Artificial Intelligence Review (2020) 53:5019-5081
https://doi.org/10.1007/510462-020-09814-9

®

Check for
updates

Applicability of machine learning in spam and phishing
email filtering: review and approaches

Tushaar Gangavarapu'2® - C. D. Jaidhar' - Bhabesh Chanduka’

Published online: 22 February 2020
© Springer Nature B.V. 2020

Abstract

With the influx of technological advancements and the increased simplicity in commu-
nication, especially through emails, the upsurge in the volume of unsolicited bulk emails
(UBEs) has become a severe threat to global security and economy. Spam emails not only
waste users’ time, but also consume a lot of network bandwidth, and may also include
malware as executable files. Alternatively, phishing emails falsely claim users’ personal
information to facilitate identity theft and are comparatively more dangerous. Thus, there
is an intrinsic need for the development of more robust and dependable UBE filters that
facilitate automatic detection of such emails. There are several countermeasures to spam
and phishing, including blacklisting and content-based filtering. However, in addition to
content-based features, behavior-based features are well-suited in the detection of UBEs.
Machine learning models are being extensively used by leading internet service provid-
ers like Yahoo, Gmail, and Outlook, to filter and classify UBEs successfully. There are
far too many options to consider, owing to the need to facilitate UBE detection and the
recent advances in this domain. In this paper, we aim at elucidating on the way of extract-
ing email content and behavior-based features, what features are appropriate in the detec-
tion of UBEs, and the selection of the most discriminating feature set. Furthermore, to
accurately handle the menace of UBEs, we facilitate an exhaustive comparative study using
several state-of-the-art machine learning algorithms. Our proposed models resulted in an
overall accuracy of 99% in the classification of UBEs. The text is accompanied by snippets
of Python code, to enable the reader to implement the approaches elucidated in this paper.

Keywords Feature engineering - Machine learning - Phishing - Python - Spam

P4 Tushaar Gangavarapu
tusgan @amazon.com

Department of Information Technology, National Institute of Technology Karnataka,
Surathkal, Mangaluru 575025, India

Automated Quality Assistance (AQuA) Machine Learning Research, Content Experience
and Quality Algorithms, Amazon.com, Inc., Chennai, India

@ Springer

http://orcid.org/0000-0002-0489-9573
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-020-09814-9&domain=pdf

5020 T. Gangavarapu et al.

1 Introduction

Digital products and services increasingly mediate human activities. With the advent of
email communication, unsolicited emails, in recent years, have become a serious threat
to global security and economy (Bergholz et al. 2010). As a result of the ease of com-
munication via emails, a vast number of issues involving the exploitation of technology
to elicit personal and sensitive information have emerged. Identity theft, being one of the
most profitable crimes, is often employed by felons to lure unsuspecting online users into
revealing confidential information such as social security numbers, account numbers, and
passwords. Unsolicited emails disguised as coming from legitimate and reputable sources
often attract innocent users to fraudulent sites and persuade them to disclose their sensitive
information. As per the report by Kaspersky Lab, in the first quarter of 2019, the menace
of such unwanted emails was responsible for 55.97% of traffic (0.07% more than that in the
fourth quarter of 2018). Unsolicited Bulk Emails (UBEs) can be broadly categorized into
two distinct yet related categories: spam and phishing.

Spam emails are essentially UBEs that are sent without users’ consent, primarily for mar-
keting purposes such as selling unlicensed medicines, illegal products, and pornography
(Toolan and Carthy 2010). The growth of spam traffic is a worrisome issue as such emails
consume a lot of network bandwidth, waste memory and time, and cause financial loss. Phish-
ing emails, on the other hand, are a much more serious threat that involves stealing individu-
als’ confidential information such as bank details, social security numbers, and passwords.
Most of the phishing attacks are focused towards financial institutions (e.g., banks); however,
attacks against government institutions, although not as targeted, cannot be overlooked (Berg-
holz et al. 2010). To understand the impact of phishing, consider pharming, a variant of phish-
ing, where the attackers misdirect users to fraudulent sites through domain name server hijack-
ing (Abu-Nimeh et al. 2007). The effect of spam and phishing on valid users is multi-fold:

e Generally, UBEs promote products and services with little real value, pornography, get-
rich-quick schemes, unlicensed medicines, dicey legal services, and potentially illegal
offers and products.

e UBE:s often hijack real users’ identities to send spam to other users (e.g., business email
compromise scams such as email spoofing and domain spoofing [~ amounted to almost
$1.3 billion in 2018 (20,373 victims), which was twice as much as that in 2017 (15,690
victims) (Bec scams trends and themes 2019)].

e Phishing, in particular, involves identity theft as financial identity theft, criminal iden-
tity theft, identity cloning, or business/commercial identity threat.

e Mailing efficiency and recipient’s productivity are drastically affected by UBEs.

A study by the McKinsey Global Institute revealed that an average person spends 28% of
the workweek (=~ 650 h a year) reading and responding to emails (Gang 2017). Additionally,
research on SaneBox’s internal data revealed that only 38% of the emails on an average are
relevant and important (Gang 2017), equivalent to ~ 11% of the workweek. Furthermore, a
study by the Danwood Group found that it takes an average of 64 seconds to recover from
an email interruption and return to work at the rate before the interruption (Gang 2017)—
adversely affecting the recipients’ productivity, especially in the case of irrelevant UBEs.
Based on the Kaspersky Lab report, in 2015, the UBE email volume fell by 50% for the
first time since 2003 (~ three to six million). Such decline was attributed to the reduction
(in billions) of major botnets responsible for spam and phishing. Conversely, by the end of

@ Springer

Applicability of machine learning in spam and phishing email... 5021

2015, the UBE volume escalated. Furthermore, Kaspersky spam report revealed an increase
in the presence of pernicious email attachments (e.g., malicious macros, malware, ransom-
ware, and JavaScript) in the spam email messages. By the end of March 2016, the UBE
volume (= 22,890,956) had quadrupled in comparison with that witnessed in 2015. In 2017,
the Internet Security Threat Report (ISTR) (Symantec 2018) estimated that the volume of
spam emails had skyrocketed to an average of 55% (~ 2% more than that in 2015 (52.7%)
and 2016 (53.4%)). Clearly, spam and phishing rates are rapidly proliferating. The overall
phishing rate in 2017, according to the ISTR (Symantec 2018), is nearly one in every 2, 995,
while the number of Uniform Resource Locators (URLs) related to phishing rose by 182.6%,
which accounted for 5.8% (one in every 224) of all malicious URLs.

Over the years, extensive research in this domain revealed several plausible countermeas-
ures to detect UBEs. Approaches such as secure email authentication result in high admin-
istrative overload and hence, are not commonly used. Machine learning and knowledge
engineering are two commonly used approaches in filtering UBEs. In knowledge engineer-
ing, UBEs are classified using a set of predefined rules. However, knowledge engineering
approaches require constant rule updation to account for the dynamic nature of the UBE
attacks—often suffer from scalability issues. In machine learning approaches, the algorithm
itself learns the classification rules based on a training set—determining the email type
through the analysis of the email content and structure has emerged, owing to the success of
Al-assisted approaches in UBE classification. This area of research is actively being devel-
oped to account for the dynamic nature of UBE attacks. Past works in the existing literature
explore several informative features, and many machine learning algorithms have been devel-
oped and utilized to classify the incoming mail into junk and non-junk categories (Toolan and
Carthy 2010; Chandrasekaran et al. 2006; Toolan and Carthy 2009; Mohammad et al. 2015;
Fette et al. 2007; Shams and Mercer 2013). Many leading internet service providers including
Yahoo mail and Gmail, employ a combination of machine learning algorithms such as neu-
ral networks, to handle the threat posed by UBE emails effectively. Since machine learning
models have the capacity to adapt to varying conditions, they not only filter the junk emails
using predefined rules but also generate new rules to adapt to the dynamic nature of the UBE
attack. Despite the success, adaptability, and predictability of machine learning models, pre-
processing, including feature extraction and selection plays a critical role in the efficacy of
the underlying UBE classification system (Turner et al. 1999; Michalski et al. 2013). Thus,
there is a need to determine the most discriminative and informative feature subset that facili-
tates the classification of UBEs with a higher degree of confidence.

Due to the vast heterogeneity in the existing literature, there is no consensus on which
features form the most informative and discriminative feature set. Moreover, to the best of
our knowledge, only a few works have evaluated all the possible set of features and provided
insights on the importance of a feature concerning the classification of UBEs.! In this paper,
we aim at providing an accessible tutorial to security analysts and scientists seeking to avail
benefits from the existing email data. First, we elucidate on the way of extracting vital and
informative features (after extensive experimentation, we resorted to the features devised in
the seminal work by Toolan and Carthy (2010), to achieve high performance in real-time)

! We experimented with advanced content-based features and topics extracted using Doc2Vec and hier-
archical Dirichlet process. However, Doc2Vec style textual features and Dirichlet topics did not enhance
in the predictability of the underlying machine learning models, owing to the similar content writing style
of ham and UBE emails. The discriminative features in the email body-content, including the presence of
phrases like ‘verify your account,” have been considered in this study.

@ Springer

5022 T. Gangavarapu et al.

from the email corpus. Then, we present six prolific and widely used feature selection (extrac-
tion) methods including Variance-based filtering (LowVar), Correlation-based filtering
(HighCorr), Feature Importance based filtering (FI), Minimum Redundancy Maximum Rel-
evance (mRMR), and principal component analysis (PCA),” to determine an optimal feature
subspace that facilitates effective learnability and generalizability of the underlying machine
learning models, thus impacting the predictability of UBEs. Finally, we evaluate the obtained
optimal feature subspace using eight state-of-the-art machine learning algorithms including
Naive Bayes (NB), Support Vector Machines (SVM), Bagged Decision Trees (BDT), Ran-
dom Forest (RF), Extra Trees (ET), AdaBoost (AB), Stochastic Gradient Boosting (SGB),
and Voting Ensemble (VE). The key contributions of this paper are mainly four-fold:

e We discussed the extraction of critical and potential email features with discriminative capa-
bilities concerning UBEs, through the analysis of both email body-content and structure.

e We leveraged several prolific feature selection (extraction) approaches to engender an
optimal informative feature subspace that enables effective and accurate UBE detection
and classification.

e We present an extensive comparative study to elucidate on the applicability, learnabil-
ity, and generalizability of several state-of-the-art machine learning models in facilitat-
ing UBE filtering and classification.

e To enhance the understanding of the readers, we exposed them to several feature selec-
tion and machine learning algorithms through snippets of Python code, enabling them
to avail benefits from the existing email data.

The rest of the paper is organized as follows: Section 2 presents an overview of the existing
works, and reviews their advantages and limitations, while Sect. 3 presents the background
discussion. Section 4 elucidates on the steps employed in the process of feature extraction
from emails, feature selection from the extracted email data, and understanding the impor-
tance of a feature with respect to UBEs. The machine learning algorithms employed in the
UBE classification are presented in Sect. 5. In Sect. 6, we evaluate the obtained feature sub-
spaces using several machine learning algorithms. Finally, Sect. 7 summarizes this paper with
future enhancements.

2 Related work

Utilizing Al-assisted approaches for UBE detection and classification has become a promi-
nent area of global research interest. This section aims at reviewing some of such existing
techniques which were utilized in the development and evaluation of a potential set of fea-
tures in the classification of spam and phishing emails, and to provide an overview of the
existing modeling strategies.

Lueg (2005) presented a brief survey exploring the way of applying information
retrieval and information filtering mechanisms to postulate spam filtering in a theoretically
grounded and logical way. Although the author aimed at introducing an operationally effi-
cient spam detector, the presented survey did not detail the simulation tools, machine learn-
ing approaches, or the datasets utilized. Wang et al. (2005) reviewed several approaches of

2 Note that PCA facilitates feature extraction (through a linear transformation) rather than feature selection.

@ Springer

Applicability of machine learning in spam and phishing email... 5023

detecting spam emails, categorized unsolicited spam emails into hierarchical folders, and
facilitated automatic regulation of the tasks concerning the response to an email. However,
the author did not cover any machine learning approaches. Chandrasekaran et al. (2006) pub-
lished a seminal work in the UBE detection and classification, and their work introduced and
employed structural email features such as the content richness and the number of functional
words (e.g., bank, credit, and credit) to discriminate phishing emails from legitimate ones.
They used an SVM classifier to detect phishing emails and prevent them from reaching the
user’s inbox, thus reducing any possible human exposure. The work by Zhong et al. (2006)
chronicled an innovative spam filtering approach that ensembled several filters. Abu-Nimeh
et al. (2007) compared the accuracies of classifying 2, 889 emails using supervised machine
learning (SML) models including SVM and RF using 43 potential features. The authors
showed that RF classifier outperformed several other classifiers (low error rate). Despite the
novelty and inventiveness in these works (Chandrasekaran et al. 2006; Zhong et al. 2006;
Abu-Nimeh et al. 2007), they did not benchmark their approach against the recent works.

Cormack (2008) explored the relationship between email spam detectors and spam detec-
tors in storage media and communication, with emphasis on the efficiency of the proposed
methods. Furthermore, the characterization of email spams (e.g., users’ information require-
ments) was scrutinized by the author. However, the work lacked detailing of certain vital
components of spam filters. Sanz et al. (2008) detailed the issues concerning UBE research,
the effects of such issues on the users, and the ways of reducing such effects. Their research
work elucidated on several machine learning algorithms utilized in UBE detection. However,
their work lacked a comparative analysis of various content filters. Ma et al. (2009) used a set
of orthographic features to achieve an automatic clustering of phishing emails, which resulted
in greater efficiency and better performance via Information Gain (IG) with C4.5 Decision
Tree (DT). They used the modified global K-means approach to generate the objective func-
tion values (over a range of tolerance values), for selected feature subsets, which assisted in
recognition of clusters. Toolan and Carthy (2009) used a recall-boosting ensemble approach
which was based on C5.0 DT, and instance-based learning ensemble techniques to reclas-
sify emails that were classified as non-phishing by C5.0 DT. They obtained a good precision
through the use of C5.0 DT and 100% recall from the ensemble. Gansterer and Polz (2009)
proposed a system of filtering the incoming emails into ham, spam, and phishing, based on
Feature Selection by Category (FSC), which provided better (97%) classification accuracy
(ternary classification) than that resulted from the use of two binary classifiers.

Basnet and Sung (2010) proposed a method of detecting phishing emails through the use of
confidence-weighted linear classifiers. The authors only utilized the email contents as features
and neglected the use of any heuristic-based phishing specific features. A prominent work in
the field of phishing email filtering was presented by Bergholz et al. (2010), where the authors
described several novel features including statistical models for email topic descriptions, email
text and external link analysis, and the analysis of embedded logos concerning hidden salting.
Dhanaraj and Karthikeyani (2013) studied and developed approaches premeditated to mitigate
email image spam. Despite the creativeness in designing image-based methods, their work did
not elucidate on the machine learning models or the utilized corpus. Zhang et al. (2014) devel-
oped an automatic detection approach specific to Chinese e-business websites by using the
URL and website-content specific features. The authors employed four machine learning clas-
sifiers including RF, Sequential Minimum Optimization (SMO), logistic regression, and Naive
Bays (NB), and evaluated their results using Chi-squared statistics (y2). Laorden et al. (2014)
explained the importance of anomaly discovery in UBE filtering in reducing the require-
ment of classifying UBEs. Their work reviews an anomaly-based UBE sieving approach
which utilized a data minimization approach that reduced preprocessing while maintaining

@ Springer

5024 T. Gangavarapu et al.

the information about email message appropriateness concerning the email nature. Table 1
reviews other related and significant past works in the detection of spam and phishing emails.

More recently, many works aimed at studying the applicability of different machine learn-
ing approaches including K-Nearest Neighbors (KNN), SVM, NB, neural networks, and oth-
ers, to spam and phishing email filtering, owing to the ability of such approaches to learn,
adapt, and generalize. In 2016, a broad overview of some of the state-of-the-art content-based
UBE filtering approaches was presented by Bhowmick and Hazarika (2016). Their work
surveyed several vital concepts in UBE filtering, the effectiveness of the current efforts, and
recent trends in UBE classification, while focusing on popular machine learning approaches
for the detection of the nature of an email. Moreover, they discussed the changing nature of
UBE attacks and examined several machine learning algorithms to combat the menace of
such emails. Sah and Parmar (2017) proposed a model to effectively detect the malicious
spam in emails through effective feature selection, followed by classification using three
machine learning approaches including NB, SVM, and Multi Layer Perceptron (MLP). With
the promising success of deep neural architectures in various applications (Gangavarapu et al.
2019c; Jayasimha et al. 2020), some of the recent works have employed deep learning models
to classify UBEs. Apruzzese et al. (2018) evaluated the applicability, effectiveness, and cur-
rent maturity of deep and machine learning models in the detection of malware, intrusion,
and spam. The authors concluded that utilizing different machine learning classifiers to detect
specific tasks can increase the UBE detection performance; however, they drew no significant
conclusions concerning deep neural models. Hassanpour et al. (2018) modeled the email con-
tent as Word2Vec style features and classified them using several deep learning classification
approaches—the authors achieved an overall accuracy of 96%. Vorobeychik and Kantarcio-
glu (2018) used adversarial machine learning to generate email samples and trained the clas-
sifier to distinguish those generated samples, making the learning model robust to adversarial
manipulation and decision-time attacks. The authors concluded with a note on several issues
concerning adversarial modeling that warrant further research. More prominent and impact-
ful research works in the domain of UBE detection and filtering are tabulated in Table 2.

Some of the works presented in Table 2 employed feature-free approaches to facilitate
spam and phishing detection. However, such approaches suffer from high computational com-
plexity and cost of training. Some research works considered email header, subject line, and
body as the most prominent features in classifying UBEs. However, it is worth noting that,
suspicious email header, subject line, and body could be misleading, and behavior-based email
features could be essential to facilitate accurate classification of UBEs. Most of the researchers
focused on the classification performance in terms of classification accuracy. This work dif-
fers from the efforts of previous works by revisiting various state-of-the-art machine learning
approaches for UBE classification. We employ feature selection to kindle an optimal feature
subspace to lower the computational complexity and enhance the classification performance.
Additionally, we present several key performance indicators other than classification accuracy
to assess the performance of the underlying models accurately. Furthermore, we present an
accessible tutorial to security specialists through snippets of Python code that is intended on
exposing them to the presented feature selection and machine learning algorithms.

3 Background
Certain email features (e.g., keywords such as debit, verify, and account) are more promi-

nent in UBEs than in ham emails, and by measuring the rate of occurrence of such fea-
tures, we can ascertain the probabilities for those email characteristics which in turn aids

@ Springer

5025

Applicability of machine learning in spam and phishing email...

