a an alphabet of function symbols F, a term is either a 
variable in X, or an expression of the form f (t1, ..., tn) , where f ∈ F and t1, ..., tn are terms (a 
constant is just a term or zero arity). Hutchinson proposed to measure the distance between 
two terms by using the ideas of variable substitutions and least general generalizations (lgg). 
Given two terms, t1 and t2 , and their lgg, t∗ , let �1 and �2 be the variable substitutions that turn t∗ 
into t1 and t∗ into t2 respectively. The distance between two terms is then defined as:

where | ⋅ | is some size function on variable substitutions (e.g., the number of variables 
being substituted). This idea can be extended to literals (a literal is a term that can be 

dH(t1, t2) = |�1| + |�2|
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negated) by considering the negation symbol to be just a regular function symbol. And 
then, to clauses by considering that clauses are just sets of literals and then using the Haus-
dorff distance. Thus, given two clauses C1 and C2 , their distance can be assessed as:

Terms and clauses often refer to individuals, e.g. the term mother(alice, bob), intuitively 
states that the individual named alice is the mother of the individual named bob. So, it is 
often useful to assess the distance between individuals referred to by terms, rather than 
the distance between terms themselves. Early work in this direction is the work of Bisson 
(1990). Consider a knowledge base consisting of a set of terms. Given an individual x, let 
(f, n), where f is a function symbol and n is an integer, be an occurrence of x if there is a 
term in the knowledge base with function symbol f and where x appears as the n-th argu-
ment. Let now occurrences(x) be the set of all occurrences of an individual x in the knowl-
edge base. Bisson’s similarity function between individuals is defined as:

in other words, their similarity is defined as a pseudo-Jaccard index (replacing the size of 
the union in the denominator by the max size) of their sets of occurrences.

This work was later extended to account for similarity between the different occur-
rences  (Bisson 1992). In this extension, the similarity between two entities (SIM) is calcu-
lated as the average of the similarity of the terms in their common occurrences (T-SIM). 
Incidentally, SIM depends on T-SIM, and T-SIM depends on SIM. So, this results on a sys-
tem of equations that needs to be solved in order to assess the similarity between two enti-
ties. This system of equations is often non-linear, and thus Bisson proposed to use Jacobi’s 
method (Golub and Van Loan 2012) to solve it.

Probably one of the best known similarity functions for logic-based representations is 
in RIBL (Relational Instance-Based Learning)  (Emde and Wettschereck 1996). RIBL’s 
measure is a modification of Bison’s similarity function (Bisson 1992) so that rather than 
considering a network of predicates (thus requiring Jacobi’s method to solve a system of 
equations), it builds a hierarchical representation in the form of a tree that is a string gen-
eralization of standard similarity functions for feature vectors. Specifically, this similarity 
function is defined for Horn-clause style representations (such as the one shown in Fig. 1e) 
and works as follows. Given two entities, each described by a logical term, where some of 
the attributes of the terms are primitive values (e.g., numbers), and some others are refer-
ences to other objects, the similarity of the two entities is assessed as the similarity of their 
attribute’s values. If some of these attributes are references to other objects, then their simi-
larity is assessed recursively:

where Input-Args(f ) is the subset of arguments of f that are considered “input arguments” 
(RIBL distinguished between input and output arguments in predicates), type(f,  i) is 
the “data type” of the argument i of functor f (numeric, symbolic, reference to another 
object, etc.), and sim-atype(f ,i) is a collection of functions (one per different data type of the 

dH(C1,V2) = max

(
max
t1∈C1

min
t2∈C2

dH(t1, t2), max
t2∈C2

min
t1∈C1

dH(t1, t2)

)

sB(x1, x2) =
|occurrences (x1) ∩ occurrences(x2)|

max(|occurrences (x1)|, |occurrences(x2)|)

sim-e(f (t1,1, ..., t1,m), f (t2,1, ..., t2,m))

=

∑m

i=1,i∈Input-Args(f )
sim-atype(f ,i)(t1,i, t2,i, 0)

�Input-Args(f )�
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arguments) that recursively assess the similarity of the arguments. Thus, notice that if all 
arguments are numeric or symbolic, this is basically a standard feature vector similarity 
function (the average similarity of all the attributes), but if any attribute is a reference, then 
sim-atype(f ,i) will recursively call sim-e . The 0 as the third parameter of sim-atype(f ,i) refers to 
the depth at which we are doing recursive calls, since usually a maximum depth limit is set 
for RIBL, to prevent infinite recursion.

