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Abstract
This paper presents an embodied open-ended environment driven evolutionary algorithm 
capable of evolving behaviors of autonomous agents without any explicit description of 
objectives, evaluation metrics or cooperative dynamics. The main novelty of our technique 
is obtaining intrinsically motivated autonomy of a virtual robot in continuous activity, by 
internalizing evolutionary dynamics in order to achieve adaptation of a neural controller, 
and with no need to frequently restart the agent’s initial conditions as in traditional training 
methods. Our work is grounded on ideas from the enactive artificial intelligence field and 
the biological concept of enaction, from which it is argued that what makes a living being 
“intentional” is the ability to autonomously, adaptively rearrange their microstructure to 
suit some function in order to maintain its own constitution. We bring an alternative under-
standing of intrinsic motivation than that traditionally approached by intrinsic motivated 
reinforcement learning, and so we also make a brief discussion of the relationship between 
both paradigms and the autonomy of an agent. We show the autonomous development of 
foraging and navigation behaviors of a virtual robot.
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1  Introduction

Evolutionary computation projects usually rely on some kind of prior goal description 
to evaluate and guide the development of artificial agents behaviors. Therefore, we can 
say that they follow externally defined objectives. In this paper, we argue that a genuinely 
autonomous behavior should only address the intrinsic needs of an agent and, in order to 
tackle such a problem, we propose the EMbodied Open-ended evoluTIONary ALgorithm 
(EMOTIONAL), capable of evolving behaviors of a single autonomous agent without any 
explicit description of objectives, evaluation metrics or cooperative dynamics, performing 
such process in continuous activity, i.e., with no need to restart the agent’s initial condi-
tions at any point during training.

Evolutionary computation (EC) has been a topic of considerable active development, 
and a widely applied approach to evolve behaviors of autonomous agents. We can mention 
several recent studies in the fields of robotics and virtual agents (Lehman and Miikkulainen 
2014; Haasdijk et  al. 2014; Trueba et  al. 2015; Silva et  al. 2016; Nogueira et  al. 2016). 
Among these works, it is noticeable an increasing interest in open-ended evolution (OEE), 
out of the need for agents capable of evolving behaviors beyond a single predefined objec-
tive, and in embodied evolution (EE), particularly in robotics, in order to establish online 
adaptation.

Other machine learning (ML) techniques have also been used to address the problem of 
developing autonomous artificial agents in an open-ended fashion (Baldassarre and Mirolli 
2013; Klyne and Merrick 2016; Gay et al. 2016; Merrick 2017). In this field, we can high-
light the Intrinsically Motivated Reinforcement Learning (IMRL) approach (Barto 2013), 
that is based mainly on the concepts of novelty and curiosity (Barto et al. 2004; Schmidhu-
ber 2010; Kompella et al. 2012, 2014). However, there is an apparent conflict between that 
definition of Intrinsic Motivation and the definition of autonomy as it has been approached 
by the enactive artificial intelligence (EAI) field (Froese and Ziemke 2009), whose ideas 
we are trying to advance with our technique. We will later discuss such relationship and its 
implications to agency.

In Sect.  2, we present a brief review of Open Ended Evolution, Embodied Evolution 
and other open ended approaches to develop autonomous agents. In Sect. 3, we discuss the 
relationship between objectless evolution, autonomy and intrinsic motivation. In Sect. 4, 
we present EMOTIONAL, an algorithm firmly grounded on the ideas discussed in Sect. 3. 
Next, in Sect.  5, we show what EMOTIONAL can do through a series of experiments, 
which are thoroughly discussed. In Sect. 6, we present our final remarks about this work.

2 � Background

Open-ended evolution has the characteristic of continuously adapting the agent’s behaviors 
to the conditions that surround it. As a consequence, it is possible to evolve increasingly 
complex dynamics, which are robust to environmental changes, and not limited to a simple 
well described objective. In fact, such an objective may be poorly described. In this sense, 
OEE seems a natural approach to use in the problem of behavior generation of autonomous 
agents.

One of the open issues in evolutionary algorithms is the deception problem, which 
happens when the solution is trapped into a local optimum of the fitness function (Silva 
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et  al. 2016). Because that problem is very common when traditional optimization is 
employed, alternative approaches such as OEE have been sought. According to Lehman 
and Stanley (2011), “[...] sometimes, opening up the search, more in the spirit of artifi-
cial life than traditional optimization, can yield the surprising and paradoxical outcome 
that the more open-ended approach more effectively solves the problem than explicitly 
trying to solve it”.

An OEE approach known as Novelty Search (NS) (Lehman and Stanley 2011; Lehman 
and Miikkulainen 2014), instead of seeking an objective, simply searches for behavioral 
novelty. In order to do that, it is necessary to describe some metric of behavior differentia-
tion, which is tuned to each specific application. Therefore, based on such novelty measure, 
the algorithm is guided to perform a search for a specific kind of planned behavior. In our 
opinion, sometimes, it is useful not to make that kind of predetermination, in order to allow 
the agent to develop a set of behaviors, instead of just one specific behavior. By doing so, 
some interesting unpredictable behaviors often appear.

Another OEE approach is based on Environment-Driven Evolution (EDE), i.e., evolu-
tion is promoted only by environmental pressures (Nogueira et al. 2016). In that case, there 
is no explicit description of fitness function, and the best-fit individuals flourish naturally, 
according to the dynamics of the whole system. It is also important to notice that any envi-
ronmental change has the potential to modify the system’s dynamics, which affects the 
agent’s behavior as a response to the new imposed constraints. Thus, there is no search for 
a unique solution, and new solutions are frequently being tested.

The Environment-driven Distributed Adaptation algorithm (EDEA) (Bredeche and 
Montanier 2010; Bredeche et al. 2012) applied the idea of EDE to a swarm of real robots, 
which were able to evolve efficient survival behavior strategies, with no fitness function 
being ever formulated. The basic idea behind EDEA is the implicit nature of fitness func-
tion, i.e., the system’s dynamics enforces that “optimal genome should reach the point of 
equilibrium where genome spread is maximum (e.g. looking for mating opportunities) with 
regards to survival efficiency (e.g. ensuring energetic autonomy)” (Bredeche and Mont-
anier 2010).