UONOA[AS dINJEAY PASEq-IAN[Id,

uomnoI9[As aInyedJ paseq-radderp

UOLOJ[OS DINJEAJ PISLq-UONB[ALIOD)

[opow 103[qo JuaWNo0(J,,

JIom sAem[e
jou JyStw pue yoeoidde Kpooin)

o uone)
-ndwod y3ry ¢sonsst Ai[qeress

IogIsse]d LA Pim YN pue
Md:] Mo[pue ‘KoeIndoe 10ySTH

yoeoxdde
SuBdW-y [eQO[3 payIpout

pSHA 5SAM DS ‘4SD

4N “Ld ‘OIS “TAS

SOUO JUBAJ[ILII pue
JuepUNpaI AJESNIW pue saIn)
-89J oy} 9zA[eue 0) wyjLIo3[e

UONIO[AS 2INJE3) PApPaquI
sa1ned) (pAyIrom y3iy)
359q Y3 d[yoid pue sarnjesy
y3rom 0} SuLI)Snyo Sasn Jey)

(S107) uessey

pue ‘Kouepunpar ‘AoUBA[LI] Q) UBY) JUSTOYJO QIO)i qv ‘OINS 10309)0p Jon-nnuwi djquiesuyg ($107) Afemeqy pue prueyq
Sururen 19)sn[d pue ‘uon
Spoyjouw pue s[oo} -BOYISSE[O A[QUIASU ‘Fururen
SaIN)e9) JuepuUNpaI Sul pasn Ajuowrtod 0y uostied ‘uonoenxa amedy :saseyd
-AjoAut suoneindwos xopdwo) -wod ur eoueuriojrad 1eneg QOUBAQ[I WINWITXBIA TINS [2ISADS YIIM [opoul UONIRJ (2102 ‘Te 30 Suenyz
saInjea)
posodoid A[snoraaid oy
[[® UO paseq 19sqns dInJedy
SIOYISSE[d JO sonbruyo) uonoores QA1}09JJQ U 3uIsn AdeIndoe
Ioquinu pAIWI] B A[UO UO SIA[Y QINJedJ SNOLIBA SABN[RA] OI ,SAM ‘484D a4 UOTBIYISSBO) Suroueyuy (1107) T 32 1fuoyy]
SHEN 1991p
0) POILIOUAT ATOM S[TRUId
saImeaj oy Jo douerrodwr samjeaj a[qissod 000 ‘01 1240 Jo snd1od & woly
oy ren[eAd 0) DY skojdws AuQ A} JO UOTIEN[BAD PI[TRIAP Y)i 1d oSO sarmyedj renuajod Ot Jo 10§ (0102) Aypre) pue uejoo],
sonradoxd
JANOd pue ‘suonoesuen
1509 QeI SSTW dLLH s1 ‘Knuapt s a)1sqom
pue swr uonendwod Yy mo[& yIm dweyds Surystyd © UT AOU9)SISuoour o)
£591N)B9J SN0oU3010)AY JO IS -nue juopuddopur-Surysiyg e TINS SoUIWEXD Jey) 1030930p SuIysiyd (9007) Suiq pue ueq
(S)yrewray (SHYSySTH UOMIJ[AS AN (s)xayisse) (so)yororddy MIOM

uoneIYISSe[O Fg () AIeI[Ioe] 0) SuruIes] suryoew pakordurd ey sytom jsed Loy awos Jo Arewwung | d|qel

pringer

As

T. Gangavarapu et al.

5026

[redar
pue ‘uoisioaid ‘AoeIndoy

9ye1 aanisod as[eq

SOAT)
-e3ou pue soAnisod asyeq

[redar
pue ‘uorsioaid ‘AoeInooy

KoeInooy

[1eoa1
pue ‘uoisioaid ‘AoeIndoy

[[e991 pUE UOISIOAI]

L0 DHYL

S9110)
-1sodar [D) woiy sjesereq

(000 ‘7) S[rRWd PAdS[[0D

urssessywedg

(8%C “T) S[Tewd pajd2[[0)

KIeuonoip ejep e Ul SPIOA,

urssessywedg

S[TEWD P2jod[0D)

dTIA Pue gN
UOIJBN[BAD Q0URWI
-10310d 10§ SOIOW UOT)
-BN[BAS PIEPUR)S JO YorT]
yoeoidde
paesodoid ayj Jo Koeoyge
Q) 2JBWNSI 0} SOLIAW
uonen[eAd oyenbapeuy
Qouew
-10J13d jo uostredwos oN

Qouew
-10312d Jo uostredwod oN

Souew
-10312d Jo uostredwod oN

P2109[39u a1oM
sayoeoxdde uoneoyisse[d
Hd0 He-ay)-jo-aelg
Qouewr
-10312d jo uostredwod oN

duewr

OOE.&EHO%.HOQ MO

(L00D)

‘Te 10 anag Y paredwo)

WIISAS dunuwIwI
[e1oY1Ie pue as y3nol
‘INAS dTIN ‘NN ‘N

JdTIN Sursn uonesyisse[)

WAJSAS aunwIwr [ero
-ynJe 3uisn uonedyISSe[D)

J44

N Sursn uonesyisser)
uonouny ssauIY dNSLINAY
' 1M wyLIo3[e o1ouad

9y Sursn uoneoyIsse[)

wiypLose
oneuas ayy Sursn uon
-BOYISSB[O dnRWOoINY
WASAS qunuuwr
[eIOYNIR pUE ‘519 YInoI
‘INAS ‘dTIN ‘NN
‘gN SuIsn UoneOyISSE[D)

€N Sursn uonesyisser)
UONEIYISSL[O [qNOp PoJ

-9Alj pUB IQYISSE[O Y}

se JTIN YIIM UOT)O9os

($100) "Te 10 BULIRYS
(¥102)
pIwEY[Npqy pue SLIp]

(#100)
TWNMPY Pue neAurY

(€107) 'Te 10 LyseASeyg

(€100)
npurg pue BARISBALIYS

(€100)
eyeyq pue Kreypnoy)

(110T) yonasTg pue pemy

(1102)
NO[WAIAY PUB TABSNOIA

Koenody (00T ‘7) S[rewd pAjod[[o) -1o0j1ad jo uostredwod oN - QINJBIJ OIBAS PIEMIO] (0107) BSOS 1I0N

Kyureyooun

[Teoar pue ssourzznj djesodioour
pue ‘uorsioaid ‘AoeIndoy asequiedg QouewIojrod Mo 195 y3no1 pue gN 0] JOYISSE[O 39S YInoy (5007) Sueyyz pue oeyz
(s)onow uonen[eAy (syesereq (s)yTeway (s)uyioSe paredwo) (so)yoeorddy SO

Surieyy pue uono9Iep N JO PIeY Y UT s3Iom SUnSTX Aoy Swos Jo Arewung g 3jqel

pringer

A s

5027

Applicability of machine learning in spam and phishing email...

KoeInooy

KoeInooy

amsesw-{ pue
‘I1eoas ‘uorstoard ‘KoeInooy

KoeInooy

[Teoa1
pue ‘uoisioaid ‘AoeIndoy

aInseaw- pue
‘Ireoa1 ‘uorstoad ‘KoeInooy

Kyoyroads pue K11ARIsuag

Kyoyroads
pue ‘KJIAISULS ‘KOBINODY

Sury

S[TEWD P2jod[[0D)

asequuedg

asequuedg

asequiedg

asequiedg

S[TEWD P2JoA[[0D)

0102 DINASO

own Sururen ySry

o Sururen ySry

Qouewrtojrad mo

awy pymg [apow YSiH

Qouewojrad Moy A19A

juoul
-oroxdur eouewrroyrod oN

Ooﬁmauo.tva MO

QouewIojrod Mo

WYILIOS[e UOTIOI[AS QAT
-e3ou pue ‘vonezundo
wems oponted ‘NAS ‘N

SyIoMIoU [BINAU pue g

QOUBISIP UBIPI[ONT
1M UOTIBOYISSE[D
NN pue uone[ao110d
I9pI0-yuel s uewreadg
M uonedyIsse[d NN

SYIOMIAU [BINAU UOIoUNy

SISeq [RIpRI pUeR ‘SI0OM

-Jou [eIndu ‘J TN ‘uon
-eziundo wrems a[onIed

INAS Pue ‘NN ‘AN

4N s uon
-eziundo Auojod jue pue
4N UM WyiLIos[e dNoudn

LSV19 pue “jomiou
[eanau onsiiqeqoid ‘gN

SYIOMIoU

[einau pue ‘voneziundo
wrems dponred ‘Agaiy ‘gN

uonezundo urrems
o1onred pue UONII[AS AT
-e3ou 3uisn uoIBOYISSE[D)

SyIomIou [eInau a3e)s
-nnw 3uIsn UOIEIYISSED)

UOTIB[A1I0d
JI9pIo-yuel s, uewreadg
IIm UOoneOYISSe[d NN
syIomIaU
[eInau uonouny siseq
[e1pel pue uoneziundo
wems aponted Jo pLqAy
Ay SuIsn uoNeOYISSe[D)
INAS pue uonezrundo
Kuojo2 jue Jo priqhy
9y} Sulsn UONEOYISSB[D)
4N pm
uonezrwndo Auojoos jue
pue gN [Im wyLose
onouas 3uIsn UOIEIYISSE[D)
UONEBOYISSE[D JOJ YI0M)U
[eanau onsifiqeqoid pue
UOI}99[9s 2INJed) J0J Uor)
-eziundo wrems aponIed

4N pue
Kgo1y Suisn uoneOYISSB[D

(9107) 'Te 10 Awestueeq

(9100)
queys|-[v pue yey[y

(9102)
IysuemeAIng pue euLreys

(9107) eyebo] pue pemy

(S100)
TYSYBESIA PUE eYIylIey]

(S102) "Te 10 BYnuay

(S102)
wesnwinly pue Jewny|

(¥102)
TwemsTueed pue fereueyq

(s)ornow uonen[eAq

(s)esereq

(s) ooy

(s)uryroSe paredwo)

(so)yoeorddy

om

(ponunuoo) zs|qey

pringer

As

T. Gangavarapu et al.

5028

suonisod 1529 [2qO[D (1107) ‘T8 1 WO Ul 1sereq

aInseaw-{ pue
‘I1eoas ‘uorstoard ‘AoeInooy

204NV

vQd pue
‘eNd ‘tnd ‘1Nd ‘votuyg

asequedg

UONEeOYISSe[D I0J
NN pue gN pue ‘uon
-09[9S 2INJe9y J0J WIYILI
-o3[e uoneurfjod moy

Kreurq aandepe pue

UOIBNBAD Q0UBW ‘wpriodre Surdesy Soxy
-10312d 10§ sornowW UON papgynys ‘vonezrundo
-BN[BAd PIBPURIS JO Yor] wrems dponted Areurg

JIopodu0INE JUISTOUIP
PYOBIS PUB ‘SYIOMIOU
owm Sururen Y3y Jo119q dosp ‘TN asue
dew Suiziuesio J[os
Qouew pue ‘voneziundo wrems
-10J13d jo uostredwod oN oronaed ‘INAS ‘NN

wyjio3e uoneurjod
1omoy Areurq aandepe
Sursn uoneoyrsser)

SYI0MIQU [INAU

doop Sursn uoneoyisser)
uoneziundo wrems a[on
-Ted pue ‘sylomiou [eInou

‘INAS Sursn uoneoyisser)

(L107) Te 19 eueyowefey

(9107) 13eAL,

(9107) 'Te 10 TeaseZ

(s)ornow uonen[eAq

(s)esereq

(S)yreway (s)uryroSe paredwo)

(so)yoeorddy

om

(ponunuod) zsjqer

pringer

A s

Applicability of machine learning in spam and phishing email... 5029

in the determination of the email type. The existing literature presents a wide variety of
techniques to determine and utilize such discriminative features, and in this section, we
describe the different categories of UBE filtering approaches widely used to overcome the
menace of such emails. We also elucidate on the UBE filters widely used by popular inter-
net service providers to curtail the dangers posed by email-borne malware, phishing, and
malware in UBEs.

3.1 Categorization of the existing UBE filtering techniques

Over the years, academicians and researchers have proposed various UBE detection and fil-
tering approaches which have been utilized successfully to classify email data into groups.
These approaches can be broadly categorized into: content-based and behavior-based fil-
ters, sample base or case base filters, rule-based or heuristic filters, previous likeness based
filters, and adaptive filters.

3.1.1 Content-based and behavior-based filters

Content-based and behavior-based UBE filtering approaches aim at analyzing the email
content and structure to create automatic classification rules using machine and deep learn-
ing approaches such as KNN, NB, MLP, and neural networks. Content-based and behavior-
based filters analyze the tokens (words), their distribution, their occurrences and co-occur-
rences, in addition to the analysis of scripts and URLs, in the context of emails, and then
utilize the learned knowledge to generate rules to facilitate automatic filtering of incoming
UBE emails (Christina et al. 2010).

3.1.2 Sample base or case base filters

Sample base or case base filtering techniques are popular in spam and phishing email filter-
ing. Through an email collection model, all the emails, including ham, spam, and phishing,
are extracted from every user’s email. Then, preprocessing of the raw email data into a
machine-processable form is facilitate through feature selection (extraction) and grouping
the email data. Finally, the preprocessed data is mapped into distinct UBE categories, and a
machine learning algorithm is employed to train the existing email data. The trained mod-
els are then tested on the incoming emails to categorize them into ham, spam, or phishing
(Christina et al. 2010).

3.1.3 Rule-based or heuristic filters

Rule-based or heuristic UBE filtering approaches [e.g., SpamAssassin (Mendez et al.
2006)] utilize the existing heuristics or rules to assess several patters (specifically, regu-
lar expressions) against an incoming email message—the score of an incoming email is
reliant on the number of patterns in the email message (when the patterns in the email
message do not correspond to the preset regular expressions, the score is reduced). The
UBE emails are then filtered using a specific predetermined threshold. While certain
heuristics do not change over time, other heuristics require constant updating to cope
with the changing and dynamic nature of the UBE emails (Christina et al. 2010).

@ Springer

5030 T. Gangavarapu et al.

3.1.4 Previous likeness based filters

Previous likeness based UBE filtering approaches utilize instance-based or memory-
based machine learning approaches to classify the incoming email messages based on
their likeness and resemblance to the stored training sample emails. A multi-dimen-
sional vector is created using the attributes of the sample emails, which is then used to
plot new instances. A new instance is mapped to a target class using the most common
class among the K-nearest neighbors of the point (Sakkis et al. 2001). Finally, the KNN
classifier is employed to classify the incoming email messages.

3.1.5 Adaptive filters

Adaptive UBE filtering approaches facilitate the detection and classification of UBEs by
categorizing emails to distinct groups. In this approach, the email corpus is segregated
into several groups, and each group poses an emblematic text. The similarity between
an incoming email and a particular group determines the email message score with
respect to that particular group. The scores computed across all the groups are utilized
in deciding the most probable group concerning the incoming email message (Pelletier
et al. 2004).

3.2 UBE filters: how yahoo mail and gmail filter UBEs

Leading internet service providers including Yahoo mail and Gmail have employed several
machine learning approaches such as neural networks, to handle the threat posed by UBEs
effectively. Recent research revealed that the machine learning model employed by Google
facilitates the detection of UBEs with 99.9% classification accuracy—one in a thousand
email messages succeeds in evading the UBE filter in Gmail. To account for the consid-
erable UBE volume (= 50-70% of the emails), the UBE detection models developed by
Google incorporate Google safe browsing tools to identify websites with malicious URLSs.
The performance of UBE filtering is enhanced further through additional, comprehensive
scrutiny of phishing emails. Such more in-depth examination causes additional delay;
however, only 0.05% of the emails are subject to such delay. Further details on the email
UBE filters employed by popular internet service providers are presented in the following
subsections.

3.2.1 Yahoo mail UBE filtering

Yahoo mail is one of the first free webmail service providers with more than 320 million users.
Yahoo mail utilizes several algorithms and a combination of methods rooted in basic tech-
niques, including spam and email content users’ complaints and URL filtering. The email pro-
vider employs email filtering by domains rather than by IP addresses. Furthermore, Yahoo mail
provides ways of preventing a valid internet user for being mistaken for a cybercriminal (e.g.,
ability to troubleshoot SMTP errors using SMTP logs). The complaint feedback loop service
helps users maintain trust in the services and UBE filtering approaches employed by Yahoo
mail. Moreover, the email service provider also facilitates Yahoo whitelisting (return path cer-
tification and internal whitelisting)—whitelisting rolls back to the user to specify the list of

@ Springer

Applicability of machine learning in spam and phishing email... 5031

senders to receive email messages from (placed in a list of trusted users), unlike in blacklisting.
The service user can employ a combination of Yahoo’s spam-fighting techniques along with
whitelisting to reduce the volume of legitimate emails being erroneously classified as unsolic-
ited emails. Whitelisting alone can result in a strict implication on unapproved senders, in which
case, Yahoo mail utilizes an automatic whitelisting procedure, where the anonymous sender’s
address is checked against a database for any history of spamming or phishing—if the unap-
proved user has no record of cyber attacking, the email message is sent to the recipient, and the
user’s email is added to the whitelist.

3.2.2 Gmail UBE filtering

Google mail employs hundreds of rules to determine the nature of an incoming email—each
rule depicts a specific feature or aspect of a UBE with some statistical value which is reliant
on the likelihood that a particular feature corresponds to UBEs. The weighted importance
of the features is utilized to determine the final score for an incoming email message. The
score is measured against a sensitivity threshold determined using each user’s UBE filter,
and consequently, an incoming email is classified as ham or unsolicited. Unlike Yahoo mail,
Gmail filters email messages by IP addresses rather than by domains. To facilitate accurate
classification of UBEs, Gmail utilizes state-of-the-art machine learning algorithms includ-
ing neural networks and logistic regression. Additionally, to shield Gmail users from any
possible image UBEs, Google utilizes optical character recognition. Furthermore, the UBE
filtering by Gmail is greatly enhanced by linking several features through the use of machine
learning algorithms utilized in combining and ranking large sets of Google search results.
Factors like links in the email message headers and domain reputation depict the evolving
and dynamic nature of the UBEs over time—due to these factors, legitimate emails could
be classified as UBEs. With the emergence of state-of-the-art algorithms, tools, users’ feed-
back, and new UBE discovery, the filtering settings are updated continuously.

4 Methods: feature extraction and selection

In this section, we focus on describing the way of processing the raw email data® based
on forty discriminative features devised by Toolan and Carthy (2010), to facilitate the
detection of spam and phishing emails. Moreover, we elucidate on determining the impor-
tance of a feature concerning the features of UBEs. The following subsections give tactful
insights on the entire procedure employed as a part of feature engineering, which deals
with the process of transforming raw email data into informative and discriminative fea-
tures that better represents the underlying email corpus. Such representations aid the clas-
sification models to learn, adapt, and generalize, which is essential in the accurate classifi-
cation of unseen email instances. The entire workflow of the procedure employed to draw
informative inferences from the raw email data is depicted in Fig. 1. The text is accompa-
nied by snippets of Python code to familiarize the readers with the methods utilized in this
study. The code is aimed at readers with Python familiarity, more resources concerning the
same can be found at https://www.python.org/about/gettingstarted/.

3 The email data utilized in this research can be found at https://goo.gl/gkul2g.

@ Springer

https://www.python.org/about/gettingstarted/
https://goo.gl/gkuJ2g

5032 T. Gangavarapu et al.

Data collection D
(emails, Mbox) e SOTEEs

Feature engineering

Email preprocessing . Feature Feature selection
(Mbox to XML) Preprocessing extraction (extraction)
Email type Machine learning
(ham or UBE) algorithm

Fig. 1 An overview of the procedure employed to draw inferences from the collected data

Table 3 Summary of the email corpora utilized in this study

Dataset Rate of ham Rate of UBE (%) Year of creation References

SpamAssassin 83.6% 16.4 2002 Apache SpamAssas-
sin (Mendez et al.
2006)

Phishing corpus — 100 2015-2016 Nazario (2018)

4,1 Materials: raw email corpus

Most of the existing publicly available datasets including spam archive (Almeida and Yam-
akami 2010; Biggio et al. 2011), phishing corpus (Abu-Nimeh et al. 2007), and Princeton
spam image benchmark (Wang et al. 2007) are lopsided towards UBE detection—the volume
of UBEs utilized in evaluating the filter is much greater than that of ham emails, resulting in
the machine learner recording a higher accuracy by concentrating solely on detecting UBEs,
which might not scale well with the real-world data. Hence, a more suitable dataset is the one
with near equal volumes of ham and non-ham emails, thus facilitating the underlying machine
learner to learn and discriminate between ham emails and UBEs. The raw email data used in
this paper consists of around 3844 emails in total, which is comprised of 2, 551 ham emails
(= 66.4%), 793 phishing emails (303 from 2015 and 490 from 2016, contributing to ~ 20.6%),
and 500 spam emails (=~ 13%). These emails were collected from a variety of sources’*—the
spam and ham emails were collected from the SpamAssassin project (2002) (Mendez et al.
2006), while Nazario (2018) provided the phishing emails (see Table 3). We mine these emails
to extract the information needed to facilitate the accurate classification of those emails into
ham, spam, and phishing emails. To clarify the methods and techniques presented in this study
and present all the intermediate results, we use the test email presented in Block 1. Note that
the test email is constructed in a way that includes most characteristics of a UBE—such a
choice can help mitigate the sampling problem while presenting intermediate results.

4 Note that the individual corpus possesses highly distinctive qualities that are indicated through the experi-
ments conducted on that specific corpus.

@ Springer

Applicability of machine learning in spam and phishing email...

5033

© 00Uk WN -

Block 1 An example test email that contains most of the spam and phishing email features.