The basic idea of RIBL was extended in the work of Horváth et  al. (2001), defining 
additional versions of sim-atype(f ,i) that support arguments of type list or term using edit dis-
tances. Thus, notice that the key idea of RIBL is just to assess the similarity of predicates 
by the similarity of their attributes, which is then assessed recursively in case any attrib-
ute is in itself a reference to another entity, by assessing the similarity of the predicates 
describing those entities. This is a representative example the idea of hierarchical aggre-
gation, which many other distance functions we will describe below follow. Also, notice 
that RIBL requires specific similarity functions for every data type that is to be used in the 
definition of the logical predicates.

Other hierarchical aggregation measures include the work of Nienhuys-Cheng (1997) 
where a distance function between ground atoms is presented, based on considering atoms 
to be trees, and using a hierarchical recursive definition. Then this distance is extended to 
clauses using the same idea of the Hausdorff distance used by Hutchinson as explained 
above. This work was extended by  Ramon and Bruynooghe (1998), to allow for non-
ground atoms.

4.1.2  Feature terms

Another framework for assessing similarity using the idea of hierarchical aggregation is 
the work of Armengol and Plaza (2001, 2002) with their LAUD and SHAUD similarity 
functions. These functions focus on a logical formalism called em feature terms (Carpenter 
1992). Specifically, SHAUD (which is an improvement over the previous LAUD similarity 
function), works as follows. Given two instances c1 and c2 represented as feature terms (see 
Fig. 1.d for an example feature term), their similarity is defined as:

where r is a normalization value to make the similarity take values between 0 and 1, 
CS refers to the “common structure” between c1 and c2 , i.e., the set of attributes that the 
roots of c1 and c2 share (for example, in the feature term in Fig. 1.d, the common structure 
between X2 and X3 are the length and shape attributes). T is a function that for each shared 
attribute f computes a tuple ⟨si,wi, ri⟩ , where si is the similarity of c1.f  and c2.f  , and wi and 
ri are a measure of the “size” of c1.f  and c2.f  : wi measures the number of variables in their 
shared structure (e.g., the size of their intersection) and ri measures the total size (i.e., the 
size of their union).

In order to calculate si , SHAUD, like RIBL, uses a hierarchical process, where if c1.f  
and c2.f  are numerical or categorical values, special similarity functions are used, but if 
they are structured terms, the SHAUD similarity is called recursively.

As we noted in our previous work  (Ontanón and Plaza 2012), hierarchical aggregation 
methods like RIBL and SHAUD make two underlying assumptions: (1) that data is organ-
ized hierarchically in a tree form (for example, RIBL requires a maximum depth parameter to 
avoid infinite recursion in case data forms loops, and similarly SHAUD would get stuck in an 

simSHAUD(c1, c2) =
1

r

�
⟨si,wi,ri⟩∈T(CS(c1,c2))

si ∗ wi



5336 S. Ontañón 

1 3

infinite recursion with feature terms that contain cycles); (2) they implicitly assume that infor-
mation that is “deeper” in the tree is less important than information that is found earlier in the 
tree, which is an arbitrary assumption in many real-world datasets.

4.1.3  Description logics

A significant amount of work has been done on similarity functions for Description Log-
ics (Baader et al. 2003). Concerning syntactic functions, one of the earliest examples is the 
similarity function proposed by González-Calero et al. (1999), where they proposed to assess 
the similarity between two individuals as the sum of the similarity between the most specific 
concepts of which those individuals are instances of, and the similarity of their roles (where 
“role” is the term used in Description Logics to refer to the concept of attributes or features of 
individuals). Specifically, the proposed similarity function between two individuals x1 and x2 
is defined as:

where t(x) is the most specific concept of which an individual x is an instance, R is the set 
of all possible roles, and x.r is the set of individuals connected to x via role r. If x.r is a set, 
and not just one individual, sim(x1.r, x2.r) is defined by calculating the sum of the similari-
ties between each individual of x1.r and the corresponding individual in x2.r with the maxi-
mum similarity. Notice that this definition might contain infinite loops. In order to prevent 
this, roles that cause circular cycles are not considered as part of the similarity calculations.