The EDE approach was also used to evolve emergent behaviors of autonomous virtual 
characters (Nogueira et  al. 2013a). In that work, evolution’s dynamics was established 
through the simulation of sexual reproduction of the virtual agents. The “female” and 
“male” robots, are identical, except for the ability of the female robots to “get pregnant”. It 
is interesting to notice that the experiments show common emergent behaviors regarding 
navigation, foraging and mating for both genders, but also have generated gender-oriented 
behaviors.

The EE algorithms can be divided into those based on fitness functions and those that 
are completely evaluation-free. In the original EE algorithm (Watson et al. 2002), a robot 
computes the probability of reproduction of its genes based on its own energy level, so that 
such computation works as an explicit fitness function that tries to enforce the fittest genes. 
This very idea continues to be applied even in more recent studies (Trueba et  al. 2015; 
Haasdijk et al. 2010a; Elfwing et al. 2011). On the other hand, the aforementioned EDEA 
(Bredeche and Montanier 2010) and mEDEA (minimal EDEA) (Bredeche et al. 2012), or 
the Simulated Sexual Reproduction (Nogueira et al. 2013a), try to insert the fitness function 
into the dynamics of the algorithm, where no explicit evaluation occurs. Also, it is possible 
to combine the better control allowed by task-driven optimization, in order to obtain useful 
behaviors, with the open-endedness allowed by environment-driven adaptation, which has 
the potential of achieving more complex behaviors. This hybrid idea is explored with the 
Multi-Objective aNd open-Ended Evolution (MONEE) algorithm (Haasdijk et al. 2014).
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We can also classify the EE algorithms into Distributed EE (DEE) and Encapsulated 
EE (EEE) (Eiben et al. 2010). The DEE algorithms are built to run in a distributed fashion 
over a population of agents, and their dynamics depend on this fact. That is the case of the 
canonical EE algorithm. EDEA, mEDEA, and MONEE, are examples of DEE algorithms. 
Regarding EEE, evolution occurs within one agent only, usually employing a time-sharing 
strategy of genes (Bredeche et  al. 2009; Haasdijk et  al. 2010b, a; Elfwing et  al. 2011). 
Embodied Evolution is most commonly performed with DEE algorithms, i.e., multiple 
robots (Eiben et al. 2010; Bredeche et al. 2018), and known EEE algorithms are based on 
fitness functions evaluated during “gene lifetime” (Bredeche et  al. 2009; Haasdijk et  al. 
2010b; Eiben et al. 2010).

Intrinsically Motivated Reinforcement Learning (Kaplan and Oudeyer 2006; Barto 
2013) has also been a widespread approach to develop behaviors of autonomous agents 
capable of solving problems in a open-ended fashion, in order to achieve robustness to 
open worlds, multiple objectives, and behaviors that go beyond those that could be foreseen 
by a designer. Such works are grounded mainly on neuroscience findings of mechanisms of 
internal rewards in animal brain, as well as the psychological concepts that grounds curi-
osity (Barto et al. 2004; Oudeyer et al. 2007; Barto 2013; Gay et al. 2016). Basically, in 
curiosity-driven works, the agent is rewarded for discovering new patterns in the environ-
ment (Schmidhuber 2010), and it is always in search of novelty. This technique has been 
successfully used in works on learning of sensorimotor skills of artificial agents (Kompella 
et al. 2012, 2014).

Our algorithm is designed based on the evolutionary approaches discussed in this sec-
tion. It is an Encapsulated Open-Ended Embodied Evolutionary algorithm, which is encap-
sulated to run within a single agent in continuous activity, and works without any explicit 
description of fitness function or objective metric.

3 � Objectless evolution, intrinsic motivation and autonomy

3.1 � The enactive approach to autonomy

In this section we present the relationship between objectless evolution, i.e., evolution 
without explicitly defined objective, intrinsic motivation and autonomy, and argue why 
objectless evolution better fits a particular and important definition of autonomy. Such 
definition is grounded on biological theories about intentionality of living beings (Varela 
1992; Fitch 2008), the basis of the Enactive Artificial Intelligence field (Froese and Ziemke 
2009), in which our technique is giving a practical contribution.

The enactive paradigm to artificial intelligence has emerged from the perception that 
“embodied artificial agents which are embedded in sensorimotor loops [has] not been suf-
ficient to account for a meaningful perspective as it is enjoyed by (...) living beings” (Fro-
ese and Ziemke 2009). Researchers have found in biology, specifically in the concept of 
autopoiesis (Varela 1992), an explanation of how a living organism creates its own world 
of significance, or at least for what is “bad” or “good” from the point of view of the living 
agent itself.

Autopoiesis is defined as a network of processes that occur in living beings: (1) that 
are continuously regenerating and realizing the network that produces them; and (2) that 
constitute the system as a distinguishable unit in time and space. This action of self-con-
struction and self-maintenance of an identity is pointed as the provider of a reference from 
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which the significance of the agent’s interactions with the world can be derived. In fact, 
those processes have long been indicated as the basis on which intentionality and auton-
omy of living being are grounded (Varela 1979, 1992; Fitch 2008).

Influenced by the idea of living organisms as “autopoietic” systems, i.e., systems that 
produce their own identity through incessant endogenous activities, Barandiaran et  al. 
(2009) proposed a strong definition of agent: “an autonomous organization capable of 
adaptively regulating its coupling with the environment according to the norms established 
by its own viability conditions”. Thus, the actions of a genuine agent maintain the agent in 
environmental conditions that are favorable to its self-constitution (or maintenance). Self-
constitution enables the agent to continue exerting the necessary actions to maintain and 
individualize it. Such definition implies that the agent’s actions are self-motivated, i.e., the 
agent’s actions come from its internal dynamics of subsistence, and always seek the self-
constitution of the agent’s system. That is called “Constitutive Autonomy”, an essential 
property of life that has the potential to explain the intrinsic teleology of living beings, 
which are genuinely autonomous systems (Nogueira et al. 2016; Vernon et al. 2015).

Another important concept related to a living being’s agency, is that of “precarious-
ness”, which is the notion associated with metabolic or chemical systems that are not in 
thermodynamic equilibrium (Barandiaran and Moreno 2008; Egbert and Barandiaran 
2011). Since a biological organism is in constant thermodynamical exchange with its envi-
ronment in pursuit of thermodynamic equilibrium, the organism is always in precarious 
conditions, i.e., it has to regulate its interaction with the environment actively to keep itself 
alive. This precariousness, “is meant to form the basis of the normative character of behav-
ior: the system must actively seek to compensate its inherently decaying organization” 
(Egbert and Barandiaran 2011).

