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Abstract
With the influx of technological advancements and the increased simplicity in commu-
nication, especially through emails, the upsurge in the volume of unsolicited bulk emails 
(UBEs) has become a severe threat to global security and economy. Spam emails not only 
waste users’ time, but also consume a lot of network bandwidth, and may also include 
malware as executable files. Alternatively, phishing emails falsely claim users’ personal 
information to facilitate identity theft and are comparatively more dangerous. Thus, there 
is an intrinsic need for the development of more robust and dependable UBE filters that 
facilitate automatic detection of such emails. There are several countermeasures to spam 
and phishing, including blacklisting and content-based filtering. However, in addition to 
content-based features, behavior-based features are well-suited in the detection of UBEs. 
Machine learning models are being extensively used by leading internet service provid-
ers like Yahoo, Gmail, and Outlook, to filter and classify UBEs successfully. There are 
far too many options to consider, owing to the need to facilitate UBE detection and the 
recent advances in this domain. In this paper, we aim at elucidating on the way of extract-
ing email content and behavior-based features, what features are appropriate in the detec-
tion of UBEs, and the selection of the most discriminating feature set. Furthermore, to 
accurately handle the menace of UBEs, we facilitate an exhaustive comparative study using 
several state-of-the-art machine learning algorithms. Our proposed models resulted in an 
overall accuracy of 99% in the classification of UBEs. The text is accompanied by snippets 
of Python code, to enable the reader to implement the approaches elucidated in this paper.
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1  Introduction

Digital products and services increasingly mediate human activities. With the advent of 
email communication, unsolicited emails, in recent years, have become a serious threat 
to global security and economy (Bergholz et  al. 2010). As a result of the ease of com-
munication via emails, a vast number of issues involving the exploitation of technology 
to elicit personal and sensitive information have emerged. Identity theft, being one of the 
most profitable crimes, is often employed by felons to lure unsuspecting online users into 
revealing confidential information such as social security numbers, account numbers, and 
passwords. Unsolicited emails disguised as coming from legitimate and reputable sources 
often attract innocent users to fraudulent sites and persuade them to disclose their sensitive 
information. As per the report by Kaspersky Lab, in the first quarter of 2019, the menace 
of such unwanted emails was responsible for 55.97% of traffic ( 0.07% more than that in the 
fourth quarter of 2018). Unsolicited Bulk Emails (UBEs) can be broadly categorized into 
two distinct yet related categories: spam and phishing.

Spam emails are essentially UBEs that are sent without users’ consent, primarily for mar-
keting purposes such as selling unlicensed medicines, illegal products, and pornography 
(Toolan and Carthy 2010). The growth of spam traffic is a worrisome issue as such emails 
consume a lot of network bandwidth, waste memory and time, and cause financial loss. Phish-
ing emails, on the other hand, are a much more serious threat that involves stealing individu-
als’ confidential information such as bank details, social security numbers, and passwords. 
Most of the phishing attacks are focused towards financial institutions (e.g., banks); however, 
attacks against government institutions, although not as targeted, cannot be overlooked (Berg-
holz et al. 2010). To understand the impact of phishing, consider pharming, a variant of phish-
ing, where the attackers misdirect users to fraudulent sites through domain name server hijack-
ing (Abu-Nimeh et al. 2007). The effect of spam and phishing on valid users is multi-fold:

•	 Generally, UBEs promote products and services with little real value, pornography, get-
rich-quick schemes, unlicensed medicines, dicey legal services, and potentially illegal 
offers and products.

•	 UBEs often hijack real users’ identities to send spam to other users (e.g., business email 
compromise scams such as email spoofing and domain spoofing [ ≈ amounted to almost 
$1.3 billion in 2018 (20,373 victims), which was twice as much as that in 2017 (15,690 
victims) (Bec scams trends and themes 2019)].

•	 Phishing, in particular, involves identity theft as financial identity theft, criminal iden-
tity theft, identity cloning, or business/commercial identity threat.

•	 Mailing efficiency and recipient’s productivity are drastically affected by UBEs.

A study by the McKinsey Global Institute revealed that an average person spends 28% of 
the workweek ( ≈ 650 h a year) reading and responding to emails (Gang 2017). Additionally, 
research on SaneBox’s internal data revealed that only 38% of the emails on an average are 
relevant and important (Gang 2017), equivalent to ≈ 11% of the workweek. Furthermore, a 
study by the Danwood Group found that it takes an average of 64 seconds to recover from 
an email interruption and return to work at the rate before the interruption (Gang 2017)—
adversely affecting the recipients’ productivity, especially in the case of irrelevant UBEs. 
Based on the Kaspersky Lab report, in 2015, the UBE email volume fell by 50% for the 
first time since 2003 ( ≈ three to six million). Such decline was attributed to the reduction 
(in billions) of major botnets responsible for spam and phishing. Conversely, by the end of 
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2015, the UBE volume escalated. Furthermore, Kaspersky spam report revealed an increase 
in the presence of pernicious email attachments (e.g., malicious macros, malware, ransom-
ware, and JavaScript) in the spam email messages. By the end of March 2016, the UBE 
volume ( ≈ 22,890,956) had quadrupled in comparison with that witnessed in 2015. In 2017, 
the Internet Security Threat Report (ISTR) (Symantec 2018) estimated that the volume of 
spam emails had skyrocketed to an average of 55% ( ≈ 2% more than that in 2015 ( 52.7% ) 
and 2016 ( 53.4%)). Clearly, spam and phishing rates are rapidly proliferating. The overall 
phishing rate in 2017, according to the ISTR (Symantec 2018), is nearly one in every 2, 995, 
while the number of Uniform Resource Locators (URLs) related to phishing rose by 182.6% , 
which accounted for 5.8% (one in every 224) of all malicious URLs.

Over the years, extensive research in this domain revealed several plausible countermeas-
ures to detect UBEs. Approaches such as secure email authentication result in high admin-
istrative overload and hence, are not commonly used. Machine learning and knowledge 
engineering are two commonly used approaches in filtering UBEs. In knowledge engineer-
ing, UBEs are classified using a set of predefined rules. However, knowledge engineering 
approaches require constant rule updation to account for the dynamic nature of the UBE 
attacks—often suffer from scalability issues. In machine learning approaches, the algorithm 
itself learns the classification rules based on a training set—determining the email type 
through the analysis of the email content and structure has emerged, owing to the success of 
AI-assisted approaches in UBE classification. This area of research is actively being devel-
oped to account for the dynamic nature of UBE attacks. Past works in the existing literature 
explore several informative features, and many machine learning algorithms have been devel-
oped and utilized to classify the incoming mail into junk and non-junk categories (Toolan and 
Carthy 2010; Chandrasekaran et al. 2006; Toolan and Carthy 2009; Mohammad et al. 2015; 
Fette et al. 2007; Shams and Mercer 2013). Many leading internet service providers including 
Yahoo mail and Gmail, employ a combination of machine learning algorithms such as neu-
ral networks, to handle the threat posed by UBE emails effectively. Since machine learning 
models have the capacity to adapt to varying conditions, they not only filter the junk emails 
using predefined rules but also generate new rules to adapt to the dynamic nature of the UBE 
attack. Despite the success, adaptability, and predictability of machine learning models, pre-
processing, including feature extraction and selection plays a critical role in the efficacy of 
the underlying UBE classification system (Turner et al. 1999; Michalski et al. 2013). Thus, 
there is a need to determine the most discriminative and informative feature subset that facili-
tates the classification of UBEs with a higher degree of confidence.

Due to the vast heterogeneity in the existing literature, there is no consensus on which 
features form the most informative and discriminative feature set. Moreover, to the best of 
our knowledge, only a few works have evaluated all the possible set of features and provided 
insights on the importance of a feature concerning the classification of UBEs.1 In this paper, 
we aim at providing an accessible tutorial to security analysts and scientists seeking to avail 
benefits from the existing email data. First, we elucidate on the way of extracting vital and 
informative features (after extensive experimentation, we resorted to the features devised in 
the seminal work by Toolan and Carthy (2010), to achieve high performance in real-time) 

1  We experimented with advanced content-based features and topics extracted using Doc2Vec and hier-
archical Dirichlet process. However, Doc2Vec style textual features and Dirichlet topics did not enhance 
in the predictability of the underlying machine learning models, owing to the similar content writing style 
of ham and UBE emails. The discriminative features in the email body-content, including the presence of 
phrases like ‘verify your account,’ have been considered in this study.
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from the email corpus. Then, we present six prolific and widely used feature selection (extrac-
tion) methods including Variance-based filtering (LowVar), Correlation-based filtering 
(HighCorr), Feature Importance based filtering (FI), Minimum Redundancy Maximum Rel-
evance (mRMR), and principal component analysis (PCA),2 to determine an optimal feature 
subspace that facilitates effective learnability and generalizability of the underlying machine 
learning models, thus impacting the predictability of UBEs. Finally, we evaluate the obtained 
optimal feature subspace using eight state-of-the-art machine learning algorithms including 
Naïve Bayes (NB), Support Vector Machines (SVM), Bagged Decision Trees (BDT), Ran-
dom Forest (RF), Extra Trees (ET), AdaBoost (AB), Stochastic Gradient Boosting (SGB), 
and Voting Ensemble (VE). The key contributions of this paper are mainly four-fold:

•	 We discussed the extraction of critical and potential email features with discriminative capa-
bilities concerning UBEs, through the analysis of both email body-content and structure.

•	 We leveraged several prolific feature selection (extraction) approaches to engender an 
optimal informative feature subspace that enables effective and accurate UBE detection 
and classification.

•	 We present an extensive comparative study to elucidate on the applicability, learnabil-
ity, and generalizability of several state-of-the-art machine learning models in facilitat-
ing UBE filtering and classification.

•	 To enhance the understanding of the readers, we exposed them to several feature selec-
tion and machine learning algorithms through snippets of Python code, enabling them 
to avail benefits from the existing email data.

The rest of the paper is organized as follows: Section 2 presents an overview of the existing 
works, and reviews their advantages and limitations, while Sect. 3 presents the background 
discussion. Section  4 elucidates on the steps employed in the process of feature extraction 
from emails, feature selection from the extracted email data, and understanding the impor-
tance of a feature with respect to UBEs. The machine learning algorithms employed in the 
UBE classification are presented in Sect. 5. In Sect. 6, we evaluate the obtained feature sub-
spaces using several machine learning algorithms. Finally, Sect. 7 summarizes this paper with 
future enhancements.

2 � Related work

Utilizing AI-assisted approaches for UBE detection and classification has become a promi-
nent area of global research interest. This section aims at reviewing some of such existing 
techniques which were utilized in the development and evaluation of a potential set of fea-
tures in the classification of spam and phishing emails, and to provide an overview of the 
existing modeling strategies.