Another example is the work of Janowicz (2006), who present a similarity framework 
called SIM-DL for comparing ALCNR concept descriptions. Concept descriptions in 
ALCNR normal form are represented as disjunctions of other concepts. Given two concept 
definitions: C = C1 ⊔ ... ⊔ Cn and D = D1 ⊔ ... ⊔ Dm , SIM-DL assesses their similarity as:

where simu stands for similarity between concepts described as the union of concepts, and 
simi is a recursive call for concepts represented as the intersection of other concept defi-
nitions. Similarly, simi recursively calls to simp (between primitive concepts), and other 
functions for existential quantifier definitions, role definitions and value restrictions. Also, 
when comparing definitions between concepts in simu , SIM-DL first calculates the similar-
ity between each pair in the Cartesian product of C1, ...,Cn and D1, ...,Dn . Then, for each 
Ci , the corresponding Dj with the highest similarity is selected. The selected pairs form the 
set SI. Finally, the weights wij have to be set so that they add up to 1, but the authors leave 
the specific weighting function open, and just mention that they could be computed, for 
example out of the set cardinality of the individuals covered by each concept. Finally, given 
the non-symmetry of the step concerning the selection of pairs for SI, SIM-DL does not 
directly satisfy the symmetry property from Definition 2. However, notice that this is not a 
crucial property, since any non-symmetric similarity function can be turned into a symmet-
ric one by calculating (s(x, y) + s(y, x))∕2.

simGC(x1, x2) =

⎧⎪⎨⎪⎩

sim(t(x1), t(x2)) if ∀r ∈ R ∶
x1.r = x2.r = ��

sim(t(x1),t(x2))+
∑
r∈Rsim(x1.r,x2.r)

�{r∈R∶x1.r≠�∧x2.r≠�}�
�

2
otherwise

simu(C,D) =
∑

(Ci ,Dj)∈SI

wij × simi(Ci,Dj)
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In summary, notice that SIM-DL is basically a recursive syntactic similarity function simi-
lar to the work of González-Calero et al. (1999), but working over concept definitions, rather 
than over individuals.

4.2  Semantic distance functions

The key characteristic of semantic distance functions is that rather than using the syntactic 
representation of a concept to assess similarity, they assess similarity based on the set of indi-
viduals covered by concept definitions (i.e., their semantics). These measures are sometimes 
referred to as “extensionality-based similarities”  (d’Amato et  al. 2008), as they are based 
on enumerating the set of individuals covered by a concept (their “extension”). The basic 
idea behind these semantic or extensional measures is Resnik’s idea of information content 
described in Sect. 2.2.4.

An early example of a semantic distance function can be found in the work of Sebag 
(1997). Sebag proposed DISTILL, one of the first distance functions that was not based on 
the syntax of the description of a given instance, but on inducing a collection of discriminant 
hypotheses. The idea is to pick random pairs of examples of different classes, and find hypoth-
eses (concept descriptions) that separate them. After this, each instance is re-represented as a 
boolean vector (with one position per hypothesis, representing whether the instance satisfies 
the hypothesis or not). Distance between instances can then be defined as a Hamming distance 
between these vectors.

Sebag’s idea is related to what has later been referred to as fingerprinting similarity func-
tions (see fingerprinting kernels described above in Sect. 3.4), or as binary hashing  (Datar 
et al. 2004), which are common in the literature of computational biology, and on information 
retrieval. Also, notice that this idea is also related to the idea of the property-based similarity 
described in Sect. 3.3.

A significant amount of work on semantic distance functions has been carried out within 
the Description Logic community (see for example an early review by Borgida et al. 2005). An 
example of this line of work is the work of Hu et al. (2006). They proposed the idea of unfold-
ing concepts, which means taking a concept definition and transforming it into a description 
that only contains “primitive concepts” from a Description Logic ontology via the application 
of a set of transformation rules (and forbidding circular concept definitions in the ontology to 
ensure termination). Once unfolded, concepts descriptions can be transformed into a signature 
vector with one position per primitive concept in the ontology, and where the value corre-
sponds to the number of times that each concept appears in the unfolded concept definition. 
Computing distances between concepts is then reduced to computing the distance between 
these vectors. Specifically, they propose to calculate a weight for each vector position using 
term frequency-inverse document frequency (TF-IDF)  (Singhal 2001). One particularity of 
this distance function is that, in order to capture negation, they reverse the sign of the weights 
for concepts appearing with a negation in a concept definition, thus, using their proposed simi-
larity function equation, some concepts might have negative similarity, which violates some of 
the basic properties of similarity and distance functions (see Definition 2):

where C1 and C2 are two signature vectors representing two concepts, and wi represent the 
TF-IDF weights for each of the primitive concepts in the ontology for each of the two 

sHu(C1,C2) =

∑
wi∈C1,w

�
i
∈C2

wi × w�
i�∑

wi∈C1
w2
i

�∑
w�
i
∈C2

w�
i

2
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signature vectors (notice that these weights are negative if the primitive concept appears 
negated in the definition).