3.2 � Evolving enactive agents

Evolving Enactive Agents means that there if no other objective guiding evolution than that 
intrinsic of agency (maintain viability conditions), and, besides that, it cannot be explicitly 
defined (i.e., externally predefined), but it has to emerge as a consequence of the interac-
tions between the agent and the environment. In pure EDE, no fitness function should be 
described, and evolution takes place only by environmental pressures. That is, there is no 
explicit evaluation metric to select, but the individuals that develop the best survival strat-
egy of interaction between body and environment will naturally spread their characteristics 
to future generations. If we consider the agent-environment system, there is no external 
force to the system guiding its interactions in EDE, and so this approach has the potential 
to better fit the idea of autonomy in the enactive definition than traditional evolutionary 
computation.

EMOTIONAL can be classified as an EDE algorithm and, although there are no exter-
nally defined objectives, we still cannot talk about Constitutive Autonomy in this work, and 
thus we are not strictly following the precise agency definition aforementioned, since the 
artificial agent, a virtual robot, is always fully constituted. Nevertheless, we can simulate 
similar pressure based on the concept of precariousness, which generates the conditions 
to emerge what is called “Behavioral Autonomy” (Froese et al. 2007; Froese and Ziemke 
2009; Nogueira et al. 2016; Vernon et al. 2015), i.e., the emergent behavior is what con-
trols an “energetic” level that makes itself possible, in a dynamic that counteracts the simu-
lated precariousness, otherwise it would lead to the impossibility of agent movement. We 
also approached that idea (Nogueira et al. 2013a) in our previous work about a simulated 
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reproduction method of virtual agents. That technique, however, depends on a population 
of virtual characters to work. EMOTIONAL allows such Behavioral Autonomy with only 
a single agent.

3.3 � Advantages of objectless environment driven evolution

When evolution occurs as a result only of the interaction dynamics between the agent and 
its environment, any aspect of this system can offer some opportunity to improve adapta-
tion, including those which we could not perceive a priori. A given characteristic of an 
agent cannot be judged in isolation to be good or bad, since its importance depends on 
the current dynamics of the system. In our previous work about simulated reproduction of 
virtual robots (Nogueira et al. 2013a), we noticed that, in some point during the simula-
tion, the male robots were presenting primarily a foraging behavior, and, all of a sudden, 
they started to exhibit mainly a mating behavior. In that study, since the dynamics of the 
system was changing and so were the adaptation conditions, one could not say that a sin-
gle implicit fitness function existed. In fact, the implicit fitness function may be seen as 
another emergent aspect of the system.

If the objectives of an agent change according to its environmental conditions, then it is 
possible to achieve not only one behavior, but a set of different behaviors. Moreover, since 
the agent’s movements are gradually built from pressures and constraints of its surround-
ings, those pressures and constraints can incorporate aspects of the problem that possibly 
would be overlooked in a poorly described objective function, and also has the potential to 
lead to more complex or richer solutions (Nogueira et al. 2016). In fact, this is maybe the 
most relevant characteristic of an open-ended approach to development of learning agents.

3.4 � Intrinsic motivation

Intrinsic motivation is a concept that came from psychology and has been adopted by 
machine learning practitioners due to its potential to produce open-ended learning agents 
(Barto et al. 2004; Kaplan and Oudeyer 2006; Oudeyer et al. 2007; Oudeyer and Kaplan 
2008; Baldassarre 2011; Barto 2013; Oudeyer and Smith 2016). Baldassarre (2011) pre-
sented a biological perspective of intrinsic motivation that shows an apparent conflict with 
the enactive approach to autonomy, since the processes grounded on biological intentional-
ity, and thus clearly intrinsic, are those ones that he claims as extrinsic motivations.

In that sense, extrinsically motivated behaviors are those related to food and water 
intake, for example, that lead to satisfaction of homeostatic needs. The reason behind such 
definition is that the behavior is not motivated only by the agent’s brain activities itself, but 
it has the objective to fulfill the needs of the body, i.e., the external environment. What they 
call intrinsically motivated are those behaviors that don’t show a clear biological function, 
such as ludic behaviors and curiosity (Barto 2013), and are a result only of the brain activ-
ity, i.e., the internal environment.

Such concept of intrinsic motivation found notedly space within reinforcement learning 
works (Schmidhuber 2010; Kompella et al. 2012; Barto 2013; Kompella et al. 2014). In 
that context, what differs an internal motivated from an external motivated behavior is the 
origin of the reward signal. For example, a foraging behavior is triggered by rewards deliv-
ered by food (and so, it is an external reward), while curiosity is rewarded by hormones 
released by the brain (and so, it is an internal reward) when something new is discovered 
by the agent. Barto (2013), however, acknowledges: “the internal/external environment 
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dichotomy does not provide a way to cleanly distinguish between extrinsic and intrinsic 
reward signals”.

Another related concept proposed in reinforcement learning works is “Interactional 
Motivation” (Georgeon et  al. 2012). In such paradigm, the reward is a function of the 
agent’s action and observation, rather than the state, i.e., the reward is a result of agency 
and not the environment, and thus “the agent enacts schemes for its own sake rather than 
for the value of the outcome that they produce”. This design puts the notion of interactional 
motivation to be in between extrinsic and intrinsic motivation. It is important to notice, 
however, that the reward is explicitly given to the reinforcement learning algorithm to 
compute the agent’s policy, and thus the behavior is an effect of an adequately predefined 
reward function.

In order to address the problems around the concept of motivation, we notice the obvi-
ous fact that any kind of motivation is essentially intentional. Thus, it doesn’t matter 
whether or not the object that triggered the motivation is internal or external to the agent’s 
brain. What leads a genuinely autonomous agent to perform some behavior is its intention 
to do so. Our technique tries to advance in the understanding about the mechanisms behind 
intentional behaviors, i.e., those ones that follow objectives that are not externally prede-
fined, although they can be externally rewarded.

Intrinsically motivated reinforcement learning is mainly performed through what is 
called “artificial curiosity” (Oudeyer and Kaplan 2008). Such technique is based on reward-
ing the curiosity of agents, i.e., the search for novel states (Barto et al. 2004; Schmidhuber 
2010; Kompella et al. 2012; Barto 2013; Gay et al. 2016). That method has been shown 
to be successful on simulated environments, however, its application to real robots was a 
concern to Oudeyer et al. (2007) who explored such concept of “novelty” to developmen-
tal robotics, and thus proposed an architecture based on rewarding the progress of predic-
tion of consequences of actions taken by a robot (Kaplan and Oudeyer 2006; Oudeyer and 
Kaplan 2008). In fact, studies have shown that animal brains have similar mechanisms of 
curiosity rewarding (Barto et al. 2004). Developmental robotics takes additional inspiration 
from developmental psychology and infants’ development (Oudeyer et al. 2007).

