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Abstract

Radiologists interprets X-ray samples by visually inspecting them to diagnose the pres-
ence of fractures in various bones. Interpretation of radiographs is a time-consuming and
intense process involving manual examination of fractures. In addition, clinician’s shortage
in medically under-resourced areas, unavailability of expert radiologists in busy clinical
settings or fatigue caused due to demanding workloads could lead to false detection rate
and poor recovery of the fractures. A comprehensive study is imparted here covering frac-
ture diagnosis with the aim to assist investigators in developing models that automatically
detects fracture in human bones. The paper is presented in five folds. Firstly, we discuss
data preparation stage. Second, we present various image-processing techniques used for
fracture detection. Third, we analyze conventional and deep learning based techniques for
diagnosing bone fractures. Fourth, we make comparative analysis of existing techniques.
Fifth, we discuss different issues and challenges faced by researches while dealing with
fracture detection.
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1 Introduction

A fracture is a partial or complete break in the bone (Mayne 2013). High impact or force
against a bone that it can structurally withstand is the substantial cause of fracture. Trau-
matic and stress are commonly found bone fractures in human body. Traumatic fracture is
a result of automobile accident, serious fall, or intentional causes such as physical abuse
whereas stress fractures are associated with repetitive load-carrying pressure to a healthy
bone, common among athletes (e.g., gymnasts, dancers, long-distance runners) and mili-
tary personnel. However, fracture can also occur due to several other reasons like osteopo-
rosis, (a medical condition that weakens the bone), cancers, or a brittle bone disease known
as ontogenesis imperfect. According to the World Health Organization (WHO) report, 1.66
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million people suffer from hip fracture every year throughout the world and the rate is
expected to rise by three to four times by year 2050 because of the worldwide increase in
the number of older people (World Health Organization 2019). The rate of fracture occur-
rences are higher by three to four fold among women in countries with a high fracture inci-
dence rate, and is equal among men and women in counties with low fracture prevalence
(World Health Organization 2019). All bone fractures are divided into six major categories
(Mayne 2013) that is depicted using Fig. 1.

A. Transverse Fracture: It is the simplest type of fracture where bone is break as a horizon-
tal line.

B. Oblique Fracture: It is a fracture type where the break is extending in a slanting direc-
tion, caused by indirect or rotational force.

C. Spiral Fracture: It is a fracture type where the break spirals around the bone, common
in a twisting injury.

D. Comminuted Fracture: It is a fracture type where bone breaks into several pieces.

E. Greenstick Fracture: It is incomplete fracture type where the broken bone is not com-
pletely separated.

F. Impacted Fracture: It is a fracture type where bone breaks but the two ends of fractured
bone are forced together. This produces a rather stable fracture that can heal readily but
at the cost of some length lost.

X-rays, computed tomography (CT), magnetic resonance imaging (MRI) are various
medical imaging modalities used for capturing images of the affected body area. A radiolo-
gist expert perform interpretation of these captured images to diagnose the disease and fur-
ther recommends needed treatment. X-ray is the oldest, fastest, and most frequently used
imaging modality, which examines suspected fractures by imaging internal organs of the
body (https://orthoinfo.aaos.org/en/treatment/x-rays-ct-scans-and-mris). It has become a
prime analytic instrument to check patients for fractures, majorly due to its wide-availabil-
ity across areas where many expensive imaging modalities might not be available. Radiolo-
gists or clinicians interpret X-ray samples by visually inspecting them to identify the pres-
ence and type of fractures in various bones. The need for advanced level of imaging tools
such as MRI and CT scan emerges to obtain more detailed, cross-sectional view of the
bone, which might be missed during X-ray examination (https://orthoinfo.aaos.org/en/treat
ment/x-rays-ct-scans-and-mris). Interpretation of radiographic images is a time-consum-
ing and intense process that involves manual examination and classification of fractures.

S JAY, .5‘-‘»(\7 ' ,/i
YN

Fig.1 Major fracture types found in bones (Mayne 2013). a Transverse, b Oblique, ¢ Spiral, d Commi-
nuted, e Greenstick, and f Impacted fracture
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Shortage of clinicians in medically under resourced areas, unavailability of expert radiolo-
gists in busy clinical settings and fatigue caused due to demanding workloads could lead to
false detection rate and poor recovery of fractures. In addition, X-ray image interpretation
is mostly performed under the supervision of only one examiner, which increases the risk
of inaccurate fracture identification due to unavailability of a second opinion. 41-80% of
cases reported error in diagnosing fractures due to inaccurate fracture identification (Guly
2001; Whang et al. 2013). Various studies (Krupinski et al. 2010; Waite et al. 2017; Stec
et al. 2018) show how fatigue caused to the examiner because of interpreting several mus-
culoskeletal images could lead to significantly reduced performance in detecting abnor-
malities. Computer Vision systems could be a potential solution to such problems if it can
quickly provide a trustworthy second opinion in identifying suspicious fracture cases.

Traditionally, various low-level pixel-processing techniques such as noise reduction,
segmentation and feature extraction were effectively utilized for predicting human bone
fractures. Obtaining region of interests by segmenting bone regions from fleshy areas was
quite popular before extracting features from the image. The first work on automatic frac-
ture detection used Neck-Shaft Angle (NSA) as the only feature for fracture detection (Tian
et al. 2003). However, local disruptions remain undetected using this technique. A new
approach is proposed based on texture analysis of trabecular pattern to detect such minor
disturbances (Yap et al. 2004; Lim et al. 2004). Texture features such as Gabor Orientation
(GO), Intensity Gradient Direction (IGD) and Markov Random Field (MRF) are extracted
to detect femur fractures in bone X-ray images (Lim et al. 2004; Lai et al. 2005; He et al.
2007). Hand bone fractures from input X-ray image is detected by locating object bounda-
ries using sobel algorithm followed by extracting texture features using Gray Level Co-
occurrence Matrix (GLCM) (Al-Ayyoub et al. 2013). GLCM (entropy, contrast, correlation
and homogeneity) is used as the only feature for identifying femur fractures in bone X-rays
(Chai et al. 2011). The primary tool to improve classification accuracy involves amalga-
mation of texture features including GLCM, GO, MREF, IGD and shape features in femur
X-rays (Umadevi and Geethalakshmi 2012). Automatic crack detection in X-ray images is
complicated and arduous task that demands accuracy and swiftness (Linda and Jiji 2011,
2017). Various fuzzy based approaches are investigated to identify infected sites of a crack
by segmenting bone areas using fuzzy index measure (Linda and Jiji 2011). Likewise,
hairline fractures are estimated by means of intensity variation concept in multiple bones
by segmenting bone areas using Expectation Maximization (EM) algorithm (Zhang et al.
2001).