From tushaar@nitk.edu.in Fri Sep 22 11:04:35 2017

Return-Path : <tushaar@nitk.edu.in>
Delivered-To: test@localhost.examples.com
Received : from localhost [127.0.0.1]

by localhost with POP3 (fetchmail-5.8.8)
for test@localhost (single-drop);
Fri, 22 Sep 2017 11:07:38 +0200 (EDT)
Received : from emztd2202.com ([68.85.145.1781)
by webnotes.net (7.8.4/7.8.4) with SMTP id KAA08354
for <test@examples.com>;
Fri, 22 Sep 2017 10:14:09 +0200

Message-Id : <200206230815.KAA08354Q@webnotes.net>

From : "Tushaar Gangavarapu" <tushaar@nitk.edu.in>
Reply-To : 156it117.tushaar@nitk.edu.in

To : test@examples.com

Date : Fri, 22 Sep 2017 10:12:41 -0800

Subject : Re: Example of .eml format

X-Mailer : Microsoft Outlook Express 5.01.2818.6800 DM

MIME-Version: 1.0

Content -Type: text/html; charset="us-ascii"

X-MIME-Auto

converted : from quoted-printable to 8bit by webnote.net
id KAA08354

Content -

Transfer -

Encoding : 8bit

 <img border="0" alt="
SBI" src="sbi.png">
<html>
<body> <p> This email is from State Bank of India (SBI) </p>
</body>
<form>
Enter your card number: <input type="text"> </input>

Enter your pin: <input type="text"> </input>
</form>
</html>
We as a bank access social services and help risk management.
These links help you learn more on risks associated
View: https://10.10.54.4:80/nation/education

Visit: http://researchIAS.net/it352

Read: http://192.32.19.1:8000/blog

Risk: http://nitk@georgia.com/los_angeles

 Click here to view terms
 Click here to view policies
 Platinum cards on limited offer
<html>
<head>
<script> window.status = "SBI passwords" ; </script>
<script type="text/javascript">
function popup() {
window.alert ("Enter account number!")
window.open("http://www.hackPasswds.com/hack/email")
}
function verifyFunc() {
window.open("http://www.hackPasswds.com/hack/login") ;
}
</script>
<script src="myscripts.js"> Hey there </script>
</head>
<body >
<p> Finally, login and verify your account <p>
 Help with login

<button onclick="verifyFunc()"> Verify your account </button>
</body>
</html>

@ Springer

5034 T. Gangavarapu et al.

From the fest email in Block 1 it can be observed that an email contains additional
‘metadata,” including reply-to address, from address, to address, and others (lines 1 to 26),
that can be explored to aid in the classification of the email into ham, spam, or phishing.
The following subsection presents a detailed discussion on the features of a given email
[derived from Toolan and Carthy (2010)] that are prominent in the prediction of the nature
of an email.

4.2 Preprocessing and feature extraction: obtaining informative feature space

In this section, we discuss the features employed in this study to transform raw email data
into a machine-processable form. These features are internal to the emails and are not
derived from external sources such as search engine information, spam assassin score, or
domain registry information. Such external features were neglected, owing to the fact that
such information might not be present always, and hence cannot be a part of a truly auto-
mated UBE filtering system. Moreover, research has shown that features internal to emails
form a comparatively more informative feature set as most of the external data, including
search engine results or domain name service information changes regularly.

As stated earlier, we carried out several experiments on the obtained email corpus to
determine a suitable feature space that best represents the underlying corpus. These experi-
ments included the utilization of advanced content-based features and topics extracted
using paragraph vector network (vector size of 200) and hierarchical Dirichlet process (150
topics); however, the addition of such sophisticated features did not enhance the classifica-
tion performance, and instead increased the computational complexity of training. Addi-
tionally, we employed the genetic algorithm (population size of 50, crossover rate of 0.6,
and mutation rate of 0.1 for 25 iterations) to facilitate feature selection among the advanced
content-based features and topics—this resulted in the proliferation of the training time
with no significant improvement in the performance. The final feature space used in this
study employed forty informative features with the capabilities of spam and phishing email
discrimination, and they can be roughly divided into five distinct categories:

Body-based features: that features that are extracted from the email message content.
Subject line based features: the features that are extracted from the subject line of the
email.

e Sender address based features: the features that are extracted from the information
about the email address of the sender.

e URL-based features: the features that are extracted from the anchor tags of HTML
emails.

e Script-based features: the features that are extracted from the information concerning
the presence or absence of scripts in the email and the impact of such scripts.

The feature space composed of forty features is tabulated in Table 4. These features include
nine body-based, eight subject line based, four sender address based, 13 URL-based, and
six script-based features.

Note the presence of features like body_numFunctionWords, body_suspension, body_
verifyYourAccount, subject_verify, subject_debit, and subject_bank—these features
require exact word-to-word match, and their values could be easily miscalculated through
deliberate spelling errors, unattended typographical errors (e.g., ‘bank’ and ‘bnak’), or the

@ Springer

5035

Applicability of machine learning in spam and phishing email...

pringer

As

QuwIes oY) oIe [ePOW S, [TeW PU. UTRWOP S JOPUIS Y} JT S09yD) Kreurg UIeWO(JIOpUdS[EPOIAUOU
JUDIYIP 2Je urewrop 03-A[do1 pue urewop s Japuas Ay} J1 sY29YD Kreurg o] A[doyrepuasyIp
PIOY SSAIppE JOpUas 9y} Ul SI9)ORIBYD JO JoqUUNU [BI0], snonunuo) SI9joRIRYDWNU
PIOY SSQIppPE JOPUas AY) Ul SPIOM JO JOqUINU [BI0], snonunuo)) splopywnu SSQIppE JOpuos
aury 109[qns 9y} ur yueq, PIOM I} JO JUISQE JO dJUISAIJ Areurg yueq
aury 30a[qns 9y} ur JIqap, PIom Y] JO IUISQR IO JOUISAIJ Areurg 11qop
oury 309[qns oy ur AJLI0A, PIOM 9Y) JO 9OUISQE JO QOUISAIJ Kreurg KJr10A
our] 309[qns 9y} UI SI0)0RIBYDUWINU 0} SPIOA\WINU JO ONeY snonunuo)) SSoUYOLI
our] 309[qns Y} Ur sI9)OBIBYD JO JOqUUNU [BIO], snonunuo)) sI9)0BIBYDHWNU
aury Jo9[qns 2y} Ul SpIom JO JoquINU [B)0], snonunuo)) splopywnu
JUNOSYR JOYIOUE WO} PIPIEMIO] SI [TRWD dY) JI SHOYD Kreurg plemioy
[rew snotadxd € 0) A[da1 ST [rewa Y JI SYooyD Kreurg Kjdarx auy| J09[gng
Junoode 1ok AJ1Ioa, aseryd oy} Jo 9oUIsSqe IO IOUISAIJ Areurg JUNOOIVINO X AJLIOA
Kpoq oy ur uorsuadsns, pIom I} JO 90UISQER JO AOUISAIJ Kreurg uorsuadsns
Kpoq a3
ur popuadsns pue ‘991AIaS ‘AILINJS TIS0S ‘A[JUII “YSII ‘pIomssed
‘soynuIw ‘S0[‘pATWI] ‘QOUIIUIAUOIUI ‘UOTIBWLIOJUT ‘AJIIUIPI JIPAIO
YOI10 YUuBQ ‘SS9IL JUNOIIL SB YONS SPIOMAY JO 90ULINDI0 [B10], snonunuo)) SpIop| uonounjunu
Apoq o} UI SI9)oRIRYDWNU 0} SPIOA\WNU JO ONEY snonunuo)) SSQUUOLI
Apoq oy} UI SpIOM JOUNSIP JO JqUINU [BIO], snonunuo)) spIoplounsiquinu
Apoq 91} U SI9JOBIRYD JO IqUINU [BIO], snonunuo)) sIa)oRIBYDYWNU
Kpoq oy} ur SpIoMm JO Iequunu [e10], snonunuo)) SpIop\ WU
Kpoq 9} UT SWLIOJ JO Q0USSqE JO S0USAIJ Kreurg SULIO}
Kpoq 2y} ut s3e) TIALLH JO 90Uasqe 10 90uasald Kreurg [uny Apog
Arewwung odKy armeoq QINeo K1039180 2IMILo

[lretro Ue JO a1njeu 9y) JO UoneuIuLIalop AY] JOJ elep [lels MelI JO uUoljelliojsSuel) 9] Ul paZI[nn sainjesy \nto,w UL to|qeL

T. Gangavarapu et al.

5036

sur1oy JdLIOSBAR[[BUISIXS [BPOW-UOU AUB IO} SYI9YD) Areurg SpPEOTTS[[ePOJAUOU
Apoq 9y} UT SJUSAQ JYOI[HUO JO JIqUINU [BI0], snonunuo)) SIURAOIDUQWNU
Kpoq 2y} ut 9pod dndod Aue Jo 90udsqe 10 9ousAJ Kreurg sdndod
JUSIO [TEWS 9y} JO Teq Snye)s oy} SALIMIoA0 1d11os Kue J1 syjoey) Kreurg a3uey)smiels
Apoq oy ur JdLIOSeAR[JO 9OUISQE 1O 0UISAIJ Kreurg yduogeae(
Kpoq oy ut s3d1I10s JO 90UIsqe JO 90UISAIJ Kreurg sydros 1drog

uonewIojur 110d 9y} YA [TRWD) UT SYUI] JO JOqUINN snonunuo)) syloqunu
08 uey) 1oy3o sy1od ay) Sursseode ST 10) SYOYD Kreurg suod
urewop [epow-uou & 0} Surddew syuI| 919y, J0J SHOYD Kreurg SYUI'TRISH[BPOJAUOU
9yepdn Jo ‘ur3o[‘1o “YOI[0 NI SPIOM SUTBIUOD JX9) JUI[Y} JI SYOYD Kreurg IXQIUI|
sy[urf oy} [Te woij sporiad Jo requunu 1SoySTH snonunuo)) SPOLIOJWNNXEW
Apoq oy} u1 STY() Y} [[& WOIJ SUTeWOop JO JoquInu [e)0], snonunuo)) surewoquInu
a3ewr ue yym Apoq 2y ur sUI[JO Joquinu [elo], snonunuo)) syuroSewwnu
sj0318) [BUIOIXD YIIM APOQ 9Y} UT SYUI[JO JOqUINU [BI0], snonunuo)) SUreuIoIXunu
syo31e) TRUIo)UT YIIM ApOq U} UI SYUI] JO JoqUINU [8)0], snonunuo)) SyurreuIojuIwWNy
Kpoq [Tewd 9y} UI SYUI] JO JoqUINU [8)0], snonunuo)) syuryunu
‘[OQWIAS @), Ue UTejuod Jey) SYUI[JO 90UdsAIJ Kreurg [oqui&gie
SOWBU UTEWOP JOU PUE SISSAIPPE JT YIM SYUI] JO IOqUINN snonunuo)) sassaIppydyunu

urewop payifenb e uey) IoyjeI SSaIppe J[JO asn Y} IOf SN0y Kreurg ssa1ppydr TN mo

=)

Arewrwng odKy armeoq QINMEeo K1039180 9IMILo a.

7

(ponunuoo) pajqer &l

Applicability of machine learning in spam and phishing email... 5037

usage of verb forms (e.g., ‘bank’ and ‘banking’). To cope with these shortcomings and
obtain a standard canonical form from the raw email textual entries, we used the imple-
mentations in the Python NLTK library. The canonical form was obtained through tokeni-
zation, stemming, and lemmatization. In tokenization, we aimed at transforming the given
text in the raw email entry into smaller words (tokens). Then, we facilitated suffix stripping
using stemming, followed by lemmatization to convert the suffix stripped words to their
base forms. Moreover, to handle spelling and typographical errors, we employed Jaro simi-
larity scoring (Gangavarapu et al. 2019a, b) (through the implementations in the Python
textdistance library) between the intended word spelling and the actual spelling. The
Jaro similarity score is normalized (range of [0, 1]), and is given by,

0, m=0

Jaro(t;, 1) = l(moyom oy 2meT), otherwise M

3\ 4] 14 2m

where ¢; (of length |£;]) and #; (of length |#,]) are the tokens under comparison with m match-
ing characters and T transpositions. The threshold that determines if two tokens under com-
parison are the same was set to 0.9. The code in Block 2 details the entire preprocessing
process utilized to obtain a canonical form. Thus, we mitigated the shortcomings arising
due to spelling errors, typographical errors, and irregular verb forms.

Block 2 Code block to facilitate preprocessing of raw email textual entries to obtain a
canonical form.

Tokenization of a given email textual entry
tokens = mailTextEntry.split(’)

Obtaining the base form of a token by stemming and lemmatization
stemmer = PorterStemmer ()

lemmatizer = WordNetLemmatizer ()

stemmedToken = stemmer.stem(token)

lemmatizedToken = lemmatizer.lemmatize (stemmedToken)

© 00~ Uk W=

10 | # Finding the Jaro score between two tokens
11 | jaro = textdistance.Jaro ()
12 | similarityScore = jaro(actualToken, obtainedToken)

4.2.1 Using python for feature extraction

Feature extraction aims at transforming raw email data into informative features that best
represent the data without any loss of information. In our email corpus, we have 3, 844
emails (see Sect. 4.1). As explained in Sect. 4.2, we need to extract forty features (refer
Table 4) from the collected raw email data. Before extracting the features, it is vital to
parse the email to obtain the email body, subject line, sender address, reply-to address,
modal URL, and all the links. We utilized the implementations in several Python libraries
including re, urlparse, BeautifulSoup, email, HTMLParser, and IPy. Before

@ Springer

5038 T. Gangavarapu et al.

proceeding any further, ensure that the encoding is set to UTF-8. The code in Block 3 elu-
cidates on the way of extracting several parts (e.g., email body) from a raw email.

Block 3 Code block to extract the body, subject line, sender and reply-to address, modal
URL, and all the links from a raw email.

Extracting the email information from the raw data
mail = email.message_from_string(rawEmailAsString)

Extracting the body of the email
bodyContent = mail.get_payload()

Extracting the subject line of the email
decodeSubj = email.header.decode_header (mail[‘Subject’]) [0]
subjLine = unicode (decodeSubj[0])

© 00O Utk W

11 | # Extracting the sender address from the ematl
12 | decodeSend = email.header.decode_header (msg[‘From’]) [0]
13 | sendAddress = unicode(decodeSend[0])

15 | # Extracting the reply-to address from the email
16 | decodeReplyTo = email.header.decode_header (msg[‘Reply-To’]) [0]
17 |replyToAddress = unicode(decodeReplyTo [0])

19 | # Extracting the modal URL from the ematl

20 |URLs = re.findall(r"httpl[s]?://(?:[a-zA-Z]1|[0-9]|[$-_@.&+]|[!*\(\)
,11(?:%[0-9a-fA-F]1[0-9a-fA-F]))+", str(mail))

21 |modalURL = max(set(URLs), key = URLs.count)

23 | # Extracting all the links, both internal and external
24 | soup = BeautifulSoup(msg, "1lxml")

25 | allAnchorLinks, anchorURLs = [], []

26 | for link in soup.findAll(‘a’, attrs={‘href’: re.compile(""httpl[s
17://") 1) :

27 anchorUrls.append (link.get (‘href’))

28 |for link in soup.findAll(‘a’):

29 allAnchorLinks.append(link.get (‘href’))

30 |nonAnchorURLs = difference(URLs, anchorURLs)*
31 |alllLinks = allAnchorLinks + nonAnchorURLs

* Diference (a, b) returns elements in a not in b (a—b).

The implementations in the Python email library provide extensive support to handle
and parse email data and multipurpose internet mail extensions. First, we extracted the raw
email data from the string format into the email format, which was then utilized to extract
various parts of the email. To ensure the consistency in the encoding of UTF-8, we first
decoded the required field and then encoded it in Unicode. The modal domain is the most
frequently used domain in the email (Fette et al. 2007). Finally, to find all the links in the
email, we needed to extract all the URLs linked in the form of href, as well as those
present just as such in the email, i.e., both anchor links and non-anchor links comprising
both internal and external email links. We used the implementations in the Python 1xml
library, which is a simple and powerful API to parse both XML and HTML. Now that we
have extracted various parts of the email, we need to obtain the features from each part, as
shown in Table 4.

@ Springer

Applicability of machine learning in spam and phishing email... 5039

Block 4 Code block to extract body-based features.

1 | # Checking if the email body has HTML tags and forms

bodyHasHtml = bool(BeautifulSoup(bodyContent, "html.parser").find())
3 | bodyHasForms = bool(BeautifulSoup(bodyContent, "html.parser").find("
form"))

VIl V)

Since most of the body-based features such as body_numWords, body_richness, body_
numCharacters, and others are easier to extract, we have only shown the process of extract-
ing and checking for HTML tags and forms in the email (see Block 4). All the subject
line based features are easily implementable through elementary Python programming
modules.

Block 5 Code block to extract the domain for sender address based and URL-based features.

1 | # Extracting the domain from the given email

2 |domain = re.search("@[{\textbackslash}w.]+", emailAddress)

3 | emailDomain = str(domain.group()) [1:]

4

5 | # Extracting the domain from the given URL

6 | parsedURI = urlparse (URL)

7 | domain = ‘{uri.netloc}’.format (uri=parsedURI)

8 | URLDomain = domain([4:] if domain.startswith("www.") else domain

Utilizing the utility methods listed in Block 5, we can straightforwardly obtain sender
address based features. Note that the sender address in the email is not merely the address,
but is usually of the form: “Tushaar Gangavarapu” < tushaar @nitk.edu.in > (Toolan and
Carthy 2010). URL based features are among the most important in the determination of
the nature of the email, and most of the URL-based features are related to IP addresses. We
use the implementations in the Python IPy package to facilitate the extraction of URL-
based features (see Block 6).

Block 6 Code block to extract URL-based features.

1 | # Checking if IP addresses are used instead of a quantified domain
2 | for linkDomain in linksDomainList:

3 if ":" in str(linkDomain):

4 linkDomain = linkDomain[:linkDomain.index(":")]
5 try:

6 IP(linkDomain)

7 urlIPAddress = True

8 break

9 except: continue

10

11 | # Finding the count of the image links in the ematl

12 | soup = BeautifulSoup(bodyContent)

13 | numImgLinks = len(soup.findAll(‘img’))

Note that, the function IP (.) uses the dotted IP format without the port number;
thus, if the port number is present in the IP address, it must be excluded before any further

@ Springer

5040 T. Gangavarapu et al.

processing. Moreover, while obtaining the count of the domains in the email, we must
include the domains of both the sender and the reply-to addresses. All the other URL-
based features such as url_ports, url_numPorts, and others can be implemented effortlessly
using the above-established methods. Finally, we show how to mine for script-based fea-
tures from the email body in Block 7.

Block 7 Code block to extract script-based features.

1 | # Checking for the presence of scripts in the given ematil
2 hasScripts = bool(BeautifulSoup(bodyContent, "html.parser").find("
script"))

3

4 | # Checking for the scripts containing JavaScript

5 | soup = BeautifulSoup(bodyContent)

6 | for script in soup.findAll(‘script’):

7 if script.get(‘type’) == "text/javascript": scriptJS = True
8

9 | # Checking if a script overrides the status bar of the email client
10 |for script in soup.findAll(‘script’):
11 if "window.status" in str(script.contents): statChange = True

13 | # Checking if an email contains a popup window code
14 |for script in soup.findAll(‘script’):
15 if "window.open" in str(script.contents): popups = True

17 | # Finding the number of onClick events in the given email
18 | numOnClickEvents = len(soup.findAll(‘button’,{"onclick":Truel}))

Using the above utility methods, we can easily verify if JavaScript comes from outside
the modal domain. Table 5 shows the scores of all the forty features concerning the fest
email presented in Block 1. Now that we have obtained the feature space (forty informative
features) from the given email, the subsequent step would be to measure the importance of
each feature, to understand the contribution of each feature towards the determination of
the nature of a given email.

4.3 Feature selection: engendering optimal feature space

In this study, we employ three combinations of the available ham (), spam (S), and phish-
ing (2015: P,y;5, 2016: P,;;4) email data, to obtain three datasets, as shown in Table 6.
The first dataset comprises ham and spam components, and is aimed at investigating the
efficacy of the proposed approaches in spam detection, while the second dataset comprises
ham and phishing components, and investigates on the efficacy of the proposed techniques
in phishing detection. Such individual analysis is useful in understanding and analyzing
the relative importance of features in spam and phishing email detection, respectively. The
third dataset comprises all the three components and reflects the fact that real-world email
data is composed of ham, spam, and phishing email data. All the experiments performed in
this study employ these three datasets.

