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Abstract
Pseudo-Boolean (PB) constraints are ubiquitous in Constraint Satisfaction Problems. 
Encoding such constraints to SAT has proved to be an efficient solving approach. A com-
monly used technique for encoding PB constraints consists in representing the constraint 
as a Binary Decision Diagram (BDD), and then encoding this BDD to SAT. A key point 
in this technique is to obtain small BDD representations to generate small SAT formulas. 
In many problems, some subsets of the Boolean variables occurring in a PB constraint 
may also have other constraints imposed on them. In this work we introduce a way to take 
advantage of those constraints in order to obtain smaller SAT encodings. The main idea is 
that decision diagrams may be smaller if they avoid to represent truth assignments that are 
already forbidden by some other constraints. In particular, we present encodings for mono-
tonic decreasing PB constraints, in conjunction with other constraints such as at-most-one, 
exactly-one and implication chains on subsets of their variables. We provide empirical evi-
dence of the usefulness of this technique to reduce the size of the encodings as well as the 
solving time.

Keywords  Pseudo-Boolean · Decision diagram · At-most-one · Exactly-one · Implication 
chain · SAT · Encodings

1  Introduction

Pseudo-Boolean (PB) constraints are linear expressions of the form 
∑n

i=1
qixi#K , where 

# ∈ {<,≤,=,≥,>} , q1,… , qn and K are integer constants, and x1,… , xn are 0/1 vari-
ables. A PB constraint represents a Boolean function f ∶ {0, 1}n → {0, 1} . A well-known 
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approach to solve PB constraints is to represent them as Binary Decision Diagrams (BDD), 
which are then encoded into SAT (Eén and Sorensson 2006; Abío et al. 2012).

PB constraints appear frequently in formulations of Constraint Satisfaction Problems 
(CSP). Sometimes, there are also other constraints imposed on the Boolean variables of 
a PB constraint. A very frequent case is that of the at-most-one (AMO) constraint, which 
states that at most one of the Boolean variables in a set can be assigned true. For exam-
ple, in routing problems (Miller et al. 1960; Dantzig and Ramser 1959; Laporte 1992), the 
length of paths can be represented using PB constraints, where each variable encodes if the 
path is joining two particular points. Since it is usually required that Hamiltonian paths are 
followed, only one variable among the ones which represent going from a particular point 
to any other can be set to true. Also, in combinatorial auctions the objective function is 
usually a PB constraint (De Vries and Vohra 2003; Bofill et al. 2013), where each Boolean 
variable represents whether a certain bid has been selected. The PB constraint contains 
all the possible bids, but many bids can contain a same product, and therefore at most one 
among them can be selected. In the general context of scheduling, PB constraints are a nat-
ural way to express constraints over the use of shared resources (Pritsker et al. 1996; Bofill 
et al. 2016, 2017). In these constraints, Boolean variables usually state the execution of a 
certain activity at a certain time point. Many notions of incompatibility between activities 
arise: there can be precedences between activities, or it may have to be decided a single 
running configuration for each activity. It is also usual to find exactly-one (EO) constraints 
in this kind of problems, in which case assigning all variables to false is neither allowed.

It is well known that the search for small SAT encodings is a worthwhile technique to 
achieve better solving times (Bacchus and Winter 2003; Eén and Biere 2005). In this work, 
we show how to reduce the size of the decision diagram representations of PB constraints, 
taking into account the AMO constraints that are also present (either explicitly or implic-
itly) in the problem. The overall idea is to remove from the decision diagrams the paths 
whose corresponding variable assignments are already forbidden by the AMO constraints. 
This way, the decision diagrams do not represent such inconsistent assignments, i.e., they 
only cover the subset of the assignments that are consistent with the AMO constraints, and 
hence they can be much smaller.

In summary, we propose to obtain small SAT encodings of PB constraints by taking 
into account that some assignments are forbidden due to other constraints. We introduce 
the general notion of PB(C  ) constraint, which is defined as the conjunction of a PB con-
straint with a set of constraints C  . In particular, we focus on PB(AMO) constraints, defined 
as the conjunction of a PB constraint and a set of AMO constraints. We use a compact 
Multi-valued Decision Diagram (MDD) representation for the PB constraints, taking into 
account the AMO constraints imposed. Finally, by encoding such compact diagrams to 
SAT, together with the rest of constraints, we are able to obtain very small SAT encodings 
of PB(AMO) constraints. As we show in the experimental section, the small size of the 
encodings obtained with our treatment has a dramatic impact on the solving time of some 
well-known problems.

The main contributions and organization of the paper are:

•	 In Sect. 2 we review some basic notions and notation.
•	 In Sect. 3 we introduce PB(C  ) constraints and the particular case of PB(AMO) con-

straints.
•	 In Sect. 4 we present AMO-MDDs, a Multi-valued Decision Diagram representation 

for PB constraints under the assumption of AMO constraints, and provide an algorithm 
to construct reduced ordered AMO-MDDs.
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•	 In Sect. 5 we provide an AMO-MDD based SAT encoding of monotonic decreasing 
PB(AMO) constraints. We prove its correctness and that it UP-maintains GAC.

•	 In Sect.  6 we present some reformulation techniques that allow us to reduce other 
PB(C  ) constraints to monotonic decreasing PB(AMO) constraints, namely (i) PB(EO) 
constraints; (ii) not monotonic decreasing PB(AMO) constraints; (iii) PB constraints 
with implication chains.

•	 In Sect. 7 we experimentally evaluate our contributions.
•	 In Sect. 8 we discuss related work.
•	 In Sect. 9 we conclude and discuss further work.

This work is an extended version of  Bofill et  al. (2017), where it is shown how PB 
and AMO constraints can be used in an SMT based approach for solving two well-known 
scheduling problems, namely the MRCPSP and the RCPSP/t. In these problems, there 
exist PB constraints on resources with several AMO constraints among their variables. The 
obtained encodings are so compact that this approach turns to be the state-of-the-art among 
exact approaches.

In this paper we provide the general framework of PB(C  ) constraints to model con-
junctions of PB constraints and other constraints over the variables of the PB constraint. 
We also present additional reformulations, correctness proofs and a detailed experimental 
section with experiments on two additional problem classes: Multiple-choice Multidimen-
sional Knapsack Problem (MMKP), and the Combinatorial Auction problem (CA).

2 � Preliminaries

In this section we review some notions on SAT formulas, pseudo-Boolean constraints, at-
most-one constraints, and decision diagrams, and introduce the notation that we use in the 
rest of the paper.

A Boolean variable is a variable than can take truth values 0 (false) and 1 (true). A lit-
eral is a Boolean variable x or its negation x . A clause is a disjunction of literals. A propo-
sitional formula in conjunctive normal form (CNF) is a conjunction of clauses. Clauses 
are usually seen as sets of literals, and formulas as sets of clauses. A Boolean function is a 
function of the form f ∶ {0, 1}n → {0, 1} . In this paper we will only consider constraints 
which are defined on a finite set of Boolean variables, i.e., Boolean functions. The scope 
of a constraint is the set of variables which appear in the constraint. An assignment is a 
mapping of Boolean variables to truth values; it can also be seen as a set of literals (e.g., 
{x = 1, y = 0, z = 0} is usually denoted {x, y, z} ). A  satisfying assignment of a Boolean 
function f is an assignment that makes it evaluate to 1. In particular, an assignment A sat-
isfies a formula F in CNF if at least one literal of each clause in F belongs to A. Such an 
assignment is called a model of the formula. W.l.o.g., we will assume that all propositional 
formulas are in CNF. SAT is the problem of determining if there exists a satisfying assign-
ment for a given Boolean formula. Given two Boolean functions (or constraints) f and g, 
we say that g is a logical consequence of f, written f ⊧ g , iff every model of f is also a 
model of g. We say that two Boolean functions f and g are logically equivalent, denoted 
f ≡ g , if f ⊧ g and g ⊧ f .

We say that a formula E(C) is an encoding of a constraint C if the following holds: given 
an assignment A over the variables of C, A satisfies C iff A can be extended to a satisfying 
assignment of E(C).
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Unit propagation (UP) is the core deduction mechanism in modern SAT solvers: 
whenever each literal of a clause but one is false, the remaining literal must be set to 
true in order to satisfy the clause. An encoding E(C) of a constraint C is said to maintain 
Generalized Arc Consistency by Unit Propagation (UP-maintain GAC​) if it satisfies the 
following property: given a partial assignment A, if a variable x of C is true (respec-
tively false) in every extension of A satisfying C, then unit propagating A on E(C) will 
extend A to A ∪ {x} (respectively A ∪ {x}) (Bailleux et al. 2009).

Example 1  Given the constraint at most one of x1 , x2 , x3 is true, where x1 , x2 , x3 are Boolean 
variables, the following set of clauses is a UP-maintaining GAC encoding of the constraint:

Given an assignment with one variable assigned to true, w.l.o.g. x1 , the other two variables 
must be assigned to false to satisfy the constraint. Unit propagation would assign x2 and x3 
to false due to the first and the third clauses.

Definition 1  An at-most-one (AMO) constraint is a Boolean function of the form ∑n

i=1
xi ≤ 1 , where all xi are 0/1 variables.

Definition 2  An at-least-one (ALO) constraint is a Boolean function of the form ∑n

i=1
xi ≥ 1 , where all xi are 0/1 variables.

Definition 3  An exactly-one (EO) constraint is a Boolean function of the form ∑n

i=1
xi = 1 , where all xi are 0/1 variables. It can be defined the conjunction of an AMO 

constraint and an ALO constraint.

Definition 4  A pseudo-Boolean (PB) constraint is a Boolean function of the form ∑n

i=1
qixi#K where K and all qi are integer constants, all xi are 0/1 variables, and 

# ∈ {<,≤,=,≥,>}.

As usual in the literature and w.l.o.g. we will assume that # is ≤ , and that the qi and 
K are positive, since the other cases can be easily reduced to this one (Eén and Sorens-
son 2006). Such a constraint ( ≤ with positive coefficients) is monotonic decreasing in 
the sense that any model remains a model after flipping inputs from 1 to 0 (Abío et al. 
2012).