A hybrid measure that integrates syntactic and semantic information was proposed by 
d’Amato et al. (2006) to compare concepts in the ALC Description Logic. Specifically, they 
propose a distance function defined recursively (such as the syntactic measures described 
above), but that is employs a Resnik-style semantic measure to compare primitive concepts. 
For example, to compare two concept definitions C = C1 ⊔ ... ⊔ Cn and D = D1 ⊔ ... ⊔ Dm 
defined as the union of sets of more primitive concepts, the distance function is defined as 
follows (similar to the syntactic measures above):

This definition then recursively calls f⊓ , etc. decomposing the distance function based on 
the different Description Logic constructs to define concepts. In the end, when comparing 
primitive concepts, the distance function is defined as:

where IC stands for information content and is assessed as IC(C) = logP(C) ), where P(C) 
is the probability of encountering an instance of concept C, which is estimated using the 
individuals in the ABox. Thus, as can be seen, this function combines both syntactic and 
semantic elements to compare concept descriptions in Description Logic. The proposed 
approach can be extended to compare individuals by using the idea of the MSC (most spe-
cific concept), which is the most specific concept description that covers an individual. So, 
to compare two individuals, we compute their MSCs, and then assess the distance between 
them.

An interesting note is that semantic distance and similarity functions tend to violate the 
disjointness incompatibility property discussed above, whereas syntactic functions do not.

4.3  Propositionalization

Another traditional approach to apply machine learning methods in general in structured 
representations is that of propositionalizarion  (Kramer et  al. 2001; Krogel et  al. 2003). 
Propositionalization consists of translating a structured representation into a flat proposi-
tional (usually a Boolean fixed-size feature vector, but some approaches can create non-
Boolean features), so that standard machine learning methods, or in our case distance func-
tions for propositional data, can be applied. Propositionalization is related to the ideas of 
predicate construction or predicate invention (Kok and Domingos 2007).

A representative example of this approach is the SINUS system (Krogel et  al. 2003), 
which constructs features by systematically considering conjunctions of literals, and then 
evaluating them using a “quality measure” to filter out features that are not useful.

Although propositionalization has not had widespread use for defining distance func-
tions, it has been used implicitly for this purpose in the context of clustering. For exam-
ple the COING system (Bournaud et al. 2002) clustered graph-based data by increasingly 

f⊔(C,D) =

⎧⎪⎨⎪⎩

0 if C ≡ D

∞ if C ⊓ D = ⊥

maxi∈[1,..,n],j∈[1,...,m]f⊓(Ci,Di) otherwise

fprimitive(C,D) =

{
∞ if C ⊓ D = ⊥
IC(C⊓D)+1

IC(C⊔D)+1
otherwise
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enlarging a propositional representation using propositionalization until a satisfactory clus-
tering of the data has been reached.

4.4  Refinement graphs

As mentioned above, distance functions defined over refinement graphs, are applicable to a 
large set of structured representations, given that appropriate refinement operators and sub-
sumption relation are available. Both similarity functions described in Sect. 3.3 are appli-
cable, and have been applied, to logic-based representations.

For example, Ontanón and Plaza (2012) defined refinement operators for feature terms 
and used them to define similarity functions, Sánchez-Ruiz et al. (2011) did the same for 
the EL description logic, and Sánchez-Ruiz et al. (2016) for description logic conjunctive 
queries. Moreover, refinement operators for other logical representations have been pro-
posed in the literature, and can be used to define distance functions, for example: for LC 
description logic (Lehmann and Hitzler 2007), EL description logic (Lehmann and Haase 
2009), ALER description logic (Badea and Nienhuys-Cheng 1999).

As with the distance functions based on refinement operators for graphs-based data, the 
main drawback of distance functions defined for logic-based representations is the com-
putational complexity, as subsumption (required for distance calculations) tends to be an 
expensive operation.