Not all the features in the obtained feature space contribute towards the accurate clas-
sification of the email type, which makes it mandatory to eliminate features of negative

@ Springer

Applicability of machine learning in spam and phishing email... 5041
Table 5 The scores of all the forty features concerning the test email
Feature Score Feature Score
body_html True sender_nonModalSenderDomain True
body_forms True url_ipAddress True
body_numWords 162 url_numlIpAddresses 1
body_numCharacters 1298 url_atSymbol True
body_numDistinctWords 115 url_numLinks 11
body_richness 0.1248 url_numlIntLinks 2
body_numFunctionWords 12 url_numExtLinks 9
body_suspension False url_numImgLinks 1
body_verify YourAccount True url_numDomains 8
subject_reply True url_maxNumPeriods 3
subject_forward False url_linkText True
subject_numWords 5 url_nonModalHereLinks True
subject_numCharacters 22 url_ports True
subject_richness 0.2273 url_numPorts 2
subject_verify False script_scripts True
subject_debit False script_javaScript True
subject_bank False script_statusChange True
sender_numWords 3 script_popups True
sender_numCharacters 41 script_numOnClickEvents 1
sender_diffSenderReplyTo False script_nonModalJsLoads True
Ta.bvle 6 VStati.stics of the datasets Dataset Components Size #Classes
utilized in this study

H,S 3051 2

H, Paois: Paoie 3344 2

H, S, Paois> Paois 3844 3

or no importance.” We aim at introducing a few of the many feature selection (extraction)
techniques, including mRMR (Peng et al. 2005) and PCA (Pearson 1901).

One of the prominent considerations of feature selection (extraction) techniques is the
determination of the number of features (dimensions, denoted by k) to extract. There exists
no single method to determine k; it is application dependent—a smaller number of dimen-
sions suffice while obtaining insights about the data, while the same is not valid while
developing predictive models (Kosinski et al. 2016).

5 While features with no importance do not hinder the classification performance, they add to the training

complexity.

@ Springer

5042 T. Gangavarapu et al.

4.3.1 Obtaining the optimal threshold for threshold-based approaches

Several feature selection approaches, including missing values filter and low variance filter,
require a threshold to be preset—the threshold is primarily dependent on the input data.
That being said, the preset threshold determines if a given feature is important enough to
affect the classification or not. Lower values of the threshold include most of the features
from the given feature space, thus under-fitting the data, while higher values of the thresh-
old exclude most of the features, causing the loss of critical information. Hence, finding an
optimal threshold that facilitates optimal feature selection is vital. The procedure described
in Algorithm 1 elucidates on the process of obtaining the optimal threshold. The procedure
described in Algorithm 1 utilizes certain utility functions that:

e scoreFn(featureColumn): returns the score that is specific to a feature selection tech-
nique (e.g., variance in case of low variance filter) for a given feature column.

e compareFn(score, threshold): returns a Boolean value that is subject to a technique-
specific comparison of the score and the threshold (e.g., score < threshold, returns true
for variance filter and feature importance filter, and false for missing values filter).

This procedure (Algorithm 1) is dependent on the underlying machine learning algorithm
that is used to compute the performance (accuracy); this study employs an extensive study
involving eight state-of-the-art machine learning algorithms (see Sect. 6). Thus, to accom-
modate all the utilized machine learning algorithms, we chose the smallest, most frequently
occurring threshold. Note that the thresholds were computed using the training datasets,
and then were utilized on the testing datasets.

4.3.2 Handling the missing attribute values

Usually, handling missing values is accomplished through either deletion techniques such
as pair-wise deletion and list-wise deletion, or imputation techniques such as hot-deck
imputation, cold-deck imputation, and Monte Carlo simulation based multiple data impu-
tation. In most of the cases, if a data column (feature) has only 5% to 10% of the required
data, then it is less likely to be useful in the classification of most samples (Silipo et al.
2014). The missing values ratio captures a relative value indicating the number of missing
rows, and this value compared with the preset threshold to infer if data is to be subject to
deletion or imputation. The missing values ratio is computed as:

.. . Number of missing rows
Missing values ratio =

@

Total number of rows

@ Springer

Applicability of machine learning in spam and phishing email... 5043

Algorithm 1 Obtaining the value of the optimal threshold

1 procedure OPTIMALTHRESHOLD (dataset, step, scoreFn, compareFn, algorithm)
2 Variables:

3 threshold «+ 0.0

4 score: Real

5 featureColumn: List

6 numFeatures < len(dataset.columns) — 1

7 optimalThreshold: Real

8 accuracyMax <— 0.0

9

begin:
10 while threshold # 1.0 do
11 datasetCopy « dataset
12 while numFeatures # 0 do
13 score < scoreFn(featureColumn)
14 if compareFn(score, threshold) = true then
15 datasetCopy.delete(featureColumn)
16 accuracy <— algorithm(dataset)
17 if accuracyMax < accuracy then
18 accuracyMax < accuracy
19 optimalThreshold < threshold
20 numFeatures <— numFeatures — 1
21 threshold < threshold + step
22 return optimalThreshold
23 end

Algorithm 2 Dealing with missing values in the dataset

1 procedure HANDLINGMISSINGVALUES (dataset, 6, imputationFn)
2 Constants:

3 threshold « 0

4 Variables:

5 missingValuesRatio: Real

6 missingRows: List

7 numMissingRows: Real

8 featureColumn: List

9 totalNumRows <« len(dataset.rows)

10 numFeatures < len(dataset.columns) — 1
11 begin:

12 while numFeatures # 0 do

13 missingRows + missing(featureColumn)
14 missingValuesRatio <+ 7185;&12111315‘;?5?;?;)
15 if missingValuesRatio < threshold then
16 imputationFn(accuracy)

17 else

18 dataset.delete(featureColumn)

19 numFeatures <— numFeatures — 1
20 end

The procedure followed in handling missing attribute values is explained in Algo-
rithm 2. In this procedure, we utilize the utility function mi s sing(featureColumn), which
returns a list of missing rows in the given feature column. The preset threshold value used

@ Springer

5044 T. Gangavarapu et al.

in Algorithm 2 can be computed using the procedure in Algorithm 1, with a step value of
0.1 (Silipo et al. 2014). Since the datasets utilized in this study have been programmatically
mined, we have considered all possible cases, to avoid any missing values.

4.3.3 Feature selection using low variance filter (LowVar)

Algorithm 3 Removing the features with low variance

procedure LOWVARIANCEFILTER (dataset, 6)
Constants:
threshold «+ 6
Variables:
variance: Real
featureColumn: List
numPFeatures < len(dataset.columns) — 1
begin:
while numFeatures # 0 do
variance < Var(featureColumn)
if variance < threshold then
dataset.delete(featureColumn)

—_
QOO Uk WD

— =
N =

—
w

numFeatures < numFeatures — 1

—_
~

end

One of the many ways of measuring the contribution of a feature (data column) towards the
classification performance, is by measuring the variance (sample variance®) of the values
of that feature. Variance measures the amount of dispersion provided by the values in the
given data, and evidently, zero variance is the limiting case, where the values of a feature
are constant; such a case offers no inference. Variance (Var (.)) is computed as:

Var(X) =]ﬁ D — %7 3)

x,€X

where X is the arithmetic mean of X. The computed variance is compared with the preset
threshold [the threshold obtained using the procedure in Algorithm 1, with a step value of
0.01 (Silipo et al. 2014)] to infer about the contribution of a feature in the classification
performance—this study employs a preset threshold of 0.01 for the Low Var approach.

The procedure to remove the features with low variance is described in Algorithm 3.
Note that the feature values are normalized prior to low variance filtering, to avoid any
unnecessary bias arising due to the data irregularities. It is interesting to note that, by using
the correlation between a feature and the target variable as the scoring scheme instead of
variance, we obtain a low correlation filter.

® This paper uses the terms ‘variance’ and ‘sample variance’ interchangeably. However, all the computa-
tions performed in this study employ sample variance, as we only have a sample (3, 844 emails) of all the
possible data.

@ Springer

Applicability of machine learning in spam and phishing email... 5045

4.3.4 Removing redundancy by measuring correlation (HighCorr)

Algorithm 4 Removing redundancy in the dataset

1 procedure HIGHCORRELATIONFILTER (dataset, 6)
2 Constants:

3 threshold <« 6

4 Variables:

5 innerldx: Integer

6 outerldx: Integer

7 currentColumn: List

8 setColumn : List

9 numColumns < len(dataset.columns)
10 correlation: Real
11 correlatedColumns: List of Lists
12 begin:
13 for outerldx < 0 to numCols do
14 setColumn < dataset.column[outerIdx]
15 for innerldx < 0 to outerldx do
16 currentColumn < dataset.column|innerIdx]
17 correlation <— Corr(setColumn, currentColumn)
18 if correlation > threshold then
19 correlatedColumns.add(currentColumn)
20 dataset.delete(correlated Columns)
21 end

Sometimes, the features in a dataset are correlated, i.e., they depend on one another, and
thus carry nearly the same information (data redundancy). All redundant features can
be replaced with one of the redundant features, without any loss of information. Such
replacement can reduce the computational time and enhance prediction accuracy. In this
paper, we utilize the Pearson correlation coefficient, denoted by Corr(X;,X,) (Pearson
1920; Nagelkerke 1991) [other correlation measures include Kendall Tau correlation
and Spearman rank correlation (Bolboaca and Jéantschi 2006)] and given by:

Corr(X,,X,) = E[(X; — X)X, — 5] “

\/Va.r(Xl) . \/Var(XZ)

where x| and X, denote the arithmetic means of X; and X, respectively, and E [x] denotes
the expected value of x.

Algorithm 4 details the procedure to eliminate redundancy using a correlation-based
filter. Correlation computed using Eq. 4 is compared with a preset threshold [the thresh-
old obtained using the procedure in Algorithm 1, with a step value of 0.1 (Silipo et al.
2014)] to infer if a feature is to be included or excluded in the classification—this study
employs a preset threshold of 0.5 for the HighCorr approach.

@ Springer

5046 T. Gangavarapu et al.

4.3.5 Measuring feature importance using the random forest classifier (Fl)

RFs often referred to as DT ensembles, can be utilized for feature selection (Diaz-Uriarte
and De Andres 2006). We can obtain the importance of a feature by using a broad set of
carefully constructed trees against the prediction attribute and analyzing the usage statis-
tics of each feature. The process of obtaining the feature importance involves the creation
of shallow trees and checking if an attribute appears as a splitting attribute in most of the
constructed trees, in which case, that particular feature is regarded as informative. Upon
the generation of the ensemble tree, each feature in the feature space can be scored against
the number of times that specific feature has been selected as the splitting attribute and at
which level of the tree it has been selected. This method is usually robust to noise and is
usually faster than boosting and bagging (Breiman 2001).

Usually, feature importance is computed as the Gini impurity or the mean decrease
in the impurity (Breiman 2017, 2002; Louppe et al. 2013), which measures the total
decrease in the node impurity—a measure of the decrease in the classification performance
decreases upon dropping a particular feature. The value of FI for a feature (X,,) can be
computed as:

T
Tp(Y,) = = 3 D (v, = m)[p) - Ain)] 5)
T 1=1 neg,

where Nj is the number of trees, ¢, denotes the rth tree structure, n is a node in the tree
¢,, v, denotes the variable at a node n, p(n) is the measure N, /N of the samples reaching
a node n, and Ai(n) denotes the impurity reduction (e.g., Shannon entropy, Gini index, and
variance of the target variable) at node a n. The impurity reduction at a node n is given by
(R: right, L: left):’

. . N"L . N”R .
Ai(n) = i(n) — Fnl(nl) - an(nR) 6)
Upon the computation of the importance of all the features in the feature space using Eq. 5,
the FI scores are compared with a preset threshold [the threshold obtained using the proce-
dure in Algorithm 1, with a step value of 0.01 (Silipo et al. 2014)] to infer if a feature is to
be included or excluded in the classification—this study employs a preset threshold of 0.06
for the FI approach.

4.3.6 Feature selection using minimum redundancy maximum relevance (mnRMR)

The mRMR approach (Peng et al. 2005; Chanduka et al. 2018) is an information-based
incremental feature selection technique (filter approach) that aims at integrating the rele-
vance [defined as the distributional similarity between the feature vector and the target vec-
tor (Auffarth et al. 2010)] and redundancy (o 1/robustness) information into a single scor-
ing function. Relevance can be measured through mutual information (MI) between the
given two random variables. MI quantitatively measures the amount of information (bits or
Shannons) that two random variables share, and is given by (holds for discrete variables,
for continuous variables we integrate over all values of X, and X,):

7 This study assumes a binary partition (split), which need not be true always.

@ Springer

Applicability of machine learning in spam and phishing email... 5047

Pr(x,x,) >
(X13X) ;{ ; r(x),X,) < Proe) Pred) @)
MI(X:X,) = H(X)) + H(X,) — H(X,, X;) (8)

where Pr(x,, x,) denotes the joint probability, which measures the likelihood of both x; and
X, occurring together, and is estimated by a histogram or a kernel-based Probability Den-
sity Function (PDF) estimator of one or two variables; Pr(x;) denotes the marginal prob-
ability of X;. MI can be expressed in terms of entropy (see Eq. 8), where the entropy meas-
ures the uncertainty of a random variable (Vergara and Estévez 2014) and can be computed
as:

HX0) = = ¥ p) - logy (p(xy) ©

Ultimately, we aim at maximizing MI(X':Y), where XeR? and
X e RF = {x x@ ... x®} k< n. It is hard to estimate the joint probability of high-
dimensional variables using a histogram or a kernel-based PDF, as the number of samples
needed to estimate the PDF exponentially increases with the increase in the number of
dimensions (Rossi et al. 2006). To cope with this issue, we modified the objective function
so as to estimate with the available samples.

It is essential to understand that the features contributing to a high MI index need
not necessarily be non-redundant, and hence it is crucial to consider redundancy along
with MI, to obtain an optimal representative set of k features. The objective function ®
(mRMR®) is employed to balance the trade-off between redundancy and relevance; is com-
puted using:
> MIa?:y) - 1 D MIG) (10)

®=R-R = m
X' * X

1
|X’| o)
where R measures the average relevance of the feature vectors with the target vector, while
R~ captures the average pair-wise redundancy among the selected features, and thus, by
maximizing the objective function, we can obtain an optimal feature subspace. The incre-
mental approach is facilitated by adding one feature at a time to the set X', starting from
the feature that maximizes the objective function. For every feature addition, the cross-
validation classification error is computed—the reduced feature space is the subspace with
the least classification error. In this study, we utilize the mRMR feature selection approach
as a wrapper approach, with C4.5 DT and 10-fold cross-validation. Moreover, binning was
employed ton discretize the continuous data, before subjecting the data to mRMR feature
selection.

Sometimes, the mRMR approach generates high error thresholds (as high as 34%).
Moreover, mRMR only considers pair-wise interactions (see Eq. 10); by considering
higher-order interactions, we can obtain more informative subspaces. Maximum Joint

8 The mRMR approach facilitates two variants including MID (difference), where ® = relevance—redun-
dancy, and MIQ (quotient) where @ = relevance/redundancy. This study employs the MID variant of
mRMR.

@ Springer

5048 T. Gangavarapu et al.

Relevance (MJR) (Yang and Moody 2000) and adaptive MJR (Jiao et al. 2015) are a few of
the modified mRMR algorithms that are aimed at tackling these shortcomings.

4.3.7 Feature extraction using principal component analysis (PCA)

PCA is an unsupervised approach that aims at converting a set of observations of (possibly)
correlated variables into a set of values of uncorrelated variables (principal components)
using orthogonal transformations (Pearson 1901; Wold et al. 1987). PCA aims at maximiz-
ing the variance of the data in a new dimensional space. PCA produces the same number
of orthogonal dimensions as that of the initial data, but what makes PCA interesting is
that the eigenvalues corresponding to these eigenvectors (principal components) monotoni-
cally decrease as we move away from the first principal component. The dimension with an
eigenvalue of approximately zero value (zero variance) does not provide any information in
the original space and can be considered to be irrelevant.’

PCA usually provides the best reconstruction, i.e., the loss of information from the
transformation is minimal, and this can be attributed to the fact that PCA only performs
linear transformations. PCA makes a compelling assumption of the presence of a linear
relationship between observed variables, and also that all the data points are Independent
and Identically Distributed (IID). Consider PCA for a single dimension subspace, where
X € R?and {x;, x,,---, x, } are IID distributions of X (d < n). We aim at maximizing u’ Zu
subject to u”u = 1, where £ is the covariance matrix (€ R%*¢), and u is a principal compo-
nent (€ R?). Using Lagrange multipliers (Klein 2004), we obtain Tu = Au, for some A.
So, u is an eigenvector of X, with an eigenvalue of A.

The preprocessing steps in PCA include zeroing out the mean of the data, and normal-
izing the variance of each coordinate, to ensure they are all measured on the same scale.
Then, we compute X, followed by the computation of eigenvalues and eigenvectors. If we
intend on projecting the data into a k—dimensional space (k < n), we should choose top—k
eigenvectors of %, i.e., {u;, u,, ---, u; }, which then form the basis of the new orthogonal
space. Any given data point X € R¢ can be represented in the new basis as:

X =u"X = [l Xul X il X]"; X = [¢Ox@ o x@]" (1)

Now, we know that all the dimensions in the projected space are orthogonal, and thus, we
can ensure that the variables are uncorrelated. PCA is comparatively fast, owing to the ease
of computation concerning eigenvectors (Hand 2007). Furthermore, PCA provides the ease
of interpretability and visualization. In this study, we only retained those principal compo-
nents of PCA that accounted for 90% of the variance.

4.3.8 Using python for feature selection (extraction)

In this section, we explain the way of obtaining an optimal feature subspace from the
given feature space through LowVar, HighCorr, FI, mRMR, and PCA approaches, using
Python. The low variance filter and high correlation filter can be implemented by follow-
ing the procedure in Algorithm 3 and Algorithm 4, respectively. Alternatively, the imple-
mentations in the Python pandas.corr (for high correlation filter) and sklearn.

° Note that the difference between ‘irrelevant’ and ‘useless’ is that irrelevant features have zero entropy
while the usefulness of a feature is application-specific.

@ Springer

Applicability of machine learning in spam and phishing email... 5049

feature selection.VarianceThreshold (for low variance filter) can be uti-
lized to achieve the same (see Block 8).

Block 8 Code block to facilitate feature selection using LowVar and HighCorr.

Using LowVar (threshold of 0.01) to facilitate feature selection
selector = VarianceThreshold(threshold=0.01)
transformedData = selector.fit_transform(trainingData)

Using HighCorr (threshold of 0.5) to facilitate feature selection

corrMatrix = trainingDataframe.corr().abs()

upperTriangle = corrMatrix.where(np.triu(np.ones(corrMatrix.shape),
k=1) .astype (np.bool))

dropFeatures = [column for column in upperTriangle.columns if any(
upperTriangle [column] > 0.5)]

9 | trainingDataframe.drop(trainingDataframe [upperTriangle], axis=1)

N O UL W=

oo

To obtain the importance of the features in the obtained feature space using the RF clas-
sifier, we utilized the implementations available in the Python sklearn.ensemble.
RandomForestClassifier library. The code in Block 9 elucidates on the implementa-
tion details concerning the computation of the FI. Note that the code presented here utilizes
100 classification and regression trees with a maximum depth of 2.

Block 9 Code block to facilitate feature selection by computing the importance of features
through RF classifier.

Using the RF classifier to classify the training data
classifier = RandomForestClassifier(n_estimators=100, max_depth=2)
classifier.fit(trainingData, targetClasses)

Obtaining the feature importances using the trained classifier
featureImportances = classifier.feature_importances_

D TR W N

To implement the mRMR approach in Python, we utilize the implementations in the
pymrmr library. The code in Block 10 details the process of feature selection using
mRMR. The code presented here takes as the input, a discretized dataframe, a method of
internal selection (MID or MIQ), and the value of k (number of dimensions). To discretize
a continuous attribute (X”) based on two thresholds, we use Mean(X?) + (y x Var(X?)),
where y can be 0, 0.5, or 1 (Peng et al. 2005).

Block 10 Code block to facilitate feature selection using mRMR.

[

Obtaining the optimal feature subspace of ten features using mRMR
2 | pymrmr .mRMR (discretisedDataframe, ‘MIQ’, 10)

Finally, to perform PCA and find the directions of maximum variance using Python,
we employ the implementations in the sklearn.decomposition.PCA library. Upon
fitting the PCA model, the principal components and eigenvalues can be accessed via com-
ponents_and explained variance attributes.

@ Springer

5050 T. Gangavarapu et al.

Block 11 Code block to facilitate feature extraction using PCA.