Definition 5  A Binary Decision Diagram (BDD) is a rooted, directed, acyclic graph 
which represents a Boolean function. BDDs have two terminal nodes, namely ⊥-termi-
nal and ⊤-terminal. Each nonterminal node has associated a Boolean variable (selector), 
and has two outgoing edges, representing the true and the false assignment of the selector. 
Every truth assignment of the variables follows a path from the root to the ⊤-terminal when 
it satisfies the formula, or to the ⊥-terminal otherwise.

A BDD is called ordered if different variables appear in the same order on all paths 
from the root. A BDD is said to be reduced if it satisfies the following two conditions:

•	 It contains no isomorphic sub-BDDs.
•	 There is no node whose true and false child are the same.

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3)
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A Reduced Ordered Binary Decision Diagram (ROBDD) is canonical (unique) for a 
particular function and given variable order.

(RO)BDDs can in particular represent PB constraints  (Eén and Sorensson 2006). 
Figure  1 contains a non-reduced ordered BDD representation of the PB constraint 
2x1 + 3x2 + 4x3 + 6x4 ≤ 7 with the variable ordering x1 ≺ x2 ≺ x3 ≺ x4 . Figure 2 shows 
the ROBDD representation of the same PB constraint and variable order. As seen in 
the pictures, an ordered BDD can be organized in different layers, where at each layer 
it is considered a different selector variable. For instance, in all the nodes of the second 
layer we choose whether to set x2 to 1 or to 0.

The ROBDD for a given PB constraint and variable order can be constructed in 
polynomial time w.r.t. the size of the final ROBDD (Abío et al. 2012).

Fig. 1   Non-reduced Ordered BDD for the PB constraint 2x1 + 3x2 + 4x3 + 6x4 ≤ 7 with variable ordering 
x1 ≺ x2 ≺ x3 ≺ x4

Fig. 2   ROBDD for the PB con-
straint 2x1 + 3x2 + 4x3 + 6x4 ≤ 7 
with variable ordering 
x1 ≺ x2 ≺ x3 ≺ x4
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2.1 � Paper notation

In order to ease the readability of the paper, we provide an overview of the nomenclature 
conventions that we use to identify instances of the elements occurring the most through-
out this paper:

•	 We denote Boolean functions with letters f and g.
•	 We denote constraints (over Boolean variables) with letter C, and with other letters 

in particular cases: P for PB constraints, AM for AMO constraints, PA for PB(AMO) 
constraints, PC for PB(C  ) constraints, EO for EO constraints and IC for implication 
chains.

•	 We denote Boolean formulas with letter F, or with E(C) when the formulas are encod-
ings of a constraint C.

•	 We denote variable assignments with letters A and B.
•	 We denote Boolean variables with letter x, and sets of Boolean variables with letter X.
•	 We denote coefficients in a PB constraint with letter q, and the right-hand side of a PB 

constraint with letter K.
•	 We denote AMO-MDDs with letter M.

Most of times the previous terms are sub-scripted to identify different occurrences of a 
same kind of element.

3 � Conjunctions of pseudo‑Boolean constraints with other constraints

Given a constraint PC of the form P ∧ C1 ∧⋯ ∧ Cm , where P is a pseudo-Boolean con-
straint and C1,… ,Cm are any other constraints, a straightforward approach to encode it 
is to generate a formula E(P) ∧ E(C1 ∧⋯ ∧ Cm) , where E(P) is an encoding of P, and 
E(C1 ∧⋯ ∧ Cm) is an encoding of C1 ∧⋯ ∧ Cm . We propose to relax the encoding of P by 
only considering assignments that satisfy C1 ∧⋯ ∧ Cm , since the remaining assignments 
falsify PC.

Let us develop this idea with a motivating example.

Example 2  Consider a constraint PC ∶ P ∧ C1 ∧ C2 over Boolean variables x1, x2, x3 , which 
has the following truth table, with assignments labelled A0,… ,A7:

�
�

�
�

�
�

P C1 C2 P ∧ C1 ∧ C2

A0 0 0 0 0 1 0 0
A1 0 0 1 1 1 1 1
A2 0 1 0 1 1 0 0
A3 0 1 1 0 0 1 0
A4 1 0 0 1 1 1 1
A5 1 0 1 0 0 0 0
A6 1 1 0 0 1 1 0
A7 1 1 1 1 0 1 0
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The straightforward approach to encode the constraint is to generate two formulas E(P), 
E(C1 ∧ C2) which are encodings of P and C1 ∧ C2 respectively, so that E(P) ∧ E(C1 ∧ C2) 
is an encoding of PC. Note that the assignments A0 , A2 , A3 , A5 and A7 are not extendable 
to a model of E(C1 ∧ C2) , regardless of the satisfiability of E(P) under these assignments. 
Therefore, E(P) could be replaced by a formula F such that A1 and A4 are extendable to a 
model of F, and A6 is not. For such formula F, independently of its evaluation on assign-
ments A0 , A2 , A3 , A5 and A7 , we have that F ∧ E(C1 ∧ C2) is an encoding of PC. The poten-
tial of this idea is that F can be substantially smaller than E(P), and this can have a positive 
impact in the solving time.

Definition 6  Let P be a PB constraint and C = {C1,… ,Cm} be a set of constraints over 
the variables of P. We will refer to the formula P ∧ C1 ∧⋯ ∧ Cm as a PB(C) constraint, and 
call it a PB modulo C  constraint.

Following the idea of Example 2, we propose to encode PB(C  ) constraints in a com-
bined way. On the one hand we will encode the conjunction of constraints in C  in the usual 
way, i.e., by encoding each of them separately and using the conjunction of all the resulting 
clauses. On the other hand, we will translate the PB constraint P into a set of clauses that 
may not be equisatisfiable to P. However, these clauses are equisatisfiable to P for assign-
ments that satisfy the accompanying constraints C  . This way, the PB(C  ) constraint is cor-
rectly encoded to SAT, while the set of clauses for P can be significantly smaller than an 
encoding of the PB constraint alone.

The following lemma trivially follows from the definition of encoding (see Sect. 2):

Lemma 1  Let  P ∧ C1 ∧⋯ ∧ Cm  be a PB(C )   constraint, and  E(C1 ∧⋯ ∧ Cm)  an 
encoding of   C1 ∧⋯ ∧ Cm.  Let  F  be a formula such that any assignment  A  satisfy-
ing C1 ∧⋯ ∧ Cm can be extended to a model of F iff A ⊧ P. Then, F ∧ E(C1 ∧⋯ ∧ Cm) is 
an encoding of P ∧ C1 ∧⋯ ∧ Cm.

We can go a bit further in the idea of encoding a relaxation of a pseudo-Boolean con-
straint. In the context of a bigger formula, some constraints C  can be logically implied. We 
can take into account those implied constraints C  to relax the encoding of a PB constraint. 
Moreover, there is no need to encode the implied constraints.

Lemma 2  Let  P  be a PB constraint,  C  any constraint and  E(C)  an encoding 
of C. Let C = {C1,… ,Cm} be a set of constraints such that C ⊧ C1 ∧⋯ ∧ Cm. Let F be a 
formula such that any assignment A satisfying C1 ∧⋯ ∧ Cm can be extended to a model 
of F iff A ⊧ P.  Then, F ∧ E(C) is an encoding of P ∧ C.

In this work we focus in the encoding PB(AMO) constraints, a particular case of PB(C  ) 
constraints defined as the conjunction of a PB constraint and a set of AMO constraints.

Definition 7  By PB(AMO) constraint we refer to a constraint of the form 
P ∧ AM1 ∧⋯ ∧ AMm , where P is a PB constraint, and AM1,… ,AMm are AMO constraints 
such that{scope(AM1),… , scope(AMm)} is a partition of scope(P).

Note that from a set of AMO constraints with non-disjoint scopes, we can always 
extract an implied set of AMO constraints with disjoint scopes, and therefore compose a 
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PB(AMO) constraint. Note also that a variable x can always be included in a single-vari-
able AMO constraint of the form x ≤ 1 . Therefore, PB constraints are a particular case of 
PB(AMO) constraints.

4 � MDD based representation of PB constraints with AMO relations

In this section we show how to represent PB constraints under the assumption of AMO 
constraints using Multi-valued Decision Diagrams (MDDs). In their classical definition, 
MDDs can be seen as a generalization of BDDs which have a multi-valued selector vari-
able in each node instead of a Boolean variable (Srinivasan et al. 1990), and each possible 
value corresponds to a different decision. However, and especially in the context of SAT 
encodings of MDDs, a set of Boolean variables can be used as selectors, each variable rep-
resenting a different decision. We introduce the following variant of MDD.

Definition 8  An At-Most-One Multi-Decision Diagram (AMO-MDD) is a generaliza-
tion of a BDD. It is a rooted, directed, acyclic multigraph which has two terminal nodes, 
namely ⊥-terminal and ⊤-terminal. Each nonterminal node has associated a set of Boolean 
selector variables x1,… , xs , and has an outgoing edge for each variable. Moreover, there 
is an additional outgoing edge, which we denote as the else edge. Each one of the s + 1 
outgoing edges corresponds to a different decision, namely assigning exactly one of the 
xi to true , for i ∈ 1..s , or assigning all of them to false , hence choosing the else edge. The 
definitions of ordered and reduced can be also applied to AMO-MDDs, giving place to 
AMO-ROMDDs.