Distance functions defined based on refinement graphs could be considered as syntactic 
or as semantic depending on how the subsumption relation used is defined. If subsumption 
is defined over the syntax of the descriptions, then these are syntactic, and if it is defined 
over the interpretations of the descriptions, then these are semantic.

4.5  Kernels for logic‑based representations

Finally, there has also been a significant amount of work on defining kernels for logic-
based representations, or encapsulating existing distance functions for logic-based repre-
sentations into kernels.

An early example of this line of research is the work of Gärtner et  al. (2002), who 
defined a kernel for a typed higher-order logic based on an extension of Church’s sim-
ple theory of types (Church 1940) with type constructors, terms, and functions. The key 
idea is to assume the existence of a set of base kernels for the different data constructors 
of their logic representation. For example, for the data constructor Nat, representing the 
natural numbers, the product kernel ( kNat(m, n) = mn ) can be used. Then, given two terms 
s = fs(s1, ..., sn) and t = ft(t1, ..., tn) , with functors of type F, the kernel is defined as follows:

If s and t are two functions with type S → I , then the kernel is defined as:

where supp(s) and supp(t) represent the support of s and t respectively. Thus, notice that 
this kernel is basically another instance of the idea of hierarchical aggregation that was 
already present in distance functions such as RIBL or SHAUD, but in the form of a kernel.

k(t1, t2) =

�
kF(fs, ft) if fs ≠ ft
kF(fs, fs) +

∑
i=1,...n k(si, ti) otherwise

k(s, t) =
∑

u∈supp(s),v∈supp(t)

k(s(u), t(v))k(u, v)
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SVILP (Support Vector Inductive Logic Programming)  (Muggleton et  al. 2005) 
is a framework based on kernels for Horn clauses. The main difference with the kernel 
described in the previous paragraph is that the kernel in SVILP uses logical background 
knowledge. Thus, while Gärtner et  al. (2002) kernel is syntactic and only considers the 
syntactic representation of terms, SVILP’s kernel considers that there might be background 
knowledge B in the form of logical rules, with which inferences can be drawn that affect 
the similarity calculations. Specifically, the kernel is defined as follows. Given a hypothesis 
space H (where every hypothesis is a logical clause), we say that a hypothesis h ∈ H cov-
ers a specific instance x if B, h ⊨ x (i.e., if the instance is entailed by the hypothesis and the 
background knowledge). Now, given a set of hypothesis H ⊆ H , and a probability distribu-
tion over these hypotheses: � ∶ H → [0, 1] such that 

∑
h∈H �(h) = 1 , the kernel is defined 

as:

where 𝜏(x) = {h ∈ H|B, h ⊨ x} , and f (H�) =
∑

h∈H� �(h) . Thus, the kernel is defined as the 
sum of the probabilities of the hypotheses that cover both instances (which can be shown to 
be a positive definite kernel).

Kernels have also been defined for Description Logics. For example, Fanizzi and 
d’Amato (2006) defined a kernel for descriptions in the ALC Description Logic. The 
proposed kernel uses a very similar definition to the distance function by d’Amato et al. 
(2006). In order to go beyond the kernel being a mere syntactic measure, they require con-
cepts to be expressed in a normal form. Given this normal form, the kernel is then defined 
recursively depending on whether the top operator in the expressions is a disjunction, a 
conjunction or if we are down to the level of primitive concepts. Given two descriptions in 
normal form D1 = ⊔i=1...nC

1
i
 and D2 = ⊔i=1...mC

2
i
 , the kernel is defined as:

where � ∈ (0, 1] is used to lower the weight of comparisons done deep into the descriptions, 
and thus, it decreases with every recursive call of the kernel. At each recursive call, either 
the definition for disjunctions (shown above) or that for conjunctions is used, depending 
on the top operator of the descriptions, until reaching the level of primitive concepts, for 
which the set kernel defined by Gärtner et al. (2004) is used to compare the interpretations 
of the primitive concepts (which are the sets of individuals from the ABox covered by the 
concepts). An extension of this kernel for the ALCN  Description Logic was presented by 
Fanizzi and d’Amato (2008).

Finally, another idea that has been used is to represent Description Logic expressions as 
graphs, and then use graph kernels. For example de Vries and de Rooij (2015) compared 
several of the kernels described in Sect. 3.4 such as subtree occurrence kernels, marginal-
ized kernels, and compared them against simple bag of labels baseline kernels, showing 
that subtree occurrence kernels had the best performance.