1 | # By default, numDimensions = min(numSamples, numFeatures)

2 |pca = sklearn.decomposition.PCA(n_components=None)
3 |pca.fit(dataMatrix)

4 |newDimensions = pca.components_

5 Methods: email classification

In recent years, most researchers have resorted to machine learning approaches to detect
and differentiate between ham, spam, and phishing emails. Machine learning algorithms
facilitate a sense of experience-based learning, resulting in the automatic generation
of adaptive classification rules, in turn enhancing the performance. Such adaptive and
automated approaches outperform blacklisting or rule-based filtering approaches which
rely on hand-coded rules susceptible to the changing nature of spam and phishing email
attacks. In this section, we review eight state-of-the-art machine learning algorithms
employed in UBE classification. The Python code is presented in-line with the text, to
aid readers to implement the proposed classifiers.

5.1 Classification using Naive bayes (NB)

The NB classifier exemplifies both supervised learning and statistical learning. NB
serves as a straightforward probabilistic approach that classifies the input email data by
influencing the probabilities of the outcomes. The Bayesian classification merges the
experimental data with the previous knowledge, and can solve both predictive and ana-
lytical problems. Furthermore, the NB algorithm is robust to noise, and computes likeli-
hoods for postulation. Note that, the NB classifier is based on the Bayes theorem with a
sound assumption of independent events. The Bayes probability theorem is an autono-
mous characteristic model (Wu and Deng 2008; Issac and Jap 2009), and is given as:

Pr(class|() = Pr((x;,x,, ..., x,) and class)
A Pr((x;,xp, ... %,)) 12
Pr(class) - (12)

H Pr(x;|class)

- Pr((x;,xy,...,X,)) e

where n denotes the number of features in the feature space. Since the value

Pr((x;,x,,...,x,))1s a constant, the classification rule can be rewritten as:
Pr(class|(x;, x,, ..., x,)) «x Pr(class) H Pr(x;|class) (13)
i=1
n
9 = arg max Pr(class) H Pr(x;|class) (14)
class i=1

@ Springer

Applicability of machine learning in spam and phishing email... 5051

The notion of class restrictive autonomy was utilized to ensure the ease of computation,
thus, tagging the Bayesian classification as naive—nevertheless, the classifier is robust,
effective, and computationally efficient. Owing to the promising performance of the NB
classifier, it has been adopted to solve several real-world tasks, including spam detection,
recommender systems, and sentiment analysis (social media analytics). Additionally, due
to its superior performance in multi-class problems, it has been exclusively adopted to text
classification tasks. It is interesting to note that Bayesian spam filters have been widely
implemented by many email clients—the software that ensures the effective performance
of email clients is entrenched with server-side email filters utilizing Bayesian filters. Gen-
erally, a Gaussian NB classifier is utilized to accommodate numerical features, where the
likelihood of the features is assumed to be Gaussian (normally distributed):

_ 2
Pr(x;|class) = S T exp<__(x’ Heclass) > as)
27Var(class) 2 Var(class)

However, in this study, we employ the supervised discretization approach to discretize
the continuous attributes as it overcomes the assumption of the normality of continuous
features.

To facilitate the classification of UBEs using the NB classifier, we utilize the imple-
mentations in the Python sklearn.naive bayes.GaussianNB library, as shown in
Block 12.

Block 12 Code block to facilitate classification using NB classifier.

Using the NB classifier to learn from the training data
classifier = GaussianNB()
classifier.fit(trainingData, targetClasses)

Using the NB classifier to classify the testing data
predictions = classifier.predict(testingData)

O U W N =

5.2 Classification using support vector machines (SVM)

The SVM classifier is a supervised learning algorithm that solves both regression and clas-
sification problems, and is proven to superior in performance when compared to several
attendant learning algorithms (Sculley and Wachman 2007). The applications of SVM
include solving quadratic programming problems with inequality constraints and linear
equality, by differentiating groups using hyperplanes. Despite the higher training time in
comparison to several other classifiers, the SVM classifier facilitates promising results,
owing to its capacity to model multi-dimensional borderlines which are neither straightfor-
ward nor sequential. Furthermore, the classifier model is not disproportionately complex,
in the sense that the number of trainable parameters is lower than the number of obser-
vations, thus making SVM an ideal suit for real-world tasks like speech and handwriting
recognition.

To understand the SVM classifier, let us consider the simple case of a binary clas-
sification problem, with features x and target classes y € {—1,+1}, where data points

@ Springer

5052 T. Gangavarapu et al.

are linearly separable. Let us consider two support vectors (forming a street) passing
through the data points lying closest to the decision surface (hyperplane), and a vector
w that is perpendicular to the median line of the street. Ultimately, we need to find sup-
port vectors that maximize the street width, thus finding the optimal decision surface.
For an unknown sample i, by measuring the projection of the unknown sample on to the
perpendicular vector, we can determine if the sample is a positive (y = +1) or negative
(y=-1),ie,w-u>corw-iu+b >0 for a positive sample. Now, for a positive train-
ing sample (x,), we have w-x, +b > 1, and likewise, for a negative training sample
(x_), wehave w-x_ + b < —1. So,

YO@ - XD +b) 120 (16)

where y® = 1 for positive samples (y = +1) and y = —1 otherwise. Let x' and x be the
points on the support vectors, note that, yO (i - x© + b) — 1 = 0 for x© € {x(f),xf)}. Now,
we can compute the street width as:
width = (x'9 — x©). L. (17
o Wl Il

Now, we transform the optimization problem from maximizing the street width, to:

max

- N G
(or) min [w][, (or) min zllWII% (18)

2
[wll,
Now, using Lagrange multiplier ; (constrained to be > 0), we have the Lagrangian as:

Lvb.) = 25— 3 a0 50+)~ 1] (19)

Now, by differentiating with respect to w and b, we get:

% e Z aiy(i)x(i) =0 — W= Z aiy(i)xa') (20)

oL ;
==X’ =0 @D
Using Egs. 20 and 21 in Eq. 19, we can simplify the Lagrangian as:

Lovbay=Y a2 Z Zj](a,-aj)<y@y°‘>)<xff>x'v>> @)

Now, using Eq. 20 in the decision rule of the unknown sample (it) to be a positive sample,
we get:

Y ayPx® - +b>0 (23)

From Egs. 22 and 23, we observe that the decision rule depends on the dot product of the
sample vectors and the unknown vector. Now, when the data points are not linearly sepa-
rable, we transform (using function ¢) the data points to a space where they are separable,
i.e.,

@ Springer

Applicability of machine learning in spam and phishing email... 5053

KE®, x0) = p(x®) - p(x0) (24)

Note that, all that we need to know is the kernel function /C (e.g., linear, Radial Basis Func-
tion (RBF), and sigmoid) that facilitates the transformation into the new space, rather than
the transformation itself. In this study, we employ the SVM classifier with an RBF kernel
and a cost factor of 32 (obtained empirically using grid search). The cost factor aims at reg-
ulating the modeling error that results when the function is fit too close to the data points.

To facilitate the classification of UBEs using the SVM classifier, we utilize the imple-
mentations in the Python sklearn.svm. SVC library, as shown in Block 13.

Block 13 Code block to facilitate classification using SVM classifier.

Using the SVM classifier to learn from the training data
classifier = SVC(kernel=‘rbf’, C=32)
classifier.fit(trainingData, targetClasses)

Using the SVM classifier to classify the testing data
predictions = classifier.predict(testingData)

S Tl W N

5.3 Ensemble classifiers

Ensemble learning is an approach of grouping several classifiers for training on the input
data, intended on improving the classification performance. Researchers have advocated
the assembling of various classifiers to handle UBE attacks effectively (Guerra et al.
2010). In this study, we employ six widely used ensembling approaches to facilitate UBE
classification.

5.3.1 Classification using bagged decision trees (BDT)

A DT is a supervised learning approach that decomposes complex problems into a hier-
archy of simpler ones. The internal nodes of a DT pave the way to the final decision rule,
each time (at each level) adding to the previous decision rule, while the leaf nodes associ-
ate an output (class label) to the input features. Sometimes, DT tends to overfit the data,
owing to the stringent decision rules at various levels of the tree. To cope with this issue,
bootstrap-aggregated (bagged) DT aims at combining the results of several DT classifiers.
This approach enhances generalizability and is hence adopted in a variety of tasks includ-
ing spam detection and power system fault detection. BDT classifier is effective in mapping
more than one parameter to a target variable (Netsanet et al. 2018) and hence is extremely
useful in UBE classification.

To understand the process of bagging, let us consider the training set 7 to be
(D, yDy, @, y), ..., (x™, y™)}, where x) € X and y? € Q = {l;,1,,...,1,}. A classi-
fier C aims at mapping from 7 to a decision rule (f), which then maps X to €, i.e., C(T) =f
and f(x) € Q. Now, a bootstrap sample T}, = {x(b’) , yg)};'zl is obtained through ingependent
draws from T, with replacement. The obtained 7}, produces the decision rule f, = C(T}),
and the final bootstrap-aggregated estimate ¥, » 1s computed as the majority vote of all the B
bootstrap predictors:

@ Springer

5054 T. Gangavarapu et al.

B
F, = arg max 2 Lyei o) (25)

yeQ iz

where I}/, is the indicator of M. Intuitively, bagging serves as a variance reduction process
that mimics the procedure of averaging over various training sets. In this study, we employ
BDT classifier with 100 C4.5 DT estimators. Moreover, we employ the Gini impurity in
the measurement of the quality of the split.

To facilitate the classification of UBEs using the BDT classifier, we utilize the imple-
mentations in the Python sklearn.ensemble.BaggingClassifier library (we
used the Python sklearn.tree.DecisionTreeClassifier library to implement
the DT classifier), as shown in Block 14.

Block 14 Code block to facilitate classification using BDT classifier.

1 | # Using the BDT classifier to learn from the training data

2 | treeModel = DecisionTreeClassifier ()

3 |classifier = BaggingClassifier(base_estimator=treeModel,
n_estimators=100)

4 | classifier.fit(trainingData, targetClasses)

5

6 | # Using the BDT classifier to classify the testing data

7 | predictions = classifier.predict(testingData)

5.3.2 Classification using random forest (RF)

While BDT classifier is effective in classification, the trees produced by a BDT classifier can
be very similar, and thus, slowing down the learning process. The RF classifier overcomes
this shortcoming by employing two sources of randomness including bagging and random
input vectors. RF uses DT classifiers to facilitate prediction of the target variable. RF classi-
fier has been shown to have better performance (low error rate) than several learners such as
SVM and DT, in several classification tasks including speech analysis and UBE detection.
Furthermore, RF performs well even in the cases of disproportionate data characterized by
missing variables, by providing an approximation to the missing data and preserving the
precision in cases where a significant amount of data is lost.

To understand the process of classification using RF, let us consider the train-
ing set 7 to be {(x1,yM), @, y?), ..., ", y™)}, where x? €X (X €RP) and
Yy eQ={l,L,...,I;}. Now, a bootstrap sample T, = {x;’),y;’) " | is obtained through
independent draws from 7, with replacement. The obtained 7}, is used to generate an RF
tree Tr,,. At every node of Tr,, we choose m out of p features (optimal value is \/[3), select
the splitting attribute among the m selected features using IG or Gini impurity. Then, we
split the current node based on the chosen splitting attribute. This procedure is recursively
repeated until the minimum node size n,;, (maximum tree depth) is obtained. Ultimately,
the classification is facilitated as:

min

$(x) = majority vote { Vb (x)}fj=l (26)

@ Springer

Applicability of machine learning in spam and phishing email... 5055

In this study, we employ the RF classifier with 100 C4.5 DT classifiers, and the nodes of
the tree are expanded until all the leaf nodes contain less than two samples or until all the
leaf nodes are pure. Moreover, we employ the Gini impurity in the measurement of the
quality of the split. The RF classifier is implemented using the procedure in Algorithm 5.

Algorithm 5 Random forest algorithm for UBE classification

procedure RANDOMFOREST (trainingSamples, B, npyin)
Constants:
m < /p
Variables:
b: Integer
begin:
for b + 1 to B do
From the trainingSamples, draw a bootstrap sample T} of size n
while n,;, > 0 do
10 Randomly select m out of p features
11 Select the splitting attribute of the tree Tr;, among m features
12 Split the node into two daughter nodes

13 Output the ensemble of all the generated trees {Tr;,}le
14 end

© 00~ Uk WN -

To facilitate the classification of UBEs using the RF classifier, we utilize the implemen-
tations in the Python sklearn.ensemble.RandomForestClassifier library, as
shown in Block 1.

Block 15 Code block to facilitate classification using RF classifier.

Using the RF classifier to learn from the training data
classifier = RandomForestClassifier(n_estimators=100)
classifier.fit(trainingData, targetClasses)

Using the RF classifier to classify the testing data
predictions = classifier.predict(testingData)

O UL W N

5.3.3 Classification using extra trees (ET)

The extremely randomized trees classifier was aimed at randomizing the tree building fur-
ther, in the context of numerical input attributes, where the choice of the optimal cut-point
(discretization threshold) is responsible for a large proportion of the variance induced in the
tree. Experiments (Geurts et al. 2006) have shown that the ET classifier is competitive with
the RF classifier in terms of accuracy, and sometimes superior (especially when the data is
noisy). Moreover, since the need for the optimization of discretization thresholds is removed
in ET classifiers, they are computationally fast and easy to implement. The ET classifier has
yielded state-of-the-art results in various high-dimensional complex problems.

The ET classifier is similar to an RF classifier in the sense that both these algorithms are
based on choosing m (out of p, optimally \/[3) features at each node, to determine the split.
However, unlike in an RF classifier, an ET classifier learns from the entire learning sample
T (no bootstrap copying) or a sample drawn from 7 without replacement. More importantly,

@ Springer

5056 T. Gangavarapu et al.

instead of choosing from the best cut-point based on the local sample as in BDT or RF, an
ET classifier randomly selects the cut-point to determine the split. It is interesting to note
that the algorithm is primarily reliant on the value of m, and when m = 1, the resulting
extra tree structure is built independently of the target class labels in the training set. From
a statistical perspective, dropping the randomization through bagging leads to an advantage
concerning the bias, while cut-point randomization often leads to an excellent reduction in
the variance. From a functional perspective, the ET approach facilitates piece-wise multi-
linear approximations as opposed to piece-wise constant approximations of RF classifiers.
In this study, we employ the ET classifier with 100 C4.5 DT classifiers, and the nodes of
the tree are expanded until all the leaf nodes contain less than two samples or until all the
leaf nodes are pure. Moreover, we employ the Gini impurity in the measurement of the
quality of the split.

To facilitate the classification of UBEs using the ET classifier, we utilize the imple-
mentations in the Python sklearn.ensemble.ExtraTreesClassifier library, as
shown in Block 14.

Block 16 Code block to facilitate classification using ET classifier.

Using the ET classifier to learn from the training data
classifier = ExtraTreesClassifier(n_estimators=100)
classifier.fit(trainingData, targetClasses)

Using the ET classifier to classify the testing data
predictions = classifier.predict(testingData)

O UL W N~

5.3.4 Classification using AdaBoost (AB)

The adaptive boosting algorithm is a meta-estimator that combines several weak decision
rules into one strong decision rule, and is shown to provide good performance even with
the unsatisfactory performance of the individual weak learners. By convention, a strong
learner is the one with an error rate close to zero, while a weak learner is the one with an
error rate just below 0.5. AB is widely adopted, owing to the astounding performance of
the algorithm in a wide variety of classification tasks, including UBE classification and
text categorization. Furthermore, AB is straightforward, adaptive, fast, easy to program,
and less cumbersome (due to minimal parameter tuning).

To understand the AB classifier, let us consider the simple case of a two-class prob-
lem, with training samples {(x(D,yD),(x@,y®), ..., x™,y™)}, where x? € X and
y? € {=1,+1}. In each round ¢ = 1,2, ..., T, we compute a distribution D, over the (1)
training samples. A weak learner is utilized to compute a weak hypothesis %', where the
weak learner is aimed at generating &' with low weighted error &, relative to D,. At every
step the distribution is normalized using a factor Z,, to ensure that D, is a distribution.
The final hypothesis H(f) computes the overall majority vote (sign) of all the weak learners
through a weighted combination of weak hypotheses, where each hypothesis is weighted by
a'. The entire procedure for the AB algorithm is shown in Algorithm 5. Alternatively, for
multi-class (more than two classes) problems, we have Stagewise Additive Modeling using
a Multi-class Exponential loss function (SAMME) (Hastie et al. 2009), which implements
the multi-class Bayes rule by modeling a forward stagewise additive model. A widely used

@ Springer

Applicability of machine learning in spam and phishing email... 5057

variant of SAMME is the SAMME.R algorithm (R for Real), which converges faster than
SAMME, and achieves a lower test error with fewer rounds. In this study, we employ the
AB classifier with a C4.5 DT classifier for 100 rounds and the SAMME.R algorithm in the
case of three-class classification. The procedure shown in Algorithm 5 is employed in the
implementation of the AB classifier.

Algorithm 6 AdaBoost algorithm for UBE classification

1 procedure ADABOOST (trainingSamples)
2 Constants:

3 Dq(i) < 1/n,fori =1,2,...n
4 Variables:
5 t: Integer
6 T Integer
7 i: Integer
8 Zi: Real
9 begin:
10 fort < 1toT do
11 Train a weak learner using the distribution Dy
12 Obtain the weak hypothesis ht : X — {—1,+1}
13 Select ht with low weighted error, & < Pry.p, [ht(z()) # y®)]
14 Choose al = %logE (lgtgt)
15 for i < 1 ton do o o
: t i t i
16 Dt+1(i) — D¢ (4) exP(*‘;ty ht ("))
T
17 Final hypothesis, H(z) = sign (Z oztht(ac)>
t=1
18 end

To facilitate the classification of UBEs using the AB classifier, we utilize the implementations
in the Python sklearn.ensemble.AdaBoostClassifier library, as shown in Block 15.

Block 17 Code block to facilitate classification using AB classifier.

Using the AB classifier to learn from the training data
classifier = AdaBoostClassifier(n_estimators=100)
classifier.fit(trainingData, targetClasses)

Using the AB classifier to classify the testing data
predictions = classifier.predict(testingData)

S T W IN -

5.3.5 Classification using stochastic gradient boosting (SGB)

The AB and related classifiers (step-wise algorithms) are categorized under adaptive re-weight-
ing and combining statistical framework, where the objective is to minimize the weighted error,
followed by a re-computation of the weak hypotheses. Gradient boosting machines enhance
this framework further, by casting the process of boosting as a numerical optimization with an
objective of loss minimization through the addition of weak learners using the steepest gradient
algorithm. In the SGB approach, we add a new weak learner at a time, while the existing weak
learners are left unchanged, and thus, facilitating a stage-wise additive approach. The SGB

@ Springer

5058 T. Gangavarapu et al.

algorithm is related to both bagging and boosting, where many small trees are built sequentially
from the gradient of the loss function of the previous tree (pseudo-residuals). At each round, a
tree is built from a random bootstrap sample (drawn without replacement), resulting in an incre-
mental improvement in the model. Thus, the SGB algorithm is computationally fast, resistant
to outliers, and avoids over-fitting of the data, and is hence adopted in a variety of applications
including microscopy image analysis and slate deposit estimation.

To understand the working of the SGB classifier, let us first understand a
naive formalization of gradient boosting. Let us consider the training set T to be
{GD,yDy, @, y@), ..., x™,y™)}, where x® € X and y? € Q = {I,,L,,...,1,}. A clas-
sifier C aims at mapping from T to a decision rule (f), which then maps X to €, i.e.,
(1) =f and f(x) =y € Q. First, let us fit a model to 7, i.e., ﬁ)(x) =y. Now, let us fit
another model ﬁo to the residuals obtained, i.e., ﬁo(x) =y —fB(x). Now, in the subse-
quent round, create a stage-wise additive model to correct the errors of the previous
model as fl(x) = ﬁ)(x) + }fo(x). Now, let us generalize this idea for R rounds as:

T = £ b £ = fy(x) + hg(x)++ = fr(x) 27)

= fo 1 (X) + hp_, (x) (28)

At each step r, we aim at finding /,(x) = y — f.(x). In practice, A, is almost always a tree-
based classifier. Now, let us tweak the model to conform to the actual SGB classifier; since
we aim at minimizing the loss function (L), let us initialize f with the mean of the target
classesin T, i.e.,

o) = argmin Y LG, y) (29)
4 i=0

Now, we recursively define each subsequent f, (r>0) as f,(x) = ﬂ:](x) + h,:l(x), where
h,_,(x) is a classifier that aims at fitting the residuals (o,_;) (computed as the gradient of
the loss function), i.e.,

o Lo)
T aLw

The final learner obtained after R rounds (f) is the trained SGB classifier. In this study, we
employ a SGB learner with a C4.5 DT classifier of maximum depth two (iz(x)), trained for
100 rounds. Moreover, we employ deviance as the loss function, which measures the good-
ness of the fit.