Given a PB(AMO) constraint of the form P ∧ AM1 ∧⋯ ∧ AMm , such that 
Xi = scope(AMi) for i ∈ 1..m and {X1,… ,Xm} is a partition of scope(P) , we will represent 
its PB constraint P by an AMO-MDD where Xi will be the set of selector variables of the 
nodes in layer  i. This way, all paths from the root to a terminal node will choose (assign 
to 1) at most one of the variables in the scope of each AMi and, therefore, the AMO-
MDD will cover all the assignments that satisfy AM1 ∧⋯ ∧ AMm . In this representation, 
every one of those truth assignments will follow a path from the root to the ⊤-terminal if 
it satisfies P, or to the ⊥-terminal otherwise. Note that assignments which do not satisfy 
AM1 ∧⋯ ∧ AMm (i.e., assigning more than one variable to 1 in the scope of some AMi ) are 
not covered by this AMO-MDD.

As said, unlike ROBDDs representing PB constraints where the i-th layer deals with a 
single variable xi , the i-th layer of an AMO-ROMDD deals with a set of variables Xi . Hence, 
the order of the AMO-ROMDD is defined on sets of selector variables, i.e., the AMO-
ROMDD representation is subject to an ordered partition of the variables of the PB con-
straint. Figure 3 shows the AMO-ROMDD representation of P ∶ 2x1 + 3x2 + 4x3 + 6x4 ≤ 7 
with the ordered partition {x1, x2} ≺ {x3, x4} . Notice the significant reduction in size with 
respect to the ROBDD representation of P in Fig. 2. In particular, the AMO-ROMDD has 
only 2 nonterminal nodes and 6 edges instead of the 6 nonterminal nodes and 12 edges of 
the ROBDD, and the number of layers is reduced from 5 to 3.
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4.1 � AMO‑ROMDD construction

Abío et al. (2012) introduces an algorithm to construct a ROBDD representing a PB con-
straint with a given variable ordering, whose running time is polynomial w.r.t. the size of 
the resulting ROBDD. Here we present a generalization of that algorithm to construct an 
AMO-ROMDD for a PB constraint with a given ordered variable partition X1 ≺ ⋯ ≺ Xm 
of its variables. Our algorithm is very similar to the one presented in Abío and Stuckey 
(2014) to construct MDDs representing Linear Integer Arithmetic expressions. The main 
differences are that here we provide the full algorithm to construct reduced diagrams, 
and that we do not deal with integer variables but a with vector of coefficients of pseudo-
Boolean variables. Notice that our algorithm supports gaps in the values of the coefficients 
as well as repetitions.

For the sake of self-containment, this section carefully describes the proposed algo-
rithm. First of all we introduce the idea of interval for a PB constraint with an associated 
partition.

Definition 9  Let P ∶
∑n

i=1
qixi ≤ K be a PB constraint and let X = {X1,… ,Xm} be a par-

tition of its variables. The interval of P with the partition X  are all the integers K′ such 
that 

∑n

i=1
qixi ≤ K� , interpreted as a Boolean function, has the same evaluation than P for 

any assignment A such that A ⊧
∑

xj∈Xi
xj ≤ 1 , for all Xi ∈ X  . The set of such K′ is always 

an interval that we denote by [�, �].

The idea of interval for a PB constraint is already defined in Abío et  al. (2012). The 
difference is that in our case, where we are given a partition together with a PB constraint, 
intervals only consider the subset of assignments that fulfill the AMO constraints defined 
by the given partition.

Example 3  The interval of the PB constraint x1 + 5x2 + 4x3 + 4x4 ≤ 6 with the partition 
{{x1, x2, x3}, {x4}} of its variables is [5, 7], because its truth table, limited to the assign-
ments satisfying x1 + x2 + x3 ≤ 1 and x4 ≤ 1 , is the same for K� ∈ [5, 7] , and different for 
K� = 4 and K� = 8.

The AMO-ROMDD representation for a given PB constraint and ordered partition of 
its variables is the same for any K′ in its interval. Note also that every node of an AMO-
ROMDD is the root of an AMO-ROMDD, and hence it also has its corresponding inter-
val. In particular, every node at layer i is the root of an AMO-ROMDD representing the 

Fig. 3   AMO-ROMDD for 
2x1 + 3x2 + 4x3 + 5x4 ≤ 7 , 
with ordered partition 
{x1, x2} ≺ {x3, x4} . Multiple 
edges between two nodes are 
represented as a single edge with 
multiple labels
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PB constraint 
∑m

j=i

∑
xk∈Xj

qkxk ≤ K� with ordered partition Xi ≺ ⋯ ≺ Xm , with a different 
K′ at each node. The algorithm presented below maintains a set Li of tuples of the form 
([�, �],M) for each layer i of the AMO-ROMDD, where M is an AMO-ROMDD and 
[�, �] is its corresponding interval. By means of dynamic programming, the AMO-
ROMDD representation of a particular PB and partition is constructed only once, and it 
is inserted in Li together with its interval. This way, given a partition and a PB con-
straint whose K belongs to an interval already stored in the corresponding list Li , the 
stored AMO-ROMDD representation can be reused and therefore its re-computation is 
avoided. On the contrary, if there is no already computed AMO-ROMDD for that PB 
constraint and partition, a new node must be created. The interval of this new node will 
be computed from the intervals of the layer immediately below.

The main procedure is described in Algorithm 1. In order to simplify the notation of 
recursive calls, the algorithm receives as input a PB constraint P ∶

∑n

i=1
qixi ≤ K and an 

ordered partition X1 ≺ ⋯ ≺ Xm of its variables, represented by a pair (Π,K) , where 
Π = p1,… , pm is a list of sets of monomials, such that every set pi contains the monomi-
als qjxj for each variable xj ∈ Xi , i ∈ 1..m . The algorithm starts by inserting the ⊤-termi-
nal and the ⊥-terminal AMO-ROMDDs to every layer, with the corresponding interval 
in that layer (line 2). Namely, the interval ot the ⊥-terminal node is (−∞,−1] at all lay-
ers, and the interval of the ⊤-terminal node for layer j is [

∑
j∈i..m maxqkxk∈pj

(qk),∞) . 
Then, it calls the recursive procedure MDDBuild (Algorithm 2).

MDDBuild searches and eventually inserts AMO-ROMDDs in the lists Li while recur-
sively constructing the global AMO-ROMDD. More precisely, each call checks whether 
the AMO-ROMDD representing the given PB constraint and partition is already con-
tained in Li (lines 1–3), and if it is not, it is obtained and inserted into Li (lines 4–20). To 
obtain this AMO-ROMDD, the child for each possible decision is recursively obtained, 
taking into account that choosing xj contributes with qj to the left-hand-side sum the PB 
constraint (line 7), and that choosing else has a contribution of 0 (line 9). If all the chil-
dren are the same AMO-ROMDD, i.e., all the children have the same interval, no new 
node is created but this unique child is already the AMO-ROMDD that must be returned 
(line 12). Otherwise, the root node for the AMO-ROMDD is created, and its children 
are properly linked (line 15). In both cases, the interval of the resulting AMO-ROMDD 
at layer i is computed as the intersection of the intervals of the children, shifted accord-
ingly. Namely, the interval is computed as shown in line 16, or in a simpler way when 
all the children are the same, as in line 13. Finally, the obtained AMO-ROMDD and its 
interval are inserted in Li and returned. Figure 4 shows an example of which is the con-
tent of each Li after the construction of an AMO-ROMDD.

Algorithm 2 uses the following functions: 

������(K, Li):	� If there is a tuple (I, M) in Li , such that K ∈ I , it is 
returned. Otherwise, an empty interval is returned 
in the first component of the tuple.

������((I,M), Li):	� Inserts (I, M) into the set Li.
����������(q1,… , qs):	� Returns the index of the maximum coefficient in 

the list q1,… , qs.
���(⟨x1,… , xs⟩, ⟨M1,… ,Ms⟩,Melse):	� Constructs an AMO-ROMDD with a new node as 

root, Mj as child for each selector variable xj , and 
Melse as the else child.
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Fig. 4   Content of LL at the end of the construction of the AMO-ROMDD for 
8x1 + 2x2 + 3x3 + 2x4 + x5 + 6x6 + 2x7 ≤ 7 with the ordered partition {x1, x2, x3} ≺ {x4, x5} ≺ {x6, x7} . 
Multiple edges between two nodes are represented as a single edge with multiple labels. At top right, result-
ing set of clauses of the Minimal Encoding of this AMO-ROMDD
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The algorithm in Abío et al. (2012) runs in polynomial time with respect to the size of 
the generated ROBDD. We argue that Algorithm 1, which is a generalization for the case of 
AMO-ROMDDs, preserves the polynomial running time. All the searches and insertions in 
LL in Algorithm 2 can be done in logarithmic time. Algorithm 2 is called once for the root 
node of the AMO-ROMDD, and O(h ⋅ S) times for each edge of the AMO-ROMDD, being h 
the length of the edge, and S = maxpi∈Π

|pi|.

5 � An AMO‑MDD based SAT encoding of monotonic decreasing 
PB(AMO) constraints

In this section we present an adaptation of the encoding for monotonic decreasing functions 
from Abío et al. (2012), which is the smallest known BDD-based encoding, and is the one 
which has shown the best performance in preliminary experiments. Our adaptation deals 
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with PB(AMO) constraints PA ∶ P ∧ AM1 ∧⋯ ∧ AMm , where P is a monotonic decreasing 
PB constraint, i.e., P is of the form 

∑n

i=1
qixi ≤ K , with positive coefficients. We propose a 

method for obtaining a set of clauses F for P such that in conjunction with an encoding of 
AM1 ∧⋯ ∧ AMm gives us an encoding of PA.

Though the generated set of clauses F is not exactly an encoding of P, we refer to it as 
the Minimal Encoding, due to its resemblance to the MDD encoding for Linear Integer 
expressions presented in Abío et al. (2016), also named Minimal. Corollary 1 states which 
is the constraint encoded by the Minimal Encoding.