Lueg (2005) presented a brief survey exploring the way of applying information 
retrieval and information filtering mechanisms to postulate spam filtering in a theoretically 
grounded and logical way. Although the author aimed at introducing an operationally effi-
cient spam detector, the presented survey did not detail the simulation tools, machine learn-
ing approaches, or the datasets utilized. Wang et al. (2005) reviewed several approaches of 

2  Note that PCA facilitates feature extraction (through a linear transformation) rather than feature selection.
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detecting spam emails, categorized unsolicited spam emails into hierarchical folders, and 
facilitated automatic regulation of the tasks concerning the response to an email. However, 
the author did not cover any machine learning approaches. Chandrasekaran et al. (2006) pub-
lished a seminal work in the UBE detection and classification, and their work introduced and 
employed structural email features such as the content richness and the number of functional 
words (e.g., bank, credit, and credit) to discriminate phishing emails from legitimate ones. 
They used an SVM classifier to detect phishing emails and prevent them from reaching the 
user’s inbox, thus reducing any possible human exposure. The work by Zhong et al. (2006) 
chronicled an innovative spam filtering approach that ensembled several filters. Abu-Nimeh 
et al. (2007) compared the accuracies of classifying 2, 889 emails using supervised machine 
learning (SML) models including SVM and RF using 43 potential features. The authors 
showed that RF classifier outperformed several other classifiers (low error rate). Despite the 
novelty and inventiveness in these works (Chandrasekaran et  al. 2006; Zhong et  al. 2006; 
Abu-Nimeh et al. 2007), they did not benchmark their approach against the recent works.

Cormack (2008) explored the relationship between email spam detectors and spam detec-
tors in storage media and communication, with emphasis on the efficiency of the proposed 
methods. Furthermore, the characterization of email spams (e.g., users’ information require-
ments) was scrutinized by the author. However, the work lacked detailing of certain vital 
components of spam filters. Sanz et al. (2008) detailed the issues concerning UBE research, 
the effects of such issues on the users, and the ways of reducing such effects. Their research 
work elucidated on several machine learning algorithms utilized in UBE detection. However, 
their work lacked a comparative analysis of various content filters. Ma et al. (2009) used a set 
of orthographic features to achieve an automatic clustering of phishing emails, which resulted 
in greater efficiency and better performance via Information Gain (IG) with C4.5 Decision 
Tree (DT). They used the modified global K-means approach to generate the objective func-
tion values (over a range of tolerance values), for selected feature subsets, which assisted in 
recognition of clusters. Toolan and Carthy (2009) used a recall-boosting ensemble approach 
which was based on C5.0 DT, and instance-based learning ensemble techniques to reclas-
sify emails that were classified as non-phishing by C5.0 DT. They obtained a good precision 
through the use of C5.0 DT and 100% recall from the ensemble. Gansterer and Pölz (2009) 
proposed a system of filtering the incoming emails into ham, spam, and phishing, based on 
Feature Selection by Category (FSC), which provided better (97%) classification accuracy 
(ternary classification) than that resulted from the use of two binary classifiers.

Basnet and Sung (2010) proposed a method of detecting phishing emails through the use of 
confidence-weighted linear classifiers. The authors only utilized the email contents as features 
and neglected the use of any heuristic-based phishing specific features. A prominent work in 
the field of phishing email filtering was presented by Bergholz et al. (2010), where the authors 
described several novel features including statistical models for email topic descriptions, email 
text and external link analysis, and the analysis of embedded logos concerning hidden salting. 
Dhanaraj and Karthikeyani (2013) studied and developed approaches premeditated to mitigate 
email image spam. Despite the creativeness in designing image-based methods, their work did 
not elucidate on the machine learning models or the utilized corpus. Zhang et al. (2014) devel-
oped an automatic detection approach specific to Chinese e-business websites by using the 
URL and website-content specific features. The authors employed four machine learning clas-
sifiers including RF, Sequential Minimum Optimization (SMO), logistic regression, and Naïve 
Bays (NB), and evaluated their results using Chi-squared statistics ( �2 ). Laorden et al. (2014) 
explained the importance of anomaly discovery in UBE filtering in reducing the require-
ment of classifying UBEs. Their work reviews an anomaly-based UBE sieving approach 
which utilized a data minimization approach that reduced preprocessing while maintaining 
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the information about email message appropriateness concerning the email nature. Table  1 
reviews other related and significant past works in the detection of spam and phishing emails.

More recently, many works aimed at studying the applicability of different machine learn-
ing approaches including K-Nearest Neighbors (KNN), SVM, NB, neural networks, and oth-
ers, to spam and phishing email filtering, owing to the ability of such approaches to learn, 
adapt, and generalize. In 2016, a broad overview of some of the state-of-the-art content-based 
UBE filtering approaches was presented by Bhowmick and Hazarika (2016). Their work 
surveyed several vital concepts in UBE filtering, the effectiveness of the current efforts, and 
recent trends in UBE classification, while focusing on popular machine learning approaches 
for the detection of the nature of an email. Moreover, they discussed the changing nature of 
UBE attacks and examined several machine learning algorithms to combat the menace of 
such emails. Sah and Parmar (2017) proposed a model to effectively detect the malicious 
spam in emails through effective feature selection, followed by classification using three 
machine learning approaches including NB, SVM, and Multi Layer Perceptron (MLP). With 
the promising success of deep neural architectures in various applications (Gangavarapu et al. 
2019c; Jayasimha et al. 2020), some of the recent works have employed deep learning models 
to classify UBEs. Apruzzese et al. (2018) evaluated the applicability, effectiveness, and cur-
rent maturity of deep and machine learning models in the detection of malware, intrusion, 
and spam. The authors concluded that utilizing different machine learning classifiers to detect 
specific tasks can increase the UBE detection performance; however, they drew no significant 
conclusions concerning deep neural models. Hassanpour et al. (2018) modeled the email con-
tent as Word2Vec style features and classified them using several deep learning classification 
approaches—the authors achieved an overall accuracy of 96%. Vorobeychik and Kantarcio-
glu (2018) used adversarial machine learning to generate email samples and trained the clas-
sifier to distinguish those generated samples, making the learning model robust to adversarial 
manipulation and decision-time attacks. The authors concluded with a note on several issues 
concerning adversarial modeling that warrant further research. More prominent and impact-
ful research works in the domain of UBE detection and filtering are tabulated in Table 2.

Some of the works presented in Table  2 employed feature-free approaches to facilitate 
spam and phishing detection. However, such approaches suffer from high computational com-
plexity and cost of training. Some research works considered email header, subject line, and 
body as the most prominent features in classifying UBEs. However, it is worth noting that, 
suspicious email header, subject line, and body could be misleading, and behavior-based email 
features could be essential to facilitate accurate classification of UBEs. Most of the researchers 
focused on the classification performance in terms of classification accuracy. This work dif-
fers from the efforts of previous works by revisiting various state-of-the-art machine learning 
approaches for UBE classification. We employ feature selection to kindle an optimal feature 
subspace to lower the computational complexity and enhance the classification performance. 
Additionally, we present several key performance indicators other than classification accuracy 
to assess the performance of the underlying models accurately. Furthermore, we present an 
accessible tutorial to security specialists through snippets of Python code that is intended on 
exposing them to the presented feature selection and machine learning algorithms.

3 � Background

Certain email features (e.g., keywords such as debit, verify, and account) are more promi-
nent in UBEs than in ham emails, and by measuring the rate of occurrence of such fea-
tures, we can ascertain the probabilities for those email characteristics which in turn aids 
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in the determination of the email type. The existing literature presents a wide variety of 
techniques to determine and utilize such discriminative features, and in this section, we 
describe the different categories of UBE filtering approaches widely used to overcome the 
menace of such emails. We also elucidate on the UBE filters widely used by popular inter-
net service providers to curtail the dangers posed by email-borne malware, phishing, and 
malware in UBEs.

3.1 � Categorization of the existing UBE filtering techniques

Over the years, academicians and researchers have proposed various UBE detection and fil-
tering approaches which have been utilized successfully to classify email data into groups. 
These approaches can be broadly categorized into: content-based and behavior-based fil-
ters, sample base or case base filters, rule-based or heuristic filters, previous likeness based 
filters, and adaptive filters.

3.1.1 � Content‑based and behavior‑based filters

Content-based and behavior-based UBE filtering approaches aim at analyzing the email 
content and structure to create automatic classification rules using machine and deep learn-
ing approaches such as KNN, NB, MLP, and neural networks. Content-based and behavior-
based filters analyze the tokens (words), their distribution, their occurrences and co-occur-
rences, in addition to the analysis of scripts and URLs, in the context of emails, and then 
utilize the learned knowledge to generate rules to facilitate automatic filtering of incoming 
UBE emails (Christina et al. 2010).

3.1.2 � Sample base or case base filters

Sample base or case base filtering techniques are popular in spam and phishing email filter-
ing. Through an email collection model, all the emails, including ham, spam, and phishing, 
are extracted from every user’s email. Then, preprocessing of the raw email data into a 
machine-processable form is facilitate through feature selection (extraction) and grouping 
the email data. Finally, the preprocessed data is mapped into distinct UBE categories, and a 
machine learning algorithm is employed to train the existing email data. The trained mod-
els are then tested on the incoming emails to categorize them into ham, spam, or phishing 
(Christina et al. 2010).

3.1.3 � Rule‑based or heuristic filters

Rule-based or heuristic UBE filtering approaches [e.g., SpamAssassin (Mendez et  al. 
2006)] utilize the existing heuristics or rules to assess several patters (specifically, regu-
lar expressions) against an incoming email message—the score of an incoming email is 
reliant on the number of patterns in the email message (when the patterns in the email 
message do not correspond to the preset regular expressions, the score is reduced). The 
UBE emails are then filtered using a specific predetermined threshold. While certain 
heuristics do not change over time, other heuristics require constant updating to cope 
with the changing and dynamic nature of the UBE emails (Christina et al. 2010).
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3.1.4 � Previous likeness based filters

Previous likeness based UBE filtering approaches utilize instance-based or memory-
based machine learning approaches to classify the incoming email messages based on 
their likeness and resemblance to the stored training sample emails. A multi-dimen-
sional vector is created using the attributes of the sample emails, which is then used to 
plot new instances. A new instance is mapped to a target class using the most common 
class among the K-nearest neighbors of the point (Sakkis et al. 2001). Finally, the KNN 
classifier is employed to classify the incoming email messages.

3.1.5 � Adaptive filters

Adaptive UBE filtering approaches facilitate the detection and classification of UBEs by 
categorizing emails to distinct groups. In this approach, the email corpus is segregated 
into several groups, and each group poses an emblematic text. The similarity between 
an incoming email and a particular group determines the email message score with 
respect to that particular group. The scores computed across all the groups are utilized 
in deciding the most probable group concerning the incoming email message (Pelletier 
et al. 2004).

3.2 � UBE filters: how yahoo mail and gmail filter UBEs

Leading internet service providers including Yahoo mail and Gmail have employed several 
machine learning approaches such as neural networks, to handle the threat posed by UBEs 
effectively. Recent research revealed that the machine learning model employed by Google 
facilitates the detection of UBEs with 99.9% classification accuracy—one in a thousand 
email messages succeeds in evading the UBE filter in Gmail. To account for the consid-
erable UBE volume ( ≈ 50–70% of the emails), the UBE detection models developed by 
Google incorporate Google safe browsing tools to identify websites with malicious URLs. 
The performance of UBE filtering is enhanced further through additional, comprehensive 
scrutiny of phishing emails. Such more in-depth examination causes additional delay; 
however, only 0.05% of the emails are subject to such delay. Further details on the email 
UBE filters employed by popular internet service providers are presented in the following 
subsections.