5  Distance functions for frame‑based representations

Most work on frame-based or object-oriented representations has been inspired by the so 
called local-global principle  (Wess 1995), where similarity is assessed using two sepa-
rate functions: a local similarity function is defined for individual properties or slots of the 

k(x1, x2) = f (�(x1) ∩ �(x2))

k(D1,D2) = �
∑
i=1...n

∑
j=1...m

k(C1
i
,C2

j
)
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descriptions being compared, and a global similarity function is used to aggregate these 
local similarities. Notice that this idea is basically the same as the hierarchical aggregation 
idea described in Sect. 4.1, and thus distance functions based on the local-global principle 
are based on the same ideas as most syntactic similarity functions between logical repre-
sentations described above.

One of the best known local-global principle-based similarity function was presented 
by Bergmann and Stahl (1998), dividing the similarity function calculation between two 
object-oriented representations in two steps: intra-class similarity and inter-class similar-
ity). Intra-class similarity between two instances x1 and x2 is defined as:

where Φ is an aggregation function (e.g., the average, or the sum), slocal is a similarity 
function between attribute values, and a1 , ..., an are the shared attributes between the two 
instances. Inter-class similarity is assessed as:

where class(x1) represents the class of a given instance, and class(x1) ⊓ class(x2) 
refers to the most specific common parent of the classes of both instances. In the work 
of Bergman and Stahl, they propose to annotate the class hierarchies with a similar-
ity value SC for each class C. Similarity between two instances is then defined as 
s(x1, x2) = sintra(x1, x2) ∗ sinter(x1, x2).

Notice that, although not noted by the original authors, sinter is basically a similarity 
function between elements in a hierarchy (Sect. 2.2.4), and thus, Rada’s or Resnik’s ideas 
can be used to define the SC values. Also notice that, as mentioned above, some logic-based 
similarity functions are very related to these ideas, and in particular, the LAUD similarity 
function mentioned in Sect.  4.1.2 is a particular case of Bergman and Stahl’s similarity 
function.

Several other similarity functions have been defined that follow the same idea. For 
example, Assali et al. (2009) propose a similarity function that is a particular case Berg-
man and Stahl’s, by defining Φ to be the average, and defining SC as:

where depth is a function that determines the depth of a given class in the class hierarchy 
(with the root node having depth 0). Moreover, Assali et al. consider a framework where 
instances are represented as sets of descriptions (each of them an object-oriented descrip-
tion), and thus, to assess similarity they first need to find a mapping between descriptions 
of two instances, and then apply the equations above.

Additionally, even of similarity functions between workflows are better characterized as 
graph-based similarities, Bergmann and Gil (2014) propose a measure that is a direct appli-
cation of the local-global principle to comparing workflows. A workflow can be seen as a 
graph, where vertices represent processes, and edges represent control or data flow. In their 
framework they consider a graph-based representation of workflows where each edge and 
vertex is annotated with a Description Logic description. Thus, they use a local similarity 
function between edges and vertices, based on similarity functions for Description Logics, 
and a global similarity function based on finding a mapping between two workflows and 

sintra(x1, x2) = Φ(slocal(x1.a1, x2, a1), ..., slocal(x1.an, x2, an))

sinter(x1, x2) =

{
1 id class(x1) = class(x2)
Sclass(x1)⊓class(x2) otherwise

sC(x1, x2) =
2 × depth(class(x1) ⊓ class(x2))

depth(class(x1)) + depth(class(x2))
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then adding the similarity values of the pairs, normalized by the number of edges and ver-
tices. As is well known from the graph matching literature (see above), finding this global 
mapping is intractable. The authors use an A∗ algorithm to calculate, but other modern 
graph matching algorithm could be used instead

Finally, the work on similarity functions for feature term representations above 
(Sect. 4.1.2) can be considered as distance functions for frame-based representations, since 
feature terms were conceived as a formalization of object oriented representations. Thus, 
measures such as LAUD, SHAUD or those based on refinement operators should also be 
considered to fit within this category.

6  Discussion

Sections 3, 4, and 5 have summarized existing work on distance and similarity functions 
for different structured representations. Although the literature on structured similarity 
assessment is vast, there are clear common themes that arise when looking at the body of 
work as a whole, which we will try to summarize in this section.