Minimal Encoding The input of the Minimal Encoding is a monotonic decreasing PB 
constraint P, and a partition of its variables {X1,… ,Xm} . This input is obtained from a 
PB(AMO) of the form P ∧ AM1 ∧⋯ ∧ AMm , where Xi = scope(AMi) for i ∈ 1..m . First of 
all, P and {X1,… ,Xm} are represented as a (RO)AMO-MDD M, and then M is encoded as a 
set of clauses, that we refer to as the Minimal Encoding. We want to remark that this result-
ing set of clauses is not encoding the AMO constraints AM1,… ,AMm which, as explained 
in Sect. 3, are assumed to be encoded or implied separately by other clauses. The actual 
semantics of the set of clauses generated by the Minimal Encoding is that when more than 
one variable of some Xi is assigned to true, only the one with maximum coefficient in P 
is taken into account to evaluate P. This is stated in Corollary 1. Corollary 2 states that 
the Minimal Encoding in conjunction with a separate encoding of AM1 ∧⋯ ∧ AMm is an 
encoding of the whole PB(AMO) constraint.

For each node of the AMO-MDD M at hand, the encoding adds a fresh auxiliary 
Boolean variable v. The encoding will enforce v to be false if the given assignment over 
the variables of the PB constraint follow a path from the current node to the ⊥-terminal 
node. If the root of M is the ⊤-terminal node (i.e., it represents a tautology) the encoding 
only adds the clause vr , being vr the auxiliary variable of the root node. On the other hand, 
if the root of M is the ⊥-terminal node (i.e., it represents a contradiction) the encoding adds 
the clauses vr and vr . Finally, if the root of M is not a terminal node, the clauses vr , v⊤ and 
v⊥ are included in the formula, where vr, v⊤, v⊥ , are the auxiliary variables of the root, the 
⊤-terminal and the ⊥-terminal nodes respectively. Also, the following clauses are added 
for each non-terminal node with set of selector variables Xi , that is representing the PB ∑m

k=i

∑
xl∈Xk

qlxl ≤ K with partition {Xi,… ,Xm}:

Here v is the auxiliary variable of the node, vj is the auxiliary variable of the child 
node pointed by the selector variable xj , and v0 is the auxiliary variable of the else 
child. Intuitively, clause  (1) for a selector xj states that if the child with variable vj is 
false (i.e. 

∑m

k=i+1

∑
xl∈Xk

qlxl > K − qj ) and xj is true, then the current node is also false 
(i.e. qj +

∑m

k=i+1

∑
xl∈Xk

qlxl > K ). Similarly, clause  (2) states that in any case, if the 
else child is false (i.e. 

∑m

k=i+1

∑
xl∈Xk

qlxl > K ), then the current node is also false (i.e. ∑m

k=i

∑
xl∈Xk

qlxl > K ). Notice that a node can have more than one selector variable point-
ing to the same child. In particular, if the edge of a selector variable xj points to the 
else child, there is no need to add clause  (1) for that selector variable, because v0 ∨ v 
implies v0 ∨ xj ∨ v . Figure  4 contains the resulting Minimal Encoding of an example 
AMO-ROMDD.

The following theorems and corollaries are devoted to explain the semantics 
of the Minimal Encoding (Theorem  1 and Corollary  1), to show how the Minimal 

(1)vj ∨ xj ∨ v ∀xj ∈ Xi s.t. vj ≠ v0

(2)v0 ∨ v
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Encoding can be used to encode PB(AMO) constraints (Corollary 2), and to prove that 
the obtained PB(AMO) encoding UP-maintains GAC (Theorem 2).

Theorem  1  Let  P ∶ q1x1 +⋯ + qnxn ≤ K  be a monotonic decreasing PB constraint 
and X = {X1,… ,Xm} be a partition of its variables. Let F be the Minimal Encoding of an 
AMO-MDD representation for  P  and  X ,  and  vr  the auxiliary variable of its root 
node. Let A be any total assignment over the variables {x1,… , xn}, and let C denote the 
constraint  

∑m

i=1
maxxj∈Xi

(qjxj) ≤ K. Then the following holds:

•	 If A is a model of C, then A can be extended to a model of  F.
•	 If A  is not a model of C,  then there exists an extension of   A  that satisfies F ⧵ {vr},   

and any such extension assigns vr false.

Proof  We proceed by induction on the number of summands of C. Note that C has one 
summand for each set Xi.

Base case: In the base case, C is of the form 0 ≤ K , and so is P. 

•	 Assume that we have an assignment A over the variables of P (in fact, an empty 
assignment) satisfying C, i.e., K ≥ 0 . In this case, the AMO-MDD representation 
for P and X  is simply the ⊤-terminal node. Hence, its Minimal Encoding F con-
tains only the unit clause vr , and A ∪ {vr} is trivially a model of F.

•	 Assume the contrary, i.e., that we have an assignment A over the variables of P 
not satisfying C, i.e., A is empty and K < 0 . In this case, the AMO-MDD repre-
sentation of P and X  is simply the ⊥-terminal node. Hence, its Minimal Encod-
ing F consists of the two unit clauses vr, vr  . In this case, A ∪ {vr} is the only 
extension of A satisfying F ⧵ {vr}.

Inductive step: In this case C is of the form 
∑m

i=1
maxxj∈Xi

(qj ⋅ xj) ≤ K , with m ≥ 1 , 
and P can be written as 

∑m

i=1

∑
xj∈Xi

qjxj ≤ K.
Let M be an AMO-MDD representation for P and X  , and F its Minimal Encoding. 
Let X1 be of the form {x1,… , xs} and assume, w.l.o.g., that qi ≤ qi+1 for all i ∈ 1..s − 1

.
In order to ease the proof, we define q0 = 0, a neutral coefficient for the else case, and 
introduce the Boolean constant x0 = true , which we assume belongs to any assign-
ment, and allows us to replace the clause v0 ∨ vr  in F by v0 ∨ x0 ∨ vr .
Since all coefficients in P are positive, we know that q0 ≤ q1 . For all k ∈ {0,… , s} , 
we define the following terms: 

•	 Pk is 
∑m

i=2

∑
xj∈Xi

qjxj ≤ K − qk , i.e., the constraint resulting of assigning xk = true 
in P.

•	 Ck is 
∑m

i=2
maxxj∈Xi

(qjxj) ≤ K − qk , i.e., the constraint resulting of assigning 
xk = true in C.

•	 Fk is the Minimal Encoding for the subgraph of M which corresponds to Pk and the 
partition {X2,… ,Xm}.

•	 F�
k
= Fk ⧵ {vk} , which fulfills F′

k
⊂ F.
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If the root node of M does not have ⟨x1,… , xs⟩ as selector variables, this means that M 
is also the AMO-MDD representation of all P0,… ,Ps , and hence F = F0 = ⋯ = Fs . In 
this case the theorem trivially holds by induction hypothesis, taking P = P0 , F = F0 and 
C = C0.
From now on, we assume that the root node of M has ⟨x1,… , xs⟩ as 
selector variables. By the definition of Minimal Encoding, we have 
F = F�

0
∪⋯ ∪ F�

s
∪ {v0 ∨ x0 ∨ vr,… , vs ∨ xs ∨ vr, vr} . 

•	 Assume that we have an assignment A over the variables of P satisfying C. Then, 
there is an index max ∈ 0..s such that max = 0 or xmax ∈ A , xj ∉ A ∀j∈max+1..s , and 
A satisfies C0,… ,Cmax . We can construct an assignment B ⊃ A satisfying F as fol-
lows: B = A ∪ B0 ∪⋯ ∪ Bs ∪ {vr} , where each Bk ⊃ A|vars(Ck)

 is an assignment 
satisfying F′

k
 as we show below. Note that several Bk can share auxiliary node 

variables, because the corresponding F′
k
 may share such variables (i.e., the child 

AMO-MDDs of the root of M may not be disjoint). However, in this proof we 
show a way to deterministically construct the assignment B, and the same proce-
dure can be applied in the construction of all Bk . This means that B can be con-
sistently constructed, in the sense that a same auxiliary node variable does not 
have two different values in two different Bk . First of all, we have that vr must be 
in B to satisfy the clause vr . By definition of max, A is a model of C0,… ,Cmax , 
and therefore by induction hypothesis there exist assignments B0,… ,Bmax satisfy-
ing F�

0
∪ {v0},… ,F�

max
∪ {vmax} , respectively. Then, B also satisfies the formulas 

F�
0
,… ,F�

max
 and the clauses v0 ∨ x0 ∨ vr,… , vmax ∨ xmax ∨ vr . We also know by 

definition of xmax that xj ∈ A ⊂ B for all j ∈ max + 1..s , and therefore B satisfies 
the clauses vmax+1 ∨ xmax+1 ∨ vr,… , vs ∨ xs ∨ vr . Finally, we have to consider the 
remaining formulas F�

max+1
,… ,F�

s
 . For i in max + 1..s we distinguish the following 

cases:

A ⊧ Ck : By induction hypothesis, let Bk be an assignment satisfying F�
k
∪ {vk}.

A ̸⊧ Ck : By induction hypothesis, let Bk be an assignment satisfying F′
k
 such that 

vk ∈ Bk.
Assignments Bmax+1,… ,Bs satisfy F�

max+1
,… ,F�

s
 respectively, and therefore also 

does B.

•	 Assume that we have an assignment A over the variables of P not satisfying C. Then 
there is an index max ∈ 0..s such that max = 0 or xmax ∈ A , xj ∉ A ∀j∈max+1..s , and A 
does not satisfy Cmax,… ,Cs.