3.2.1 � Yahoo mail UBE filtering

Yahoo mail is one of the first free webmail service providers with more than 320 million users. 
Yahoo mail utilizes several algorithms and a combination of methods rooted in basic tech-
niques, including spam and email content users’ complaints and URL filtering. The email pro-
vider employs email filtering by domains rather than by IP addresses. Furthermore, Yahoo mail 
provides ways of preventing a valid internet user for being mistaken for a cybercriminal (e.g., 
ability to troubleshoot SMTP errors using SMTP logs). The complaint feedback loop service 
helps users maintain trust in the services and UBE filtering approaches employed by Yahoo 
mail. Moreover, the email service provider also facilitates Yahoo whitelisting (return path cer-
tification and internal whitelisting)—whitelisting rolls back to the user to specify the list of 
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senders to receive email messages from (placed in a list of trusted users), unlike in blacklisting. 
The service user can employ a combination of Yahoo’s spam-fighting techniques along with 
whitelisting to reduce the volume of legitimate emails being erroneously classified as unsolic-
ited emails. Whitelisting alone can result in a strict implication on unapproved senders, in which 
case, Yahoo mail utilizes an automatic whitelisting procedure, where the anonymous sender’s 
address is checked against a database for any history of spamming or phishing—if the unap-
proved user has no record of cyber attacking, the email message is sent to the recipient, and the 
user’s email is added to the whitelist.

3.2.2 � Gmail UBE filtering

Google mail employs hundreds of rules to determine the nature of an incoming email—each 
rule depicts a specific feature or aspect of a UBE with some statistical value which is reliant 
on the likelihood that a particular feature corresponds to UBEs. The weighted importance 
of the features is utilized to determine the final score for an incoming email message. The 
score is measured against a sensitivity threshold determined using each user’s UBE filter, 
and consequently, an incoming email is classified as ham or unsolicited. Unlike Yahoo mail, 
Gmail filters email messages by IP addresses rather than by domains. To facilitate accurate 
classification of UBEs, Gmail utilizes state-of-the-art machine learning algorithms includ-
ing neural networks and logistic regression. Additionally, to shield Gmail users from any 
possible image UBEs, Google utilizes optical character recognition. Furthermore, the UBE 
filtering by Gmail is greatly enhanced by linking several features through the use of machine 
learning algorithms utilized in combining and ranking large sets of Google search results. 
Factors like links in the email message headers and domain reputation depict the evolving 
and dynamic nature of the UBEs over time—due to these factors, legitimate emails could 
be classified as UBEs. With the emergence of state-of-the-art algorithms, tools, users’ feed-
back, and new UBE discovery, the filtering settings are updated continuously.

4 � Methods: feature extraction and selection

In this section, we focus on describing the way of processing the raw email data3 based 
on forty discriminative features devised by Toolan and Carthy (2010), to facilitate the 
detection of spam and phishing emails. Moreover, we elucidate on determining the impor-
tance of a feature concerning the features of UBEs. The following subsections give tactful 
insights on the entire procedure employed as a part of feature engineering, which deals 
with the process of transforming raw email data into informative and discriminative fea-
tures that better represents the underlying email corpus. Such representations aid the clas-
sification models to learn, adapt, and generalize, which is essential in the accurate classifi-
cation of unseen email instances. The entire workflow of the procedure employed to draw 
informative inferences from the raw email data is depicted in Fig. 1. The text is accompa-
nied by snippets of Python code to familiarize the readers with the methods utilized in this 
study. The code is aimed at readers with Python familiarity, more resources concerning the 
same can be found at https​://www.pytho​n.org/about​/getti​ngsta​rted/.

3  The email data utilized in this research can be found at https​://goo.gl/gkuJ2​g.

https://www.python.org/about/gettingstarted/
https://goo.gl/gkuJ2g
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4.1 � Materials: raw email corpus

Most of the existing publicly available datasets including spam archive (Almeida and Yam-
akami 2010; Biggio et  al. 2011), phishing corpus (Abu-Nimeh et  al. 2007), and Princeton 
spam image benchmark (Wang et al. 2007) are lopsided towards UBE detection—the volume 
of UBEs utilized in evaluating the filter is much greater than that of ham emails, resulting in 
the machine learner recording a higher accuracy by concentrating solely on detecting UBEs, 
which might not scale well with the real-world data. Hence, a more suitable dataset is the one 
with near equal volumes of ham and non-ham emails, thus facilitating the underlying machine 
learner to learn and discriminate between ham emails and UBEs. The raw email data used in 
this paper consists of around 3844 emails in total, which is comprised of 2, 551 ham emails 
( ≈ 66.4% ), 793 phishing emails (303 from 2015 and 490 from 2016, contributing to ≈ 20.6% ), 
and 500 spam emails ( ≈ 13% ). These emails were collected from a variety of sources4—the 
spam and ham emails were collected from the SpamAssassin project (2002) (Mendez et al. 
2006), while Nazario (2018) provided the phishing emails (see Table 3). We mine these emails 
to extract the information needed to facilitate the accurate classification of those emails into 
ham, spam, and phishing emails. To clarify the methods and techniques presented in this study 
and present all the intermediate results, we use the test email presented in Block 1. Note that 
the test email is constructed in a way that includes most characteristics of a UBE—such a 
choice can help mitigate the sampling problem while presenting intermediate results.

Fig. 1   An overview of the procedure employed to draw inferences from the collected data

Table 3   Summary of the email corpora utilized in this study

Dataset Rate of ham Rate of UBE (%) Year of creation References

SpamAssassin 83.6% 16.4 2002 Apache SpamAssas-
sin (Mendez et al. 
2006)

Phishing corpus − 100 2015–2016 Nazario (2018)

4  Note that the individual corpus possesses highly distinctive qualities that are indicated through the experi-
ments conducted on that specific corpus.
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From the test email in Block 1 it can be observed that an email contains additional 
‘metadata,’ including reply-to address, from address, to address, and others (lines 1 to 26), 
that can be explored to aid in the classification of the email into ham, spam, or phishing. 
The following subsection presents a detailed discussion on the features of a given email 
[derived from Toolan and Carthy (2010)] that are prominent in the prediction of the nature 
of an email.

4.2 � Preprocessing and feature extraction: obtaining informative feature space

In this section, we discuss the features employed in this study to transform raw email data 
into a machine-processable form. These features are internal to the emails and are not 
derived from external sources such as search engine information, spam assassin score, or 
domain registry information. Such external features were neglected, owing to the fact that 
such information might not be present always, and hence cannot be a part of a truly auto-
mated UBE filtering system. Moreover, research has shown that features internal to emails 
form a comparatively more informative feature set as most of the external data, including 
search engine results or domain name service information changes regularly.

As stated earlier, we carried out several experiments on the obtained email corpus to 
determine a suitable feature space that best represents the underlying corpus. These experi-
ments included the utilization of advanced content-based features and topics extracted 
using paragraph vector network (vector size of 200) and hierarchical Dirichlet process (150 
topics); however, the addition of such sophisticated features did not enhance the classifica-
tion performance, and instead increased the computational complexity of training. Addi-
tionally, we employed the genetic algorithm (population size of 50, crossover rate of 0.6, 
and mutation rate of 0.1 for 25 iterations) to facilitate feature selection among the advanced 
content-based features and topics—this resulted in the proliferation of the training time 
with no significant improvement in the performance. The final feature space used in this 
study employed forty informative features with the capabilities of spam and phishing email 
discrimination, and they can be roughly divided into five distinct categories:

•	 Body-based features: that features that are extracted from the email message content.
•	 Subject line based features: the features that are extracted from the subject line of the 

email.
•	 Sender address based features: the features that are extracted from the information 

about the email address of the sender.
•	 URL-based features: the features that are extracted from the anchor tags of HTML 

emails.
•	 Script-based features: the features that are extracted from the information concerning 

the presence or absence of scripts in the email and the impact of such scripts.

The feature space composed of forty features is tabulated in Table 4. These features include 
nine body-based, eight subject line based, four sender address based, 13 URL-based, and 
six script-based features.

Note the presence of features like body_numFunctionWords, body_suspension, body_
verifyYourAccount, subject_verify, subject_debit, and subject_bank—these features 
require exact word-to-word match, and their values could be easily miscalculated through 
deliberate spelling errors, unattended typographical errors (e.g., ‘bank’ and ‘bnak’), or the 
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usage of verb forms (e.g., ‘bank’ and ‘banking’). To cope with these shortcomings and 
obtain a standard canonical form from the raw email textual entries, we used the imple-
mentations in the Python NLTK library. The canonical form was obtained through tokeni-
zation, stemming, and lemmatization. In tokenization, we aimed at transforming the given 
text in the raw email entry into smaller words (tokens). Then, we facilitated suffix stripping 
using stemming, followed by lemmatization to convert the suffix stripped words to their 
base forms. Moreover, to handle spelling and typographical errors, we employed Jaro simi-
larity scoring (Gangavarapu et al. 2019a, b) (through the implementations in the Python 
textdistance library) between the intended word spelling and the actual spelling. The 
Jaro similarity score is normalized (range of [0, 1]), and is given by,

where ti (of length |ti| ) and tj (of length |tj| ) are the tokens under comparison with m match-
ing characters and T transpositions. The threshold that determines if two tokens under com-
parison are the same was set to 0.9. The code in Block 2 details the entire preprocessing 
process utilized to obtain a canonical form. Thus, we mitigated the shortcomings arising 
due to spelling errors, typographical errors, and irregular verb forms.

4.2.1 � Using python for feature extraction

Feature extraction aims at transforming raw email data into informative features that best 
represent the data without any loss of information. In our email corpus, we have 3, 844 
emails (see Sect. 4.1). As explained in Sect. 4.2, we need to extract forty features (refer 
Table  4) from the collected raw email data. Before extracting the features, it is vital to 
parse the email to obtain the email body, subject line, sender address, reply-to address, 
modal URL, and all the links. We utilized the implementations in several Python libraries 
including re, urlparse, BeautifulSoup, email, HTMLParser, and IPy. Before 

(1)Jaro(ti, tj) =

{
0, m = 0
1

3

(
m

|ti|
+

m

|tj|
+

2m−T

2m

)
, otherwise
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proceeding any further, ensure that the encoding is set to UTF-8. The code in Block 3 elu-
cidates on the way of extracting several parts (e.g., email body) from a raw email.

The implementations in the Python email library provide extensive support to handle 
and parse email data and multipurpose internet mail extensions. First, we extracted the raw 
email data from the string format into the email format, which was then utilized to extract 
various parts of the email. To ensure the consistency in the encoding of UTF-8, we first 
decoded the required field and then encoded it in Unicode. The modal domain is the most 
frequently used domain in the email (Fette et al. 2007). Finally, to find all the links in the 
email, we needed to extract all the URLs linked in the form of href, as well as those 
present just as such in the email, i.e., both anchor links and non-anchor links comprising 
both internal and external email links. We used the implementations in the Python lxml 
library, which is a simple and powerful API to parse both XML and HTML. Now that we 
have extracted various parts of the email, we need to obtain the features from each part, as 
shown in Table 4.
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Since most of the body-based features such as body_numWords, body_richness, body_
numCharacters, and others are easier to extract, we have only shown the process of extract-
ing and checking for HTML tags and forms in the email (see Block 4). All the subject 
line based features are easily implementable through elementary Python programming 
modules.