It is observed that the performance of the classifier is significantly improved with the
introduction of multiple-classifier based systems where individual results from base classi-
fiers are fused together (Umadevi and Geethalakshmi 2012; Yap et al. 2004; Lai et al. 2005;
Mahendran and Baboo 2011b). The most prominent ensemble based models have used
Neural Network (NN), Support Vector Machine (SVM), Naive Bayes (NB) algorithms for
diagnosing fractures in human bones from the year 2003 to 2015. Researchers have devel-
oped a new Stacked Random Forests-Feature Fusion (SRF-FF) technique to identify frac-
tures in various regions like hand, foot, ankle, knee, lower leg and arm (Cao et al. 2015).
Divide and conquer approach utilizes techniques that combine hierarchical SVM and tex-
ture features including GO, MRF and IGD to predict fractures (He et al. 2007). Localiz-
ing fractures in bone X-rays is significant in diagnosis, decisions and treatment planning
of the patient. GO, Schmid texture feature, and proposed Contextual-Intensity (CI) fea-
tures are effectively utilized to localize fractures in multiple bones (Cao et al. 2015). Dis-
tinct bones such as humerus, radius, ulna, femur, tibia, and fibula are considered as long
bone, where the fracture is classified based on its type and the location where it occurred
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(Bandyopadhyay et al. 2016a). Based on the intensity of injury, a long bone fracture is cate-
gorized into simple and complex types while the location of fracture is recognized through
fracture points identified from X-ray images (Bandyopadhyay et al. 2016c). Decision Tree
(DT) and K-Nearest Neighbor (KNN) classifiers are used for fracture detection and clas-
sification respectively once break points of the leg bone is identified in the processed image
(Myint et al. 2018). Various literatures (Bandyopadhyay et al. 2013, 2016a; b; ¢) have sug-
gested approaches based on digital geometry, which provide a powerful tool for analyzing
bone fractures from X-ray images. The digital geometry based techniques such as relaxed
straightness and concavity index are effectively utilized for long bone segmentation, recti-
fication of contour imperfections, fracture detection and fracture localization (Bandyopad-
hyay et al. 2016b). Various approaches like image segmentation, machine learning or deep
neural networks have focused majorly on fracture detection techniques but complex frac-
ture, which consists of multiple patterns like transverse, oblique, spiral, and comminuted
etc. are either under investigated or difficult to predict. Fractures can vary from minor to
complex types. The complex types are severe, which needs to be treated within a time-
period to avoid complications. Complex fractures in long bones are identified, localized
and visualized using linear structuring elements and Ray Cascade method in CT DICOM
images (Linda and Jiji 2018). Hidden Markov Random Field— Expectation Maximization
(HMRF-EM) (Zhang et al. 2001) and adaptive thresholding techniques (Singh et al. 2012)
for effectively utilized for bone segmentation (Linda and Jiji 2018).

Several features such as textual, shape, edges, horizontal, vertical lines etc. were extracted
from the image and supplied to the classifier for predicting the occurrence of fractures. How-
ever, this approach is now prevailed by various deep learning methods. A fastest-growing
field in artificial intelligence is deep learning, which has gained enormous success in medical
imaging by providing better accuracy as compared to traditional approaches (Gale et al. 2017,
Lindsey et al. 2018; Chung et al. 2018; Rajpurkar et al. 2017; Kim and MacKinnon 2018).
Generating large datasets by collecting and labeling radiographs from expert Radiologists is
a challenging and laborious responsibility. The number of radiographs used for diagnosing
fractures is increased from 500 to hundreds of thousands from year 2003 to 2018 by collecting
more data from hospitals and through data augmentation. Data augmentation is extensively
used to amplify datasets during training the deep learning model (Gale et al. 2017; Lindsey
et al. 2018; Chung et al. 2018; Rajpurkar et al. 2017; Kim and MacKinnon 2018). A variant
of deep learning architecture is Convolutional Neural Networks (CNN) that consists of con-
volution layer, sub-sampling layer, and fully connected layers. Feature extraction techniques
took a tremendous turn when CNN model came into existence which can “learn the features”
instead of handcrafting them into the system. Convolution and sub-sampling layers of CNN
are part of feature learning process while fully connected layer is used for classification. The
capability of the model to learn features on its own rather than handcrafting them into the sys-
tem has made these architectures a great success (Lakhani and Sundaram 2017; Russakovsky
et al. 2015). A 172 layers Deep Convolutional Neural Networks (DCNN) is trained to clas-
sify fracture into healthy and fractured classes in pelvis radiographs (Gale et al. 2017). Neer
classification (Neer 1970) is used to classify proximal humerus fracture into four categories;
greater tuberosity, surgical neck, 3-part, and 4-part by using a pre-trained ResNet-152 classi-
fier (Chung et al. 2018). The performance of the classifiers is compared against evaluations of
expert radiologist on similar test images for analyzing the practical adaptability of the model.
Transfer learning is effectively utilized by fine-tuning a pre-trained model, where scarcity of
resources is an obstacle for creating a successful model from scratch (Lindsey et al. 2018; Kim
and MacKinnon 2018). The model is pre-trained on non-medical images (such as ImageNet)
and is fine-tuned using Google’s Inception v3 network for diagnosing wrist fractures (Kim and
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MacKinnon 2018). However, a model is pre-trained on 100,855 bone images of several other
body parts and is fine-tuned on a DCNN for detecting wrist fractures (Lindsey et al. 2018).

Computer-aided design (CAD) systems can assist medical experts by suggesting the type
of treatment required for disease diagnosis thereby upgrading patient care. Fracture diagnosis
system could facilitate the examination process by providing optimal results upon integration
with X-ray machine software. Various reviews (Khatik 2017; Jacob and Wyawahare 2013;
Kinnari and Dangar 2017; Mahendran and Baboo 2011a) focusing on fracture diagnosis in
plain radiographs exists but a detailed study of traditional as well as deep learning approaches
to fracture detection and classification is missing. A comprehensive study is imparted here
covering fracture diagnosis with the aim to assist researchers in developing models that auto-
matically detects fracture in several bones of human body.

2 Data preparation

The process of fracture detection and classification is divided into multiple stages. It begins
with data collection, which involves collection of datasets from various hospitals or public
domain followed by dataset labeling. Dataset must be prepared before feeding it into a classi-
fier for the prediction of fracture occurrence and its corresponding class. Researchers and radi-
ologists are putting many efforts in collecting and labeling radiographic images for research
purpose. However, unavailability of the freely available standard dataset is one of the major
drawbacks in comparative analysis of the existing systems due to which researchers have
shown performance of the proposed model in their private datasets. After dataset collection,
next major issue is the labeling process, which is an imperative stage of data pre-processing.
Labeling requires annotation of radiographs by experienced radiologists, clinician or ortho-
pedic surgeon that should be done with extreme care else, it will end up reflecting poor data-
set quality and might result in reducing overall performance of the model (https://www.altex
soft.com/blog/datascience/how-to-organize-data-labeling-for-machine-learning-approaches
-and-tools). The person responsible to do the labeling and time taken by him/her is the major
challenge in creating a fully-fledged dataset for any classification task. A classification-based
algorithm can accurately predict the outcome if the dataset is correctly mapped with extreme
care and precision by a team of expertise. Although every industry has, its own regulation and
governance challenges in the process of data collection, data management, and labeling that
could take several months to finish but struggles of the healthcare industry are unique due
to the complexity of data and extreme stringent regulations. A health institute may ask for a
waiver of consent from an Institutional Review Board (IRB) study to mitigate some of these
concerns, or researchers may process and anonymize DICOM data to strip away any patient
health information. The source of data set, dataset split ratio, types of data collected and anno-
tation process involved in classifying the datasets are presented in Table 1. Some freely avail-
able datasets for the task of fracture detection is presented in Table 2.

3 Image processing methods for fracture detection
The images collected in previous stage are processed using noise reduction, segmentation
and feature extraction techniques for creating a convenient classification system. X-ray is