We will show that there exists an assignment B ⊃ A that satisfies F ⧵ {vr} , and any such 
assignment must assign vr to false. This assignment is B = A ∪ B0 ∪⋯ ∪ Bs ∪ {vr} , 
where each Bk ⊃ A|vars(Ck)

 is an assignment satisfying F′
k
 as we show below. Again, the 

coherence of the shared variables in different Bk is guaranteed.
Since A is not a model of Cmax,… ,Cs , by induction hypothesis let Bmax,… ,Bn be 
assignments respectively satisfying F�

max
,… ,F�

s
 , and therefore respectively assigning 

vmax,… , vs to false. We have that xmax ∈ B because either xmax ∈ A , or max = 0 and 
x0 = true by assumption, and we also have that vmax ∈ B since vmax ∈ Bmax . Therefore, 
vr must be false in B in order to satisfy the clause vmax ∨ xmax ∨ vr  . In consequence all 
clauses v0 ∨ x0 ∨ vr,… , vs ∨ xs ∨ vr  are also satisfied. Finally, we have two possible 
cases for each one of the remaining formulas F�

0
,… ,F�

max−1
:
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A ⊧ Ck : By induction hypothesis, let Bk be an assignment satisfying F�
k
∪ {vk}.

A ̸⊧ Ck : By induction hypothesis, let Bk be an assignment satisfying F′
k
 such that 

vk ∈ Bk.

Such assignments B0,… ,Bmax−1 satisfy F�
0
,… ,F�

max−1
 respectively and therefore also 

does B. 	�  ◻

Corollary 1  Let F be a Minimal Encoding for a PB constraint 
∑n

i=1
qixi ≤ K with positive 

coefficients and partition   {X1,… ,Xm}  of its variables. Then  F  is also an encoding 
of 
∑m

i=1
maxxj∈Xi

(qjxj) ≤ K.

The following corollary states how to use the Minimal Encoding to encode a 
PB(AMO) constraint.

Corollary 2  Let  PA  be a PB(AMO) constraint of the form   P ∧ AM1 ∧⋯ ∧ AMm  with 
positive coefficients in P. Let F be a Minimal Encoding for P and partition   {X1,… ,Xm}

,  where  Xi = scope(AMi).  Let E(AM1 ∧⋯ ∧ AMm)  be an encoding of   AM1 ∧⋯ ∧ AMm

. Then, F ∧ E(AM1 ∧⋯ ∧ AMm) is an encoding of PA.

Proof  The corollary follows from Lemma 1 and Corollary 1 of Theorem 1. 	� ◻

The following theorem states that we can generate an UP-maintaining GAC encoding 
of a PB(AMO) constraint using the Minimal Encoding.

Theorem  2  Let  PA  be a PB(AMO) constraint of the form  P ∧ AM1 ∧⋯ ∧ AMm  with 
positive coefficients in P. Let F be a Minimal Encoding for P and partition {X1,… ,Xm}

,   where Xi = scope(AMi). Let E(AM1 ∧⋯ ∧ AMm)   be a UP-maintaining GAC encoding 
of AM1 ∧⋯ ∧ AMm.  Then, F ∧ E(AM1 ∧⋯ ∧ AMm) is an UP-maintaining GAC encoding 
of PA.

Proof  Consider any partial assignment A over the variables of PA that can be extended to a 
model of PA. We need to show that for every variable x of PA such that x is not assigned in 
A, if A ∪ {x} cannot be extended to a satisfying assignment of PA, then x will be set to false 
by unit propagating A on F ∧ E(AM1 ∧⋯ ∧ AMm) . Note that, due to the monotonicity of P 
and of AM1,… ,AMm , A ∪ {x} can always be extended to a satisfying assignment, so we do 
not need to consider this case.

First note that, if A ∪ {x} could be extended to a model of AM1,… ,AMm , and could 
also be extended to a model of P then, due to monotonicity, A ∪ {x} could be extended to a 
model of PA by setting the remaining variables of PA to false. Therefore, since we assume 
that A ∪ {x} cannot be extended to a model of PA, we only need to analyse the following 
two reasons why A ∪ {x} cannot be extended:

•	 A ∪ {x} falsifies some AMO constraint. In such case, the assumption that 
E(AM1 ∧⋯ ∧ AMm) UP-maintains GAC will unit-propagate x.

•	 A ∪ {x} can be extended to satisfy AM1 ∧⋯ ∧ AMm but A ∪ {x} falsifies P. In this 
case, the proof is a trivial generalization of Theorem 23 in Abío et al. (2012).

	�  ◻
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6 � Other PB(C  ) constraints

In this section we present other instances of PB modulo C  constraints, and propose how to 
encode them.

6.1 � PB(EO) constraints

In many applications there appear conjunctions of PB constraints with exactly-one (EO) 
constraints over their variables. A particular case where this happens is when encoding 
Linear Integer Arithmetic constraints as pseudo-Boolean constraints with a direct encoding 
of the integer variables.

Definition 10  By PB(EO) constraint we refer to a constraint of the form 
P ∧ EO1 ∧⋯ ∧ EOm , where P is a PB constraint, EO1,… ,EOm are EO constraints, and 
{scope(EO1),… , scope(EOm)} is a partition of scope(P).

Since an EO constraint implies an AMO constraint, by Lemma 2 we can use the pre-
sented AMO-MDD based encoding to encode a PB(EO), which by itself is a noticeable 
improvement with respect to a naive encoding of a PB(EO) constraint.

However, we can do better, by reducing the number of variables of the PB con-
straint. By subtracting a same integer to all the coefficients of a set of variables holding 
an EO constraint, as well as to the right-hand side of the inequality, we can make some 
coefficients become zero, and then remove those zero coefficient variables. For exam-
ple, let P be the PB constraint 2x1 + 3x2 + 4x3 + 3x4 + 4x5 + 5x6 ≤ 7 , and suppose we 
want to encode P ∧ x1 + x2 + x3 = 1 ∧ x4 + x5 + x6 = 1 . Then we can replace P by 
(2 − 2)x1 + (3 − 2)x2 + (4 − 2)x3 + 3x4 + 4x5 + 5x6 ≤ 7 − 2 , because exactly one of x1 , 
x2 and x3 will be set to 1 in any assignment satisfying x1 + x2 + x3 = 1 , and therefore 2 
will be subtracted exactly once in the left-hand side of the inequality. Similarly, we can 
subtract 3 to the coefficients of x4 , x5 and x6 , obtaining P� ∶ x2 + 2x3 + x5 + 2x6 ≤ 2 . 
We have that P ∧ x1 + x2 + x3 = 1 ∧ x4 + x5 + x6 = 1 is equivalent to 
P� ∧ x1 + x2 + x3 = 1 ∧ x4 + x5 + x6 = 1 , with the advantage that P′ has a smaller 
ROBDD representation. Moreover, by Lemma 2 we can still use the AMO-MDD based 
encoding of P′ , since x1 + x2 + x3 = 1 ⊧ x2 + x3 ≤ 1 and x4 + x5 + x6 = 1 ⊧ x5 + x6 ≤ 1.

6.2 � PB(EO) and PB(AMO) constraints with negative coefficients

As stated before, the existing encodings of PB constraints to SAT are usually designed 
for constraints of the form 

∑n

i=i
qixi ≤ K , with non-negative coefficients qi , since other 

cases can be easily transformed to this one. The usual way of getting rid of negative coef-
ficients  (see Eén and Sorensson 2006) is by using the equality x = 1 − x . For example, 
−2x1 + 6x2 ≤ 5 ≡ −2(1 − x1) + 6x2 ≤ 5 ≡ 2x1 + 6x2 ≤ 7 . Then, if we want to encode a 
constraint of the form 

∑n

i=i
qixi ≥ K with positive coefficients, we can simply replace it by 

−
∑n

i=i
qixi ≤ −K and get rid of the negative coefficients.

However, this rewrite method might not be applicable to PB(AMO) constraints. 
We will illustrate the situation with an example. Consider the PB(AMO) constraint 
P ∧ x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1 , with P ∶ x1 + 3x2 + 4x3 + 2x4 + 3x5 + 5x6 ≥ 6 . If 
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we transform P to the standard form, we obtain P� ∶ x1 + 3x2 + 4x3 + 2x4 + 3x5 + 5x6 ≤ 12 . 
The problem is that now x1 + x2 + x3 ≤ 1 (similarly x4 + x5 + x6 ≤ 1 ) no longer impose 
AMO constraints over the literals of P′ , and therefore we cannot set x1, x2, x3 as selector 
variables of a node of an AMO-MDD. We could still use a BDD-based encoding of P′ , but 
we would not be using the simplification potential of PB(AMO) constraints.

To overcome this weakness, we present another rewrite method to get rid of negative 
coefficients, which does not require to negate the literals of the original PB constraint, and 
hence still allows us to take into account the original AMO constraints. We begin with 
the case of PB(EO) constraints, which is the most straightforward, and for simplicity we 
assume that there is only one EO constraint (in case of more than one EO constraint, the 
procedure would be repeated for each one).

Given a constraint of the form q1x1 +⋯ + qsxs +⋯ + qnxn ≤ K ∧ x1 +⋯ + xs = 1 with 
some negative coefficient in q1,...,qs , choose any integer Z such that Z ≥ −qi , for all 1 ≤ i ≤ s . 
Then, the new constraint is (Z + q1)x1 +⋯ + (Z + qs)xs + qs+1xs+1 +⋯ + qnxn ≤ K + Z . 
Note that Z will be added exactly once to both sides of the inequality in any assignment sat-
isfying x1 +⋯ + xs = 1 . The best Z to pick is −min

s
i=1

(qi) , since it will cancel at least one 
coefficient and therefore will reduce the number of variables of the constraint.