To facilitate the classification of UBEs using the SGB classifier, we utilize the imple-
mentations in the Python sklearn.ensemble.GradientBoostingClassifier
library, as shown in Block 18.

(30)

@ Springer

Applicability of machine learning in spam and phishing email... 5059

Block 18 Code block to facilitate classification using SGB classifier.

1 | # Using the SGB classifier to learn from the training data

2 |classifier = GradientBoostingClassifier(num_estimators=100,
max_depth=2)

3 | classifier.fit(trainingData, targetClasses)

4

5 | # Using the SGB classifier to classify the testing data

6 | predictions = classifier.predict(testingData)

5.3.6 Classification using voting ensemble (VE)

A voting ensemble classifier is a naive approach to aggregating the predictions of a vari-
ety of diverse classifiers using a majority rule. For a set of classifiers C"s (total R classi-
fiers) trained on the same training data (7' = {x©,y?}"_ .y € Q), we have predictions
(¥"s) such that C"(x) = y", where y" € Q. Now, the final classification is facilitated as:

$(x) = majority vote{y"}* | (31)

Such voting is often referred to as the hard voting scheme. In this study, we employ a
VE classifier with seven diverse classifiers including Gaussian NB, logistic regression, ID3
DT, RF, ET, AB, and SGB (with the parameters described in the above sections). Addition-
ally, we tested the plurality voting scheme; however, the majority voting scheme outper-
formed the plurality voting scheme.

To facilitate the classification of UBEs using the VE classifier, we utilize the imple-
mentations in the Python sklearn.ensemble.VotingClassifier library, as
shown in Block 19.

Block 19 Code block to facilitate classification using VE classifier.

Creating the sub-models to be used by the woting classifier
subModels = []

subModels.append ((‘DT’, DecisionTreeClassifier()))
subModels.append ((‘Logistic’, LogisticRegression()))
subModels.append ((¢SVM’, SVC()))

Using the VE classifier to learn from the training data
classifier = VotingClassifier (subModels)
classifier.fit(trainingData, targetClasses)

© 00O Ut WN

11 | # Using the VE classifier to classify the testing data
12 | predictions = classifier.predict(testingData)

@ Springer

5060 T. Gangavarapu et al.

5.4 WEKA workbench for machine learning

Apart from Python programming, the Waikato Environment for Knowledge Analysis
(WEKA) workbench (Hall et al. 2009) is recognized as a landmark system in machine
learning and data mining, which provides a toolbox of learning algorithms, along with a
framework for the development of novel algorithms without the burden of the support-
ing infrastructure for scheme evaluation and data manipulation.

The WEKA project aims to provide a comprehensive collection of data preprocess-
ing and machine learning algorithms for practitioners and researchers. It facilitates easy
and quick comparison of several machine learning algorithms on datasets. Furthermore,
the WEKA graphical user interface enables beginners to seamlessly perform data pre-
processing, regression, classification, clustering, feature selection, association rule min-
ing, and visualization. The WEKA tool has achieved widespread acceptance in business
and academia alike, and has become a widely adopted tool for the research in data min-
ing. Table 7 tabulates the capabilities of several machine learning and feature selection
approaches employed in this study, with respect to WEKA workbench.

6 Performance evaluation and discussion

To evaluate the efficacy of the utilized feature selection (extraction) and machine learning
algorithms in spam and phishing email detection, we performed extensive experimentation
on the datasets described in Table 6. All the experiments in this study were performed on a
PC with Intel Core 17 X 2.5 GHz with 16 GB RAM in the Mac 10.14 OS. Furthermore, all
the experiments were carried out through 10-fold cross-validation, and the overall perfor-
mance was computed as the average across all the folds. In this section, we first discuss the
evaluation metrics employed in this study and their relevance concerning UBE detection.
Then, we present the results of our experimentation, followed by a discussion on the impli-
cations of the presented results.

Table 7 Capabilities of the algorithms concerning WEKA workbench

Class Algorithm Allowed class types Allowed attribute types
Feature selection LowVar — Continuous
HighCorr - Continuous
FI Discrete Continuous and discrete
mRMR Discrete Discrete
PCA — Continuous and discrete
Classification NB Discrete Continuous and discrete
SVM Discrete Continuous and discrete
BDT Continuous and discrete Continuous and discrete
RF Continuous and discrete Continuous and discrete
ET Continuous and discrete Continuous
AB Discrete Continuous and discrete
SGB Discrete Continuous and Discrete
VE Continuous and discrete Continuous and discrete

@ Springer

Applicability of machine learning in spam and phishing email... 5061

6.1 Performance evaluation metrics

Most of the works in the existing literature employ classification accuracy as the key perfor-
mance indicator (see Table 2). However, only measuring the number of correctly classified
email messages is not sufficient, owing to the costs attached with the misclassification of
UBEs; other metrics derived from information retrieval and decision theory (e.g., precision
and recall) can help gain better insights into the obtained results. When a spam email mes-
sage is misclassified as a ham email, it causes a rather insignificant problem (user only needs
to delete such an email). However, when ham emails are misclassified as spam or phishing
emails, there is a possibility of losing vital information (specifically in scenarios where spam
emails are deleted automatically), while phishing emails that are misclassified as ham emails
result in a breach of privacy (a much more serious concern). Moreover, in scenarios with
imbalanced data (such as in our case), accuracy does not consider all the relevant aspects
of the classification inference. In this study, we employ seven standard evaluation metrics
including accuracy, precision, recall, F1-measure (F1 score), Matthews correlation coefficient
(MCC) score, area under the ROC curve (AUROC), and Area Under the Precision-Recall
Curve (AUPRC), to assess the performance of our extensive evaluation accurately.

Accuracy: This metric aims at evaluating the average number of correctly classified email
messages over the given email corpus. The classification accuracy can be computed using:

'H—=>H|+|S—=> S|+ |P->P|

Accuracy = No+N-EN 32)
H S P

where M denotes the email type (M = H for ham, M =S for spam, and M = P for
phishing), and N, denotes the number of email messages of type M. Also, |M — M’|
denotes the number of email messages of type M that are classified as M. It is necessary
to note that in Dataset;, |S — H| (false-negative event (miss)) occurrences are inexpen-
sive mistakes, while |H — S| (false-positive event (false alarm)) is a more serious concern.
However, in Dataset,, both |H — P| and |P — H| incur the same cost. Hence, in Dataset,,
metrics that account for false positives, such as precision of UBEs, recall of ham emails,
F1-measure, MCC score, AUROC, or AUPRC, serve to be more appropriate.

Precision: This metric computes the positive predictive value (reliability or worth of the
UBE filter) by measuring the true positives and false positives. Precision aims at measuring
the number of relevant results, i.e., what proportion of ham email identifications were actually
ham in nature. For a given email type M, it can be computed as:

IM = M|

Precision(M) = M S MM = M|

(33)

The precision is computed for individual email types, and the overall precision is computed
as the weighted average of the individual components as:

Precision(M) - N, + Precision(-M) - N.M

Precision =
Ny +N.M

(34)

Precision (of UBEs) is more appropriate in measuring the performance of Dataset,;, where
false-positive events cost more than false-negative events. However, it is not very appropri-
ate in measuring the performance of Dataset,, where both false positives and negatives
incur the same cost. Hence, we need metrics that incorporate both false positives and nega-
tives, to obtain a generalized performance metric.

@ Springer

5062 T. Gangavarapu et al.

Recall: This metric evaluates the sensitivity (effectiveness of the UBE filter) by measuring
the number of UBE messages that the filter succeeded in preventing from reaching the email
inbox of the user. For a given email type M, it can be computed as:

IM — M|
IM = M|+ M = = M]|

Recall(M) = (35)
The recall is computed for individual email types, and is aggregated using Eq. 34. As dis-
cussed earlier, recall (of ham emails) is appropriate in measuring the performance of Data-
set;, while in Dataset,, where false negatives are equally as important as false positives,
recall is inappropriate.

F1 score: This metric seeks a balance between the precision and recall, and is interpreted
as the weighted harmonic mean of the precision and recall. It differs from accuracy in the
sense that, accuracy only accounts from true positives and negatives, while neglecting false
positive and negatives. The F1 (F,_,)) score can be computed as:

Precision - Recall

Fy_p=0+p
o= = +F)(ﬂ2 - Precision) + Recall

(36)

Since F1-measure uses both false positives and negatives by capturing precision and recall,
it serves as a generalized metric for both Dataset; and Dataset,. However, F1-measure does
not account for the true negative occurrences (e.g.,|S — S)).

MCC score: This metrics serves as a balanced measure even in scenarios of class imbal-
anced data (such as in our case) by measuring the True and False Positives and Negatives (TP,
TN, FP, and FN). The MCC score computes the essence of the correlation between the pre-
dicted and the observed classifications. The MCC score can be computed as:

MCC = TP - TN — FP - FN a7
\/(TP +FN) - (TP + FP) - (TN + FN) - (TN + FP)

Since MCC score accounts for true and false positives and negatives, it serves as a more
generalized metric than Fl-measure, in evaluating the performance of the underlying
machine learning approaches.

Area under the ROC curve (AUROC): The ROC probability curve is a graphical plot of
sensitivity (Eq. 35) against fall-out (1-specificity, see Eq. 38). The AUROC metric meas-
ures the capability of a model to distinguish between classes. A greater value of AUROC
indicates that the underlying UBE filter is able to distinguish between ham, spam, and
phishing emails.

[~ M - = M|

Specificity(M) = [-M = M| + [-M = M|

(38)

Although AUROC effectively captures the hit and miss rates, it does not vary with the
change in the ratio of the target classes, and hence is not very inferential in scenarios with
imbalanced data.

Area under the precision-recall curve (AUPRC): The precision-recall curve is a graphi-
cal plot of precision (Equation 33) against the recall (Eq. 35). A higher value of AUPRC
signifies that the underlying model minimizes the misclassifications and false alarms.
When dealing with skewed datasets (such as in our case), the AUPRC reveals more inform-
ative insights concerning the performance of the underlying model, in comparison to
AUROC (Saito and Rehmsmeier 2015).

@ Springer

Applicability of machine learning in spam and phishing email... 5063

§§§8§8§8800 O§§§§00882§OO§§§§§§88§88§O

i

Fig.2 A dotted heatmap mapping the occurrence frequency of the features (feature space in Table 4) in the
utilized feature selection methods

6.2 Results and discussion

In this section, we report the results of our exhaustive experimentation on spam and
phishing datasets in Table 6. Note that, Dataset; has the maximum number of samples
and classes among the obtained datasets, and is hence utilized as the representative sam-
ple subject to feature selection (extraction). The features subspace obtained using Data-
set; was then employed in Dataset; and Dataset,, to facilitate accurate filtering of spam
and phishing emails. Table 8 tabulates the performance of various machine learning
algorithms (see Sect. 5) in the classification of spam emails of Dataset; using the email
features obtained using feature selection (see Sect. 4.2) of the feature space of Data-
set;. Similarly, the performance of the machine learners on Dataset,, using the features
extracted from Dataset; is summarized in Table 9. It is important to point out that PCA
facilitates feature extraction rather than feature selection, through a linear transforma-
tion of the input data. Table 10 shows the performance of the machine learning classi-
fiers using PCA-transformed Dataset;. From Tables 8, 9, and 10, it is interesting to note
that the RF classifier consistently outperforms all other machine learners. Such supe-
rior performance can be attributed to the ability of RF to perform well and generalize
even in the cases of disproportionate data through bagging and random input vectors.
Additionally, we also remark that the features selected using FI-based feature selection
(using RF) on Dataset;, when classified using an RF classifier, outperforms the per-
formance obtained using other feature selection approaches (98.4% accuracy and 99.8%
AUPRC on Dataset;, and 99.4% accuracy and 99.9% AUPRC on Dataset,, see Tables 8
and 9)—FI (using RF) measures the usefulness of the features in the construction of the
RF tree, and since the RF classifier is able to learn and generalize the underlying UBE
data, it is only natural that FI (using RF) accounts for the highest performance.

From the analysis of the features selected by the utilized feature selection tech-
niques, it can be noted that the features such as body_html, body_forms, subject_bank,
sender_numWords, url_numLinks, url_numImgLinks, url_linkText, url_maxNumPeri-
ods, and url_nonModalHereLinks, are selected by all feature selection techniques (Low-
Var, HighCorr, FI, and mRMR). However, certain features such as subject_numWords,
subject_numCharacters, and subject_richness are never selected. Figure 2 depicts a
dotted heatmap that captures the occurrence frequency of the features (feature space in
Table 4) in the utilized feature selection techniques. It is worth understanding the occur-
rence frequency employed in Fig. 2 uses a naive counting scheme, and a more advanced
and informed decision concerning the information of a feature can be drawn using a
weighted occurrence frequency scheme that accounts for the position of a feature in
the ranked feature subspace (Gangavarapu and Patil 2019). Intuitively, the weighted

@ Springer

T. Gangavarapu et al.

5064

6£6'0 8860 ¥86°0 LY6'0 9660 9860 188°0 LL60 oddnv
£06°0 786°0 086°0 €6°0 $66°0 $86°0 0080 0L6'0 204NV
798°0 L8°0 0€8°0 £98°0 0€6°0 798°0 0€L’0 08L°0 91038 DOIN
£96°0 9960 756°0 7960 186°0 £96°0 §26'0 0r6'0 aInseauI-1q
796°0 9960 §S6°0 2960 186°0 £96°0 1€6°0 176°0 ISR |
¥96°0 996'0 ¥56°0 £96°0 186°0 £96°0 £€6°0 0¥6°0 UOISIoald
€€0C 7960 9960 SS6°0 796'0 186'0 €96'0 1€6'0 1+6°0 KorIndoy (%0L) 8T 10Qy3IH
876°0 2660 L86°0 876°0 966°0 066°0 68°0 1L6°0 oddny
S16°0 0660 7860 0€6'0 €660 L86°0 ISL°0 2690 204NV
L88°0 1060 80 YL80 €260 0980 6590 Lo 21038 DOIN
6960 €L6°0 ¥56°0 9960 6L6°0 2960 ¥06'0 LT6°0 ainseawl-14
0L6'0 €L6°0 9660 9960 6L6°0 £€96°0 S16°0 LT6°0 [ILER). |
0L6°0 €L6°0 §S6°0 $96°0 6L6°0 2960 8160 LT6°0 UOISIOaId
S10°0 0L6°0 €L6°0 9560 9960 0860 £96°0 S16°0 LT60 Koemooy (%S°L9) LT TEAMOT]
£56°0 2660 L86°0 £v6'0 9660 2660 6880 SL6°0 oddnyv
26°0 6860 860 96’0 $66°0 166°0 180 L96°0 204NV
006°0 €160 6v8°0 G680 €60 0880 0SL°0 Lo 91038 DOIN
¢L6'0 9L6'0 6560 096°0 186°0 L96°0 0€6'0 6’0 aInseaw-1q
€L6'0 LL60 096°0 096°0 7860 8960 9¢6'0 ££6°0 [ILER. |
€L6'0 LL60 6560 096°0 786°0 L96°0 8¢6'0 6’0 UOISIoald
6099 €L6°0 LL60 096°0 8960 7860 §96°0 9¢6'0 £€6°0 Koemooy (%001) OF QUON
qA aos qav 1d 49 Lad NAS aN
(s) awn pring $AI00S QOUBWLIONIO] LN (%) SQIMBJ PAII[ISH UuoMndI[AS AINJed]

£1ose1R(] UO UON

-D9[9s 2INJBaJ 9} WIOIJ PAUTEIqO SAINJed] [rewo o) Sursn (1asere) s[rews weds Jo UONLOYISSL]D) UT SIOYTSSL[D SUTUIES] SUIYORT SNOLIEA JO UOTJENEAd 90URWIIONS] 8 3|qel

pringer

A s

5065

Applicability of machine learning in spam and phishing email...

SIQISSE[O UISOYD) SSOIOB 2I0JS dURULIOJIdd PapI0dal JsAYTIY aY) 2)edIpUI San[ea plog

1160 86°0 9L6°0 7160 ¥66°0 L86°0 8780 §S6°0 oddnv
LS80 SL6'0 L96°0 L88°0 766°0 86°0 0L0 ¥€6°0 204Ny
L6L0 ¥08°0 SLL'O YLLO 188°0 €80 986°0 169°0 91098 DDOIN
¥6°0 LY6'0 6£6'0 8¢6'0 896°0 ¥56°0 880 916°0 aInseawl-Tq
LY6'0 8¥6°0 1¥6°0 8¢6°0 896°0 956'0 0060 L16°0 1809y
LY6'0 LY6'0 0v6°0 8€6°0 896°0 6560 S06°0 S16'0 UoIsIoaIq
6611 LY6'0 876°0 176°0 8€6°0 0L6°0 956'0 006°0 L16°0 Koemooy (%S'LY) 61 vod
026'0 786'0 LL6'O 6£6°0 £€66°0 ¥86°0 7680 96°0 oddnv
1L8°0 1,60 996'0 §26'0 166°0 8L6°0 6¥L'0 ¥76°0 204NV
1S6°0 ¥¥8°0 8LLO 1¥8°0 $68°0 S¥8°0 199°0 9¢L’0 91098 DDIN
1560 866°0 0¥6'0 956'0 1L6°0 856°0 ¥06°0 626'0 QInseaw-14
£56°0 656°0 £76°0 956°0 °L6°0 656°0 S16'0 €60 1esoy
¥56°0 866°0 w60 LS6°0 °L6°0 866°0 026'0 626°0 uoistodld
6590 £56°0 6560 £76°0 LS6'0 °L6°0 096°0 S16'0 7€6°0 Koemooy (%STY) L1 AN
8¥6°0 1660 6860 166°0 866°0 066°0 1680 086°0 ddNv
L16°0 8860 1860 6£6°0 866°0 6860 SYL0 ¥L6°0 204Ny
888°0 006°0 818°0 ¥L8°0 9€6°0 898°0 0590 608°0 91098 DD
696°0 €L6'0 1660 §96°0 +86°0 ¥96°0 1060 876°0 QInseaw-[4
0L6°0 €L6'0 7560 §96°0 +86°0 §96°0 €160 056°0 11899y
0L6°0 €L6'0 166'0 §96'0 £€86°0 ¥96°0 9160 8¥6°0 UoIsIoald
¥€8°0 0L6°0 €L6'0 7560 §96'0 ¥86°0 §96°0 €160 0S6°0 Koemooy (%5°T9) 1T I
A a0s av LA R Lddg WAS aN
(s) owmn pring SQI0DS QOUBWLIONIO] ORI (%) SeIN)eay Pajod[aSH UOTOJ[AS IR

(ponunuoo) g sjqey

pringer

As

T. Gangavarapu et al.

5066

0L6'0 66°0 £66°0 960 8660 §66°0 2960 066°0 oddnyv
L96°0 66°0 £66°0 9960 8660 §66°0 6560 6860 204NV
0560 176°0 §26°0 ££6°0 ¥96°0 €560 £€6°0 6060 21038 DOIN
860 6L6'0 €L6°0 9L6'0 L86°0 €860 9L6'0 L96°0 ainseawl-1q
86°0 6L6'0 €L6°0 9L6'0 L86°0 £86°0 9L6'0 L96°0 ISR |
786°0 086°0 €L6'0 9L6'0 L860 £86°0 9L6°0 L96°0 UoIsIoald
906'C 7860 086'0 €L6°0 9L6'0 L86°0 £86°0 9L6'0 L96°0 Aoemooy (%0L) 8T LI0DYSTH
SL6°0 8860 9660 LS6°0 6660 9660 £88°0 86°0 oddnyv
°L6'0 006°0 L660 LS6°0 6660 9660 £88°0 £86°0 o0dnv
866°0 0060 §€6°0 €260 8L6°0 8¢6°0 S9L0 S¥8°0 21038 DOIN
6860 796°0 LL6'0 ¢L6'0 2660 LL60 S16°0 76°0 ainseawl-1q
6860 796°0 LL6'0 °L6'0 2660 8L6°0 S16°0 6°0 [ILER). |
$86'0 ¥96°0 LL6'0 ¢L6'0 2660 LL6'O S16'0 ¥6°0 UoISIoald
6CL0 $86°0 L86°0 LL6'0 °L6'0 766°0 8L6°0 S16'0 ¥6°0 Koemooy (%S°L9) LT TEAMOT]
860 8660 L660 §96°0 6660 §66°0 1960 8860 oddnyv
6L6'0 8660 9660 9960 6660 §66°0 8660 L86°0 o0dnv
6960 L96°0 56°0 9¢6'0 9L6°0 866°0 6’0 006°0 21038 DOIN
6860 8860 £86°0 LL60 166°0 6860 9L6'0 796°0 sInseaul-14
6860 8860 786°0 LL60 166°0 6860 9L6'0 796°0 [ILER). |
686°0 8860 786°0 LL6'0 166°0 $86'0 9L6'0 796°0 UoIsIald
[410R] 6860 8860 £86°0 LL60 166°0 $86°0 9L6'0 796°0 Koemooy (%001) OF QUON
dA qaos av 1d a4 Lad INAS aN
(s) awn pring $QI09S YOUBWLIONIO] JLIRN (%) s_IMIB) PAIO[ISH UuoMndI[AS AINJed]

£30s8)R(J UO UOT)OI[AS

QINJedJ 9Y) WOIJ PaureIqo sarmedf [rewa oY) Sursn (Yjaseje) sprews Surysryd Jo uoneOYISSLO 9} UT SIOYISSE[O SUTUILI] SUIYORW SNOLIBA JO UOTIEN[EAD QJUBWIIONS] 6 d]qel

pringer

A s

5067

Applicability of machine learning in spam and phishing email...