the most frequently used imaging modality for fracture detection due to its painless, eco-
nomic and non-invasive nature, which has gained enormous popularity in medical imaging.
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Poisson, Gaussian, salt and pepper noise are various type of noise artifacts commonly
found in radiographs, particularly when collected in a large quantity from public domain
such as internet. The need for handling such images rises largely as reducing one type of
noise sometimes affects the other. Gradient, Laplacian and Sobel are frequently used meth-
ods of edge detection, which is an effective measure to determine boundaries of objects in
the image. The shapes and sizes of bone are non-identical in X-ray images due to the dif-
ference in age and gender of the patients. Normalization could be used to deal with such
size variations but its results are unsatisfactory as it removes important texture information
in shrunken images and adds noise and artifacts in case of larger images. Hence, adap-
tive sampling approach is applied in various literatures to sample X-ray samples instead of
scaling them (Yap et al. 2004; Lim et al. 2004; Lai et al. 2005; He et al. 2007). Adaptive
sampling does not require accurate segmentation of bone contours as done by Tian et al.
(2003), a slight variation of shape is accepted here. Image transforms such as wavelets and
curvelets are powerful algorithms to obtain decent quality compressed images with higher
PSNR (Peak Signal-to-Noise Ratio) resulting in lesser memory requirements to store medi-
cal images. Both wavelet and curvelet transforms (a multi-scale method originated from
wavelets) are commonly used for medical image compression, contrast enhancement,
edge detection and image registration (Tian and Ha 2004). They are used for extracting
enormous set of coefficients from input image, where insignificant features are eliminated
via feature selection algorithm for better or faster classification. The primary step in vari-
ous image-processing applications after smoothing and edge detection is the extraction of
essential features (informative representations) from the image. Feature extraction focuses
on extracting image characteristics that acquires visual image attributes and the perfor-
mance of the classifier is highly dependent on the perfect set of features retrieved from the
image. Texture can be a useful cue for detecting diseases or tissue types in medical imag-
ing. Visual texture is used for segmenting and discriminating objects from background that
has a repeated pattern of elements with some amount of variability in element appearance
and relative position. The spatial features of an image is described by its gray level, spa-
tial distribution and amplitude, where amplitude is the simplest feature that discriminates
bones tissues from X-ray images (Haralick and Shanmugam 1973). Intensity inhomo-
geneity and absence of sharp edges are the causes for missed out cracks while detecting
fractures from X-ray images (Linda and Jiji 2017). Crack identification is significant for
analyzing suspicious cases so that medical experts can suggest possible course of action
within time limits (Linda and Jiji 2011). Fuzzy based image segmentation approaches are
proposed for identifying cracks by employing fuzzy membership function (Linda and Jiji
2011, 2017). Image histogram is divided into three subsets to produce subset parameters
and these parameters act as initial estimates to classify each pixel into one of the subsets
by minimizing the fuzzy index (Linda and Jiji 2011). Their result gives promising results
in detecting minute cracks from X-ray images. Hairline breakage from X-ray image is rec-
ognized by calculating intensity variation over the segmented bone regions (Linda and Jiji
2017). This approach performs better than standard approaches based on fuzzy threshold-
ing (Linda and Jiji 2011; Mansoory et al. 2012) with an overall accuracy of 98%.

With the rise of deep learning neural networks, deep layers of Convolutional Neural
Networks (CNN) replaced the task of feature extraction in digital images. CNN is a multi-
layered neural network, which consists of convolution layer, sub-sampling layer, and fully
connected layers. Convolution and sub-sampling layers of CNN are part of feature learning
process while fully connected layers are used for classification. ConvNets or CNN have the
ability to learn various low level (minor details of the image e.g. lines, dots or edges etc.)
and high level features (built upon low-level features to detect objects and larger shapes)
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through abstraction in the layers. Features are extracted using CNN in recent approaches
of fracture detection and classification (Gale et al. 2017; Lindsey et al. 2018; Chung et al.
2018; Kim and MacKinnon 2018). Table 3 demonstrates relevant review findings of the
image processing methods used for fracture detection in the literatures reviewed.

4 Conventional machine learning based algorithms for fracture
detection

Various features including textual, shape, edges, horizontal and vertical lines extracted in
previous steps are provided to classification algorithms for predicting the occurrence of
bone fractures and thereby classifying it into relevant categories. Once the perfect set of
features are fed into the classifier, the accuracy of fracture detection depends on the clas-
sifier selected. Hence, proper features must be extracted in order to formulate a power-
ful classification model. Table 4 demonstrates relevant review findings of the conventional
machine learning based algorithms used for fracture detection.

4.1 Primary machine learning based algorithm

Some earlier works of automatic fracture detection reflects the usage of single feature as a
classification parameter. For instance, the first work on automatic fracture detection used
Neck-Shaft Angle (NSA) as the only feature for fracture detection (Tian et al. 2003). Radi-
ologists considered the image as fractured if the NSA is less than 116°. Using such type
of model helped in correctly identifying 94.4% of training and 92.5% of test samples. The
major reason behind 7.5% of error rate in test cases is the model’s incompetency in detect-
ing minute changes in the femur neck-shaft angle. The upper extremity region of femur
is called trabeculae and orientation of trabeculae on femur neck and head significantly
changes on the event of fracture. These changes can be detected using neck-shaft angle but
local disruptions remain undetected using this approach. Hence, a new approach is pro-
posed which performs texture analysis of trabecular pattern by extracting features in femur
X-rays followed by classification to detect such minor disturbances (Yap et al. 2004; Lim
et al. 2004). Researchers in Yap et al. (2004) extracted Gabor features while (Lim et al.
2004; Lai et al. 2005) used Gabor orientation extracted by Yap et al. (2004) and addition-
ally acquired Intensity Gradient Direction (IG) and Markov Random Field (MRF) texture
features in femur X-rays. These features are then fed to the chosen classifier for diagnosing
fractures in X-ray samples. GLCM is used as the only feature in classifying femur fractures
in 30 X-ray samples and attain sensitivity and accuracy of 80% and 86.67% respectively
(Chai et al. 2011).

4.2 Ensemble based classification system

Ensemble is a machine learning technique, which combines diverse models or classifiers
to generate an optimal model that will best predict our wanted outcome. The basic idea
behind ensemble model is to use multiple learning algorithms to obtain better predictions
as oppose to traditional models that rely on a single classifier’s performance. The accuracy
of the classifier depends on the perfect set of features extracted or learned from the image.
However, the accuracy could further be improved by combining multiple classifiers and
by integrating results of all independent classifiers. Ensemble based classification system
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has acquired broad range of attention in various fields such as face recognition (Antipov
et al. 2016), geospatial land classification (Minetto et al. 2018), video-based face recogni-
tion system (Ding and Tao 2017), medical image segmentation (Kumar et al. 2017), wind
power forecasting (Wang et al. 2017) etc. These models have manifested better accuracy
(low error) by avoiding overfitting issues and by reducing bias and variance error as com-
pared to its individual constituent classifiers. The importance of such models can be under-
stood by the fact that various prestigious machine-learning competitions like popular Net-
flix challenge (Andreas et al. 2009), Knowledge Discovery in Databases (KDD) cup 2009
and Kaggle had used ensemble based model to achieve the best accuracy. The most promi-
nent ensemble based models have used Neural Network (NN), Support Vector Machine
(SVM), Naive Bayes (NB) algorithms for diagnosing fractures in human bones from year
2003 to 2015. It is observed that the performance of the classifier is significantly improved
with the introduction of multiple-classifier based systems where individual results from
base classifiers are fused together (Umadevi and Geethalakshmi 2012; Yap et al. 2004; Lai
et al. 2005; Mahendran and Baboo 2011b). Decision of choosing the best classifier among
all competing classifiers depend on diversity among models. Choosing classifier merely
based on accuracy on training data is fallacious. Some level of diversity must exists among
classifiers that are part of ensemble system to make it an effective process, which can be
achieved using the approaches given below (Polikar 2009):

1. Using different classification algorithms for ensemble system.
Using same classification algorithm with different instantiation or different hyper-param-
eter settings.

3. Using different feature sets:

(a) Random selection
(b) Feature selection

4. Using different training sets:

(a) Bagging
(b) Cross-validation

(a) Bagging or Bootstrap aggregating

A widely accepted technique of ensemble is non-hybrid classifier where same classifica-
tion algorithm with different instantiation or different hyper-parameter settings is combined
to make ensemble model. Bootstrap aggregating is one of the most intuitive and earliest
ensemble based algorithms where multiple models consisting of same learning algorithms
are trained with subsets of random datasets picked from the original training set with
replacement. The output of the multiple-classifier or ensemble is predicted on the basis
of majority voting of the constituent classifiers. Several variations of this algorithm exists
which tend to enhance the performance of the model. Most popular among them works by
increasing diversity among training data for individual classifiers and other is by making
use of different classification algorithms (Fig. 2).