For the case of a PB(AMO) constraint of the form 
q1x1 +⋯ + qsxs +⋯ + qnxn ≤ K ∧ x1 +⋯ + xs ≤ 1 with some negative coefficient in q1
,...,qs , we can first transform it into a PB(EO) constraint

where x0 is a fresh variable, and it holds 
x1 +⋯ + xs ≤ 1 ∧ (x0 ↔ x1 ∧⋯ ∧ xs) ⊧ x0 + x1 +⋯ + xs = 1 . Then we can apply the pro-
posed PB(EO) transformation, rewriting over 0x0 + q1x1 +⋯ + qnxn ≤ K to get rid of the 
negative coefficients. Though this transformation introduces an auxiliary variable for each 
AMO and few reification clauses, the number of variables appearing in the resulting nor-
malized PB constraint will not increase if we choose Z = −min

s
i=1

(qi).
Note that the procedure to rewrite PB(AMO) constraints is a generalization of the usual 

procedure to rewrite PB constraints, since in the case of single-variable AMO constraints 
of the form x ≤ 1 , instead of defining a fresh variable x0 ↔ x we can directly use x for the 
transformation and we obtain the same result.

6.3 � PB(IC) constraints

Abío et  al. (2015) introduces an MDD-based encoding for PB constraints with impli-
cation chains over their variables. An implication chain (IC) is a constraint of the form 
x1 ← x2 ∧ x2 ← x3 ∧⋯ ∧ xs−1 ← xs , denoted x1 ⇐ x2 ⇐ x3 ⇐ ⋯ ⇐ xs . A PB constraint 
with a set of implication chains can be seen as another kind of PB(C  ) constraint, that we 
will denote by PB(IC).

Definition 11  By PB(IC) constraint we refer to a constraint of the form 
P ∧ IC1 ∧⋯ ∧ ICm , where P is a PB constraint, and IC1,… , ICm are implication chains. 
We assume that every variable in P occurs exactly in one ICi (a variable x is by itself a 
single-variable chain).

As shown in Abío et al. (2015), by adding a set of channelling clauses, a PB(IC) encod-
ing can be used to encode a PB(AMO). Essentially, the AMO constraints have to be 

0x0 + q1x1 +⋯ + qsxs +⋯ + qnxn ≤ K ∧ x1 +⋯ + xs ≤ 1 ∧ (x0 ↔ x1 ∧⋯ ∧ xs)
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encoded with the regular encoding (also known as ladder encoding). The auxiliary vari-
ables introduced by this encoding are involved in an implication chain, and the PB con-
straint can be reformulated in terms of the new auxiliary variables.

Here we show how to do the translation the other way round, i.e., by adding a set of 
channelling clauses, a PB(AMO) encoding can be used to encode a PB(IC).

Let the PB(IC) at hand be of the form q1x1 +⋯ + qnxn ≤ K ∧ IC1 ∧⋯ ∧ ICm . For each 
ICi of the form xi

1
⇐ ⋯ ⇐ xi

si
 , we add a set of fresh variables yi

1
,… , yi

si
 , and the following 

clauses:

Finally, we have to encode the PB(AMO) constraint 
∑m

i=1

∑si
j=1

q�
i

j
yi
j
≤ K , where q�i

1
= qi

1
 , 

and q�i
j
= qi

j
+ q�

i

j−1
 , for 1 < j ≤ si.

For instance, the PB(IC) constraint 
2x1 + 3x2 + 4x3 + 6x4 + 3x5 ≤ 7 ∧ x1 ⇐ x2 ∧ x3 ⇐ x4 ⇐ x5 can be encoded as:

where F is the Minimal Encoding for 2y1 + 5y2 + 4y3 + 10y4 + 13y5 ≤ 7 with partition 
{{y1, y2}, {y3, y4, y5}} . Note that

and

and, hence, we can use the Minimal Encoding.

7 � Experiments

In this section we analyse which is the gain in using the presented MDD-based encoding 
for PB(AMO) constraints. On one hand, we study the impact on the size of the decision 
diagrams, and hence on the size of the encodings both in number of variables and clauses. 
On the other hand, we study the impact on the solving time.

We deepen in the analysis started in Bofill et al. (2017) on the Multi-mode Resource-
Constrained Project Scheduling Problem (MRCPSP)  (Brucker et  al. 1999) and the 
Resource-Constrained Project Scheduling Problem with Time-Dependent Resource 
Capacities and Requests (RCPSP/t)  (Hartmann 2013), and consider two additional 
problem classes, namely the Multiple-choice Multidimensional Knapsack Problem 

(3)yi
j
↔ xi

j
∧ xi

j+1
1 ≤ j < si

(4)yi
si
↔ xi

si

x1 ⇐ x2 ∧ x3 ⇐ x4 ⇐ x5

y1 ↔ x1 ∧ x2

y2 ↔ x2

y3 ↔ x3 ∧ x4

y4 ↔ x4 ∧ x5

y5 ↔ x5

F

(y1 ↔ x1 ∧ x2) ∧ (y2 ↔ x2) ∧ x1 ⇐ x2 ⊧ y1 + y2 ≤ 1

(y3 ↔ x3 ∧ x4) ∧ (y4 ↔ x4 ∧ x5) ∧ (y5 ↔ x5) ∧ x3 ⇐ x4 ⇐ x5 ⊧ y3 + y4 + y5 ≤ 1
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(MMKP)  (Kellerer et  al. 2004), and the Combinatorial Auction problem (CA)  (Leyton-
Brown and Shoham 2006). Classical models of these problems contain PB constraints in 
conjunction with AMO constraints. The four studied problems are optimization problems. 
In order to obtain results independent of any optimization process, we have encoded the 
decision version of these problems and analyzed the solving times of satisfiablity checks. 
These decision problems have been encoded into SAT/SMT formulas.

All the studied problems already contain either implicit or explicit AMO constraints in 
the formulations. Moreover, all problems contain a number of PB(AMO) and PB(EO) con-
straints, that have been encoded in different settings which we compare: 

PB	� All PB constraints are encoded to SAT using the Minimal Encod-
ing of a ROBDD representation, i.e., not taking into account the 
AMO constraints to simplify the PB encoding. No reduction is 
done in PB(EO) constraints.

PB(AMO)	� All PB constraints are encoded to SAT using the Minimal 
Encoding of an AMO-ROMDD representation. No reduction is 
done in PB(EO) constraints.

PB-redEO and PB(EO)	� The same as PB and PB(AMO), respectively, but applying the 
reduction of Sect.  6.1 to all PB(EO) constraints. Only used in 
MRCPSP and MMKP instances, that are the only ones with 
PB(EO) constraints.

 The details of the formulations and the considered datasets for each problem follows. 
Table  1 summarizes the formulas involved in the experiments, showing the number of 
instances of each benchmark dataset, and the number of PB(AMO) and PB(EO) constraints 
that are encoded to SAT.

MRCPSP and RCPSP/t These two problems consist of determining a schedule for a set 
of activities of a project, i.e., a start time for each one of them, such that it minimizes the 
completion time (a.k.a. makespan). In both problems there are a number of resource con-
straints, stating that the capacities of the resources must not be exceeded by the demands 
of the scheduled activities at any time. We consider time-indexed formulations: for each 
resource and for each discretized time instant from 0 to an upper bound on the makes-
pan, there is a PB constraint stating that the capacity of a particular resource must not be 
exceeded at that particular time instant. On the other hand there is a number of precedence 
constraints which state that, for each given predecessor-successor pair of activities, the 
successor activity cannot start until the predecessor has finished. These precedence rela-
tions are encoded as Integer Difference Logic (ILD) expressions. Both in MRCPSP and 
RCPSP/t, the precedence relations introduce incompatibilities between activities, and these 
incompatibilities imply AMO constraints over the variables of the PB resource constraints. 
Moreover, these problem have particular specifications that introduce further AMO con-
straints: in MRCPSP each activity has multiple execution modes, and one of them must 
be selected; in RCPSP/t, the resource requirements of the activities vary over their execu-
tion. We refer the reader to Bofill et al. (2017) for full formulations of the problems, and a 
detailed description of how to identify AMO constraints and formulate resource constraints 
as PB(AMO) constraints. We have generated a set of SMT formulas encoding the decision 
version of the MRCPSP and the RCPSP/t. In particular, we have considered benchmark 
instances of the MRCPSP and the RCPSP/t problems from the PSPLIB (Kolisch and Spre-
cher 1997) and the MMLIB (Van Peteghem and Vanhoucke 2014) libraries. We have only 
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used instances for which the optimal makespan is known, hence being able to generate two 
tight decision cases for every instance, one satisfiable (with an upper bound equal to the 
optimal makespan) and one unsatisfiable (with an upper bound equal to the optimal makes-
pan minus one). The average ratio of IDL/PB constraints in MRCPSP is 423/69, 1195/72 
and 4115/78 for j30, MMLIB50 and MMLIB100 respectively, and in RCPSP/t the ratios 
are 257/310 and 2220/585 in j30 and j120 respectively. However, we remark that each IDL 
constraint corresponds to just one clause in the SMT formula, whereas a PB constraint is 
encoded with hundreds or thousands of clauses, as will be seen in Table 3.

MMKP In the Multiple-choice Multidimensional Knapsack Problem there is a number 
of classes of items, and exactly one item for each class must be chosen. For each item 
we know its profit, and the weigh that occupies for each dimension of a multidimensional 
knapsack. The knapsack has a particular capacity for each dimension. The problem con-
sists in choosing one item of each class, such that the items fill in all the dimensions of the 

Table 1   Generated sets of 
formulas

The columns contain, in this order: the name of the encoded problem; 
the name of the instance dataset; sat/unsat for the problems where two 
decision versions per instance have been generated (MMKP instances 
are already decision instances with both satisfiable and unsatisfiable 
instances); the number of generated formulas for the dataset; the total 
number of PB(AMO) constraints and PB(EO) constraints in the data-
set (considering all the formulas)

Problem Dataset Size PB(AMO) PB(EO)

MRCPSP j30
   sat 545 36,132 1090
   unsat 545 35,037 1090
MMLIB50
 sat 456 32,229 912

   unsat 456 31,314 912
MMLIB100
   sat 309 23,660 618
   unsat 309 23,042 618
Total 2620 181,414 5240

RCPSP/t j30
 sat 2826 854,900 0
 unsat 2826 842,328 0

j120
 sat 2210 1,273,847 0
 unsat 2210 1,263,954 0

Total 10,072 4,235,029 0
MMKP Set1 500 0 5000

Set2 500 0 5000
Set3 400 0 20,000
Total 1400 0 30,000

CA CATS
 sat 162 162 0
 unsat 162 162 0

Total 324 324 0
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knapsack and the maximum profit is obtained. We consider the three sets of instances gen-
erated in Bofill et al. (2019), which are decision instances where no constraint is imposed 
on the obtained profit. In these datasets there is a balanced number of satisfiable and unsat-
isfiable instances, as shown in Table 1. PB(EO) constraints appear when stating that the 
capacity of each dimension cannot be exceeded: Boolean variables model whether an item 
is chosen, and EO constraints state that exactly one item of each class must be chosen.