Utilizing the utility methods listed in Block 5, we can straightforwardly obtain sender 
address based features. Note that the sender address in the email is not merely the address, 
but is usually of the form: “Tushaar Gangavarapu” < tushaar@nitk.edu.in > (Toolan and 
Carthy 2010). URL based features are among the most important in the determination of 
the nature of the email, and most of the URL-based features are related to IP addresses. We 
use the implementations in the Python IPy package to facilitate the extraction of URL-
based features (see Block 6).

Note that, the function IP(.) uses the dotted IP format without the port number; 
thus, if the port number is present in the IP address, it must be excluded before any further 
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processing. Moreover, while obtaining the count of the domains in the email, we must 
include the domains of both the sender and the reply-to addresses. All the other URL-
based features such as url_ports, url_numPorts, and others can be implemented effortlessly 
using the above-established methods. Finally, we show how to mine for script-based fea-
tures from the email body in Block 7.

Using the above utility methods, we can easily verify if JavaScript comes from outside 
the modal domain. Table 5 shows the scores of all the forty features concerning the test 
email presented in Block 1. Now that we have obtained the feature space (forty informative 
features) from the given email, the subsequent step would be to measure the importance of 
each feature, to understand the contribution of each feature towards the determination of 
the nature of a given email.

4.3 � Feature selection: engendering optimal feature space

In this study, we employ three combinations of the available ham ( H ), spam ( S ), and phish-
ing (2015: P2015 , 2016: P2016 ) email data, to obtain three datasets, as shown in Table 6. 
The first dataset comprises ham and spam components, and is aimed at investigating the 
efficacy of the proposed approaches in spam detection, while the second dataset comprises 
ham and phishing components, and investigates on the efficacy of the proposed techniques 
in phishing detection. Such individual analysis is useful in understanding and analyzing 
the relative importance of features in spam and phishing email detection, respectively. The 
third dataset comprises all the three components and reflects the fact that real-world email 
data is composed of ham, spam, and phishing email data. All the experiments performed in 
this study employ these three datasets.

Not all the features in the obtained feature space contribute towards the accurate clas-
sification of the email type, which makes it mandatory to eliminate features of negative 
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or no importance.5 We aim at introducing a few of the many feature selection (extraction) 
techniques, including mRMR (Peng et al. 2005) and PCA (Pearson 1901).

One of the prominent considerations of feature selection (extraction) techniques is the 
determination of the number of features (dimensions, denoted by k ) to extract. There exists 
no single method to determine k ; it is application dependent—a smaller number of dimen-
sions suffice while obtaining insights about the data, while the same is not valid while 
developing predictive models (Kosinski et al. 2016).

Table 5   The scores of all the forty features concerning the test email 

Feature Score Feature Score

body_html True sender_nonModalSenderDomain True
body_forms True url_ipAddress True
body_numWords 162 url_numIpAddresses 1
body_numCharacters 1298 url_atSymbol True
body_numDistinctWords 115 url_numLinks 11
body_richness 0.1248 url_numIntLinks 2
body_numFunctionWords 12 url_numExtLinks 9
body_suspension False url_numImgLinks 1
body_verifyYourAccount True url_numDomains 8
subject_reply True url_maxNumPeriods 3
subject_forward False url_linkText True
subject_numWords 5 url_nonModalHereLinks True
subject_numCharacters 22 url_ports True
subject_richness 0.2273 url_numPorts 2
subject_verify False script_scripts True
subject_debit False script_javaScript True
subject_bank False script_statusChange True
sender_numWords 3 script_popups True
sender_numCharacters 41 script_numOnClickEvents 1
sender_diffSenderReplyTo False script_nonModalJsLoads True

Table 6   Statistics of the datasets 
utilized in this study

Dataset Components Size #Classes

1 H,S 3051 2
2 H , P2015 , P2016 3344 2
3 H , S , P2015 , P2016 3844 3

5  While features with no importance do not hinder the classification performance, they add to the training 
complexity.
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4.3.1 � Obtaining the optimal threshold for threshold‑based approaches

Several feature selection approaches, including missing values filter and low variance filter, 
require a threshold to be preset—the threshold is primarily dependent on the input data. 
That being said, the preset threshold determines if a given feature is important enough to 
affect the classification or not. Lower values of the threshold include most of the features 
from the given feature space, thus under-fitting the data, while higher values of the thresh-
old exclude most of the features, causing the loss of critical information. Hence, finding an 
optimal threshold that facilitates optimal feature selection is vital. The procedure described 
in Algorithm 1 elucidates on the process of obtaining the optimal threshold. The procedure 
described in Algorithm 1 utilizes certain utility functions that:

•	 scoreFn(featureColumn): returns the score that is specific to a feature selection tech-
nique (e.g., variance in case of low variance filter) for a given feature column.

•	 compareFn(score, threshold): returns a Boolean value that is subject to a technique-
specific comparison of the score and the threshold (e.g., score < threshold, returns true 
for variance filter and feature importance filter, and false for missing values filter).

This procedure (Algorithm 1) is dependent on the underlying machine learning algorithm 
that is used to compute the performance (accuracy); this study employs an extensive study 
involving eight state-of-the-art machine learning algorithms (see Sect. 6). Thus, to accom-
modate all the utilized machine learning algorithms, we chose the smallest, most frequently 
occurring threshold. Note that the thresholds were computed using the training datasets, 
and then were utilized on the testing datasets.

4.3.2 � Handling the missing attribute values

Usually, handling missing values is accomplished through either deletion techniques such 
as pair-wise deletion and list-wise deletion, or imputation techniques such as hot-deck 
imputation, cold-deck imputation, and Monte Carlo simulation based multiple data impu-
tation. In most of the cases, if a data column (feature) has only 5% to 10% of the required 
data, then it is less likely to be useful in the classification of most samples (Silipo et al. 
2014). The missing values ratio captures a relative value indicating the number of missing 
rows, and this value compared with the preset threshold to infer if data is to be subject to 
deletion or imputation. The missing values ratio is computed as:

(2)Missing values ratio =
Number of missing rows

Total number of rows
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The procedure followed in handling missing attribute values is explained in Algo-
rithm 2. In this procedure, we utilize the utility function missing(featureColumn), which 
returns a list of missing rows in the given feature column. The preset threshold value used 
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in Algorithm 2 can be computed using the procedure in Algorithm 1, with a step value of 
0.1 (Silipo et al. 2014). Since the datasets utilized in this study have been programmatically 
mined, we have considered all possible cases, to avoid any missing values.

4.3.3 � Feature selection using low variance filter (LowVar)

One of the many ways of measuring the contribution of a feature (data column) towards the 
classification performance, is by measuring the variance (sample variance6) of the values 
of that feature. Variance measures the amount of dispersion provided by the values in the 
given data, and evidently, zero variance is the limiting case, where the values of a feature 
are constant; such a case offers no inference. Variance (Var(.)) is computed as:

where x̄ is the arithmetic mean of X. The computed variance is compared with the preset 
threshold [the threshold obtained using the procedure in Algorithm 1, with a step value of 
0.01 (Silipo et al. 2014)] to infer about the contribution of a feature in the classification 
performance—this study employs a preset threshold of 0.01 for the LowVar approach.

The procedure to remove the features with low variance is described in Algorithm 3. 
Note that the feature values are normalized prior to low variance filtering, to avoid any 
unnecessary bias arising due to the data irregularities. It is interesting to note that, by using 
the correlation between a feature and the target variable as the scoring scheme instead of 
variance, we obtain a low correlation filter.

(3)���(X) =
1

N − 1

∑

xi∈X

(xi − x̄)2

6  This paper uses the terms ‘variance’ and ‘sample variance’ interchangeably. However, all the computa-
tions performed in this study employ sample variance, as we only have a sample (3, 844 emails) of all the 
possible data.
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4.3.4 � Removing redundancy by measuring correlation (HighCorr)

Sometimes, the features in a dataset are correlated, i.e., they depend on one another, and 
thus carry nearly the same information (data redundancy). All redundant features can 
be replaced with one of the redundant features, without any loss of information. Such 
replacement can reduce the computational time and enhance prediction accuracy. In this 
paper, we utilize the Pearson correlation coefficient, denoted by Corr(X1,X2 ) (Pearson 
1920; Nagelkerke 1991) [other correlation measures include Kendall Tau correlation 
and Spearman rank correlation (Bolboaca and Jäntschi 2006)] and given by:

where x̄1 and x̄2 denote the arithmetic means of X1 and X2 respectively, and E[x] denotes 
the expected value of x.

Algorithm 4 details the procedure to eliminate redundancy using a correlation-based 
filter. Correlation computed using Eq. 4 is compared with a preset threshold [the thresh-
old obtained using the procedure in Algorithm 1, with a step value of 0.1 (Silipo et al. 
2014)] to infer if a feature is to be included or excluded in the classification—this study 
employs a preset threshold of 0.5 for the HighCorr approach.

(4)����(X1,X2) =
�[(X1 − x̄1)(X2 − x̄2)]√
���(X1) ⋅

√
���(X2)
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4.3.5 � Measuring feature importance using the random forest classifier (FI)

RFs often referred to as DT ensembles, can be utilized for feature selection (Díaz-Uriarte 
and De Andres 2006). We can obtain the importance of a feature by using a broad set of 
carefully constructed trees against the prediction attribute and analyzing the usage statis-
tics of each feature. The process of obtaining the feature importance involves the creation 
of shallow trees and checking if an attribute appears as a splitting attribute in most of the 
constructed trees, in which case, that particular feature is regarded as informative. Upon 
the generation of the ensemble tree, each feature in the feature space can be scored against 
the number of times that specific feature has been selected as the splitting attribute and at 
which level of the tree it has been selected. This method is usually robust to noise and is 
usually faster than boosting and bagging (Breiman 2001).

Usually, feature importance is computed as the Gini impurity or the mean decrease 
in the impurity (Breiman 2017, 2002; Louppe et  al. 2013), which measures the total 
decrease in the node impurity—a measure of the decrease in the classification performance 
decreases upon dropping a particular feature. The value of FI for a feature ( Xm ) can be 
computed as:

where NT is the number of trees, �t denotes the tth tree structure, n is a node in the tree 
�t , vn denotes the variable at a node n, p(n) is the measure Nn∕N of the samples reaching 
a node n, and Δi(n) denotes the impurity reduction (e.g., Shannon entropy, Gini index, and 
variance of the target variable) at node a n. The impurity reduction at a node n is given by 
(R: right, L: left):7

Upon the computation of the importance of all the features in the feature space using Eq. 5, 
the FI scores are compared with a preset threshold [the threshold obtained using the proce-
dure in Algorithm 1, with a step value of 0.01 (Silipo et al. 2014)] to infer if a feature is to 
be included or excluded in the classification—this study employs a preset threshold of 0.06 
for the FI approach.