(b) Boosting
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It is a simple variation of bagging technique, which strives to improve the classification
model by converting weak learners into strong learners sequentially, each trying to cor-
rect its predecessor. The major difference between bagging and boosting is that bagging
follows parallel training stage where each model is built independently and boosting fol-
lows sequential approach where current model architecture depends on previous classifier’s
success. It is a sequential process where similar weights are assigned to the data at the
beginning and are redistributed after each training stage, allowing subsequent learners to
emphasize more on misclassified cases that are now attached with higher weights (Fig. 3).

(c) Stacked ensembles

Stacking involves multi-layer of learning stages where first layer consists of base learn-
ers followed by lower level meta-learner stages, which takes base learners as input to obtain
the best combination of first-level base learners. “Super learner” concept was originally
developed in the year 1992 (Wolpert 1992) but its implementation with improved perfor-
mance is shown for the first time in 2007 (Laan et al. 2007), which proves that stacked
ensembles helps in creating optimal model for learning. A popular machine-learning algo-
rithm is random forest, which takes a collection of weak learners (e.g. decision tree) and
form a single, strong learner by following bagging technique. A fracture detection tech-
nique using 145 X-ray images with tenfold cross validation covering various regions like
hand, foot, ankle, knew, lower leg and arm is developed by stacked random forests feature
fusion (SRF-FF) technique (Cao et al. 2015). A four layer random forests with five decision
trees is implemented in the first layer and remaining layers uses fifteen trees as shown in
Fig. 4. The classifier is trained to produce confidence score maps which indicates the prob-
ability of fractures in X-ray images and then uses Efficient Subwindow Search (ESS) algo-
rithm (Lampert et al. 2008) for localizing regions that has maximum probability of fracture
occurrences. The proposed model outperforms SVM and single layer of stacked random
forest in detecting and localizing fractures in X-ray images.

Stagel: Bootstrap
sampling Stage2: Stage3:
m training samples are Model Model
randomly selected with Training Forecasting
replacements
) Training »| Classifier 1 | Prediction Stage4: Result
subset 1 - = 1 Analysis based
on Voting
Training e o | Prediction
subset 2 »-| Classifier 2 > >
Training Final Prediction
Dataset >' Training . - __| Prediction
subset 3 »-| Classifier3 3= 3
1] . 1]
] . '
Training | Classifier __ | Prediction s
subset m o m ad m
./
Test Dataset

Fig.2 Bagging process involves parallel execution of individual classification algorithms where training
subsets selected randomly with replacement from the training dataset. Outcome of this ensemble model is
predicted by majority voting among individual classifiers
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Fig.3 Boosting is a sequential process where similar weights are assigned to the input points/data at the
beginning and are selected randomly from the training set. After each training and testing, misclassified
samples are identified and are attached with higher weights. In this manner, it allows subsequent learners to
emphasize more on misclassified cases having higher chances to be picked for next classification

Divide and conquer is another type of ensemble technique based on the concept that
each sub problem is easier to solve than the whole problem. It demands larger training
set and complex problem for it to produce larger clusters and thereby producing effective
results. The complex problem of fracture detection is partitioned into Gini SVM’s kernel
space instead of feature space as it lacks bigger training set (He et al. 2007). The process
starts by training Gini SVM on training set T and calculates error on validation set V. The
error obtained is used to select a new validation set V’ (subset of V) which is further clas-
sified on the basis of new SVM and training set T” of T at the next level. This type of archi-
tecture enhances the accuracy of the SVM by ensuring that the lower-level SVM (child)
always complements the performance of higher level SVM (Parent).

5 Deep learning-based algorithms for fracture detection

Deep learning is a branch of machine learning and artificial Intelligence (AI), which
consists of statistical analysis algorithms, that repeatedly trains data to make predic-
tions (Fig. 5). It is the ability of these “trained models” to automatically learn and improves
from experiences to make predictions on unknown data (Kim and MacKinnon 2018). Dis-
covering significant features, which depicts abnormalities or pattern in the data, is of great
importance in machine learning approach. Traditionally, these features are crafted pre-
dominantly with the help of human expertise but, with the advancement of machine learn-
ing techniques, the models can automatically learn these features. In Radiology, skilled
radiologist extract meaningful information/features from images and then interpret those
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Fig.4 Flow chart of stacked random forests feature fusion (Cao et al. 2015)

features based on their expertise, experience and knowledge. Thus, it provides tremen-
dous opportunities to apply machine-learning algorithms to make autonomous predictions
on the data with similar accuracy as the radiologist expert (Kohli et al. 2017). A widely
accepted computational model in the field of machine learning for finding complex pat-
terns in the data is Artificial Neural Networks (ANN). These are the brain-inspired sys-
tems, which contemplate to imitate the human’s learning process. Neural Networks are
also recognized as perceptron’s and have existed since the 1940s but have become sig-
nificant part of artificial intelligence from past few decades. One reason of them become
dominant in machine learning area is the advent of a technique called “backpropagation”.
Backpropagation allows neural network to adjust their weights in hidden layer of neurons
according to the desired output (Dormehl 2019). Intelligent Bone Fracture Detection Sys-
tem (IBFDS) combines image processing and neural network techniques for bone fracture
detection (Dimililer 2017). Firstly, haar wavelet transform (Khashman and Dimililer 2008)
is applied to enhance the image quality by reducing noise in the X-ray image followed
by a feature extraction method based on Scale-Invariant Fourier Transform (SIFT) (Lowe
2004). Finally, extracted features are applied to a 3-layer back-propagation ANN, which
classifies the image into fracture and non-fracture category.

Deep learning is the advancement of artificial neural networks, which consists of mul-
tiple hidden layers and provides greater levels of abstraction. With the rise of deep neural
network, the accuracy of predicting a task has improved in a tremendous manner by incor-
porating deep layers into the model that allows system to learn complex data (Kim 2016).
The rise of deep learning in healthcare sector is driven by various factors such as; (1) avail-
ability of large datasets, which became possible due to rapid accumulation of electronic
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Fig.5 Deep learning is a branch
of machine learning and machine Artificial Intelligence
learning is a branch of artificial
learning and perform tasks which
requires human intelligence
(Meyer et al. 2018)

Machine Learning

Deep Learning

Convolutional
Neural Network

data in the form of Electronic Medical Records (EMRs), (2) GPU advancement providing
better performance with graphics and videos, (3) progress in deep learning algorithm due
to incorporating multiple layers in deep learning architecture (Shen et al. 2017).

A variant of deep learning architecture is Convolutional Neural Networks (CNN), which
consists of convolution layer, sub-sampling layer, and fully connected layers as depicted in
Fig. 6. Feature learning techniques took a tremendous turn when CNN model came into
existence which can “learn the features” instead of handcrafting them into the system.
Convolution and sub-sampling layers of CNN are part of feature learning process while
fully connected layer is used for classification. It has emerged as a recent breakthrough
in machine learning and accomplished humongous success across various fields of medi-
cal image analysis, such as image segmentation, image registration, image fusion, image
annotation, genomics etc. Radiologists uses a blend of perception, memory, pattern rec-
ognition, and cognitive reasoning for interpreting radiographic studies. Numerous distrac-
tors affect their performance, which ultimately leads to increasing workloads and fatigues.
Hence, developing systems or tools that automatically detects abnormalities or patterns in
the musculoskeletal radiographs without human intervention would improve patient’s secu-
rity (Waite et al. 2017). A model known as AlexNet developed by Krizhevsky et al. (2017)
brought out a revolution in the field of computer vision, which gave a new insight to deep
CNN. It was originally developed to compete in the ImageNet competition whose general

— CAR
— TRUCK
= VAN

|j D — BicyeLe

FULLY
1 INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN o\ NEerep  SOFTMAX
N J \.
Y k.
FEATURE LEARNING CLASSIFICATION

Fig.6 Schematic representation of the CNN architecture, consisting of convolution layer, sub-sampling
layer and fully connected layers where convolution and sub-sampling layers are part of feature learning pro-
cess and fully connected layer is used for classification (Prabhu 2018)
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architecture is similar to LeNet-5 (LeCun et al. 1998) but is substantially larger. It became
successful in convincing Computer Vision community for its usefulness after securing first
position in the ImageNet competition. Use of effective regularization parameters, data aug-
mentation approaches, rectified linear unit and, the use of graphics processing units for
meeting computing requirements helped in bringing out this revolution. It was recognized
as one of the top 10 milestones of 2013 in deep learning (Birks et al. 2016). Deep archi-
tecture of a CNN is its biggest strength, which allows extraction of discerning features at
different layers of abstractions (Krizhevsky et al. 2017; Szegedy et al. 2016).