CA The Combinatorial Auction problem consist in deciding which sets of items, or 
packages, will be sold so that the maximum profit is obtained. For each package there is a 
bid, that is the profit obtained if that package is sold. However the items contained in one 
package can also be present in other packages, and therefore at most one of the packages 
containing a particular item can be sold. In the decision version of this problem a minimum 
profit is required, and this can be naturally modeled as a PB constraint, where Boolean 
variables state whether a package is sold. AMOs over these variables appear from pack-
ages sharing a same item. We consider the instances from Bofill et  al. (2014) generated 
with the Combinatorial Auction Test Suit (CATS) instance generator (Leyton-Brown and 
Shoham 2006). Again we obtain a satisfiable and an unsatisfiable instance from optimiza-
tion instance with known objective value, this time by using a lower bound equal to the 
optimum profit (satisfiable case) and the optimum plus one (unsatisfiable case). There are 
no other constraints present in the formulation apart from the PB objective function and the 
AMO constraints.

The formulas have been generated and solved using the C++ API of Yices 2.4.2 (Duter-
tre and de Moura 2006). All experiments have been run on a 8GB Intel® Xeon® E3-1220v2 
machine at 3.10 GHz, with a timeout of 600 seconds in each execution.

For each studied problem, we use scatter plots to make pair-wise comparisons of the 
different PB(AMO) encoding settings. In the plots each point corresponds to the value of 
a same metric in the two compared settings, one in the x axis and the other in the y axis. 
More precisely, the plots in the left column of the figures compare solving time, where 
each point corresponds to a different instance, time is in seconds, and we use logarithmic 
axes. The plots in the middle and rigth columns compare the encoding size in number of 
variables and clauses respectively. In these size plots, each point corresponds to a different 
PB constraint of a different instance, and the values of the axes are in thousands. We also 
provide a summarized numeric comparison of time and sizes in Tables 2 and 3.

Figure 5 compares the PB and PB(AMO) settings for all the problems. In all problems 
there is a significant reduction in the solving time when using the PB(AMO) approach, 
which is up to one order of magnitude in the RCPSP/t and CA, and up to three orders of 
magnitude in the MRCPSP and MMKP. For instance, there are formulas which are solved 
in less than one second with PB(AMO), whereas with PB they time out getting lost in the 
search tree, which contains an order of magnitude more variables. It can be seen that in 
all problems there is a significant reduction in size, which in a large number of constraints 
is of one order of magnitude. Due to the properties of the encoded problems, there are 
different clusters of points in the size plots. This is especially noticeable in the plots of 
the MRCPSP. Each cluster correspond to PB constraints modelling a particular kind of 
constraint in a family of instances. There is a subset of constraints in the MRCPSP which 
has a dramatic size reduction of more than one order of magnitude. This subset is in fact 
the set of PB(EO) constraints, which are the largest PB constraints. In particular, in each 
instance of the MRCPSP there are two PB(EO) constraints, and for this reason we do not 
observe any impact in the first quartile and median in Table 3 when applying the EO reduc-
tion. In MMKP we observe some patterns in the time and sizes plots, which are due to the 
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Table 2   Solving times for each 
problem

Columns contain first quartile (Q1), median (med) and third quartile 
(Q3) of the solving times, average solving time (avg) counting time-
outs as 600 seconds, and number of time outs (to)

Setting Q1 Med Q3 Avg To

MRCPSP
PB 0.15 0.70 26.24 119.86 473
PB-redEO 0.10 0.25 0.97 22.35 44
PB(AMO) 0.06 0.20 0.79 17.71 37
PB(EO) 0.05 0.14 0.49 10.27 18
RCPSP/t
PB 0.24 0.88 3.39 11.92 57
PB(AMO) 0.07 0.33 1.53 4.29 2
MMKP
PB 9.81 389.29 600.00 319.91 685
PB-redEO 2.33 38.68 218.84 159.17 272
PB(AMO) 0.70 9.11 440.66 181.16 333
PB(EO) 0.40 4.96 46.71 99.79 164
CA
PB 0.02 0.03 3.64 27.59 17
PB(AMO) 0.02 0.03 1.29 17.74 2

Table 3   Number of variables and clauses, in thousands, of the encodings of PB constraints

Columns contain first quartile (Q1), median (med), third quartile (Q3), maximum (max) and average (avg) 
of the sizes of all PB(AMO) and PB(EO) constraints of a problem

Setting Variables Clauses

Q1 Med Q3 Max Avg Q1 Med Q3 Max Avg

MRCPSP
PB 0.13 0.39 0.92 102.5 1.37 0.26 0.78 1.84 204.9 2.74
PB-redEO 0.13 0.39 0.90 23.4 0.90 0.26 0.78 1.80 46.8 1.79
PB(AMO) 0.02 0.07 0.15 13.1 0.21 0.06 0.29 0.79 52.2 0.89
PB(EO) 0.02 0.07 0.15 10.9 0.18 0.06 0.29 0.78 27.0 0.76
RCPSP/t
PB 0.09 0.49 1.62 44.0 1.68 0.18 0.98 3.23 87.9 3.36
PB(AMO) 0.00 0.04 0.18 2.3 0.16 0.03 0.33 1.56 40.7 1.80
MMKP
PB 3.18 3.46 41.39 1158.5 108.38 6.36 6.93 82.78 2316.9 216.76
PB-redEO 1.45 1.66 24.44 901.2 76.97 2.89 3.31 48.88 1802.4 153.95
PB(AMO) 0.44 0.47 2.17 39.9 4.88 2.51 2.70 22.05 428.1 49.91
PB(EO) 0.35 0.38 1.64 36.5 3.91 1.58 1.72 14.62 355.1 36.23
CA
PB 0.03 0.46 192.50 834.1 127.05 0.22 1.07 385.08 1668.2 254.22
PB(AMO) 0.00 0.02 59.99 179.0 35.35 0.21 0.41 250.38 955.8 162.35
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fact that the benchmark datasets were built modifying the value of some parameter over the 
instances of each dataset.

Fig. 5   Time in seconds (left), number of variables in thousands (middle) and number of clauses in 
thousands (right) comparison of the PB(AMO) and PB settings to solve, from top to bottom, MRCPSP, 
RCPSP/t, MMKP and CA
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Figure  6 depicts the comparison between PB(AMO) and PB(EO) in MRCPSP and 
MMKP formulas, which are the only ones containing PB(EO) constraints. We observe a 
further reduction in size, with encodings that are between twice and ten times smaller in 
most of the cases, and a reduction of the solving time of one order of magnitude. Figure 7 
shows the improvement achieved by combining the use of the AMO-MDD based encoding 
and the reductions by EO constraints (PB(EO)), with respect to the standard BDD-based 
encoding (PB). In fact, the EO reduction by itself gives a huge improvement, as can be 
seen in Fig. 8, which compares the PB and the PB-redEO settings.

When comparing the PB and the PB(AMO) approaches, the reduction in the number of 
variables is always strictly higher than the reduction in the number of clauses. This hap-
pens because the Minimal Encoding introduces one clause per edge and one variable per 
node, and the reduction in the number of nodes is higher than the reduction in the number 
of edges: while the nodes of BDDs have two outgoing edges, the nodes of AMO-MDDs 
can have a larger number of edges. Despite this fact, the results show that the number of 
clauses in the PB(AMO) approach is noticeably smaller than those in the PB approach.

The reduction in size is directly attributable to the fact that the AMO-MDDs only 
cover a subset of the possible truth assignments for the variables of the original PB con-
straints, while the BDDs cover all of them. It is especially noticeable that there are deci-
sion diagrams with size 1 in the PB(AMO) approach, and with size pf thousands in the PB 
approach. The decision diagrams of size 1 correspond to the ⊤-terminal node. This means 
that there are PB constraints which are trivially true under the assignments that satisfy an 
AMO constraint on the selector variables of the AMO-MDD nodes.

The depth of the AMO-MDDs is also significantly smaller than the depth of the BDDs. 
In the considered instances, in most of the cases we are able to set at least three selectors 
in each AMO-MDD node, which means that the depth of the AMO-MDDs is at most the 

Fig. 6   Time in seconds (left), number of variables in thousands (middle) and number of clauses in thou-
sands (right) comparison of the PB(EO) and PB(AMO) settings to solve, from top to bottom, MRCPSP, and 
MMKP
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Fig. 7   Time in seconds (left), number of variables in thousands (middle) and number of clauses in thou-
sands (right) comparison of the PB(EO) and PB settings to solve, from top to bottom, MRCPSP, and 
MMKP

Fig. 8   Time in seconds (left), number of variables in thousands (middle) and number of clauses in thou-
sands (right) comparison of the PB-redEO and PB settings to solve, from top to bottom, MRCPSP, and 
MMKP
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depth of the BDDs divided by three. In a large number of cases we are able to get depth 
reductions of up to seven times, and in few cases the reduction is more than ten times.