As in enactive artificial intelligence community, Oudeyer et  al. (2007) are also con-
cerned with the problem of meaning in autonomous systems: “Can goals and means sim-
ply emerge out of subsymbolic dynamics? This is one of the most challenging issues that 
developmental approaches to cognition have to face”. What we are proposing here can thus 
be seen as an alternative solution to curiosity, addressing the problem in a lower level. 
In fact, curiosity seems to be an important element for explaining cognition, however, we 
believe that the question about meaning can only be answered if curiosity is achieved from 
emergence, and evolution seems to be the way, as noticed by Barto (2013) and Oudeyer 
and Smith (2016). However, it is not the aim of this work to deepen this discussion.

4 � Emotional

4.1 � Fundamentals

According to Egbert and Barandiaran (2011), in an evolutionary approach to explain agency, 
a behavior is considered normative if it has been selected by evolution. In this view, norm 
following is a result of natural selection, and defines whether a pattern of behavior is adap-
tive or maladaptive. As previously argued, the key for the normative character of behavior is 



4456	 Y. L. B. Nogueira et al.

1 3

precariousness, i.e., the system must actively seek to compensate for its inherently decaying 
organization. That is the primary idea behind EMOTIONAL.

Before we present the algorithm, we analyze four fundamental aspects of environment-
driven evolutionary algorithms:

1.	 Replication leads to evolution;
2.	 Replication must be easy;
3.	 Replication must be sensitive to the diversity of elements within the environment; and
4.	 Activities of individuals affect the environment, changing the possibilities of replication.

Evolutionary algorithms take place on a population of individuals that are candidate solutions 
to a certain problem. Replication of individuals plays the central role on evolution, i.e., the 
development of new individuals that describe better solutions (1).

Replication must occur in such a way that better individuals are always chosen. However, 
since the initial solutions are randomly generated, they are hardly good solutions. In tradi-
tional evolutionary algorithms, a fitness function guides the selection of the individuals that 
will reproduce. Now, the individuals themselves must do their own self-selections, and so the 
replication is part of the problem to be solved. Thus, at the beginning of the evolutionary pro-
cess, replication must be easy (2) in order to allow the selection of weak solutions that will be 
gradually improved as the evolutionary process progresses.

As part of the problem and, at the same time, as a guide to evolution, replication must be 
related to the environment. For adequate behavior to be found, replication must be sensitive to 
the diversity of elements (3) at the agent’s surroundings. Furthermore, the activities of indi-
viduals affect the environment, thus creating new conditions to guide novel paths of evolution, 
and, therefore, changing the possibilities of replication (4).

4.2 � The algorithm

EMOTIONAL is designed to evolve a neurocontroller of an autonomous robot. Like any evo-
lutionary algorithm, it works based on a population in which each individual encodes a con-
troller. The population is organized in a queue of predetermined size. As we detail in Sect. 5, 
we use an indirect encoding of neural networks into arrays of integers, although any encoding 
scheme could be used, provided that some kind of crossover operation is defined.

An agent needs an internal energy variable whose value increases or decreases according to 
the agent’s actions and to its relationship with the environment. Each controller is put to “live” 
within the robot with the energy variable set to an initial value. When that value gets to zero, 
the controller “dies” and is replaced by another controller with a reset energy variable. The 
new controller then starts to control the robot from the exact position where the last control-
ler ended, as if the agent had “changed his mind”. The Algorithm 1 shows the EMOTIONAL 
steps.
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As argued in the previous section, the main aspect of evolutionary algorithms is replica-
tion. Thus, the core procedure of EMOTIONAL is Replicate(Q, I, t), responsible for the 
insertion of a copy of individual I into queue Q every t seconds until the agent’s energy or 
a maximum predetermined lifespan end. When the queue is full, the first individual that 
entered the structure is removed, leaving room for a new one. The Algorithm 2 shows the 
Replicate steps.

While the population queue Q is not full, a random individual is generated whenever 
the current individual “dies”. When Q is full, two random individuals are chosen from the 
population and crossover and mutation operations are performed in order to generate a new 
one.

The mutation and crossover operations are essential aspects of an evolutionary algo-
rithm, allowing variation, avoiding local minima, and leading to a gradual improve-
ment of the solution (behavior). In our crossover implementation, the breaking point of a 
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chromosome encoding an individual is randomly chosen, while the mutation changes the 
value of a gene with a probability p of occurrence. It is important to pay attention to the 
assignment of a low value to p, less than 1%, to achieve stability when some solution is 
found.

The parameters N, t, and agent energy in EMOTIONAL regulate the algorithm’s pres-
sure of selection. Notice that, since a copy of a “living” individual is enqueued every t 
seconds, and the queue has a limited capacity of size N, the controllers that develop a better 
behavior and are capable of sustaining the agent’s energy levels are those that dominate the 
population. This fact leads them to a selective advantage, and makes them more susceptible 
to be chosen for crossover in line 8 of Algorithm 1.

EMOTIONAL implements the fundamentals of environment-driven evolution and 
closely follows the agency definition we have previously presented. Notice that a decaying 
energy simulates precariousness, the adaptive pressure element that leads to Behavioral 
Autonomy, since the agent needs to actively search ways to increase its own energy. It is 
also the energy variable that determines the replication of an individual, and thus the indi-
vidual actions and its spreading within the population are intimately related.

5 � Experiments

5.1 � Description

In order to evaluate EMOTIONAL, we evolved a neurocontroller to a Khepera-like virtual 
robot. The environment consists of a room delimited by walls with randomly distributed 
fruits and poisons. The simulation was developed with the Irrlicht 3D Engine,1 and physics 
provided by the Bullet Physics Engine.2

5.1.1 � The controller

The controller we use in our experiments is the same we used in our previous works 
(Nogueira et al. 2016, 2013a, b). It is essentially a Continuous Time Recurrent Neural Net-
work (CTRNN), whose neurons are modeled in the following general form (Beer 1995):

where t is time; yi and �i are, respectively, the internal state and time constant for each 
neuron i ; wji is the weight of the j th input synapse of neuron i ; sj is the state of the neuron 
linked to the j th input synapse; f () is the activation function of a neuron, which we defined 
as tanh(x / 2); and I represents an external input stimulus constant to neurons.