4.3.6 � Feature selection using minimum redundancy maximum relevance (mRMR)

The mRMR approach (Peng et  al. 2005; Chanduka et  al. 2018) is an information-based 
incremental feature selection technique (filter approach) that aims at integrating the rele-
vance [defined as the distributional similarity between the feature vector and the target vec-
tor (Auffarth et al. 2010)] and redundancy ( ∝ 1/robustness) information into a single scor-
ing function. Relevance can be measured through mutual information (MI) between the 
given two random variables. MI quantitatively measures the amount of information (bits or 
Shannons) that two random variables share, and is given by (holds for discrete variables, 
for continuous variables we integrate over all values of X1 and X2):

(5)���(Xm) =
1

NT

T∑

t=1

∑

n∈�t

(vn = m)
[
p(n) ⋅ Δi(n)

]

(6)Δi(n) = i(n) −
NnL

Nn

i(nL) −
NnR

Nn

i(nR)

7  This study assumes a binary partition (split), which need not be true always.
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where Pr(x1, x2) denotes the joint probability, which measures the likelihood of both x1 and 
x2 occurring together, and is estimated by a histogram or a kernel-based Probability Den-
sity Function (PDF) estimator of one or two variables; Pr(xi) denotes the marginal prob-
ability of Xi . MI can be expressed in terms of entropy (see Eq. 8), where the entropy meas-
ures the uncertainty of a random variable (Vergara and Estévez 2014) and can be computed 
as:

Ultimately, we aim at maximizing MI(X′

;Y  ), where X ∈ ℝ
d and 

X
�

∈ ℝ
k = {x(1), x(2),⋯ , x(k)} , k < n . It is hard to estimate the joint probability of high-

dimensional variables using a histogram or a kernel-based PDF, as the number of samples 
needed to estimate the PDF exponentially increases with the increase in the number of 
dimensions (Rossi et al. 2006). To cope with this issue, we modified the objective function 
so as to estimate with the available samples.

It is essential to understand that the features contributing to a high MI index need 
not necessarily be non-redundant, and hence it is crucial to consider redundancy along 
with MI, to obtain an optimal representative set of k features. The objective function Φ 
(mRMR8) is employed to balance the trade-off between redundancy and relevance; is com-
puted using:

where R measures the average relevance of the feature vectors with the target vector, while 
R− captures the average pair-wise redundancy among the selected features, and thus, by 
maximizing the objective function, we can obtain an optimal feature subspace. The incre-
mental approach is facilitated by adding one feature at a time to the set X′ , starting from 
the feature that maximizes the objective function. For every feature addition, the cross-
validation classification error is computed—the reduced feature space is the subspace with 
the least classification error. In this study, we utilize the mRMR feature selection approach 
as a wrapper approach, with C4.5 DT and 10-fold cross-validation. Moreover, binning was 
employed ton discretize the continuous data, before subjecting the data to mRMR feature 
selection.

Sometimes, the mRMR approach generates high error thresholds (as high as 34% ). 
Moreover, mRMR only considers pair-wise interactions (see Eq.  10); by considering 
higher-order interactions, we can obtain more informative subspaces. Maximum Joint 

(7)��(X1;X2) =
∑

x2∈X2

∑

x1∈X1

Pr(x1, x2) ⋅

(
Pr(x1, x2)

Pr(x1) Pr(x2))

)

(8)��(X1;X2) = H(X1) + H(X2) − H(X1,X2)

(9)H(X) = −
∑

xi

p(xi) ⋅ log2(p(xi))

(10)Φ = R − R− =
1

|X� |
∑

x(i)

��(x(i);Y) −
1

|X� |2
∑

x(i) ,x(j)

��(x(i);x(j))

8  The mRMR approach facilitates two variants including MID (difference), where Φ = relevance−redun-
dancy, and MIQ (quotient) where Φ = relevance/redundancy. This study employs the MID variant of 
mRMR.
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Relevance (MJR) (Yang and Moody 2000) and adaptive MJR (Jiao et al. 2015) are a few of 
the modified mRMR algorithms that are aimed at tackling these shortcomings.

4.3.7 � Feature extraction using principal component analysis (PCA)

PCA is an unsupervised approach that aims at converting a set of observations of (possibly) 
correlated variables into a set of values of uncorrelated variables (principal components) 
using orthogonal transformations (Pearson 1901; Wold et al. 1987). PCA aims at maximiz-
ing the variance of the data in a new dimensional space. PCA produces the same number 
of orthogonal dimensions as that of the initial data, but what makes PCA interesting is 
that the eigenvalues corresponding to these eigenvectors (principal components) monotoni-
cally decrease as we move away from the first principal component. The dimension with an 
eigenvalue of approximately zero value (zero variance) does not provide any information in 
the original space and can be considered to be irrelevant.9

PCA usually provides the best reconstruction, i.e., the loss of information from the 
transformation is minimal, and this can be attributed to the fact that PCA only performs 
linear transformations. PCA makes a compelling assumption of the presence of a linear 
relationship between observed variables, and also that all the data points are Independent 
and Identically Distributed (IID). Consider PCA for a single dimension subspace, where 
X ∈ ℝ

d and { x1 , x2 , … , xn } are IID distributions of X ( d ≪ n ). We aim at maximizing uTΣu 
subject to uTu = 1 , where Σ is the covariance matrix ( ∈ ℝ

d×d ), and u is a principal compo-
nent ( ∈ ℝ

d×k ). Using Lagrange multipliers (Klein 2004), we obtain Σu = �u , for some � . 
So, u is an eigenvector of Σ , with an eigenvalue of �.

The preprocessing steps in PCA include zeroing out the mean of the data, and normal-
izing the variance of each coordinate, to ensure they are all measured on the same scale. 
Then, we compute Σ , followed by the computation of eigenvalues and eigenvectors. If we 
intend on projecting the data into a k−dimensional space ( k < n ), we should choose top−k 
eigenvectors of Σ , i.e., { u1 , u2 , … , uk }, which then form the basis of the new orthogonal 
space. Any given data point X ∈ ℝ

d can be represented in the new basis as:

Now, we know that all the dimensions in the projected space are orthogonal, and thus, we 
can ensure that the variables are uncorrelated. PCA is comparatively fast, owing to the ease 
of computation concerning eigenvectors (Hand 2007). Furthermore, PCA provides the ease 
of interpretability and visualization. In this study, we only retained those principal compo-
nents of PCA that accounted for 90% of the variance.

4.3.8 � Using python for feature selection (extraction)

In this section, we explain the way of obtaining an optimal feature subspace from the 
given feature space through LowVar, HighCorr, FI, mRMR, and PCA approaches, using 
Python. The low variance filter and high correlation filter can be implemented by follow-
ing the procedure in Algorithm 3 and Algorithm 4, respectively. Alternatively, the imple-
mentations in the Python pandas.corr (for high correlation filter) and sklearn.

(11)X
�

= uTX =
[
uT
1
XuT

2
X⋯ uT

k
X
]T
; X =

[
x(1)x(2) ⋯ x(d)

]T

9  Note that the difference between ‘irrelevant’ and ‘useless’ is that irrelevant features have zero entropy 
while the usefulness of a feature is application-specific.
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feature_selection.VarianceThreshold (for low variance filter) can be uti-
lized to achieve the same (see Block 8).

To obtain the importance of the features in the obtained feature space using the RF clas-
sifier, we utilized the implementations available in the Python sklearn.ensemble.
RandomForestClassifier library. The code in Block 9 elucidates on the implementa-
tion details concerning the computation of the FI. Note that the code presented here utilizes 
100 classification and regression trees with a maximum depth of 2.

To implement the mRMR approach in Python, we utilize the implementations in the 
pymrmr library. The code in Block 10 details the process of feature selection using 
mRMR. The code presented here takes as the input, a discretized dataframe, a method of 
internal selection (MID or MIQ), and the value of k (number of dimensions). To discretize 
a continuous attribute ( X(i) ) based on two thresholds, we use ����(X(i)) ± (� × ���(X(i))) , 
where � can be 0, 0.5, or 1 (Peng et al. 2005).

Finally, to perform PCA and find the directions of maximum variance using Python, 
we employ the implementations in the sklearn.decomposition.PCA library. Upon 
fitting the PCA model, the principal components and eigenvalues can be accessed via com-
ponents_ and explained_variance_ attributes.
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5 � Methods: email classification

In recent years, most researchers have resorted to machine learning approaches to detect 
and differentiate between ham, spam, and phishing emails. Machine learning algorithms 
facilitate a sense of experience-based learning, resulting in the automatic generation 
of adaptive classification rules, in turn enhancing the performance. Such adaptive and 
automated approaches outperform blacklisting or rule-based filtering approaches which 
rely on hand-coded rules susceptible to the changing nature of spam and phishing email 
attacks. In this section, we review eight state-of-the-art machine learning algorithms 
employed in UBE classification. The Python code is presented in-line with the text, to 
aid readers to implement the proposed classifiers.

5.1 � Classification using Naïve bayes (NB)

The NB classifier exemplifies both supervised learning and statistical learning. NB 
serves as a straightforward probabilistic approach that classifies the input email data by 
influencing the probabilities of the outcomes. The Bayesian classification merges the 
experimental data with the previous knowledge, and can solve both predictive and ana-
lytical problems. Furthermore, the NB algorithm is robust to noise, and computes likeli-
hoods for postulation. Note that, the NB classifier is based on the Bayes theorem with a 
sound assumption of independent events. The Bayes probability theorem is an autono-
mous characteristic model (Wu and Deng 2008; Issac and Jap 2009), and is given as:

where n denotes the number of features in the feature space. Since the value 
Pr((x1, x2,… , xn)) is a constant, the classification rule can be rewritten as:

(12)

Pr(class|(x1, x2,… , xn)) =
Pr((x1, x2,… , xn) and class)

Pr((x1, x2,… , xn))

=
Pr(class)

Pr((x1, x2,… , xn))

n∏

i=1

Pr(xi|class)

(13)Pr(class|(x1, x2,… , xn)) ∝ Pr(class)

n∏

i=1

Pr(xi|class)

(14)ŷ = argmax
class

Pr(class)

n∏

i=1

Pr(xi|class)
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The notion of class restrictive autonomy was utilized to ensure the ease of computation, 
thus, tagging the Bayesian classification as naïve—nevertheless, the classifier is robust, 
effective, and computationally efficient. Owing to the promising performance of the NB 
classifier, it has been adopted to solve several real-world tasks, including spam detection, 
recommender systems, and sentiment analysis (social media analytics). Additionally, due 
to its superior performance in multi-class problems, it has been exclusively adopted to text 
classification tasks. It is interesting to note that Bayesian spam filters have been widely 
implemented by many email clients—the software that ensures the effective performance 
of email clients is entrenched with server-side email filters utilizing Bayesian filters. Gen-
erally, a Gaussian NB classifier is utilized to accommodate numerical features, where the 
likelihood of the features is assumed to be Gaussian (normally distributed):

However, in this study, we employ the supervised discretization approach to discretize 
the continuous attributes as it overcomes the assumption of the normality of continuous 
features.

To facilitate the classification of UBEs using the NB classifier, we utilize the imple-
mentations in the Python sklearn.naive_bayes.GaussianNB library, as shown in 
Block 12.