A large amount of training data is required to train a Deep Convolutional Neural Net-
work (DCNN) from scratch and it becomes difficult to ensure proper convergence of the
model due to absence of huge amount of training data especially in medical imaging,
where data is kept heavily protected due to privacy concerns. The process of creating new
data with minor alterations such as flips, rotation, mirroring, translations etc. from our
existing dataset is known as data augmentation that helps in reducing data insufficiency
and overfitting problems. The ability of CNN architectures to detect and classify fractures
even when they are placed in different orientations is mitigating data scarcity issues, which
is the major cause of hindrance to the deep neural network architectures. It is due to data
augmentation techniques that the number of radiographs used for diagnosing fractures is
amplified from 500 to hundreds of thousands from year 2003 to 2018. Only few published
works (shown in Table 5) related to fracture diagnosis have applied augmentation tech-
niques to their private datasets. This approach could successfully be applied in upcom-
ing work to enhance the performance of the classifier. Another promising alternative to
data scarcity problem is to fine-tune a CNN, which is pre-trained on a different network
architecture (Birks et al. 2016). Pre-trained CNN is the state-of-the-art image classification
network trained on millions of images of a particular domain running for several weeks on
multiple servers and then used in a different domain of interest. This approach has become
extremely useful for researchers where scarcity of resources is an obstacle for creating a
successful model from scratch. These large pre-trained models can be utilized to obtain
highly sophisticated and powerful set of features needed for required domain of interest
(Greenspan et al. 2016). A study is performed where two models of CNN are compared.
One model is trained from scratch and the other is a pre-trained model, which is further
fine-tuned on the required domain (Birks et al. 2016). The performance of both the model
is compared on distinct medical imaging applications such as classification, detection, and
segmentation. A fine-tuned CNN model efficiently outperformed the CNN model trained
from scratch in the best case and performed similar to CNN model in the worst case.
Therefore, fine-tuning of existing model could offer a practical way to reach the best per-
formance for the application at hand based on the amount of available data. Table 6 dem-
onstrates relevant review findings of the deep learning based algorithms used for fracture
detection.

Six board-certified expert radiologists from Stanford hospital develop a very large data-
set of 40,561 X-ray images consisting of elbow, finger, hand, humerus, forearm, shoul-
der, and wrist. They manually examined all X-ray samples and labeled them as abnormal
and normal (Rajpurkar et al. 2017). The model is pre-trained using ImageNet (Deng et al.
2009) and fine-tuned on 169 layer dense CNN based on (Huang et al. 2017) for end-to-
end classification. Hyper-parameters such as Adam parameters (Kingma and Ba 2015) and
mini-batches of size 8 is used in achieving similar performance as the best radiologist in
detecting abnormalities on finger and wrist bones but the model reflected lower perfor-
mance than the worst radiologist in forearm, shoulder and humerus samples. Their model
is performing similar to the worst radiologist in finger and elbow studies and performing

@ Springer



4499

A survey of fracture detection techniques in bone X-ray images

Surwooz ‘Surreays ‘)J1ys JYS1oY pue YIpim ‘uoneior ‘drg [ejuozrioyq
UuoNL)OI ‘SUOTBULIOJSUERT) 9[JS ‘Sunjiys

jusunsnfpe jsenuod pue Junysi| ‘uonelol ‘Jurroriw rejuoziioy ‘Surddoro
UOTI)OI ‘UOTSISAUT [BIDJR ]

Surreoys ‘Suryorewr weISoIsIy ‘UOTL)0I ‘UOTR[SUBI],

CITII
000°0¥<
065°1€
195°0¥
61 Sy

68¢1
1681
J[qe[TeAR JON
J[qe[IeAR JON

Jqe[IeAR JON

(8107) UOUUTI[ORN PU® Wy
(8102) 'Te 1 Suny)

(8107) Te 1 Aospur

(L107) Te 10 Texymdfey
(L10T) 'Te 10 d[eD

sonbruyoa) uonejuowWSny

uonejuowdne Io)je sofew]

uon
-ejuowSne 210§oq safew]

loyny

K9AINS Q) UT PIAJOAUT SAINJEIAI] UI PAAISSqO uonejuswsne ejeq § 3jqel

pringer

As



D. Joshi, T. P. Singh

4500

syred Apoq Jua1apIp 71 Jo seSewr auoq Jo sostid
-wod soSewl [eOIPaW U0 pauren-aid ST [opowr Jy} ‘SoSew [BOIPAW-UOU U0 [opow Y} Surturen-o1d Jo pedjsuy
sofewl ISLM (06t 1€ U0 NNOA
Sursn paum-ouy pue soSewr Istm 1dooxa syred Apoq [re jo sydeidoiper g6 ‘001 Suisn pauren-aid s1 [opOJA
sagewr JSLIM UO
¢A uondoouy ursn paun)-ouly pue sAFeWI [EIIPIW-UOU UO YIomlou ¢a uondoouy Sursn pauren-aid st [opojN
josejep snrowny [ewrxold uo ¢a uondoou] Sursn paun)-ouy pue sAFeWI [BIIPIW
-uou uo (syromiou-fenpisaI-dosp/oygSurwre/wod qnipis//:sdny) 7S 1-1ON sy Suisn pauren-aid st [9pON
uonedyIsse[d (0L6] I99N) IdN
uo paseq sasse[o 11ed- pue ‘yred-¢ “yoou [eo1SIns ‘A)Isoroqn) 193eaIS 0JuT PAYISSe[d ST [opow NN YL
sisATeue aAnjereduwod SUIOp JO UOLIAILIO JUSIOLJD
UE JOU ST J3S 159) A} UO UONNQLISIP Je[Ils SuIsn A[oIow Ing J9s 159) Y} UI UOHNGLNSIP BILP Je[IWIs Jnq
S)9sBIRp JR[IWISSIP Sulsn A1 Yjoq 21y y1om paysiiqnd Sunsixa jsurede paredwod osfe st douewioyrod ayJ,
(%551D) yam eouewroyrad isioforper Jsurede paredwoo st [opowr pasodoid ay) jo eouewioyrad oy,
SOSSB[O PAINIOBI] pue AYI[BaY OJUT dINJOBI] AJISSL[O 0 PauTeI) SI SI0MIOU [INdU UonnjoAuod doop s1oke[ 7.1
souoq 9[dnnuw ur 9InjoeIy 19939p 03 pasn st NNdg
(L1027 YeyS) SYIOMIAU [BINAU SSOIOR
Anaeay paydope oner J1ds ay) woly [ensnun 3mb ST 39S 159) pue Sululel) OJUT JOSBIEP JO UOISIAIP SIY ], "so[d
-wres 1s9) ()2, pue SurureI) (¢ OJUT PIPIAIP AIe pue dseqelep JIeWYouaq & wolj parmboe are soSewr (0T [eI0L

ISLIM

ISLIA

snreuny

SIATd

souoq Jrdnny

(8107) 'Te 10 Kespur|

(8107) UOUUTIORIA] pue Wiy

(8107) 'Te 10 Suny)