Furthermore, we use two types of neurons that do not have internal dynamics: the afferent 
and the efferent neurons. An afferent neuron, whose internal state is the value of one of the 
network’s input, cannot receive input from another neuron. The afferent neurons constitute the 
network’s input layer. An efferent neuron, on the other hand, is part of the network’s output 

(1)
dyi

dt
=

1

�i

(
−yi +

n∑

j=1

wjif (sj) + I

)

1  http://irrli​cht.sourc​eforg​e.net/.
2  http://bulle​tphys​ics.org/.

http://irrlicht.sourceforge.net/
http://bulletphysics.org/
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layer, and its internal state is the average of the internal states of all the neurons connected to 
it.

5.1.2 � Genetic encoding

A controller is encoded according to the scheme we presented in our previous work 
(Nogueira et  al. 2013a) on simulated reproduction. It is a simplified version of Analog 
Genetic Encoding (AGE) (Dürr et  al. 2006), which allows indirect encoding of artificial 
neural networks (ANN) into a simple one-dimensional array and augmenting topologies. 
Each individual is represented by two chromosomes: the first chromosome encodes the 
stimulus I (Eq. 1), and the second, which we call the Network Chromosome (NC), holds 
the description of the ANN itself. Unlike our previous work, there is no need of a “gender” 
information in the current study, and thus we removed such a gene from the chromosomes.

A chromosome is an array of genes, where every gene can represent two types of ele-
ments: a Neuron (N) or a Neuronic Terminal (TR). To decode the ANN, we basically fol-
low a two-step process:

1.	 Read the chromosome and extract the neurons and their respective input and output 
“ports”, i.e., the “Neuronic Terminals”; and

2.	 Create the synapses from the interaction between the input and output TRs.

Each gene is a 32-bit integer, where the first 8 bits (1 byte) encode an identifier, i.e., a code 
that tells whether the gene is representing a Neuron or a Neuronic Terminal, and the last 
24 bits specify a value that indicates a parameter of the decoded element. Such parameters 
are internal time constant �i (Eq. 1) for neurons, or input/output values for terminals. In 
the decoding sequence, any TR gene that appears before the first N gene is ignored; and 
after each new neuron gene, only the first two TR genes are considered. The first of those 
valid TR genes determines its input terminal, while the second TR determines its output 
terminal.

The identifier (first 8 bits) of a gene is decoded according to Table  1, and the value 
part (last 24 bits) is linearly mapped into a floating-point number in the range [− 1, 1] . The 
intervals shown in Table 1 imply a probability of approximately 20% of a gene being a neu-
ron and 80% of a gene being a neuronic terminal. If the value is related to a neuron gene, 
the result is directly attributed to the time constant of the neuron. If, instead, the value is 
related to a TR, it is further used to calculate a synapse weight according to the equation:

where w is the weight of a synapse that links an output terminal of value o with an input ter-
minal of value i . The symbol nb indicates the total number of bits that represent the value 
(24 bits), and eb is the number of equal bits in the binary representations of i and o . We 
also defined an existence condition to increase topological diversity: if ⌊eb∕4⌋ mod 3 = 0 

(2)w(i, o) =
eb(i + o)

2nb
,

Table 1   Genes’ identifiers Id value Meaning

0 ≤ id ≤ 51 Neuron (N)
52 ≤ id ≤ 255 Neuronic terminal (TR)
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then w(i, o) = 0 . The logic behind these equations is examined in detail in our previous 
work (Nogueira et al. 2013a). The whole process of network decoding is shown in Fig. 1.

Furthermore, if we want to obtain a network with q input neurons and r output neurons, 
the first q neuron genes in a chromosome are necessarily set to be input neurons, while the 
last r neuron genes are set to be output neurons. Input neurons don’t have input terminals 
and output neurons don’t have output terminals, and thus the respective neuronic termi-
nal genes are ignored. The number of hidden layers and their connections are completely 
defined by the evolutionary process and they also can be recurrent.

5.1.3 � Robot and environment

The robot is shown in Fig. 2. It has a black box that plays the role of its eye and mouth, 
where three distance sensors are located. Each sensor is able to catch the normalized dis-
tance ([0, 1]) to the nearest object inside its “Field Of Sense” (arc) with respect to its range 
(the maximum detection distance of a sensor). The sensor that is located at the center of 
the eye is specialized in detecting walls only, it has a FOS of 120◦ , and a range of about 4r, 
where r is the radius of the robot’s body. The other two sensors, placed at each side of the 
eye, are able to sense fruits and poisons, thus generating two values each, and have a FOS 
of 10◦ , and a range of 14r. Furthermore, there is a proprioceptive sense of energy, which 

Fig. 1   Building the network (Nogueira et al. 2013a): first we decode the neurons and their respective termi-
nals, then we apply Eq. 2 to each pair of terminals to create the synapses. Only one synapse was created due 
to the existence condition (see text)

Fig. 2   The distribution of the three vision sensors. The dotted lines represent the FOS of the wall sensor. 
The dashed lines and the dashed-dotted lines represent, respectively, the left sensor and the right sensor of 
fruits and poisons
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ranges from 0 (the robot is fully energized) to 1 (the robot is totally exhausted). Therefore, 
the strength of the signal allows the robot to perceive when its energy is finishing.

The robot has two motors, which are controlled by the efferent neurons respectively. 
When the first motor receives a signal from its efferent neuron, it moves the robot forward 
in case of positive value, and backward if negative. The other motor makes the robot turn 
right in the event of a positive signal, and turn left otherwise.

A robot starts with 50,000 energy units (eu). This value increases 10,000 eu whenever 
a fruit is eaten (up to a maximum value of 50,000 eu), and decreases in two situations: (1) 
when the robot is alive, in which case the loss of energy is continuous and directly propor-
tion to the strength of the signal sent to a motor; and (2) when the robot eats a poison, in 
that case its energy is reduced to 10,000 eu. In the second situation, if the robot’s energy 
level is less than or equal to 10,000 eu, the energy is zeroed. If the energy is exhausted, the 
controller is replaced. When a fruit or poison is eaten, a new one is placed randomly in the 
environment, and it could be of any type with 50% probability. The energy is also reduced 
every simulation step according to Eq. 3, where o1 and o2 are the output of the two efferent 
neurons of the controller, w is the sum of the activation values of all internal neurons in 
each timestep, and the constant value 10 mimics a “metabolic” energy waste. The quadratic 
term is related to the motors, simulating the energy used to move the robot.