5.2 � Classification using support vector machines (SVM)

The SVM classifier is a supervised learning algorithm that solves both regression and clas-
sification problems, and is proven to superior in performance when compared to several 
attendant learning algorithms (Sculley and Wachman 2007). The applications of SVM 
include solving quadratic programming problems with inequality constraints and linear 
equality, by differentiating groups using hyperplanes. Despite the higher training time in 
comparison to several other classifiers, the SVM classifier facilitates promising results, 
owing to its capacity to model multi-dimensional borderlines which are neither straightfor-
ward nor sequential. Furthermore, the classifier model is not disproportionately complex, 
in the sense that the number of trainable parameters is lower than the number of obser-
vations, thus making SVM an ideal suit for real-world tasks like speech and handwriting 
recognition.

To understand the SVM classifier, let us consider the simple case of a binary clas-
sification problem, with features x and target classes y ∈ {−1,+1} , where data points 

(15)Pr(xi�class) =
1

√
2����(class)

⋅ exp

�
−
(xi − �class)

2

2 ���(class)

�
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are linearly separable. Let us consider two support vectors (forming a street) passing 
through the data points lying closest to the decision surface (hyperplane), and a vector 
w̄ that is perpendicular to the median line of the street. Ultimately, we need to find sup-
port vectors that maximize the street width, thus finding the optimal decision surface. 
For an unknown sample ū , by measuring the projection of the unknown sample on to the 
perpendicular vector, we can determine if the sample is a positive ( y = +1 ) or negative 
( y = −1 ), i.e., w̄ ⋅ ū ≥ c or w̄ ⋅ ū + b ≥ 0 for a positive sample. Now, for a positive train-
ing sample ( x+ ), we have w̄ ⋅ x̄+ + b ≥ 1 , and likewise, for a negative training sample 
( x− ), we have w̄ ⋅ x̄− + b ≤ −1 . So,

where y(i) = 1 for positive samples ( y = +1 ) and y(i) = −1 otherwise. Let x(c)+  and x(c)
−

 be the 
points on the support vectors, note that, y(i)(w̄ ⋅ x(c) + b) − 1 = 0 for x(c) ∈ {x

(c)
+ , x(c)

−
} . Now, 

we can compute the street width as:

Now, we transform the optimization problem from maximizing the street width, to:

Now, using Lagrange multiplier �i (constrained to be ≥ 0), we have the Lagrangian as:

Now, by differentiating with respect to w̄ and b, we get:

Using Eqs. 20 and 21 in Eq. 19, we can simplify the Lagrangian as:

Now, using Eq. 20 in the decision rule of the unknown sample ( ̄u ) to be a positive sample, 
we get:

From Eqs. 22 and 23, we observe that the decision rule depends on the dot product of the 
sample vectors and the unknown vector. Now, when the data points are not linearly sepa-
rable, we transform (using function � ) the data points to a space where they are separable, 
i.e.,

(16)y(i)(w̄ ⋅
̄x(i) + b) − 1 ≥ 0

(17)width = (x
(c)
+ − x(c)

−
) ⋅

w̄

||w̄||2
=

2

||w̄||2

(18)max
2

||w̄||2
(or) min ||w̄||2 (or) min

1

2
||w̄||2

2

(19)L(w̄, b, 𝛼) =
1

2
w̄�w̄ −

∑
𝛼i[y

(i)(w̄ ⋅
̄x(i) + b) − 1]

(20)
𝜕L

𝜕w̄
= w̄ −

∑
𝛼iy

(i) ̄x(i) = 0 ⟹ w̄ =
∑

𝛼iy
(i) ̄x(i)

(21)
�L

�b
= −

∑
�iy

(i) = 0

(22)L(w̄, b, 𝛼) =
∑

𝛼i −
1

2

∑

i

∑

j

(𝛼i𝛼j)(y
(i)y(j))( ̄x(i) ̄x(j))

(23)
∑

𝛼iy
(i) ̄x(i) ⋅ ū + b ≥ 0
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Note that, all that we need to know is the kernel function K (e.g., linear, Radial Basis Func-
tion (RBF), and sigmoid) that facilitates the transformation into the new space, rather than 
the transformation itself. In this study, we employ the SVM classifier with an RBF kernel 
and a cost factor of 32 (obtained empirically using grid search). The cost factor aims at reg-
ulating the modeling error that results when the function is fit too close to the data points.

To facilitate the classification of UBEs using the SVM classifier, we utilize the imple-
mentations in the Python sklearn.svm.SVC library, as shown in Block 13.

5.3 � Ensemble classifiers

Ensemble learning is an approach of grouping several classifiers for training on the input 
data, intended on improving the classification performance. Researchers have advocated 
the assembling of various classifiers to handle UBE attacks effectively (Guerra et  al. 
2010). In this study, we employ six widely used ensembling approaches to facilitate UBE 
classification.

5.3.1 � Classification using bagged decision trees (BDT)

A DT is a supervised learning approach that decomposes complex problems into a hier-
archy of simpler ones. The internal nodes of a DT pave the way to the final decision rule, 
each time (at each level) adding to the previous decision rule, while the leaf nodes associ-
ate an output (class label) to the input features. Sometimes, DT tends to overfit the data, 
owing to the stringent decision rules at various levels of the tree. To cope with this issue, 
bootstrap-aggregated (bagged) DT aims at combining the results of several DT classifiers. 
This approach enhances generalizability and is hence adopted in a variety of tasks includ-
ing spam detection and power system fault detection. BDT classifier is effective in mapping 
more than one parameter to a target variable (Netsanet et al. 2018) and hence is extremely 
useful in UBE classification.

To understand the process of bagging, let us consider the training set T to be 
{(x(1), y(1)), (x(2), y(2)),… , (x(n), y(n))} , where x(i) ∈ X and y(i) ∈ Ω = {l1, l2,… , lk} . A classi-
fier C aims at mapping from T to a decision rule ( f̂  ), which then maps X to Ω , i.e., C(T) = f̂  
and f̂ (x) ∈ Ω . Now, a bootstrap sample Tb = {x

(i)

b
, y

(i)

b
}n
i=1

 is obtained through independent 
draws from T, with replacement. The obtained Tb produces the decision rule f̂b = C(Tb) , 
and the final bootstrap-aggregated estimate F̂b is computed as the majority vote of all the B 
bootstrap predictors:

(24)K( ̄x(i), ̄x(j)) = 𝜙( ̄x(i)) ⋅ 𝜙( ̄x(j))
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where I{M} is the indicator of M. Intuitively, bagging serves as a variance reduction process 
that mimics the procedure of averaging over various training sets. In this study, we employ 
BDT classifier with 100 C4.5 DT estimators. Moreover, we employ the Gini impurity in 
the measurement of the quality of the split.

To facilitate the classification of UBEs using the BDT classifier, we utilize the imple-
mentations in the Python sklearn.ensemble.BaggingClassifier library (we 
used the Python sklearn.tree.DecisionTreeClassifier library to implement 
the DT classifier), as shown in Block 14.

5.3.2 � Classification using random forest (RF)

While BDT classifier is effective in classification, the trees produced by a BDT classifier can 
be very similar, and thus, slowing down the learning process. The RF classifier overcomes 
this shortcoming by employing two sources of randomness including bagging and random 
input vectors. RF uses DT classifiers to facilitate prediction of the target variable. RF classi-
fier has been shown to have better performance (low error rate) than several learners such as 
SVM and DT, in several classification tasks including speech analysis and UBE detection. 
Furthermore, RF performs well even in the cases of disproportionate data characterized by 
missing variables, by providing an approximation to the missing data and preserving the 
precision in cases where a significant amount of data is lost.

To understand the process of classification using RF, let us consider the train-
ing set T to be {(x(1), y(1)), (x(2), y(2)),… , (x(n), y(n))} , where x(i) ∈ X ( X ∈ ℝ

p ) and 
y(i) ∈ Ω = {l1, l2,… , lk} . Now, a bootstrap sample Tb = {x

(i)

b
, y

(i)

b
}n
i=1

 is obtained through 
independent draws from T, with replacement. The obtained Tb is used to generate an RF 
tree Trb . At every node of Trb , we choose m out of p features (optimal value is 

√
p ), select 

the splitting attribute among the m selected features using IG or Gini impurity. Then, we 
split the current node based on the chosen splitting attribute. This procedure is recursively 
repeated until the minimum node size nmin (maximum tree depth) is obtained. Ultimately, 
the classification is facilitated as:

(25)F̂b = argmax
y∈Ω

B∑

i=1

I{y=f̂b(x)}

(26)ŷ(x) = majority vote
{
yb(x)

}B

b=1
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In this study, we employ the RF classifier with 100 C4.5 DT classifiers, and the nodes of 
the tree are expanded until all the leaf nodes contain less than two samples or until all the 
leaf nodes are pure. Moreover, we employ the Gini impurity in the measurement of the 
quality of the split. The RF classifier is implemented using the procedure in Algorithm 5.

To facilitate the classification of UBEs using the RF classifier, we utilize the implemen-
tations in the Python sklearn.ensemble.RandomForestClassifier library, as 
shown in Block 1.

5.3.3 � Classification using extra trees (ET)

The extremely randomized trees classifier was aimed at randomizing the tree building fur-
ther, in the context of numerical input attributes, where the choice of the optimal cut-point 
(discretization threshold) is responsible for a large proportion of the variance induced in the 
tree. Experiments (Geurts et al. 2006) have shown that the ET classifier is competitive with 
the RF classifier in terms of accuracy, and sometimes superior (especially when the data is 
noisy). Moreover, since the need for the optimization of discretization thresholds is removed 
in ET classifiers, they are computationally fast and easy to implement. The ET classifier has 
yielded state-of-the-art results in various high-dimensional complex problems.

The ET classifier is similar to an RF classifier in the sense that both these algorithms are 
based on choosing m (out of p, optimally 

√
p ) features at each node, to determine the split. 

However, unlike in an RF classifier, an ET classifier learns from the entire learning sample 
T (no bootstrap copying) or a sample drawn from T without replacement. More importantly, 
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instead of choosing from the best cut-point based on the local sample as in BDT or RF, an 
ET classifier randomly selects the cut-point to determine the split. It is interesting to note 
that the algorithm is primarily reliant on the value of m, and when m = 1 , the resulting 
extra tree structure is built independently of the target class labels in the training set. From 
a statistical perspective, dropping the randomization through bagging leads to an advantage 
concerning the bias, while cut-point randomization often leads to an excellent reduction in 
the variance. From a functional perspective, the ET approach facilitates piece-wise multi-
linear approximations as opposed to piece-wise constant approximations of RF classifiers. 
In this study, we employ the ET classifier with 100 C4.5 DT classifiers, and the nodes of 
the tree are expanded until all the leaf nodes contain less than two samples or until all the 
leaf nodes are pure. Moreover, we employ the Gini impurity in the measurement of the 
quality of the split.

To facilitate the classification of UBEs using the ET classifier, we utilize the imple-
mentations in the Python sklearn.ensemble.ExtraTreesClassifier library, as 
shown in Block 14.

5.3.4 � Classification using AdaBoost (AB)

The adaptive boosting algorithm is a meta-estimator that combines several weak decision 
rules into one strong decision rule, and is shown to provide good performance even with 
the unsatisfactory performance of the individual weak learners. By convention, a strong 
learner is the one with an error rate close to zero, while a weak learner is the one with an 
error rate just below 0.5. AB is widely adopted, owing to the astounding performance of 
the algorithm in a wide variety of classification tasks, including UBE classification and 
text categorization. Furthermore, AB is straightforward, adaptive, fast, easy to program, 
and less cumbersome (due to minimal parameter tuning).