(L102) ‘T 10 91D

(L100) oI

SSUIPUY MOTAI JUBAJ[IY

ad£) suog

loyny

UOIN92Jp AINJOBIJ J0J Pasn swyiLIoS[e paseq Surures] doap Jo SSUIPUL MIIAI JUBAS[QI SAJBNISUOWP 9[qE] Y], 9 d|qel

pringer

Qs


https://github.com/kaimingHe/deep-residual-networks

A survey of fracture detection techniques in bone X-ray images 4501

better in remaining samples. An Inception V3 network (Szegedy et al. 2016), which is pre-
trained on ImageNet Large Visual Recognition Challenge (ILSVRC) (Russakovsky et al.
2015), is used to automatically detect fractures in 11,112 wrist X-ray images (Kim and
MacKinnon 2018). They have additionally used 100 unused wrist images exhibiting 50%
fracture prevalence for testing their model and results obtained are comparable with that
of the experts with an AUC of .954. However, both approaches are limited to only wrist
images, which can further be extended to other bones for its practical adaptability. Prox-
imal humerus fractures are detected and classified into greater tuberosity, surgical neck,
3-part, and 4-part classes based on Neer (Neer 1970) classification (Chung et al. 2018).
Microsoft’s ResNet-152 is used for pre-training and fine-tuning the model for detecting
and classifying fractures in 1891 radiographs collected from various hospitals of Korea.
The model outperformed the performance of general physician and general orthopedist in
detecting humerus fractures and reflected equivalent performance to shoulder orthopedist
(Chung et al. 2018). 100,855 radiographs of 12 different body parts are used to acquire ran-
dom model parameters by pre-training the model on medical images instead of non-med-
ical images (Lindsey et al. 2018). DCNN is used to fine-tune the model on 31,490 wrist
images by initializing the model with the parameters obtained from a pre-trained model.
The first output of the model is the probability of the presence of fracture in the image and
the other output identifies location and extent of the fracture. Finally, the trained model is
tested on two different test sets where first set consists of 3500 images, randomly collected
from training and validation set and second set consists of 1400 unseen images collected
over a period of 3 months from the same hospital. A controlled experiment is additionally
executed to test the accuracy of emergency clinician with and without model’s assistance
and revealed that the emergency clinician involved in providing X-ray interpretation expe-
rienced a reduction rate of 47% by taking assistance of the trained model.

6 Multi-fracture identification techniques for bone X-ray images

The study of multi-fracture classification techniques is extremely significant for speedy
recovery of the patient. However, the field of orthopedic surgery and traumatology have
investigated scarcity of techniques in classifying fractures despite its huge importance to
public health (Chung et al. 2018). Fractures can vary from simple to complex types based
on its location and complexity (Mayne 2013). Complex types can become severe for which
imperative treatment is required to avoid further complications. Majorly found fractures
are addressed in the introduction section and its types are outlined in Fig. 1. Long bone
consists of upper and lower extremity region and fracture existing in these bones are iden-
tified in several literatures (Chung et al. 2018; Al-Ayyyoub and Al-Zghool 2013; Myint
et al. 2018; Mansoory et al. 2012; Linda and Jiji 2018; Mahmoodi 2011). Often researchers
accomplish the task of fracture classification in two phases where the fracture is identi-
fied in first phase, and is classified into multiple categories in the second phase. Authors
have categorized long bone fractures into five classes: normal, greenstick, spiral, transverse
and comminute using computer vision techniques such as DT, SVM, NB, and NN, out of
which SVM outperforms all other classifiers with an accuracy of more than 85% under ten-
fold cross validation (Al-Ayyyoub and Al-Zghool 2013). Lower leg bones known as tibia
is considered for carrying out fracture classification task by utilizing K-Nearest Neighbor
(KNN) approach (Myint et al. 2018). The fracture is identified as one of the four possi-
ble labels; normal, oblique, transverse and comminute whereas harris corner points are
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used to identify fracture locations in tibia images. Cohen’s Kappa assessment is effectively
used for measuring the correctness of KNN classifier with an accuracy of 82% (Myint
et al. 2018). Proximal humerus fractures are detected and classified into greater tuberosity,
surgical neck, 3-part, and 4-part classes based on Neer (Neer 1970) classification (Chung
et al. 2018). 1891 radiographs collected from various hospitals of Korea are divided into
10 partitions, where one of the partitions is kept for test set and Microsoft’s ResNet-152
is used for pre-training and fine-tuning the model for detecting and classifying fractures.
The model outperformed the performance of general physician and general orthopedist in
detecting humerus fractures and reflected equivalent performance to shoulder orthopedist
(Chung et al. 2018). CT DICOM images are taken as input to identify complex fractures
by utilizing linear structuring elements (Linda and Jiji 2018). Various 2D slices of 3D
input image are enhanced by removing noise and sharpening the edges using 2D aniso-
tropic diffusion filter (Mahmoodi 2011; Mendrik et al. 2009). Hidden Markov Random,
Field—Expectation Maximization (HMRF-EM) (Zhang et al. 2001) and adaptive threshold-
ing techniques (Singh et al. 2012) are used for segmenting bone regions from fleshy areas
followed by segregation of fractured area using template-matching technique (Jurie and
Dhome 2001). Complex fractures are identified and located by means of linear structuring
elements in the image. Finally, the fracture is visualized in 3D using Ray Cascade method
(Sathik et al. 2015). The performance of the proposed approach is validated against expert
radiologist data, providing an overall sensitivity and specificity of 95% and 97% respec-
tively where 57 patients suffered from small to severe bone fractures out of 70 test images
(Linda and Jiji 2018).

6.1 Digital geometry based approaches for fracture identification

Senior citizens often suffer from long bone fractures due to conditions such as osteopo-
rosis, stress, and sudden fall. Various literatures (Bandyopadhyay et al. 2013, 2016a; b;
c) have suggested approaches based on digital geometry, which provide a powerful tool
for analyzing bone fractures from X-ray images. A precise fracture detection approach
relies on accurate segmentation of bone areas from the fleshy regions in X-ray image and
the quality of fracture detection depends on the sharpness and clarity of the bone con-
tour. However, the intensity based segmentation method becomes inaccurate if the pixel
belonging to the bone region and fleshy areas has overlapping intensity regions. Therefore,
an entropy based thresholding technique is proposed to accurately segment the bone areas
from its surrounding fleshy regions in bone X-ray images (Bandyopadhyay et al. 2016a).
The authors successfully implemented spatial filtering techniques based on morphology
to remove the noise and spurious edge problem in the image followed by bone contour
enhancement using multilevel LOCO (open—close and close—open) (Schulze and Pearce
1993) in scanned analog images (Bandyopadhyay et al. 2016a).

An entropy image is generated by separating the brighter bone regions from relatively
darker bone areas in the original image, which is used as a preprocessed image for the task
of fracture detection and classification in long bones (Bandyopadhyay et al. 2013, 2016b;
c). Relaxed straightness and concavity index techniques of digital geometry are effectively
utilized for long bone segmentation, rectification of contour imperfections, fracture detec-
tion and fracture localization (Bandyopadhyay et al. 2016b). A rapid change is observed
in clock and anticlockwise directions in the chain code while traversing a contour nearby
fractured region of long bones. Further, the fracture is categorized into simple and complex
types based on diaphyseal, proximal and distal regions in the bone X-ray samples. They
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have additionally developed a software tool to make the entire procedure interactive and
automated for which the demonstration is available in the given link [http://oldwww.iiest
s.ac.in/it-abiswa.-research]. Fracture points identified from X-ray images are successfully
employed in categorizing fracture into upper (proximal), middle (diaphyseal) and lower
(distal) regions of long bones (Bandyopadhyay et al. 2013). The classification of six long
bones named as humerus, radius, ulna, femur, tibia, and fibula are based upon the type of
fracture and its location in the X-ray image. Miiller AO classification guidelines (Miiller
et al. 1990) are used for the first time in the classification of long bone fractures by utilizing
digital geometry based techniques that appeared in their prior works (Bandyopadhyay et al.
2016a, b, c). However, the line of fracture and its location identified in (Bandyopadhyay
et al. 2016a, b, ¢) are prone to certain inaccuracies when a closer view of fractured regions
are observed in X-ray images. The authors have introduced a new concept based on rela-
tive concavity analysis to overcome this problem (Bandyopadhyay et al. 2013). Fracture
is localized by integrating fracture points and chain-code representing digital-geometric
concept such as concativity points and relative concativity. A software tool based on MAT-
LAB is developed for classifying fracture into three major classes namely simple, complex
and greenstick. 100 test images are taken as input out of which the system correctly classi-
fies 97 and 92 images in the first and second level respectively (Table 7).