The first is that although the work has been classified along graph-based, logic-based 
and frame-based representations (with the purpose of providing structure to this paper), 
there is clear overlap between these areas. For example, frame-based representations are 
tightly coupled with logic-based ones. For example, the formalism called feature terms was 
precisely defined to provide a logical substrate to frame-based representations. As a matter 
of fact, frame-based similarity and distance functions are mostly based on ideas from syn-
tactic similarity functions for logic-based frameworks such as “hierarchical aggregation”.

A simple way to understand where does this overlap between the work on all three rep-
resentations comes from is to analyze the basic underlying ideas that give rise to the differ-
ent distance functions covered in this paper. Although there is a very large number of dis-
tance functions proposed in the literature, they all stem from a small set of common ideas. 
Some of the most prevalent ones are:

• Quantify the amount of shared structure: ideas such as the Jaccard similarity, all the 
edge-counting functions, and those based on the calculation of the MCS or antiuni-
fication are instances of this idea. They are all based around determining the shared 
structure (MCS, antiunification, intersection, etc.), and then applying some metric to it 
to measure its size. Edit distances can also be seen as a variation of this idea (where the 
differences, rather than the similarities are counted), and as explained above, in some 
cases, it can be seen that edit distances and calculating shared structure (e.g., MCS) are 
equivalent.

• Measure information content: this idea stems from the realization that not all shared 
structure is equally important. There might be shared features that are not relevant for 
the task at hand. Thus, information content-based measures use information theoretical 
measures to determine the amount of information that is shared between two structures.

• Fingerprinting: i.e., the idea of transforming a structured object into a (usually binary) 
vectors where each position corresponds to whether the object satisfies a certain test 
or not, is another idea that appears in a significant amount of work, not just in kernel-
based measures, but propositionalization techniques and some of the early semantic dis-
tance functions for logical structures can be seen as a particular instance of this.
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Also, we should note that most of these ideas come from non-structured representations. 
For example, the idea of quantifying the amount of shared structure can be seen as a gen-
eralization of the Jaccard-style similarity functions for sets to structured representations, 
and information content measures stem from distance functions between elements in a 
taxonomy.

Thus, many of the different functions covered in this paper can be seen as the different 
instantiations of these shared ideas, which take different forms in different representation 
formalisms. For example, while to measure similarity between sets using the Jaccard simi-
larity, we need to calculate the “intersection” between sets, if we are doing so for graphs, 
we need to compute the MCS, and if we are doing so for logical expressions, then we 
need to calculate an antiunifier. Another example is the local-global distance functions for 
frame-based representations  (Wess 1995), which are basically a direct generalization of 
Euclidean distances for vectors.

These ideas and their relations are summarized in Fig. 2, where we can see that there are 
several ideas (like edit-distances, refinement operators or kernels) that apply across all rep-
resentation formalisms. The advantage of these general ideas is that they are universal and 
can be applied to any type of data. For example, the same exact formulation of a refinement 
operator-based distance function can be applied to graphs, frames or logical expressions. 
However, the price to pay is computational complexity, as refinement operator distances, or 
edit distances are computationally very expensive. Thus the work on numerical approxima-
tions to these functions.

Figure 2 also makes explicit how the different basic ideas of similarity for non-struc-
tured data types have influenced the work on structured distance and similarity functions. 
For example, the basic idea of edge counting, originally proposed for defining distance 
functions between elements of a taxonomy, when instantiated for different structured data 
representations gives rise to graph edit distances (where “edge counting” transforms into 
“edit operation counting”), or antiunification-based distances (where we see the subsump-
tion graph as a taxonomy and directly apply edge counting), among others.

Additionally, by looking at all of these distance and similarity concepts side by side, we 
can also identify other types of relations between them. For example, as we saw in Sect. 3, 
the Jaccard index and the idea of edge counting in taxonomies are very related ideas: both 
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count the size of what do two objects have in common (the intersection in the case of sets, 
or their common ancestor in the case of taxonomies). Thus, when instantiating these two 
ideas in data structures like graphs, they correspond to MCS-type functions.