SIQYISSE[O UASOYD YY) SSOIOE AI00S ddueULIOfIad PapI0dar 3sayS1y ay) 3jedIpUT SAN[eA Plog

1560 166°0 0660 LE6'0 9660 6860 9L8°0 €L6°0 oddNv
LY6'0 6860 886°0 6£6'0 €66'0 8860 9¥8°0 LY6'0 04Ny
S16°0 L16°0 968°0 6L8°0 1¥6°0 1160 16L°0 €780 91098 DDOIN
6960 0L6°0 £96°0 956'0 6L6°0 896'0 1260 £v6'0 SInseaw-Tq
6960 0L6°0 £96°0 956°0 6L6°0 896'0 926°0 £v6'0 ey
0L6°0 0L6°0 £96°0 956'0 6L6°0 896°0 1€6°0 £v6'0 uoIsIodld
9LTT 0L6°0 0L6°0 £96°0 956'0 6L6°0 8960 926°0 £76°0 Koemooy (%S9 T Vod
866°0 066°0 686°0 956'0 L66°0 266°0 866°0 186°0 oddnyv
§S6°0 L86°0 L86°0 656'0 L66°0 066°0 956°0 8L6°0 04Ny
LT6'0 L16°0 L06°0 L16°0 w60 8760 926°0 ¥98°0 91098 DDIN
€L6°0 0L6°0 L96°0 0L6'0 6L6°0 ¥L6°0 €L6°0 1S6°0 QInseow-14
YL6°0 0L6°0 L96°0 0L6'0 086°0 YL6°0 €L6'0 560 1edoy
¥L6°0 0L6°0 L96°0 0L6°0 6L6°0 ¥L6°0 €L6'0 7560 UoIsIodld
0611 ¥L6°0 0L6°0 L96°0 0L6°0 086°0 ¥L6°0 £L6°0 7560 Koemooy (%STY) LT YN
6L6'0 866°0 L66°0 996'0 666°0 $66°0 956°0 886°0 oddnyv
9L6°0 L66°0 966'0 996'0 666°0 $66°0 6560 986°0 04Ny
¥96°0 ¥96°0 956'0 LE6'0 086°0 866°0 6160 $68°0 21098 DD
L86°0 L86°0 ¥86°0 LL6'O $66°0 $86°0 1L6'0 7960 oInseaw-| 4
L86°0 L86°0 ¥86°0 LL6'O $66°0 $86°0 1L6'0 7960 IESEN |
L86°0 L86°0 ¥86°0 LL6'O $66°0 $86°0 1,60 796°0 UoIsIodld
€081 L86°0 L86°0 ¥86°0 LL6'O $66°0 $86°0 1,60 7960 Koemooy (%S'19) 1T E
A a0s av LA 4 Lddg WAS aN
(s) own pring SQI00S QOUBWLIONIO] OO (%) seINyLay PRIOAASH UOTOJ[AS IR

(ponunuoo) 6 3|qey

pringer

As

T. Gangavarapu et al.

5068

SIQYISSE[O UASOYD A} SSOIOE 2I00S dduewLIojIad papI0oar JsaySIy ay) 2JedIpuUI San[eA plog

LT80 6v6'0 108°0 S08°0 SL6°0 6v6°0 189°0 6680 ddNv
088°0 9L6°0 9L8°0 880 0660 8L60 0180 8€6°0 204NV
1180 6¢8°0 850 S9L0 988°0 880 189°0 SeL’o 91098 DO
068°0 106°0 ILLO 998°0 1€6°0 L68°0 y18°0 6¥8°0 oInseaw-14
006°0 S060 0LL0 L98°0 ¥€6°0 €060 0¥8°0 680 11899y
868°0 006°0 ILLO 998°0 €€6°0 868°0 LER0 8¥8°0 uorstaald
vI8v 006°0 S06°0 ILLO 998°0 $€6°0 €060 0¥8°0 580 KoeInooy (%09) T vOod
668°0 1860 0280 6L8°0 166°0 €L6'0 6180 w60 2ddNv
£€6'0 660 S16°0 9¢6'0 L66°0 6860 888°0 60 204NV
9680 160 L09°0 1L8°0 7€6°0 $68°0 86L°0 080 91098 DOIN
0v6°0 8760 6LL0 6’0 196°0 9¢6'0 SL80 L880 sinseaw-1q
£v6°0 6v6°0 6LL0 60 196°0 8¢6°0 688°0 168°0 [IEEE |
£v6°0 8¥6°0 6LL0 760 796°0 9¢6'0 G880 988°0 uors1oald
orror £v6'0 660 08L°0 60 796°0 8¢6°0 0060 168°0 Koemooy (%001) 0¥ QUON
A 3EON av 13 R | Ldadg NAS aN
(s) owm pring SOI00S QOUBWLIOJIO] ORI (%) seINyea] PAlOAaSH 0TS AINIL]

uoneWIOJSURT} D INOYIIM pue s (41esere(q) sirews Sutystyd pue weds Jo UONEIYISSE[O oY) UT SIOYISSE[O SUTUIRS] SUIYILW SNOLIBA JO UOTIEN[BAD d0URULIOJSJ QL d|qeL

pringer

Qs

Applicability of machine learning in spam and phishing email... 5069

occurrence frequency captures the importance of a feature f; over {f;,,fi40, .- > fi_is1 } ID
the selected k-dimensional feature subspace.

Note the superior performance of various classifiers utilizing all the features in all
the three datasets—this can be explained by the informative and discriminative capabili-
ties of the chosen feature space with respect to the underlying email corpus. The effect
of increasing dimensions on the classification time is shown in Fig. 3. From Fig. 3, it
can be remarked that, with the increase in the dimensionality of the data, we observe an
increase in the time taken to classify the email messages. It must be noted that the aver-
age build (training) time utilized in this paper (in Tables 8, 9, and 10, and in Fig. 3) is
computed as the average of the runtime taken by all the eight utilized machine learning
algorithms. It is worth mentioning that, the RF classifier is scalable with high-dimen-
sional data, and several variants of the RF classifier that utilize the MapReduce algo-
rithm further improve the scalability and efficiency of classification (Han et al. 2013).
Since the RF classifier outperforms other machine learning approaches, the subsequent
analysis is only presented with respect to RF classification. The effect of increasing
dimensions on the classification performance with respect to various feature selection
approaches is depicted from Figs. 4, 5, 6, 7, 8, 9 and 10. It can be remarked that the
features selected using Dataset; model the data from the Dataset, better than that from
Dataset;. From Tables 8, 9, and 10, and from Figs. 4, 5, 6, 7, 8, 9 and 10, we observe
that PCA indicates the lowest performance, in the case of all the datasets (Dataset;
with 19 dimensions, Dataset, with 22 dimensions, and Dataset, with 24 dimensions).
Such low performance can be attributed to the fact that PCA is an unsupervised feature
extraction approach whose main objective is to maximize the variance. As explained
earlier, the ‘usefulness’ and ‘relevance’ of a feature are not interchangeable, i.e., a rel-
evant feature does not warrant usefulness and vice versa. Thus, the filters that only aim
at maximizing the variance, often ignore the usefulness of the chosen features, which
in turn impacts the classification performance. This fact is clearly corroborated by the
lower performance of the Low Var filter in Dataset; with 27 dimensions.

7 Summary

Feature engineering and machine learning are indispensable in building any intelligent sys-
tem. In this study, we surveyed various aspects of feature engineering in spam and phish-
ing email detection. Moreover, we detailed various attempts by the researchers in mitigat-
ing the menace of UBE emails through the use of machine learning classifiers. In general,
the volume of existing literature evaluated in this study corroborates the significant pro-
gress that has been and will be made in the field of spam and phishing email detection. In
this research, we employed forty informative and discriminative content-based and body-
based features that were selected in accordance with the underlying email corpus. First,
we elucidated on the process of extraction of the discriminative feature space from the raw
email corpus. Then, we leveraged five widely used prolific feature selection (extraction)
approaches to engender an optimal feature subspace to improve the classification perfor-
mance and eliminate the noise in the data. We presented an exhaustive comparative study
through the use of several state-of-the-art machine learning classifiers to facilitate UBE
filtering and classification. Furthermore, we explained the key performance indicators vital
in the accurate assessment of the performance of the underlying UBE filters. We observed
that the feature subspace determined by the FI-based feature selection approach (using RF),

@ Springer

5070

T. Gangavarapu et al.

Average training time (s)

Average training time (s)

Average training time (s)

Average training time (s)

17 19 2122 2728

Number of dimensions

—E—mRMR (Dataset;) |_|
IR (Dataset:

| | 11 11
2728 40
Number of dimensions

Average training time (s)
-
T

1 1 11
17 19 2122

11
2728

Number of dimensions

Fig.3 The effect of increasing dimensions on the average training time

@ Springer

Applicability of machine learning in spam and phishing email...

5071

0.993

0.990

0.988

0.985

0.983

Accuracy

0.980
0.978
0.975
0.973

0.970

0.995
0.993
0.991
0.989
0.987

0.985

Accuracy

0.983
0.981
0.979
0.977

0.975

—6— LowVar (Dataset,) | |
—4— LowVar (Dataset,)

Accuracy

0.943 |-
0.935 |-
0.928 |-

0.920 =L

ighCorr (Dataset,) |_|
ighCorr ot

1 11 11
17 19 2122 2728

Number of dimensions

!
40 17 19

11
2122

Number of dimensions

2728 40

e 0.993 |-

0.990

e 0.988

0.985

0.983

Accuracy

e 0.980

e 0.978

E 0.975

0.973 -

0.970 L—L

—&—mRMR (Dataset;) |_|
mRMR (Data

Il Il 11 11
17 19 2122 2728

Number of dimensions

Accuracy

0.985

0.983

0.981

0.979

0.977

0.975

0.973

0.971

0.969

0.967

0.965

17 19

11
2122

28
Number of dimensions

1 1 11
17 19 2122

11
2728 34
Number of dimensions

39

40

Fig.4 The effect of increasing dimensions on the accuracy of the RF classification

@ Springer

5072 T. Gangavarapu et al.

T T T T T T T T T T T T
0.993 | e 0.988
0.990 | /’/‘\1— 0.980
0.988 | e 0.973
o =
S 0985 [e S 0.965
g 0983} g 0958
- -
[a M [a M)
0.980 | 0.950
0.978 | 0.943
0.975 | 0.935
| —o— LowVar (Dataset;)
0.973 —4— LowVar (Dataset,) 0928
0.970 1 1 11 11 0.920 1 11 11
’ 17 19 2122 2728 40 ’ 17 19 2122 2728 40
Number of dimensions Number of dimensions
0.995 T T T T T T T T
0.993 - . 0.993 [.
0.991 - oo 0.990
0.989 |- - 0.988
=1 =]
S 0987 . S 0985
& 0985 [- & 0983
< A
& ooss| . 0.980
0.981 - - 0.978
0.979 - . 0.975
- —E—mRMR (Da)
I o73 |- _
0.977 0.973 mRMR (Dataset,)
Il Il 11 Ll 9 L L L L L1
0975 455127 5798 10 S TS TR TEY 2728 40
Number of dimensions Number of dimensions
0.985 = T T T T T
0.983 | s
0.981 | s
0.979 | s
o
2 o917f .
.2
& 0975} 4
g
a
0.973 s
0.971 |- e
0.969 |- e
0.967 |-
0.965 =—=* L

11 1
17 19 2122 2728 4 39
Number of dimensions

Fig.5 The effect of increasing dimensions on the precision of the RF classification

@ Springer

Applicability of machine learning in spam and phishing email... 5073

0.993

0.990

0.988

0.985

0.983

Recall

0.980

0.978

0.975

0.973

0.970

0.995

0.993

0.991

0.989

0.987

0.985

Recall

0.983

0.981

0.979

0.977

—o— LowVar (Dataset;)
—4— LowVar (Datasets)

0.988 |-

0.981 |-
0.974 |-
0.967 -

0.960 -

Recall

0.953 |-

0.946 |-

0.939 |-

0.932 |-

19 2122

2728

Number of dimensions

0.925 — —

40 17 19 2122 2728 40

0.993 |- 1

17

19 2122

2728

Number of dimensions

Recall

0.985

! [11
17 19 2122 2728 40

Number of dimensions

0.983 [~

0.981

0.979

0.977

0.975

0.973 -

0.971 =

0.969 |-

0.967 |-

0.965

17

! 11
19 2122

11
2728
Number of dimensions

Fig.6 The effect of increasing dimensions on the recall of the RF classification

@ Springer

5074 T. Gangavarapu et al.
T T T T T T T T T T T 1
0.993 0.988 |]
0.990 0.980 |
0.988 , 09731 4
g 2
2 0.98 Z 0.965 - .
[} (]
£ 0.983 2 0.958 - .
- 4
P 0.980 P 0,950 1 .
0978 0943} 4
0975 0.935 | 4
0.973 —6— LowVar (Dataset;) |_| 0.928 - —4—HighCorr (Datasety) |_|
- —4—LowVar (Dataset,) —A—HighCorr ()
7 1 1 1 11 12 1 11 11
0910 21 278 0 090 T 12 2738 10
Number of dimensions Number of dimensions
0.995 = T T T T T T 1 L
0.993 |- 4 0.993 |- 4
0.991 PPN 0.990
© 0989 4 o 0.988
E =
2 0987 4 2 0.985
< <
S <
Z 0985 - £ 0.983
- -
P 0,983 - B 0.980
0.981 0.978
0979 4 0.975
. —E&—mRMR (Da
0977 0973
mRMR (Datasets)
975 LL Il 11 11 0.970 L 11 11
09T 739 212 3728 10 ST TITET) 2728 10

Number of dimensions

Fl-measure

0.985

0.983

0.981

0.979

0.977

0.975

0.973

0.971

0.969

0.967

0.965

Number of dimensions

T T T T TT T T
" CA (Datasety) |_|
A (Datas
T | 1 T 1
17 19 2122 2728 34 39

Number of dimensions

Fig. 7 The effect of increasing dimensions on the F1-measure of the RF classification

@ Springer

Applicability of machine learning in spam and phishing email... 5075

MCC score

MCC score

0.980

0.972

0.963

0.955

0.946

0.938

0.929

0.921

0.912

0.904

0.895

0.953

0.946

0.940

0.933

0.927

0.920

! 1l
17 19 2122

Number of dimensions

1 ! 1l
17 19 2122

11
2728 10
Number of dimensions

MCC score

MCC score

0.980 r—T— 17 TT

0.952 |- -

0924 E
0.896 | .
0.868 | 4
0.840 - .
0812} 4
0784} .

0.756 - -1

—a—HighCorr (Datasety) |_|
—a— HighCorr (Da
1 1 11 11
17 19 2122 2728 10
Number of dimensions

0.728 |-

0.700

0.971

0.962

0.953

4
©
b4
=

o

S 2
o 9
= ©
S

0.908

0.899

0.890

1 1 11 11
17 19 2122 2728 10
Number of dimensions

0.960 |-

0.950 |-

0.940 |-

0.930 -

0.920 |-

0.910 |-

MCC score

0.900 |-

0.890 |-

0.880 |-

0.870 M—»_L—1

17 19 2122

11
2728

34 39
Number of dimensions

Fig.8 The effect of increasing dimensions on the MCC score of the RF classification

@ Springer

5076 T. Gangavarapu et al.

1.000 1.000
0.999 [~ ¢——4—4—4 4 0.994
0.998 - 4 0.988
0.997 |- - 0.982
8 0.996 |- i 8 0.976
g 0.995 - g 0.970
= oo —/ 4 < oosl 4
0.993 - 4 0.958 |- 4
0.992 - 4 0.952 - 4
0.991 | ifﬁi&: Eg:'&sﬂz) 0-946 - —a—nghgg:: Eg;:;::Z;]
RS T TR TET) 2728 10 N T TET 2728 10
Number of dimensions Number of dimensions
1.000 1.000
0.999 - 0.999 -]
0.998 0.998 |- 4
0.997 0.997 - g
8 0.996 8 0.996 |- 4
% 0.995 g 0.995 |
< <
0.994 0.994 -
0.993 - - 0.993 -
0.992 - . 0.992 -
0.991 09911 +::§IK$ Ega seta) | |
090 5 e 2798 R T TRTET) 2728 10
Number of dimensions Number of dimensions
1.000
0.998 |- 4
0.997 |- 4
0.995 - 4
S 0o0af i
g 0.992 |- 4
<<
0.991 |- 4
0.989 |- 4
0.988 |- 4
0.987 -
S T T TET) 2738 31 39

Number of dimensions

Fig.9 The effect of increasing dimensions on the AUROC of the RF classification

@ Springer

Applicability of machine learning in spam and phishing email...

5077

1.000

0.999

0.998

0.997

0.996

0.995

AUPRC

0.994

0.993

0.992

0.991

0.990

1.000

0.999

0.998

0.997

0.996

0.995

AUPRC

0.994

0.993

0.992

0.991

0.990

1.000

0.996

. 0.992

. 0.988

0.984

0.980

AUPRC

. 0.976
- 0.972
- 0.968 |-

(Datasety) |_| 0.964 [
(Datasets)

0.960

!
17

L 11
19 2122

—a— HighCorr (Da
—a—HighCorr (Da

1 1 11
40 17 19 2122

L1
2728

Number of dimensions

1.000 FT T Ll

0.999 |-

- 0.998 |-

- 0.997 |-

0.996 |-

0.995 |-

AUPRC

- 0.994 |-

- 0.993 |-

- 0.992 |-

0.991 |-

0.990

—E—mRMR (Dataset;) | |
—m—mRMR (Data

17

19 2122

2728

! ! 1l
40 17 19 2122

Number of dimensions

AUPRC

1.000

0.999

0.998

0.997

0.996

0.995

0.994

0.993

0.992

0.991

0.990

2728

40

Number of dimensions

17 19 2122 2728
Number of dimensions

40

Fig. 10 The effect of increasing dimensions on the AUPRC of the RF classification

@ Springer

5078 T. Gangavarapu et al.

when classified using an RF classifier, resulted in an overall accuracy of 98.4% on ham—
spam dataset (AUPRC of 99.8%) and 99.4% on ham—phishing dataset (AUPRC of 99.9%).
Additionally, to enhance the understanding of the readers, we presented snippets of Python
code, in-line with the text, enabling them to avail benefits from the existing email data.

Despite the extensive research in the field of UBE detection and filtering, certain issues
need to be addressed. These issues include the lack of an effective strategy to handle
security attacks on UBE filters, the inability of the current UBE filters to tackle concept
drift phenomenon, and lack of effective UBE filters that utilize graphical features. In the
future, we aim at improving the effectiveness of the proposed approaches by addressing the
aforementioned open issues. Additionally, we also aim at exploring adversarial learning
approaches to learn and adapt to the concept drifts effectively.