5.2 � Results

As we show in this section, EMOTIONAL successfully evolved the behavior of a single 
agent, which has learned how to adequately move within its environment. The most inter-
esting question about the results we got is the fact that variables whose behaviors would 
clearly reflect a good performance of a traditional evolutionary algorithm are not so obvi-
ous when analyzing EMOTIONAL. This fact is commonly noticed on embodied evolution-
ary algorithms analysis (Bredeche et al. 2018). At first glance, such variables do not seem 
to be evolving, which is apparently inconsistent with the agent’s observed behavior, thus 
requiring a more careful analysis across several characteristics of the experiment. In fact, 
since our algorithm does not follow a well-defined objective, it was expected that we could 
not observe its performance through a single and isolated value.

The EMOTIONAL parameters were empirically chosen, and we simply repeated those 
common to our previous works on traditional genetic algorithm (Nogueira et  al. 2013b) 
and distributed embodied evolution (Nogueira et al. 2013a), that we had already success-
fully applied. Thus, the results presented in this section were obtained with a queue of 
size N equal to 100, a Network Chromosome with 75 genes, a replication time t of 90 s, a 
mutation probability p of 0.1% and a maximum agent energy of 50,000 eu. Figure 3 shows 
the path traveled by the agent after learning during an experiment session.3 Notice that the 
robot successfully catches fruits while keeping its mouth away from poisons. The robot 
also learned how to deviate from walls.

Figure 4 shows the behaviors of an untrained (left) and a trained robot (right) in envi-
ronments with (top) and without (bottom) fruits/poisons. Notice that the untrained behavior 

(3)C = (|100o1| + |100o2|)2 + w + 10.

3  Watch videos of other runs in https​://www.youtu​be.com/watch​?v=X8DGK​9ZIUL​A and https​://www.
youtu​be.com/watch​?v=Kil_MaAp6​4s.

https://www.youtube.com/watch?v=X8DGK9ZIULA
https://www.youtube.com/watch?v=Kil_MaAp64s
https://www.youtube.com/watch?v=Kil_MaAp64s
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is not sensitive to other elements within the environment and the agent does not scan the 
room adequately, running blind and rotating around a small region no matter what is pre-
sent. Since a random neural network is built when a new simulation is started, the behavior 
is not exactly the same when we run in an empty or in a full environment, which explains 
the difference between paths shown in Fig. 4a, b. The trained behavior, in turn, is more 
predictable and better covers the area, also changing the running direction in order to catch 
fruits and avoid poisons when they are present.

Figure  5 shows the network built by EMOTIONAL that produced the behavior 
described in Fig. 3. Since the Network Chromosome has 75 neurons and the probability of 
a gene being a neuron is 20%, then we have 15 neurons on average in each randomly gen-
erated individual, i.e., the individuals that are created while the EMOTIONAL’s queue is 
not full. However, we have a simple environment exploited by a robot with simple sensors 
and motors. Thus, this leads to relatively simple problems that can be solved with a small 
neural network. In this case, the evolutionary process eliminated some neurons and only 10 
were used in the end. We also have only three standard (processing) neurons with a single 
recurrent connection. Note that “right” sensors have no connections. This is reflected in the 
strategy the robot adopts: continuously turn right and correct the direction of movement 
turning left when necessary.

Since evolution is carried out without any explicit evaluation metric, traditional metrics 
to analyze evolutionary algorithms show to be inefficient in analyzing EMOTIONAL. In 

Fig. 3   Robot path after learning. 
The red diamonds are fruits and 
the blue squares are poisons. The 
arrow A emphasizes a turn made 
by the robot when it realizes that 
it was heading toward a wall 
(the chart’s boundaries). Note 
the detour taken by the robot in 
order to avoid a poison (arrow 
B). After that, the agent follows 
a straight path to catch a fruit 
(arrow C). (Color figure online)

Fig. 4   Behaviors of untrained 
(left) and trained (right) robots in 
environments with fruits/poisons 
(top) and without fruits/poisons 
(bottom)

a

b

c

d
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fact, as we have shown, we have a clear evolution in the agent behavior. However, variables 
whose increasing values we expected to see as indication of “good behaviors”, such as the 
number of fruits collected in a given time interval, and the lifespan of a controller, counter-
intuitively do not reflect exactly the agent’s behavior. This fact is due to the high sensitivity 
of those variables to environmental variations in the way the experiment is conducted, i.e., 
the simulation is continuously running, and a controller starts to work at the exact point 
and conditions where the last one had left off.

Figure 6a, line 1, shows the number of fruits collected by the agent each 10 min in a 
first simulation run. Notice that the values present a great deal of variation, but we can also 
observe, with the assistance of a trendline, a certain growth trend in the value. We will 
discuss later the environmental conditions that can cause a good controller to show a low 
value in the variable. Now, we want to emphasize that a traditional evolutionary algorithm 
using that variable as fitness function could lead to losing a good individual in such condi-
tions. Our algorithm is robust to this case.

Figure 6b shows in row 1 the lifespan of each controller tested during the same simula-
tion. Note that the lifespan substantially increased starting from approximately the control-
ler number 7500, and this is reflected in the consistent increase of the average number of 
collected fruits, starting from approximately 6000 min as shown in Fig. 6a (row 1). As we 
will argue based on the other charts, the number of collected fruits and the lifespan do not 
directly determine each other, since the distribution of fruits into the environment changes, 
and can challenge the agent in different ways in distinct moments. Thus, a changing in the 
values of the first chart is not immediately reflected in the second one.

In Fig.  6a, row 2, we can see the number of collected fruits plotted against sam-
pled time in a second simulation run. Note that after an initial increase, the number 

Fig. 5   Neural network built by EMOTIONAL that produced the behavior described in Fig. 3. There are ten 
neurons, and only three of them are processing units (standard neurons). The line thickness of a synapse 
is proportional to its weight. Dashed lines are inhibitory synapses, i.e., negative weights. Note that “right” 
sensors have no connections. This is reflected in the strategy the robot adopts: continuously turn right and 
correct the direction of movement turning left when necessary
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of collected fruits drops. However, we cannot say that this is due to a loss of perfor-
mance of the controller. In fact, as we can see in the trendline of lifespan in Fig.  6b, 
row 2, that value is constant at approximately the same time interval. Furthermore, the 
average lifespan after about 1000 controllers is greater than the initial values, which 
shows a better energy efficiency. The reason why almost no fruit is collected after about 
2500 min is that the agent caught all the fruits located in the center of the room and the 
other fruits were scattered near the room’s boundaries, a region that is almost invisible 
to the kind of sensors the robot was equipped. Figure 7a shows that situation.