To understand the AB classifier, let us consider the simple case of a two-class prob-
lem, with training samples {(x(1), y(1)), (x(2), y(2)),… , (x(n), y(n))} , where x(i) ∈ X and 
y(i) ∈ {−1,+1} . In each round t = 1, 2,… , T  , we compute a distribution Dt over the (n) 
training samples. A weak learner is utilized to compute a weak hypothesis ht , where the 
weak learner is aimed at generating ht with low weighted error Et relative to Dt . At every 
step the distribution is normalized using a factor Zt , to ensure that Dt+1 is a distribution. 
The final hypothesis H(t) computes the overall majority vote (sign) of all the weak learners 
through a weighted combination of weak hypotheses, where each hypothesis is weighted by 
�t . The entire procedure for the AB algorithm is shown in Algorithm 5. Alternatively, for 
multi-class (more than two classes) problems, we have Stagewise Additive Modeling using 
a Multi-class Exponential loss function (SAMME) (Hastie et al. 2009), which implements 
the multi-class Bayes rule by modeling a forward stagewise additive model. A widely used 
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variant of SAMME is the SAMME.R algorithm (R for Real), which converges faster than 
SAMME, and achieves a lower test error with fewer rounds. In this study, we employ the 
AB classifier with a C4.5 DT classifier for 100 rounds and the SAMME.R algorithm in the 
case of three-class classification. The procedure shown in Algorithm 5 is employed in the 
implementation of the AB classifier.

To facilitate the classification of UBEs using the AB classifier, we utilize the implementations 
in the Python sklearn.ensemble.AdaBoostClassifier library, as shown in Block 15.

5.3.5 � Classification using stochastic gradient boosting (SGB)

The AB and related classifiers (step-wise algorithms) are categorized under adaptive re-weight-
ing and combining statistical framework, where the objective is to minimize the weighted error, 
followed by a re-computation of the weak hypotheses. Gradient boosting machines enhance 
this framework further, by casting the process of boosting as a numerical optimization with an 
objective of loss minimization through the addition of weak learners using the steepest gradient 
algorithm. In the SGB approach, we add a new weak learner at a time, while the existing weak 
learners are left unchanged, and thus, facilitating a stage-wise additive approach. The SGB 
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algorithm is related to both bagging and boosting, where many small trees are built sequentially 
from the gradient of the loss function of the previous tree (pseudo-residuals). At each round, a 
tree is built from a random bootstrap sample (drawn without replacement), resulting in an incre-
mental improvement in the model. Thus, the SGB algorithm is computationally fast, resistant 
to outliers, and avoids over-fitting of the data, and is hence adopted in a variety of applications 
including microscopy image analysis and slate deposit estimation.

To understand the working of the SGB classifier, let us first understand a 
naïve formalization of gradient boosting. Let us consider the training set T to be 
{(x(1), y(1)), (x(2), y(2)),… , (x(n), y(n))} , where x(i) ∈ X and y(i) ∈ Ω = {l1, l2,… , lk} . A clas-
sifier C aims at mapping from T to a decision rule ( f̂  ), which then maps X to Ω , i.e., 
C(T) = f̂  and f̂ (x) = y ∈ Ω . First, let us fit a model to T, i.e., f̂0(x) = y . Now, let us fit 
another model ĥ0 to the residuals obtained, i.e., ĥ0(x) = y − f̂0(x) . Now, in the subse-
quent round, create a stage-wise additive model to correct the errors of the previous 
model as f̂1(x) = f̂0(x) + ĥ0(x) . Now, let us generalize this idea for R rounds as:

At each step r, we aim at finding ĥr(x) = y − f̂r(x) . In practice, ĥr is almost always a tree-
based classifier. Now, let us tweak the model to conform to the actual SGB classifier; since 
we aim at minimizing the loss function (L), let us initialize f̂  with the mean of the target 
classes in T, i.e.,

Now, we recursively define each subsequent f̂r ( r ≥ 0 ) as f̂r(x) = ̂fr−1(x) + ̂hr−1(x) , where 
̂hr−1(x) is a classifier that aims at fitting the residuals ( �r−1 ) (computed as the gradient of 

the loss function), i.e.,

The final learner obtained after R rounds ( f̂R ) is the trained SGB classifier. In this study, we 
employ a SGB learner with a C4.5 DT classifier of maximum depth two ( ̂h(x) ), trained for 
100 rounds. Moreover, we employ deviance as the loss function, which measures the good-
ness of the fit.

To facilitate the classification of UBEs using the SGB classifier, we utilize the imple-
mentations in the Python sklearn.ensemble.GradientBoostingClassifier 
library, as shown in Block 18.

(27)f̂R(x) = f̂0(x) ↦ f̂1(x) = f̂0(x) + ĥ0(x)⋯ ↦ f̂R(x)

(28)= ̂fR−1(x) + ̂hR−1(x)

(29)f̂0(x) = argmin
𝛾

n∑

i=0

L(y(i), 𝛾)

(30)𝜎r−1 = −
𝜕L(y, ̂fr−1(x))

𝜕 ̂fr−1(x)
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5.3.6 � Classification using voting ensemble (VE)

A voting ensemble classifier is a naïve approach to aggregating the predictions of a vari-
ety of diverse classifiers using a majority rule. For a set of classifiers Cr s (total R classi-
fiers) trained on the same training data ( T = {x(i), y(i)}n

i=1
 , y(i) ∈ Ω ), we have predictions 

( yr s) such that Cr(x) = yr , where yr ∈ Ω . Now, the final classification is facilitated as:

Such voting is often referred to as the hard voting scheme. In this study, we employ a 
VE classifier with seven diverse classifiers including Gaussian NB, logistic regression, ID3 
DT, RF, ET, AB, and SGB (with the parameters described in the above sections). Addition-
ally, we tested the plurality voting scheme; however, the majority voting scheme outper-
formed the plurality voting scheme.

To facilitate the classification of UBEs using the VE classifier, we utilize the imple-
mentations in the Python sklearn.ensemble.VotingClassifier library, as 
shown in Block 19.

(31)ŷ(x) = majority vote{yr}R
r=1
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5.4 � WEKA workbench for machine learning

Apart from Python programming, the Waikato Environment for Knowledge Analysis 
(WEKA) workbench (Hall et al. 2009) is recognized as a landmark system in machine 
learning and data mining, which provides a toolbox of learning algorithms, along with a 
framework for the development of novel algorithms without the burden of the support-
ing infrastructure for scheme evaluation and data manipulation.

The WEKA project aims to provide a comprehensive collection of data preprocess-
ing and machine learning algorithms for practitioners and researchers. It facilitates easy 
and quick comparison of several machine learning algorithms on datasets. Furthermore, 
the WEKA graphical user interface enables beginners to seamlessly perform data pre-
processing, regression, classification, clustering, feature selection, association rule min-
ing, and visualization. The WEKA tool has achieved widespread acceptance in business 
and academia alike, and has become a widely adopted tool for the research in data min-
ing. Table 7 tabulates the capabilities of several machine learning and feature selection 
approaches employed in this study, with respect to WEKA workbench.

6 � Performance evaluation and discussion

To evaluate the efficacy of the utilized feature selection (extraction) and machine learning 
algorithms in spam and phishing email detection, we performed extensive experimentation 
on the datasets described in Table 6. All the experiments in this study were performed on a 
PC with Intel Core i7 × 2.5 GHz with 16 GB RAM in the Mac 10.14 OS. Furthermore, all 
the experiments were carried out through 10-fold cross-validation, and the overall perfor-
mance was computed as the average across all the folds. In this section, we first discuss the 
evaluation metrics employed in this study and their relevance concerning UBE detection. 
Then, we present the results of our experimentation, followed by a discussion on the impli-
cations of the presented results.

Table 7   Capabilities of the algorithms concerning WEKA workbench

Class Algorithm Allowed class types Allowed attribute types

Feature selection LowVar − Continuous
HighCorr − Continuous
FI Discrete Continuous and discrete
mRMR Discrete Discrete
PCA − Continuous and discrete

Classification NB Discrete Continuous and discrete
SVM Discrete Continuous and discrete
BDT Continuous and discrete Continuous and discrete
RF Continuous and discrete Continuous and discrete
ET Continuous and discrete Continuous
AB Discrete Continuous and discrete
SGB Discrete Continuous and Discrete
VE Continuous and discrete Continuous and discrete
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6.1 � Performance evaluation metrics

Most of the works in the existing literature employ classification accuracy as the key perfor-
mance indicator (see Table 2). However, only measuring the number of correctly classified 
email messages is not sufficient, owing to the costs attached with the misclassification of 
UBEs; other metrics derived from information retrieval and decision theory (e.g., precision 
and recall) can help gain better insights into the obtained results. When a spam email mes-
sage is misclassified as a ham email, it causes a rather insignificant problem (user only needs 
to delete such an email). However, when ham emails are misclassified as spam or phishing 
emails, there is a possibility of losing vital information (specifically in scenarios where spam 
emails are deleted automatically), while phishing emails that are misclassified as ham emails 
result in a breach of privacy (a much more serious concern). Moreover, in scenarios with 
imbalanced data (such as in our case), accuracy does not consider all the relevant aspects 
of the classification inference. In this study, we employ seven standard evaluation metrics 
including accuracy, precision, recall, F1-measure (F1 score), Matthews correlation coefficient 
(MCC) score, area under the ROC curve (AUROC), and Area Under the Precision-Recall 
Curve (AUPRC), to assess the performance of our extensive evaluation accurately.

Accuracy: This metric aims at evaluating the average number of correctly classified email 
messages over the given email corpus. The classification accuracy can be computed using:

where M denotes the email type ( M = H for ham, M = S for spam, and M = P for 
phishing), and NM denotes the number of email messages of type M . Also, |M → M

′| 
denotes the number of email messages of type M that are classified as M′ . It is necessary 
to note that in Dataset1 , |S → H| (false-negative event (miss)) occurrences are inexpen-
sive mistakes, while |H → S| (false-positive event (false alarm)) is a more serious concern. 
However, in Dataset2 , both |H → P| and |P → H| incur the same cost. Hence, in Dataset1 , 
metrics that account for false positives, such as precision of UBEs, recall of ham emails, 
F1-measure, MCC score, AUROC, or AUPRC, serve to be more appropriate.

Precision: This metric computes the positive predictive value (reliability or worth of the 
UBE filter) by measuring the true positives and false positives. Precision aims at measuring 
the number of relevant results, i.e., what proportion of ham email identifications were actually 
ham in nature. For a given email type M , it can be computed as:

The precision is computed for individual email types, and the overall precision is computed 
as the weighted average of the individual components as:

Precision (of UBEs) is more appropriate in measuring the performance of Dataset1 , where 
false-positive events cost more than false-negative events. However, it is not very appropri-
ate in measuring the performance of Dataset2 , where both false positives and negatives 
incur the same cost. Hence, we need metrics that incorporate both false positives and nega-
tives, to obtain a generalized performance metric.