References

Abu-Nimeh S, Nappa D, Wang X, Nair S (2007) A comparison of machine learning techniques for phishing
detection. In: Proceedings of the anti-phishing working groups 2nd annual eCrime researchers sum-
mit. ACM, pp 60-69 (2007)

Akinyelu AA, Adewumi AO (2014) Classification of phishing email using random forest machine learning
technique. J Appl Math. https://doi.org/10.1155/2014/425731

Alkaht I, Al-Khatib B (2016) Filtering spam using several stages neural networks. Int Rev Comp Softw 11:2

Almeida TA, Yamakami A (2010) Content-based spam filtering. In: The 2010 international joint conference
on neural networks (IJCNN). IEEE, pp 1-7 (2010)

Apruzzese G, Colajanni M, Ferretti L, Guido A, Marchetti M (2018) On the effectiveness of machine and
deep learning for cyber security. In: 2018 10th International conference on cyber conflict (CyCon).
IEEE, pp 371-390 (2018)

Auffarth B, Lopez M, Cerquides J (2010) Comparison of redundancy and relevance measures for feature
selection in tissue classification of ct images. In: Industrial conference on data mining. Springer, pp
248-262 (2010)

Awad W, ELseuofi S (2011) Machine learning methods for spam e-mail classification. Int J Comput Sci Inf
Technol 3(1):173-184

Awad M, Fogaha M (2016) Email spam classification using hybrid approach of rbf neural network and par-
ticle swarm optimization. Int J Netw Secur Appl 8(4):17-28

Basnet RB, Sung AH (2010) Classifying phishing emails using confidence-weighted linear classifiers. In:
International conference on information security and artificial intelligence (ISAI), pp 108-112 (2010)

Bec scams trends and themes (2019) Bec scams remain a billion-dollar enterprise, targeting 6k businesses
monthly. https://www.symantec.com/blogs/threat-intelligence/bec-scams-trends-and-themes-2019.
Accessed 07 May 2019

Bergholz A, De Beer J, Glahn S, Moens MF, Paall G, Strobel S (2010) New filtering approaches for phish-
ing email. J Comput Secur 18(1):7-35

Bhagyashri G, Pratap H, Patil D (2013) Auto e-mails classification using bayesian filter. Int J Adv Technol
Eng Res 3(4)

Bhowmick A, Hazarika SM (2016) Machine learning for e-mail spam filtering: review, techniques and
trends. arXiv preprint arXiv:1606.01042

Biggio B, Corona I, Fumera G, Giacinto G, Roli F (2011) Bagging classifiers for fighting poisoning attacks
in adversarial classification tasks. In: International workshop on multiple classifier systems. Springer,
pp 350-359 (2011)

Bolboaca SD, Jantschi L (2006) Pearson versus spearman, kendall tau correlation analysis on structure—
activity relationships of biologic active compounds. Leonardo J Sci 5(9):179-200

Breiman L (2002) Manual on setting up, using, and understanding random forests v3. 1. Statistics Depart-
ment University of California, Berkeley, p 1

Breiman L (2001) Random forests. Mach Learn 45(1):5-32

Breiman L (2017) Classification and regression trees. Routledge, Abingdon

Chandrasekaran M, Narayanan K, Upadhyaya S (2006) Phishing email detection based on structural proper-
ties. In: N'YS cyber security conference, vol 3. Albany, New York (2006)

@ Springer

https://doi.org/10.1155/2014/425731
https://www.symantec.com/blogs/threat-intelligence/bec-scams-trends-and-themes-2019
http://arxiv.org/abs/1606.01042

Applicability of machine learning in spam and phishing email... 5079

Chanduka B, Gangavarapu T, Jaidhar CD (2018) A single program multiple data algorithm for feature selec-
tion. In: Abraham A, Cherukuri AK, Melin P, Gandhi N (eds) Intelligent systems design and applica-
tions. Springer, Cham, pp 662-672

Choudhary M, Dhaka V (2013) Automatic e-mails classification using genetic algorithm. In: Special confer-
ence issue: national conference on cloud computing and big data. Citeseer, pp 42-49 (2013)

Christina V, Karpagavalli S, Suganya G (2010) Email spam filtering using supervised machine learning
techniques. Int J Comput Sci Eng 2:3126-3129

Cormack GV (2008) Email spam filtering: a systematic review. Found Trends Inf Retriev 1(4):335-455

Dhanaraj S, Karthikeyani V (2013) A study on e-mail image spam filtering techniques. In: 2013 Interna-
tional conference on pattern recognition, informatics and mobile engineering. IEEE, pp 49-55 (2013)

Dhanaraj KR, Palaniswami V (2014) Firefly and bayes classifier for email spam classification in a distrib-
uted environment. Aust J Basic Appl Sci 8(17):118-130

Diaz-Uriarte R, De Andres SA (2006) Gene selection and classification of microarray data using random
forest. BMC Bioinform 7(1):3

Fette I, Sadeh N, Tomasic A (2007) Learning to detect phishing emails. In: Proceedings of the 16th interna-
tional conference on world wide web. ACM, pp 649-656 (2007)

Gang S (2017) Email overload: research and statistics [with infographic]. https://blog.saneb
ox.com/2016/02/18/email-overload-research-statistics-sanebox/

Gangavarapu T, Patil N (2019) A novel filter-wrapper hybrid greedy ensemble approach optimized using the
genetic algorithm to reduce the dimensionality of high-dimensional biomedical datasets. Appl Soft
Comput. https://doi.org/10.1016/j.as0c.2019.10553

Gangavarapu T, Jayasimha A, Krishnan GS, Kamath SS (2019a) TAGS: towards automated classification of
unstructured clinical nursing notes. In: Métais E, Meziane F, Vadera S, Sugumaran V, Saraee M (eds)
Natural language processing and information systems. Springer, Cham, pp 195-207

Gangavarapu T, Jayasimha A, Krishnan GS, Kamath S (2019b) Predicting ICD-9 code groups with fuzzy
similarity based supervised multi-label classification of unstructured clinical nursing notes. Knowl
Based Syst. https://doi.org/10.1016/j.knosys.2019.105321

Gangavarapu T, Krishnan GS, Kamath S (2019c) Coherence-based modeling of clinical concepts inferred
from heterogeneous clinical notes for icu patient risk stratification. In: Proceedings of the 23rd confer-
ence on computational natural language learning (CoNLL), pp 1012-1022 (2019)

Gansterer WN, Polz D (2009) E-mail classification for phishing defense. In: European conference on infor-
mation retrieval. Springer, pp 449-460 (2009)

Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3-42. https://doi.
0rg/10.1007/s10994-006-6226-1

Guerra PHC, Guedes D, Meira JW, Hoepers C, Chaves M, Steding-Jessen K (2010) Exploring the spam
arms race to characterize spam evolution. In: Proceedings of the 7th collaboration, electronic messag-
ing, anti-abuse and spam conference (CEAS), Redmond

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software:
an update. ACM SIGKDD Explor Newsl 11(1):10-18

Hamid IRA, Abawajy JH (2014) An approach for profiling phishing activities. Comput Secur 45:27-41

Hand DJ (2007) Principles of data mining. Drug Saf 30(7):621-622

Han J, Liu Y, Sun X (2013) A scalable random forest algorithm based on mapreduce. In: 2013 IEEE 4th
International conference on software engineering and service science. IEEE, pp 849-852 (2013)

Hassan D (2015) On determining the most effective subset of features for detecting phishing websites.
Int J Comput Appl 122(20):0975-8887

Hassanpour R, Dogdu E, Choupani R, Goker O, Nazli N (2018) Phishing e-mail detection by using deep
learning algorithms. In: Proceedings of the ACMSE 2018 conference. ACM, p 45

Hastie T, Rosset S, Zhu J, Zou H (2009) Multi-class adaboost. Stat Interface 2(3):349-360

Idris I, Abdulhamid SM (2014) An improved ais based e-mail classification technique for spam detec-
tion. arXiv preprint arXiv:1402.1242

Issac B, Jap WJ (2009) Implementing spam detection using bayesian and porter stemmer keyword strip-
ping approaches. In: TENCON 2009-2009 IEEE region 10 conference. IEEE, pp 1-5 (2009)

Jayasimha A, Gangavarapu T, Kamath SS, Krishnan GS (2020) Deep neural learning for automated
diagnostic code group prediction using unstructured nursing notes. In: Proceedings of the 7th
ACM IKDD CoDS and 25th COMAD, pp 152-160 (2020)

Jiao J, Venkat K, Han Y, Weissman T (2015) Minimax estimation of functionals of discrete distribu-
tions. IEEE Trans Inf Theory 61(5):2835-2885

Karthika R, Visalakshi P (2015) A hybrid aco based feature selection method for email spam classifica-
tion. WSEAS Trans Comput 14:171-177

@ Springer

https://blog.sanebox.com/2016/02/18/email-overload-research-statistics-sanebox/
https://blog.sanebox.com/2016/02/18/email-overload-research-statistics-sanebox/
https://doi.org/10.1016/j.asoc.2019.10553
https://doi.org/10.1016/j.knosys.2019.105321
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
http://arxiv.org/abs/1402.1242

5080 T. Gangavarapu et al.

Khonji M, Jones A, Iragi Y (2011) A study of feature subset evaluators and feature subset searching
methods for phishing classification. In: Proceedings of the 8th annual collaboration, electronic
messaging, anti-abuse and spam conference. ACM, pp 135-144 (2011)

Klein D (2004) Lagrange multipliers without permanent scarring. University of California at Berkeley,
Computer Science Division, Berkeley, pp 1-11

Kosinski M, Wang Y, Lakkaraju H, Leskovec J (2016) Mining big data to extract patterns and predict
real-life outcomes. Psychol Methods 21(4):493

Kumar S, Arumugam S (2015) A probabilistic neural network based classification of spam mails using
particle swarm optimization feature selection. Middle-East J Sci Res 23(5):874-879

Laorden C, Ugarte-Pedrero X, Santos I, Sanz B, Nieves J, Bringas PG (2014) Study on the effectiveness
of anomaly detection for spam filtering. Inf Sci 277:421-444

Louppe G, Wehenkel L, Sutera A, Geurts P (2013) Understanding variable importances in forests of ran-
domized trees. In: Advances in neural information processing systems, pp 431-439

Lueg CP (2005) From spam filtering to information retrieval and back: seeking conceptual foundations
for spam filtering. Proc Am Soc Inf Sci Technol. https://doi.org/10.1002/meet.14504201146

Ma L, Yearwood J, Watters P (2009) Establishing phishing provenance using orthographic features. In:
eCrime researchers summit, eECRIME’09. IEEE, pp 1-10

Mendez JR, Fdez-Riverola F, Diaz F, Iglesias EL, Corchado JM (2006) A comparative performance
study of feature selection methods for the anti-spam filtering domain. In: Industrial conference on
data mining. Springer, pp 106-120

Michalski RS, Carbonell JG, Mitchell TM (2013) Machine learning: an artificial intelligence approach.
Springer, New York

Mohammad RM, Thabtah F, McCluskey L (2015) Phishing websites features. (Unpublished). http://
eprints.hud.ac.uk/24330/6/RamiPhishing_Websites_Feature.pdf

Mousavi A, Ayremlou A (2011) Bayesian spam classifier. http://cs229.stanford.edu

Nagelkerke NJ et al (1991) A note on a general definition of the coefficient of determination. Biometrika
78(3):691-692

Nazario J (2018) Phishing corpus. https://drive.google.com/open?id=0B3rX15hRO_71T19iOHRkdIEwZ
VE. Accessed 12 Oct 2018

Netsanet S, Zhang J, Zheng D (2018) Bagged decision trees based scheme of microgrid protection using
windowed fast fourier and wavelet transforms. Electronics 7(5):61

Norte Sosa J (2010) Spam classification using machine learning techniques-sinespam. Master’s thesis,
Universitat Politecnica de Catalunya

Ott M, Choi Y, Cardie C, Hancock JT (2011) Finding deceptive opinion spam by any stretch of the imag-
ination. In: Proceedings of the 49th annual meeting of the association for computational linguis-
tics: human language technologies, vol 1. Association for Computational Linguistics, pp 309-319

Palanisamy C, Kumaresan T, Varalakshmi S (2016) Combined techniques for detecting email spam
using negative selection and particle swarm optimization. Int J Adv Res Trends Eng Technol 3(2)

Pan Y, Ding X (2006) Anomaly based web phishing page detection. In: Null. IEEE, pp 381-392 (2006)

Pearson K (1901) Liii on lines and planes of closest fit to systems of points in space. Lond Edinburgh Dub-
lin Philos Mag J Sci 2(11):559-572

Pearson K (1920) Notes on the history of correlation. Biometrika 13(1):25-45

Pelletier L, Almhana J, Choulakian V (2004) Adaptive filtering of spam. In: Proceedingsm second annual
conference on communication networks and services research. IEEE, pp 218-224 (2004)

Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226-1238

Rajamohana SP, Umamaheswari K, Abirami B (2017) Adaptive binary flower pollination algorithm for fea-
ture selection in review spam detection. In: 2017 International conference on innovations in green
energy and healthcare technologies IGEHT). IEEE, pp 1-4 (2017)

Renuka DK, Visalakshi P, Sankar T (2015) Improving e-mail spam classification using ant colony optimiza-
tion algorithm. Int J Comput Appl 22-26

Rossi F, Lendasse A, Francois D, Wertz V, Verleysen M (2006) Mutual information for the selection of rel-
evant variables in spectrometric nonlinear modelling. Chem Intell Lab Syst 80(2):215-226

Sah UK, Parmar N (2017) An approach for malicious spam detection in email with comparison of different
classifiers

Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the roc plot when evaluat-
ing binary classifiers on imbalanced datasets. PloS ONE 10(3):e0118432

Sakkis G, Androutsopoulos I, Paliouras G, Karkaletsis V, Spyropoulos CD, Stamatopoulos P (2001) Stack-
ing classifiers for anti-spam filtering of e-mail. arXiv preprint cs/0106040

Sanz EP, Hidalgo JMG, Pérez JCC (2008) Email spam filtering. Adv Comput 74:45-114

@ Springer

https://doi.org/10.1002/meet.14504201146
http://cs229.stanford.edu
https://drive.google.com/open?id=0B3rX15hRO_71Tl9iOHRkdlEwZVE
https://drive.google.com/open?id=0B3rX15hRO_71Tl9iOHRkdlEwZVE

Applicability of machine learning in spam and phishing email... 5081

Sculley D, Wachman GM (2007) Relaxed online svms for spam filtering. In: Proceedings of the 30th annual
international ACM SIGIR conference on research and development in information retrieval. ACM, pp
415-422 (2007)

Shams R, Mercer RE (2013) Classifying spam emails using text and readability features. In: 2013 IEEE
13th international conference on data mining (ICDM). IEEE, pp 657-666

Sharma AK, Prajapat SK, Aslam M (2014) A comparative study between naive bayes and neural network
(mlp) classifier for spam email detection. Int J Comput Appl

Sharma A, Suryawanshi A (2016) A novel method for detecting spam email using knn classification with
spearman correlation as distance measure. Int J Comput Appl 136(6):28-35

Shrivastava JN, Bindu MH (2013) E-mail classification using genetic algorithm with heuristic fitness func-
tion. Int J Comput Trends Technol 4(8):2956-2961

Silipo R, Adae I, Hart A, Berthold M (2014) Seven techniques for data dimensionality reduction. Report,
KNIME. com AG. Accessed 12 Jan 2018

Symantec (2018) Internet security threat report. http://images.mktgassets.symantec.com/Web/Syman
tec/%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_Main-FINAL-APR10
.pdf?aid=elq_. Accessed 09 Mar 2018

Toolan F, Carthy J (2009) Phishing detection using classifier ensembles. In: eCrime researchers summit,
eCRIME’09. IEEE, pp 1-9

Toolan F, Carthy J (2010) Feature selection for spam and phishing detection. In: eCrime researchers summit
(eCrime). IEEE, pp 1-12 (2010)

Turner CR, Fuggetta A, Lavazza L, Wolf AL (1999) A conceptual basis for feature engineering. J Syst
Softw 49(1):3-15

Tyagi A (2016) Content based spam classification-a deep learning approach. Ph.D. thesis, University of
Calgary

Vergara JR, Estévez PA (2014) A review of feature selection methods based on mutual information. Neural
Comput Appl 24(1):175-186

Vorobeychik Y, Kantarcioglu M (2018) Adversarial machine learning. Synth Lect Artifi Intell Mach Learn
12(3):1-169

Wang XL et al (2005) Learning to classify email: a survey. In: 2005 International conference on machine
learning and cybernetics, vol 9. IEEE, pp 5716-5719 (2005)

Wang Z, Josephson WK, Lv Q, Charikar M, Li K (2007) Filtering image spam with near-duplicate detec-
tion. In: CEAS (2007)

Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chem Intell Lab Syst 2(1-3):37-52

Wu J, Deng T (2008) Research in anti-spam method based on bayesian filtering. In: 2008 IEEE pacific-asia
workshop on computational intelligence and industrial application, vol 2. IEEE, pp 887-891 (2008)

Yang HH, Moody J (2000) Data visualization and feature selection: new algorithms for nongaussian data.
In: Advances in neural information processing systems, pp 687-693 (2000)

Zavvar M, Rezaei M, Garavand S (2016) Email spam detection using combination of particle swarm optimi-
zation and artificial neural network and support vector machine. Int J Mod Educ Comput Sci 8(7):68

Zhuang W, Jiang Q, Xiong T (2012) An intelligent anti-phishing strategy model for phishing website detec-
tion. In: 32nd International conference on distributed computing systems workshops (ICDCSW).
IEEE, pp 51-56

Zhang D, Yan Z, Jiang H, Kim T (2014) A domain-feature enhanced classification model for the detection
of chinese phishing e-business websites. Inf Manag 51(7):845-853

Zhao W, Zhang Z (2005) An email classification model based on rough set theory. In: Proceedings of the
2005 international conference on active media technology. IEEE, pp 403-408

Zhong N, LiuJ, Yao Y, Wu J, Lu S, Qin Y, Li K, Wah B (2006) Spam filtering and email-mediated appli-
cations. In: International workshop on web intelligence meets brain informatics. Springer, pp 1-31
(2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://images.mktgassets.symantec.com/Web/Symantec/%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_Main-FINAL-APR10.pdf?aid=elq_
http://images.mktgassets.symantec.com/Web/Symantec/%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_Main-FINAL-APR10.pdf?aid=elq_
http://images.mktgassets.symantec.com/Web/Symantec/%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_Main-FINAL-APR10.pdf?aid=elq_

	Applicability of machine learning in spam and phishing email filtering: review and approaches
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Categorization of the existing UBE filtering techniques
	3.1.1 Content-based and behavior-based filters
	3.1.2 Sample base or case base filters
	3.1.3 Rule-based or heuristic filters
	3.1.4 Previous likeness based filters
	3.1.5 Adaptive filters

	3.2 UBE filters: how yahoo mail and gmail filter UBEs
	3.2.1 Yahoo mail UBE filtering
	3.2.2 Gmail UBE filtering

	4 Methods: feature extraction and selection
	4.1 Materials: raw email corpus
	4.2 Preprocessing and feature extraction: obtaining informative feature space
	4.2.1 Using python for feature extraction

	4.3 Feature selection: engendering optimal feature space
	4.3.1 Obtaining the optimal threshold for threshold-based approaches
	4.3.2 Handling the missing attribute values
	4.3.3 Feature selection using low variance filter (LowVar)
	4.3.4 Removing redundancy by measuring correlation (HighCorr)
	4.3.5 Measuring feature importance using the random forest classifier (FI)
	4.3.6 Feature selection using minimum redundancy maximum relevance (mRMR)
	4.3.7 Feature extraction using principal component analysis (PCA)
	4.3.8 Using python for feature selection (extraction)

	5 Methods: email classification
	5.1 Classification using Naïve bayes (NB)
	5.2 Classification using support vector machines (SVM)
	5.3 Ensemble classifiers
	5.3.1 Classification using bagged decision trees (BDT)
	5.3.2 Classification using random forest (RF)
	5.3.3 Classification using extra trees (ET)
	5.3.4 Classification using AdaBoost (AB)
	5.3.5 Classification using stochastic gradient boosting (SGB)
	5.3.6 Classification using voting ensemble (VE)

	5.4 WEKA workbench for machine learning

	6 Performance evaluation and discussion
	6.1 Performance evaluation metrics
	6.2 Results and discussion

	7 Summary
	References