In row 3, Fig. 6a, b show the same type of values we have been analyzing in a third 
simulation run. Note a growth trend in Fig.  6a, row 3, until approximately 5000 min, 

a b

Fig. 6   a Number of fruits collected by the robot every 10 min in three different simulation runs. b Lifespan 
of each controller tested during each simulation run
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followed by a drop in values (due to fruit shortage), leading to a decreasing trendline. 
In Fig. 6b, row 3, we can also observe the reflection of such decaying values after about 
9000 controllers. Although some empty spaces were formed, there were places where 
food was still visible and, as soon as the agent detects them, the number of collected 
fruits substantially increases (samples from 600 to 650 in Fig. 6a, row 3, and from con-
troller 9450 to 9600, approximately, in Fig.  6b, row 3), showing that the controllers 
have converged to a solution that is robust to food shortage, i.e., they do not diverge nor 
“forget” the solution when living in a scarce environment. Figure 7b shows such envi-
ronmental condition.

In short, Figs. 8, 9 and 10 present the average performance of EMOTIONAL in 10 dif-
ferent runs of 30 h of simulation. They show the evolution of the number of fruits collected 
by the robot each 10 min, the rate of number of fruits collected to the number of fruit views 
each 10 min and the lifetime of each chromosome.

Finally, in order to evaluate the Open-Endedness of EMOTIONAL, we performed 
the following experiment: we put the robot to run for 30 h in an environment filled only 
with fruits. After that, we changed the environment, forcing a distribution of 3 fruits to 

Fig. 7   a Environment with most fruits right close to the walls. b The dashed circle shows a group of fruits 
concentrated in a small area in another moment
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2 poisons. Figure 11 shows the sudden fall of the number of fruits collected by the robot 
each 10 min after 1800 min (30 h), which is a consequence of the fruit shortage and the 
added difficulty to catch them due to the presence of poisons. The total exhibited time 
is approximately 58  h of simulation. Figure  12, on the other hand, shows the robot’s 
performance in avoiding poisons through the rate of the number of avoided poisons to 
the number of poison views each 10 min within the final 28 h of simulation. That figure 
also shows the trendline for the recorded data. Notice that there is a slight increasing 
tendency of the values, which indicates that even after a learning stabilization, when 
the environmental pressure was received, the robot has started to learn again. The slight 

Fig. 8   Average amount of fruits 
collected by the robot each 
10 min in 10 runs of 30 h of 
simulation

Fig. 9   Average rate of number 
of fruits collected to the number 
of fruit views each 10 min in 10 
runs of 30 h of simulation

Fig. 10   Average activity time of 
each chromosome in 10 runs of 
30 h of simulation
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value increase is due to the fact that, after convergence ocurred during the first 30 h of 
training, the appearance of new features necessary to evolution is strongly determined 
by mutation, which occurs in a very low rate.

Notice that at the beginning of this last experiment, there is a jump to higher values 
in the number of collected fruits. Such behavior may seem odd to an evolutionary algo-
rithm, where a gradual increase in agent’s performance is expected. Thus, we might be 
wary of a solution found by chance with the initial randomly generated chromosomes. 
However, in EMOTIONAL, a new random chromosome is created only while the queue 
is not full, which occurs in about 150 min of simulation, since there are 100 “slots” and 
a chromosome is inserted every 1.5 min (90 s). That is, in the worst case, at 150 min of 

Fig. 11   Number of fruits collected each 10 min in 58 h of simulation. Notice the sudden drop in values 
from 1800 min (30 h) of simulation

Fig. 12   Rate of number of poisons collected to the number of poison views each 10 min in the last 28 h of 
simulation. The dashed line is the trendline of data points. The topmost line is the trendline of maximum 
data values
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simulation, the generation of new random chromosomes is stopped. Notice that, until 
that moment, none of the solutions reached the level shown after 300 min of simulation.

5.3 � Evaluating without evaluation

Due to the absence of an objective function to watch, maybe the hardest aspect in analyz-
ing our results is to find good metrics to evaluate them in comparison with traditional tech-
niques. The agent’s behavior clearly showed to be visually appropriate, as we can see in 
Figs. 3 and 4, or watching the animations, but variables traditionally used in evolutionary 
algorithms analysis seem not to fit with EMOTIONAL analysis. This fact, along with the 
absence of the idea of “generation” makes it difficult to compare our technique with those 
based on objective function.

As we argued in Sect. 3, it is not fair to an external observer to say that an autonomous 
agent does not have a good behavior if it is not performing exactly what the observer had in 
mind, since it is difficult to realize what the agent is actually experiencing from its point of 
view. Although we have some intuition about what we would like to see, the robot’s actions 
are not always the same, since the environmental conditions are constantly changing and its 
behavior should be sensitive to that in ways that we could not foresee. Such a complexity 
leads to changes in the agent’s objectives through time, and that is why some variables do 
not always work like we would expect.

Therefore, any variable we choose to watch does not reflect only the agent’s perfor-
mance. They also strongly show independent aspects of the environment, and the way the 
robot is experiencing it limited by its sensory capabilities. For example, due to vision sen-
sors with a relatively small sensibility distance, sometimes the robot is completely blind, 
making it difficult to explore its surroundings.

However, we can manipulate the environment to be more stable and well distributed 
over time. By doing that, we can reduce the remarkable environmental noise observed in 
the number of collected fruit. That way, we clearly see the increase in value over time, as 
expected, since there are no more situations of food shortage. Figure 13 show the charts of 
such controlled experiment.

In order to get more controlled data, we also developed experiments based on test beds. 
Each 30 min, we got the current active chromosome and put it to run within an environ-
ment with a fixed distribution of fruits and poisons. Figure 14 shows the average evolution, 
in tests of 10 different runs, of the rate of the number of collected fruits to the number 
of fruit views for each chromosome, during 30  h of simulation in an environment with 
fruits and poisons. Figure 15 shows the same kind of data in an environment filled only 
with fruits. Notice the consistent growth of the values during the tests. Figure 16 shows 
the number of collected fruits and poisons. Notice that the number of collected poisons 
is always below 2 poisons, i.e., the robot does not develop any interest in poisons, unlike 
what happens with fruits. However, due to the weak sensorial apparatus, some poisons are 
inevitably collected.