7 Performance evaluation

After successfully applying pre-processing, feature engineering, and feature selection
approaches, followed by implementing a model and getting some output in forms of
a probability or a class, the next step is to find out how effective is the model based on
some metric using test datasets. Different performance metrics have been used to evalu-
ate machine-learning algorithms for fracture detection and classification. It includes log-
loss, accuracy, sensitivity, specificity, precision, recall, F-measure, AUC, and ROC etc. It is
extremely important to estimate the performance of the classifier by finding out the wrong
predictions on the test dataset. The major reasons for evaluating the predicting capability
of any classification model is 1) to estimate the generalized performance, 2) to increase the
predictive capability of a classifier by refining the model parameters and selecting the best
performing model from the algorithm’s hypothesis space. Several standard performance
measures applied in literatures from year 2003 to year 2018 are discussed in this section.

7.1 Confusion matrix

It is one of the simplest and intuitive metrics for determining the correctness and accu-
racy of a classifier, used in binary or multi-class classification problem. It is a table, which
is used to describe the performance of a classifier on a test set for which the true values
are known. Various machine-learning algorithms are analyzed to predict the presence or
absence of fracture in human bones. Figure 7 represents a confusion matrix where the row
corresponds to a value predicted by the machine-learning algorithm and column indicates
the known truth. True Positive (TP), True Negative (TN), False Positive (FP) and False
Positive (FN) values of confusion matrix are defined below:
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Fig.7 Confusion matrix: Rk
Columns correspond to a value Predicted
predlf:ted by the cla.ss1.ﬁcat10n em—— —
algorithm and row indicates the
actual value or known truth detected detected
Fracture not
detected N FP
Actual ereae
Fracture EN =
detected

1. True positive: Patients have fracture and correctly identified as “fractured” by the algo-
rithm (TP).
2. True Negative: Patients does not have fracture and correctly identified as “healthy” by

the algorithm (TN).

3. False positive: Patients does not have fracture but incorrectly identified as “fracture” by
the algorithm (FP).

4. False Negative: Patients do have fracture but incorrectly identified as “healthy” by the
algorithm (FN).

5. Accuracy: It is the total number of correct predictions (both fracture and healthy) divided
by total number of samples in the dataset.

7.2 Accuracy paradox in classification problem

Choosing the right metrics for classification tasks is extremely important in accessing a
model. Accuracy alone is not reliable to select a classifier due to classification imbalance
problem where one category represents the overwhelming majority of the data samples
(Brownlee 2014). Another imbalanced classification problem occurs when the rate of dis-
ease in the public is very low. Consider a classification task where out of 150 patients, 25
patients are diagnosed with fracture and 125 patients are healthy, known as actual truth-
value. Following two problems may exists when accuracy alone is used for prediction
task—(a) all patients detected healthy: a model that only predicted healthy cases in patients
achieves an accuracy of (125/150)*100 or 83.3%. This represents high accuracy and if it
is used alone for decision support system to inform doctors, it would wrongly inform 25
patients of no occurrence of fracture (high False Negatives) making it a terrible model.
(b) All patients detected with fracture: a model that only predicted the presence of fracture
in patients achieves an accuracy of (25/150)*100 or 16.6%. If it is used alone for decision
support system to inform doctors, it would wrongly inform 125 patients of the occurrence
of fracture (high False Positives) making it a terrible model. Recall and precision are other
performance matrix used for eliminating this accuracy paradox in classification problem
(Brownlee 2014).

Recall/Sensitivity

It is the ability of a classifier to find all the relevant cases within a dataset.

Recall = _Ir (1)
TP + FN

Precision

It measures the quality of our predictions only based on what our predictor claims to be
positive.
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Precision = L 2

TP + FP @
Specificity

It is total number of true negative assessments divided by number of all negative
assessments.

Specificity = _IN_ 3)
TN + FP
Sensitivity measures the ability of the model to predict fractured cases and specific-
ity measures the ability of the model to predict healthy cases.
F1 score
While recall measures the ability to find all relevant instances in a dataset, precision
expresses the proportion of the data points the model says relevant actually were rel-
evant. We can maximize either precision or recall at the expense of the other metric. For
example, during preliminary fracture detection phase, we would want to correctly detect
fractures in all the patients (high recall) and can accept a low precision rate if the cost
of the follow-up examination is not significant. However, we may also find an optimal
blend of precision and recall using F1 score that is the combination of recall and preci-

sion (Koehrsen 2018).
(SCl #SR, ) " (SCZ*SR2>
P = T T 4)

¢ T

Receiver operating characteristics curve (ROC)

It predicts the probability of a binary classifier. It is the plot of false positive rate
(x-axis), which is the same as precision and true positive rate (Y-axis), which is the
same as recall. Designing confusion matrices for all possible threshold values is a chal-
lenging task, ROC graphs provides a simpler way to summarize all the information. The
shape of the ROC curve contains a lot of information (Fig. 8):

1. A point at (1, 1) means that our model correctly classifies all fractured samples but
incorrectly classifies all samples that were not fractured.

2. Diagonal line where (True Positive Rate = False Positive Rate), shows that the proportion
of correctly classified fractured samples is similar to proportion of incorrectly classified
healthy samples.

3. A point at (0, 0) results in zero True Positives and zero False Negatives.

AUROC (Area under the receiver operating characteristics)

Area under curve (AUC-ROC) is a performance measure for classification problems
at various thresholds settings. ROC is a probability curve and AUC is the capability
of the model in making a distinction between various classes. AUC makes it easier to
compare one ROC curve to another, the more the area the better is the performance.
Although ROC graphs are drawn using true positive rates and false positives rates, other
matrices perform the same task. For example, false positive rates can be replaced with
precision. Almost all literature surveyed here used confusion matrix based performance
matrix for analyzing the classifier’s performance. Table 8 depicts comparative analy-
sis of the model proposed by authors against radiologist’s interpretation on the data-
set where the performance of the radiologist is assumed to be 100% on almost all the
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Fig.8 Receiver Operating
Characteristics Curve (ROC)
(Stephanie 2016)

True Positive Rate
= N WA oy d 0 O —

o

.1 2 3 4 5 .6 7 8 9 1
False Positive Rate

comparisons. Researchers have shown the performance of the proposed model in their
private datasets due to the unavailability of the standard dataset.

Cohen’s kappa statistic (k)

Many a times collecting and interpreting research or laboratory data such as col-
lecting and labeling X-Ray images rely on multiple experts or clinicians in healthcare
industries. Therefore, it is extremely important to have an agreement among multiple
observers working on the interpretations of these samples. One such measurement of
calculating the agreement and disagreement is Cohen’s kappa statistic (k). It gives a
quantitative measure of the agreement on a situation where two or more independent
observers are evaluating the same process (Sim and Wright 2005). For example: two
radiologists are interpreting 100 X-ray images for the presence and absence of fracture
in a patient simultaneously and mutually agree that fracture is diagnosed in 60 cases and
not diagnosed in 15 cases, offering 75% agreement in total. This total observed agree-
ment is calculated by adding diagonal values as shown in Fig. 9.

_ CR, +C,R,

) T Q)

Here, T is the total number of observations, C and R represents column and row
respectively.

However, random evaluation of patients by observers would sometimes lead to
agreement just by chance and this quantity is measured by using expected or chance
agreement P, or P,. It is calculated by multiplying positive answers of observer-1 and
observer-2 and adding them to the negative answers of observer-1 and observer-2, all
divided by total number of observed samples.