Finally, in Fig. 9 we compare our contributions with the implication chain based tech-
nique to encode PB(AMO) constraints proposed in Abío et al. (2015), which we denote by 
IC. We apply EO reduction whenever possible, that is, for RCPSP/t and CA we compare 
PB(AMO) and IC, and for MRCPSP and MMKP we compare PB(EO) and IC (also with 
EO reduction in the PB constraints). Tables 4 and 5 contain a numeric comparison. The 
results suggest that in MRCPSP and CA both approaches behave similarly, but in RCPSP/t 

Table 4   Solving times for each 
problem

Columns contain first quartile (Q1), median (med) and third quartile 
(Q3) of the solving times, average solving time (avg) counting time-
outs as 600 seconds, and number of time outs (to)

Setting Q1 Med Q3 Avg To

MRCPSP
 IC 0.05 0.14 0.52 9.83 17
 PB(EO) 0.05 0.14 0.49 10.27 18

RCPSP/t
 IC 0.09 0.40 1.78 6.24 11
 PB(AMO) 0.07 0.33 1.53 4.29 2

MMKP
 IC 0.41 5.49 79.75 120.90 212
 PB(EO) 0.40 4.96 46.71 99.79 164

CA
 IC 0.02 0.03 1.57 14.48 0
 PB(AMO) 0.02 0.03 1.29 17.74 2

Table 5   Number of variables and clauses, in thousands, of the PB constraint encodings

Columns contain first quartile (Q1), median (med), third quartile (Q3), maximum (max) and average (avg) 
of the sizes of all PB(AMO) and PB(EO) constraints of a problem

Setting Variables Clauses

Q1 Med Q3 Max Avg Q1 Med Q3 Max Avg

MRCPSP
IC 0.04 0.10 0.20 11.01 0.22 0.10 0.36 0.91 27.19 0.85
PB(EO) 0.02 0.07 0.15 10.87 0.18 0.06 0.29 0.78 26.96 0.76
RCPSP/t
IC 0.01 0.10 0.31 2.93 0.25 0.08 0.46 1.91 42.51 2.06
PB(AMO) 0.00 0.04 0.18 2.34 0.16 0.03 0.33 1.56 40.74 1.80
MMKP
IC 0.40 0.43 1.77 36.66 3.99 1.71 1.86 15.00 355.50 36.45
PB(EO) 0.35 0.38 1.64 36.53 3.91 1.58 1.72 14.62 355.12 36.23
CA
IC 0.00 0.10 60.06 179.15 35.40 0.21 0.65 250.58 956.12 162.47
PB(AMO) 0.00 0.02 59.99 179.00 35.35 0.21 0.41 250.38 955.80 162.35
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and MMKP the AMO-MDD based encoding performs better (e.g. the difference in time-
outs between both approaches is 9 and 48). We have run a paired t-test to determine if there 
is a significant difference in the average run time between the IC and PB(AMO)/PB(EO) 

Fig. 9   Time in seconds (left), number of variables in thousands (middle) and number of clauses in thou-
sands (right) comparison of the PB(AMO) (for RCPSP/t and CA) and PB(EO) (for MRCPSP and MMKP) 
against IC (with EO reduction applied in MRCPSP and MMKP)
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approaches, which is not clear apparently in the cases of the MRCPSP and CA. We get a 
p-value= 0.4665 in the MRCPSP and p-value= 0.0591 in CA. Therefore there is no evi-
dence that one approach is better than the other in MRCPSP, and in the case of CA there 
is no clear statistical evidence but we obtain slightly better results with IC. Regarding the 
RCPSP/t and MMKP, PB(AMO)/PB(EO) is statistically significantly better than IC, with 
a p-value smaller than 2.2e − 16 in both cases. The reason may be due to the fact that 
the RCPSP/t and MMKP contains big AMO constraints, and the IC approach needs to 
explicitly encode the AMOs using a particular encoding that introduces additional Boolean 
variables and clauses. Size results show this increment, which is only remarkable in the 
RCPSP/t.

8 � Related work

There exist many works in the literature on the encoding of PB constraints into SAT, 
not only based on BDDs, but also on adder networks, sorting networks and other 
approaches (Eén and Sorensson 2006; Bailleux et al. 2006, 2009; Abío et al. 2012; Höll-
dobler et al. 2012; Tamura et al. 2013; Joshi et al. 2015). Different SAT encodings of PB 
constraints have been compared in Philipp and Steinke (2015). This paper introduces the 
PBLIB, a library to translate PB constraints into CNF formulas which includes fifteen dif-
ferent encodings of PB constraints from the literature. In the experiments performed in that 
paper, the BDD-based approach clearly outperforms the other encodings in terms of solv-
ing time.

The use of BDDs to encode PB constraints to SAT was firstly considered in Eén and 
Sorensson (2006). The approach consists in, first of all, representing the PB constraint as 
a BDD, then treating the BDD as a circuit of if-then-else gates, and finally translating this 
circuit to clauses by the Tseitin transformation. The result is a GAC encoding which intro-
duces one fresh variable and six ternary clauses per node, defining that the fresh variable 
is equivalent to the PB constraint represented by that node. By the same time, in Bailleux 
et al. (2006) it was introduced an encoding which, although not derived from an explicit 
BDD, in essence gives the same as the BDD encoding proposed in  Eén and Sorensson 
(2006), with two main differences. The first difference is that, by assuming monotonicity of 
PB constraints, only two ternary clauses and two binary clauses per node are required. The 
second difference is that the encoding procedure cannot guarantee that the implicitly gener-
ated BDD is reduced.

Those encodings introduce a number of clauses and fresh variables linear in the number 
of nodes of the encoded BDD. Since there are PB constraints which only have ROBDD 
representations of exponential size in the number of variables  (Hosaka et  al. 1994), the 
encodings have exponential size in the worst case. Nevertheless, there exist polynomial size 
encodings of PB constraints that maintain GAC by unit propagation (Bailleux et al. 2009). 
In Abío et al. (2012) it is proved that all PB constraints whose coefficients are powers of 
two have a polynomial size ROBDD representation. Using the fact that any PB constraint 
can be reduced to a set of equalities plus a PB constraint whose coefficients are all pow-
ers of two, they provide a BDD-based GAC polynomial encoding of PB constraints. Also 
in Abío et al. (2012), it is presented a simplification of the encoding in Eén and Sorensson 
(2006) which, assuming that the encoded PB constraint is monotonic, it only introduces 
one binary clause, one ternary clause, and one fresh variable per node. The main differ-
ence with respect to Eén and Sorensson (2006) is that the selector variable of a node is not 
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defined to have the truth value of the PB constraint represented by that node, but it is unit-
propagated to false whenever a partial assignment does not satisfy the PB constraint. This 
encoding is also GAC. Another contribution in Abío et al. (2012) is an algorithm to con-
struct ROBDDs representing PB constraints, which runs in polynomial time with respect to 
the size of the final ROBDD.

In Abío and Stuckey (2014) it is presented a generalization of the two-clause encoding 
from  Abío et  al. (2012), for the case of MDDs representing Linear Integer Arithmetic 
(LIA) constraints, and also a generalization of the algorithm in Abío et al. (2012) to con-
struct such MDDs. This technique is closely related to our work. In fact, a LIA expression 
like q1z1 +⋯ + qmzm ≤ K can be easily converted to a PB(EO) constraint by introducing a 
direct encoding for each integer variables zi with domain [0, di] , which introduces Boolean 
variables xi

0
,… , xi

di
 and the corresponding EO constraint. Then the LIA constraint must be 

replaced by a PB constraint of the form, 
∑m

i=1

∑di
j=0

(qi ⋅ dj) ⋅ x
i
j
≤ K . Nevertheless, as 

explained in the introduction, PB models where AMO constraints occur are ubiquitous in 
the literature. Our approach allows for a direct efficient SAT encoding of these models 
without the need of previously reformulating those models to LIA expressions. This refor-
mulation might be involved in some cases, where AMO constraints over Boolean variables 
have no natural semantic relation with an integer variable in the problem at hand. For 
instance, in the case of RCPSP-like problems, AMOs arise implicitly from precedence 
relations between activities (Bofill et al. 2017).

The MDD encoding from Abío and Stuckey (2014) is revisited in Abío et al. (2016), 
where also some other encodings of MDDs representing LIA constraints are introduced. 
These are based on encodings of paths, modelling whether an assignment follows a par-
ticular path in the MDD. The encodings introduce fresh variables and clauses both for the 
nodes and the edges of the MDD, and all of them are of linear size with respect to the size 
of the MDD. In Abío et al. (2015) are presented the PB constraints with implication chains 
that we describe in Sect. 6.3.

9 � Conclusions

With the goal of finding efficient SAT encodings for PB constraints we have defined 
PB(C  ) constraints, which are a generalization of PB constraints that assume some rela-
tions C  between subsets of the variables in the PB constraint. We have shown how to take 
advantage of this feature by means of a specialized and compact type of decision diagrams 
(AMO-MDD) to represent PB constraints in the presence of AMO/EO relations. Finally, 
we have provided a UP-maintaining GAC encoding for PB(AMO) constraints based on 
AMO-MDDs.

We have reported a huge impact in the size of the encodings as well as in the solving 
time when using this approach. The presented techniques conform a new and efficient way 
of handling PB constraints with SAT. Encoding PB(C  ) constraints in a combined way may 
let to obtain reasonably sized SAT translations that otherwise could be too big for a SAT 
solver.

From our point of view, PB(C  ) can be seen as a new global constraint applicable to 
many domains, which is interesting by itself and it can be handled with different solving 
approaches. In particular, other SAT encodings of PB(C  ) could be studied, not necessarily 
based on decision diagrams nor limited to AMO constraints.
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In the experimental section of this paper we have tackled problems of four different 
domains and we have obtained significant improvements in the solving times. In the stud-
ied problems, AMO/EO constraints either appear explicitly or are easily identifiable. Iden-
tifying the AMO constraints implied by the formulation of the problem at hand is a key 
factor of this approach, since reduction in size strongly depends on it. It is a matter of 
future work to use methods to automatically detect AMO constraints in any given formula 
containing PB constraints.
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