(32)Accuracy =
|H → H| + |S → S| + |P → P|

NH + NS + NP

(33)Precision(M) =
|M → M|

|M → M| + |¬M → M|

(34)Precision =
Precision(M) ⋅ NM + Precision(¬M) ⋅ N¬M

NM + N¬M
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Recall: This metric evaluates the sensitivity (effectiveness of the UBE filter) by measuring 
the number of UBE messages that the filter succeeded in preventing from reaching the email 
inbox of the user. For a given email type M , it can be computed as:

The recall is computed for individual email types, and is aggregated using Eq. 34. As dis-
cussed earlier, recall (of ham emails) is appropriate in measuring the performance of Data-
set1 , while in Dataset2 , where false negatives are equally as important as false positives, 
recall is inappropriate.

F1 score: This metric seeks a balance between the precision and recall, and is interpreted 
as the weighted harmonic mean of the precision and recall. It differs from accuracy in the 
sense that, accuracy only accounts from true positives and negatives, while neglecting false 
positive and negatives. The F1 ( F(�=1) ) score can be computed as:

Since F1-measure uses both false positives and negatives by capturing precision and recall, 
it serves as a generalized metric for both Dataset1 and Dataset2 . However, F1-measure does 
not account for the true negative occurrences (e.g., |S → S|).

MCC score: This metrics serves as a balanced measure even in scenarios of class imbal-
anced data (such as in our case) by measuring the True and False Positives and Negatives (TP, 
TN, FP, and FN). The MCC score computes the essence of the correlation between the pre-
dicted and the observed classifications. The MCC score can be computed as:

Since MCC score accounts for true and false positives and negatives, it serves as a more 
generalized metric than F1-measure, in evaluating the performance of the underlying 
machine learning approaches.

Area under the ROC curve (AUROC): The ROC probability curve is a graphical plot of 
sensitivity (Eq. 35) against fall-out (1-specificity, see Eq. 38). The AUROC metric meas-
ures the capability of a model to distinguish between classes. A greater value of AUROC 
indicates that the underlying UBE filter is able to distinguish between ham, spam, and 
phishing emails.

Although AUROC effectively captures the hit and miss rates, it does not vary with the 
change in the ratio of the target classes, and hence is not very inferential in scenarios with 
imbalanced data.

Area under the precision-recall curve (AUPRC): The precision-recall curve is a graphi-
cal plot of precision (Equation 33) against the recall (Eq. 35). A higher value of AUPRC 
signifies that the underlying model minimizes the misclassifications and false alarms. 
When dealing with skewed datasets (such as in our case), the AUPRC reveals more inform-
ative insights concerning the performance of the underlying model, in comparison to 
AUROC (Saito and Rehmsmeier 2015).

(35)Recall(M) =
|M → M|

|M → M| + |M → ¬M|

(36)F(�=1) = (1 + �2)
Precision ⋅ Recall

(�2 ⋅ Precision) + Recall

(37)MCC =
TP ⋅ TN − FP ⋅ FN

√
(TP + FN) ⋅ (TP + FP) ⋅ (TN + FN) ⋅ (TN + FP)

(38)Specificity(M) =
|¬M → ¬M|

|¬M → ¬M| + |¬M → M|
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6.2 � Results and discussion

In this section, we report the results of our exhaustive experimentation on spam and 
phishing datasets in Table 6. Note that, Dataset3 has the maximum number of samples 
and classes among the obtained datasets, and is hence utilized as the representative sam-
ple subject to feature selection (extraction). The features subspace obtained using Data-
set3 was then employed in Dataset1 and Dataset2 , to facilitate accurate filtering of spam 
and phishing emails. Table  8 tabulates the performance of various machine learning 
algorithms (see Sect. 5) in the classification of spam emails of Dataset1 using the email 
features obtained using feature selection (see Sect.  4.2) of the feature space of Data-
set3 . Similarly, the performance of the machine learners on Dataset2 , using the features 
extracted from Dataset3 is summarized in Table 9. It is important to point out that PCA 
facilitates feature extraction rather than feature selection, through a linear transforma-
tion of the input data. Table 10 shows the performance of the machine learning classi-
fiers using PCA-transformed Dataset3 . From Tables 8, 9, and 10, it is interesting to note 
that the RF classifier consistently outperforms all other machine learners. Such supe-
rior performance can be attributed to the ability of RF to perform well and generalize 
even in the cases of disproportionate data through bagging and random input vectors. 
Additionally, we also remark that the features selected using FI-based feature selection 
(using RF) on Dataset3 , when classified using an RF classifier, outperforms the per-
formance obtained using other feature selection approaches ( 98.4% accuracy and 99.8% 
AUPRC on Dataset1 , and 99.4% accuracy and 99.9% AUPRC on Dataset2 , see Tables 8 
and 9)—FI (using RF) measures the usefulness of the features in the construction of the 
RF tree, and since the RF classifier is able to learn and generalize the underlying UBE 
data, it is only natural that FI (using RF) accounts for the highest performance.

From the analysis of the features selected by the utilized feature selection tech-
niques, it can be noted that the features such as body_html, body_forms, subject_bank, 
sender_numWords, url_numLinks, url_numImgLinks, url_linkText, url_maxNumPeri-
ods, and url_nonModalHereLinks, are selected by all feature selection techniques (Low-
Var, HighCorr, FI, and mRMR). However, certain features such as subject_numWords, 
subject_numCharacters, and subject_richness are never selected. Figure  2 depicts a 
dotted heatmap that captures the occurrence frequency of the features (feature space in 
Table 4) in the utilized feature selection techniques. It is worth understanding the occur-
rence frequency employed in Fig. 2 uses a naïve counting scheme, and a more advanced 
and informed decision concerning the information of a feature can be drawn using a 
weighted occurrence frequency scheme that accounts for the position of a feature in 
the ranked feature subspace (Gangavarapu and Patil 2019). Intuitively, the weighted 

Fig. 2   A dotted heatmap mapping the occurrence frequency of the features (feature space in Table 4) in the 
utilized feature selection methods
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occurrence frequency captures the importance of a feature fi over {fi+1, fi+2,… , fk−i+1} in 
the selected k-dimensional feature subspace.

Note the superior performance of various classifiers utilizing all the features in all 
the three datasets—this can be explained by the informative and discriminative capabili-
ties of the chosen feature space with respect to the underlying email corpus. The effect 
of increasing dimensions on the classification time is shown in Fig. 3. From Fig. 3, it 
can be remarked that, with the increase in the dimensionality of the data, we observe an 
increase in the time taken to classify the email messages. It must be noted that the aver-
age build (training) time utilized in this paper (in Tables 8, 9, and 10, and in Fig. 3) is 
computed as the average of the runtime taken by all the eight utilized machine learning 
algorithms. It is worth mentioning that, the RF classifier is scalable with high-dimen-
sional data, and several variants of the RF classifier that utilize the MapReduce algo-
rithm further improve the scalability and efficiency of classification (Han et al. 2013). 
Since the RF classifier outperforms other machine learning approaches, the subsequent 
analysis is only presented with respect to RF classification. The effect of increasing 
dimensions on the classification performance with respect to various feature selection 
approaches is depicted from Figs.  4,  5,  6,  7,  8,  9 and 10. It can be remarked that the 
features selected using Dataset3 model the data from the Dataset2 better than that from 
Dataset1 . From Tables 8, 9, and 10, and from Figs. 4, 5, 6, 7, 8, 9 and 10, we observe 
that PCA indicates the lowest performance, in the case of all the datasets (Dataset1 
with 19 dimensions, Dataset2 with 22 dimensions, and Dataset1 with 24 dimensions). 
Such low performance can be attributed to the fact that PCA is an unsupervised feature 
extraction approach whose main objective is to maximize the variance. As explained 
earlier, the ‘usefulness’ and ‘relevance’ of a feature are not interchangeable, i.e., a rel-
evant feature does not warrant usefulness and vice versa. Thus, the filters that only aim 
at maximizing the variance, often ignore the usefulness of the chosen features, which 
in turn impacts the classification performance. This fact is clearly corroborated by the 
lower performance of the LowVar filter in Dataset1 with 27 dimensions.

7 � Summary

Feature engineering and machine learning are indispensable in building any intelligent sys-
tem. In this study, we surveyed various aspects of feature engineering in spam and phish-
ing email detection. Moreover, we detailed various attempts by the researchers in mitigat-
ing the menace of UBE emails through the use of machine learning classifiers. In general, 
the volume of existing literature evaluated in this study corroborates the significant pro-
gress that has been and will be made in the field of spam and phishing email detection. In 
this research, we employed forty informative and discriminative content-based and body-
based features that were selected in accordance with the underlying email corpus. First, 
we elucidated on the process of extraction of the discriminative feature space from the raw 
email corpus. Then, we leveraged five widely used prolific feature selection (extraction) 
approaches to engender an optimal feature subspace to improve the classification perfor-
mance and eliminate the noise in the data. We presented an exhaustive comparative study 
through the use of several state-of-the-art machine learning classifiers to facilitate UBE 
filtering and classification. Furthermore, we explained the key performance indicators vital 
in the accurate assessment of the performance of the underlying UBE filters. We observed 
that the feature subspace determined by the FI-based feature selection approach (using RF), 



5070	 T. Gangavarapu et al.

1 3

17 19 21 22 27 28 40

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
ni
ng

ti
m
e
(s
)

LowVar (Dataset1)
LowVar (Dataset2)

17 19 21 22 27 28 40

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
ni
ng

ti
m
e
(s
)

HighCorr (Dataset1)
HighCorr (Dataset2)

17 19 21 22 27 28 40

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
ni
ng

ti
m
e
(s
)

FI (Dataset1)
FI (Dataset2)

17 19 21 22 27 28 40

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
ni
ng

ti
m
e
(s
)

mRMR (Dataset1)
mRMR (Dataset2)

17 19 21 22 27 28 34 39

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
ni
ng

ti
m
e
(s
)

PCA (Dataset1)
PCA (Dataset2)

Fig. 3   The effect of increasing dimensions on the average training time
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Fig. 4   The effect of increasing dimensions on the accuracy of the RF classification
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Fig. 5   The effect of increasing dimensions on the precision of the RF classification
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Fig. 6   The effect of increasing dimensions on the recall of the RF classification
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Fig. 7   The effect of increasing dimensions on the F1-measure of the RF classification
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Fig. 8   The effect of increasing dimensions on the MCC score of the RF classification
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Fig. 9   The effect of increasing dimensions on the AUROC of the RF classification
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Fig. 10   The effect of increasing dimensions on the AUPRC of the RF classification
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when classified using an RF classifier, resulted in an overall accuracy of 98.4% on ham−
spam dataset (AUPRC of 99.8% ) and 99.4% on ham−phishing dataset (AUPRC of 99.9% ). 
Additionally, to enhance the understanding of the readers, we presented snippets of Python 
code, in-line with the text, enabling them to avail benefits from the existing email data.

Despite the extensive research in the field of UBE detection and filtering, certain issues 
need to be addressed. These issues include the lack of an effective strategy to handle 
security attacks on UBE filters, the inability of the current UBE filters to tackle concept 
drift phenomenon, and lack of effective UBE filters that utilize graphical features. In the 
future, we aim at improving the effectiveness of the proposed approaches by addressing the 
aforementioned open issues. Additionally, we also aim at exploring adversarial learning 
approaches to learn and adapt to the concept drifts effectively.
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