6 � Conclusion

In this paper, we addressed the problem of evolutionary computation without describing 
any objective or fitness functions. In our approach, we presented the Embodied Open-
ended evoluTIONary ALgorithm (EMOTIONAL), an encapsulated environment-driven 
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algorithm, which was able to evolve behaviors of virtual autonomous robots without any 
explicit description of objectives or cooperative dynamics, performing it in continuous 
activity.

We argue that objectless evolution is a meaningful (in the agent’s point of view) way 
of dealing with artificial autonomous agents. Genuine agency is guided by internal goals 
and should not be limited to externally defined objectives. Moreover, the agent is free to 

Fig. 13   Controlled environment experiments. The charts show the number of collect fruits each 10  min 
(approximately 10 h of simulation) in three different runs and the respective average

Fig. 14   Test bed experiments. 
The chart shows the average rate 
of collected fruits to fruit views 
for each chromosome in 30 h of 
simulation for 10 runs, testing in 
a fixed environment with fruits 
and poisons
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explore solutions to problems that it is actually facing, which could lead to a behavioral 
diversity.

Constitutive Autonomy has been identified in recent studies in the field of artificial 
intelligence as the key to the genuine agency of living beings. However, in artificial life, 
precariousness has shown to be a better standpoint than constitution in order to obtain 
actual agents. That factor is the fundamental basis of EMOTIONAL, evolving behav-
iors of agents by simulating precarious condition, i.e., the decreasing energy works as a 
selective pressure, leading to a “Behavioral Autonomy”.

EMOTIONAL showed to be capable of evolving a virtual robot’s controller based 
on a continuous time artificial neural network. The agent learned to “see” and to guide 
itself through a simplified vision apparatus based on distance sensors. Although such 
sensors do not directly provide a sense of direction, the robot proved capable of using its 
own movements in order to find where the environment’s elements are, catching fruits, 
avoiding poisons, and preventing collision with the walls. None of the robot’s actions 
were explicitly described in any way, and they were an exclusive result of EMOTION-
AL’s dynamics as well as of the interactions between the agent and its environment. 
Also, the robot had to learn the “meaning” of the signals generated by the sensors, since 
there are no difference between them, i.e., the signals generated by a fruit sensor, a poi-
son sensor, or a wall sensor are identical, i.e., values between 0 and 1 that represent the 
distance to a object, and so the robot had to learn how to distinguish them.

Fig. 15   Test bed experiments. 
The chart shows the average rate 
of collected fruits to fruit views 
for each chromosome in 30 h of 
simulation for 10 runs, testing 
in a fixed environment only with 
fruits

Fig. 16   Test bed experiments. 
The chart shows the average 
number of collected fruits and 
poisons for each chromosome in 
30 h of simulation for 10 runs, 
testing in a fixed environment 
with fruits and poisons. Dotted 
line: fruits; Solid line: poisons
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We can say that the algorithm’s parameters queue size N, replication time t, mutation 
probability p, and the robot’s maximum energy drive the emergence of behavior. Tuning 
those variables certainly enables us to constrain some evolutionary paths in order to guide 
the process of learning actions, and badly chosen values are critical, possibly leading to no 
useful behavior at all. However, that differs from an objective function description, since 
we are not determining what role the agent should play among all those that fit coherently 
with the environment. In fact, the evolutionary strategy we are proposing is also strongly 
guided by the environment, allowing a more open exploration of behavioral possibilities, 
and thus the agent can show unexpected good solutions that could be possibly avoided 
through a rigid predefined objective.

Our work also differs from traditional Reinforcement Learning techniques, since such 
algorithms are based on maximizing pre-interpreted rewards, while in our experiments the 
action of eating fruits only interferes with the agent’s body. Thus, the evolutionary process 
has to “learn” that it is a reward, and only then the fruit acquires a meaning for the agent. 
We argue that such strategy is biologically plausible in a more fundamental way, and can 
lead to a better understanding of genuine autonomy. Besides that, the energy in our work 
is related to rewards in the context of traditional Reinforcement Learning techniques, as it 
is with objective functions of traditional Evolutionary Computation techniques, i.e., since 
the algorithm is not using it direct to make some objective counting, the agent can solve its 
problems in ways that goes beyond simply chasing such computation.

Since we do not have a fitness function we could watch in order to evaluate EMO-
TIONAL, it was necessary to analyze a set of observable data that are somewhat related 
to the expected behaviors. However, the chosen observable data were extremely sensitive 
to environmental conditions, as it would be expected in a goal-free evolution, and do not 
reflect just as well the performance of the agent in behaviors we would like to see. Study-
ing them allowed us to observe several hypothesis about how an evolutionary algorithm 
without explicit objective description works, even though it is difficult to compare with a 
traditional approach.

In future work, a cautious study of the influence of the parameters of the algorithm, such 
as queue size, chromosome insertion frequency and mutation rate, is still necessary, mainly 
focusing on the reality gap. In the current state, our work shows a working instance of the 
concept of evolution without explicitly defined objective with a simulated environment, 
and here we are concentrating on the study of the environmental influence in directing evo-
lution. However, we need to better understand the internal EMOTIONAL’s parameters in 
order to make a generalization of the algorithm feasible, and to apply it to other cases, such 
as real robots. Since there is a strong integration between the algorithm and the environ-
mental rules, such as fruits that recharge the robot’s energy, whose real world reproduction 
is harder, the algorithm success in this case is more dependent of its internal work, since it 
is more feasible to make adjustments and adaptations to its parameters.

We also need to tune up the open-endedness feature of the algorithm in order to make it 
less dependent on mutation, which occurs at very low rates. We possibly need new meth-
ods to insert variation in the queue, such as creating new random individuals when the 
population is very similar, and hence we also need to study and adopt some similarity met-
rics in order to implement them.

Finally, in order to obtain genuine autonomous behavior, we certainly still need to con-
tinue our research on how to achieve “Constitutive Autonomy”. The evolution of the agent-
environment system we presented is limited, mainly because we have a “rigid” agent, i.e., 
the robot’s body, motors and sensors do not change. Such evolution is necessary so that we 
could obtain the emergence of new possible goals within the system beyond those expected 
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and foreseen when designing it, and so we could state in a stronger and broader sense that 
the agent is capable of creating its own objectives.
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