SCI*SRI) (SCZ*SR2>

+

P, I ’ ©®
T

Here, S represents summation and P, is evaluated as .6.
Now, we finally calculate kappa volume using the given formula:

L PP
T 1-P, @
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Fig.9 Cphen kappa statistics for Observer-1
100 radiographs simultaneously ailind Does not have
i as fracture
interpreted by two observers fracture
Has fracture 60 10 70
Observer-2 [ poes not have
15 15 30
fracture

75 25

Here, K=.375.

According to the commonly used scale presented in Table 9, both the radiologists
have a minimal agreement (k =.375) in diagnosing fractures for the above example.

Sensitivity of 45.45% is observed when Neck-Shaft Angle (NSA) is used as the only
feature in the first ever approach of fracture detection in 2003 (Tian et al. 2003). The poor
fracture detection rate is obtained because NSA alone could not detect significant changes
observed during the event of fracture. This problem is overcome by using several feature-
classifier combinations and ensemble based approaches and resulted in better performance
(Yap et al. 2004; Lim et al. 2004; Lai et al. 2005). SVM, NN, DT and NB algorithms are
used independently in earlier approaches such as (Lim et al. 2004), which is later combined
by using boosting and bagging techniques and successfully achieved the accuracy of 91.8%
on 98 hand X-ray images (Al-Ayyoub et al. 2013). Tibia fractures are detected, classified
and localized in human bones using Decision Tree and K-Nearest Neighbor algorithms
(Myint et al. 2018). This is the first work proposed which performs all three activities after
successfully applying Unsharp Masking (USM) in the input image. However, they have
used only 40 images to train the model including all class types, which is not sufficient for
practical adaptability of the model.

8 Discussions

Fracture detection in radiographs has significant clinical importance. There was an esti-
mated backlog of 200,000 plain radiographs and 12,000 cross-sectional studies in the year
2012 (Cliffe et al. 2016). These figures demand desperate improvements in reporting effi-
ciency and workflow management to mitigate harm caused to patients due to delayed or
missed diagnosis. Automatic abnormality detection or localization techniques could help
radiologists fight fatigue largely. Radiologists can further prioritize diagnosis and treat-
ment according to the abnormality type detected by the automated system. Most often,
the first point of contact for any patient in case of fracture is non-orthopedic surgeons

Table 9 Cohen’s kappa

Value of k Level of t % of data that
interpretation (McHugh 2012) alue o kappa cvel ol agreeiment o o card tha

are reliable

0-.20 None 04
21-39 Minimal 4-15
40-.59 Weak 15-35
.60-.79 Moderate 35-63
.80-.90 Strong 64-81
Above .90 Almost perfect 82-100
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or inexperienced clinicians who often lack expertise in detecting fractures (Chung et al.
2018). Hence, it is quite usual that fractures are misdiagnosed during interpretation of
X-Ray images. Radiologists or clinicians manually examine the X-rays for the existence
of fractures and its type. The interpretation and classification of radiographic images is a
time-consuming and intense process, which could be solved using automated fracture clas-
sification models.

Majority of the published work of fracture detection and classification is focused on
either single anatomical region or a single type of fracture in different anatomical regions.
An ideal model would be the one that is able to detect different type of fractures in various
anatomical regions. Collecting hundreds of thousands of radiographs, providing correct
labels to these X-ray images and feeding enough training data to the models is an arduous
task in medical imaging but predicting the fracture using a trained model take less than
a second in a modern computer. The major challenge in achieving multi-label classifica-
tion on different anatomical regions is the availability of the labeled dataset. A promising
alternative to solve this problem is to fine-tune a CNN, which is pre-trained on a different
network (Birks et al. 2016). Researchers can use these large pre-trained models to obtain
highly sophisticated and powerful set of features needed for the domain of interest. Instead
of pre-training the model on millions of non-radiology images, the model can be trained
on multiple bone X-ray images such as ankle, knee, neck, hip etc. This way we could better
initialize model parameters, which can be later used for training the required X-ray images
(Lindsey et al. 2018). This approach is similar to transfer learning with the slight difference
that we pre-train the model on several types of bone X-ray images instead of non-medical
images. This system can also be useful in emergency conditions where such models may
provide assistance to the radiologists for diagnosing fracture. The more complex a fracture
type is, easier it will become for CNN to classify it as compared to human, as humans
face difficulty in interpreting complex bone structures. A machine such as CNN remains
consistent in its performance and does not lack concentration while interpreting several
complex X-ray structures and it can even surpass human level performance when provided
with sufficient amount of training data. In addition, it is a human tendency to predict cor-
rect output in familiar shapes as opposed to the one whose fracture configuration is less
familiar. Hence, a CNN can potentially be trained with humongous training data with all
possible cases ranging from simpler fracture structure to the most complex ones which is
more than any orthopedics will even encounter in his/her life.

The decision-making in clinical examination is a complex process that is based on accu-
rate evaluation of clinical findings using diagnostic tests and reference standard data. A
gold standard study may refer to an experimental model that has been thoroughly tested and
has a reputation in the field as a reliable method (Cardoso et al. 2014). Whenever a clas-
sifier is compared against actual or known data provided by radiologist, the performance
of radiologist is considered as 100% accurate, which means that the radiologist involved
in interpreting hundreds of images correctly detects and classifies fracture in all samples
with zero error rate. However, there may be a chance that the radiologist involved in the
interpretation of images could not provide the best set of results or do not agree with each
other in case of multiple observers. It is extremely important to have an agreement among
multiple observers dedicated to interpret the sample images. One such measurement of cal-
culating the agreement and disagreement is Cohen’s kappa statistic (k). It gives us a quanti-
tative measure of the agreement in situation where two or more independent observers are
evaluating the same thing. It is only in 2017 when a gold standard is created for abnormal-
ity detection in X-ray samples including multiple anatomical regions using Cohen’s kappa
statistic (Rajpurkar et al. 2017). Gold standard is created by randomly choosing three
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expert radiologists out of six board certified radiologists and the label is selected based on
majority voting. Cohen’s kappa statistic is used to compare both radiologists and proposed
model’s performance with the gold standard (Rajpurkar et al. 2017). Likewise, a gold
standard could be created for a labeled fracture dataset for the purpose of fracture detection
and classification that is globally available and acceptable. This would enable researchers
to compare their proposed model with the Gold standard for better performance analysis.
Kappa statistics is used for classifying tibia fractures into four categories with the accu-
racy of 83% but no such gold standard is observed here for accuracy measurement while
calculating kappa statistic (Myint et al. 2018). A similar approach is observed where per-
formance of two models and performance of a group of general orthopedics, general physi-
cians and specialized orthopedics are evaluated on test set for diagnosing and classifying
humerus fractures (Chai et al. 2011). The adopted CNN based model outperformed human
groups in detecting and classifying fractures except for one category of fracture.
Overfitting issues can be mitigated by including only relevant features necessary for the
model. Cropping our region of interest from the input image and exploring several network
architectures including dropout could be a solution to overfitting problem. An additional
label termed as “indecisive” could be included along with “normal” or “abnormal” frac-
ture classes in the case where radiologist experts indicate indecisiveness in detecting the
fracture. This way the examiner would review it for the second time (Kim and MacKin-
non 2018). If any result is ‘unknown’ or ‘uncertain’ during the examination of fracture
then such cases must either be excluded or assigned a new label such as “uncertain” before
including them in training data (Gale et al. 2017). Assigning them ‘uncertain’ would help
radiologists and researchers to identify that the patient has to undergo further level of treat-
ment and can go for CT or MRI, as to accurately identify the fracture or fracture type.

9 Conclusion

Various fracture detection and classification approaches have been proposed which includes
data preparation, image pre-processing stage followed by feature extraction and classifica-
tion. The interpretation and classification of radiographic images by expert radiologists is
a time-consuming and intense process, which could be solved using automated fracture
classification models. The major obstacle in the development of a high performance clas-
sification model is the lack of labeled training dataset as pointed by many researchers cited
in this survey. We have tried to provide a number of ideas and perspectives to explore that
could help in developing an ideal model, which can detect different type of fractures in
various anatomical regions.

Funding This research did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.
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