Moreover, the key difference between each of these similarity or distance functions 
is their bias. The bias of a machine learning method (often called the inductive bias) is 
defined as the mechanisms and preferences that are intrinsic to a particular algorithm and 
that given some training data make it select a specific given hypothesis or model of the 
data from all the other equally good models in the hypothesis space (Mitchell 1980). In the 
same way, distance and similarity functions encode their own biases. For example, hier-
archical aggregation methods for tree-based representations consider that the information 
that is deeper in the tree is less important that that on the shallower levels of the tree. While 
this could suit some domains, it might not suit others. Thus, it is important to understand 
the types of similarities and differences each function considers, and which biases it intro-
duces, since one or another might be better suited for a particular application domain (as 
could be expected, given the no free lunch theorem Wolpert 1996).

This is not unique to distance functions for structured data, as the same is true for clas-
sic distance functions. Consider, for example, the case of the Euclidean distance and the 
Cosine similarity. While both are designed to compare real valued vectors, the Cosine sim-
ilarity is “blind” to the magnitude of the vectors and only considers their relative orienta-
tion. In some application domains, this is convenient, as the magnitude of the vectors might 
be irrelevant, but in some others the magnitude might be relevant, and thus Euclidean dis-
tance will be more appropriate. Thus, in summary, it is important to understand what is it 
that a given similarity or distance function is exactly measuring, as this will introduce a 
bias, which will suit some tasks but not others.

To this extend, functions that allow for fitting, i.e., those that contain parameters that 
can be trained given some training data, are interesting, since they can, to some extend 
adapt their implicit bias to specific domains (although, as is well known in machine learn-
ing, bias cannot be completely eliminated, as even the choice of knowledge representation 
used introduces a certain bias). This is not specific to structure representations. For exam-
ple, in feature vectors, when deciding between when to use, say cosine similarity or Euclid-
ean distance, the key is wether the magnitude of the vectors is important in our application 
domain (which is ignored by cosine similarity, but considered by Euclidean distance, thus 
introducing a different type of bias).

7  Conclusions and open research questions

This paper has presented an overview of existing work on distance and similarity func-
tions for structured data representations. This is an important line of work, as data in many 
real world applications, such as in biomedical domains, is inherently structured. Specifi-
cally, we have organized the existing work along three types of representation formalisms: 
graphs, logic and frames, and discussed the different ideas existing in the literature con-
cerning distance and similarity.

Despite the large body of work in structure similarity assessment, there are still a num-
ber of open research questions that need addressing. Some of these include:

Scalability many of the most powerful distance functions (such as edit distances and 
refinement operator-based ones), have a prohibitive computational complexity when 
dealing with either graph-based representations or complex logic-based ones. Although 
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efficient approximations exist for some cases, this is not true in general. An interesting 
research direction would be the potential to exploit recent ideas of graph embeddings using 
neural networks to learn approximations to some of these distance functions, or to directly 
define fitted distance functions given a training set that would be efficient to calculate once 
the embedding network has been trained. An important related idea is that of graph net-
works (Battaglia et al. 2018), a family of neural networks designed to handle relational and 
graph data that has emerged over the past decade or so. Integrating classic ideas of distance 
and similarity with modern machine learning techniques might allow to scale up and har-
ness very large amounts of data is thus a very promising future research direction.

Promising results on this direction were recently published by Li et al. (2019), as dis-
cussed in Sect. 3.5.

Cross-representation functions another open problem is that of defining general dis-
tance and similarity functions. Most of the work on distance function definition reported 
in this paper comes from separate communities (such as graph matching, inductive logic 
programming, machine learning, case-based reasoning). As a consequence, many of the 
ideas have been reinvented in these different fields. A unified theory of distance or simi-
larity assessment for structured representations that could unify all of this work does not 
exist, and distance functions that are independent of the underlying representation formal-
ism also do not exist.

Metric learning as discussed in several parts of this paper, different distance functions 
just capture different biases on assessing what is or not similar between two instances. 
However, without specifying a particular task at hand, choosing between one distance 
function or another is arbitrary, as different functions would be better suited for different 
tasks. Thus, research (such as metric learning) in defining distance functions that can be 
fitted to a given specific domain given training data is a very important research direction. 
Although work on metric learning for structured representations has started, more work is 
needed in order to have practical alternatives that can scale to large structured representa-
tions. Again, the idea of graph networks mentioned above can play an important role in 
future work in this direction.

Interpretability finally, many distance functions are black boxes, and it is hard to 
understand why have they produced a given distance value. While some work (e.g., that 
of Plaza et al. 2005) has worked on producing symbolic similarity values that are human 
interpretable, in general, most distance functions are still opaque. Research into how to 
explain predictions mace by distance function-based machine learning algorithms is thus 
needed.
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