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Abstract
Traditionally, detection of epileptic seizures based on the visual inspection of neurologists is
tedious, laborious and subjective. To overcome such disadvantages, numerous seizure detec-
tion techniques involving signal processing and machine learning tools have been developed.
However, there still remain the problems of automatic detection with high efficiency and
accuracy in distinguishing normal, interictal and ictal electroencephalogram (EEG) signals.
In this study we propose a novel method for automatic identification of epileptic seizures
in singe-channel EEG signals based upon time-scale decomposition (ITD), discrete wavelet
transform (DWT), phase space reconstruction (PSR) and neural networks. First, EEG signals
are decomposed into a series of proper rotation components (PRCs) and a baseline signal by
using the ITD method. The first two PRCs of the EEG signals are extracted, which contain
most of the EEG signals’ energy and are considered to be the predominant PRCs. Second, four
levels DWT is employed to decompose the predominant PRCs into different frequency bands,
in which third-order Daubechies (db3) wavelet function is selected for analysis. Third, phase
space of the PRCs is reconstructed based on db3, in which the properties associated with
the nonlinear EEG system dynamics are preserved. Three-dimensional (3D) PSR together
with Euclidean distance (ED) has been utilized to derive features, which demonstrate signif-
icant difference in EEG system dynamics between normal, interictal and ictal EEG signals.
Fourth, neural networks are then used to model, identify and classify EEG system dynamics
between normal (healthy), interictal and ictal EEG signals. Finally, experiments are carried
out on the University of Bonn’s widely used and publicly available epilepsy dataset to assess
the effectiveness of the proposed method. By using the 10-fold cross-validation style, the
achieved average classification accuracy for eleven cases is reported to be 98.15%. Com-
pared with many state-of-the-art methods, the results demonstrate superior performance and
the proposed method can serve as a potential candidate for the automatic detection of seizure
EEG signals in the clinical application.
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1 Introduction

Epilepsy is a chronic neurological disorder caused due to abnormal and excessive brain
neuronal activity, in which Electroencephalogram (EEG) signal is the most commonly used
and efficient clinical technique to assess epilepsy due to its inexpensiveness and availabil-
ity (Zhang et al. 2017). Traditionally, detection of epileptic seizures based on the visual
inspection of neurologists is tedious, laborious and subjective (Martis et al. 2015). In
addition, it requires expertise in the analysis of long-duration EEG signals (Scheuer and
Wilson 2004). In those application scenarios absence of experts, for example, in emergency,
computer-aided automatic detection of epileptic seizure becomes significant. To overcome
above-mentioned disadvantages, numerous seizure detection techniques involving signal pro-
cessing and machine learning tools have been developed, such as support vector machine
(SVM), extreme learning machine (ELM), random forest (RF) and deep learning (Zhang
and Chen 2016; Song et al. 2016; Mursalin et al. 2017; Acharya et al. 2018; Ullah et al.
2018; Li et al. 2019; Subasi et al. 2019; Sharma et al. 2018; Sharma and Pachori 2017a, b;
Bhati et al. 2017a, b; Bhattacharyya and Pachori 2017; Tiwari et al. 2016; Sharma et al.
2017; Bhattacharyya et al. 2017; Sharma and Pachori 2015; Kumar et al. 2015; Pachori and
Patidar 2014; Bajaj and Pachori 2012, 2013; Pachori and Bajaj 2011; Pachori 2008; Pachori
et al. 2015). However, it still remains an open problem of automatic detection with high effi-
ciency and accuracy in distinguishing normal, interictal and ictal EEG signals (Djemili et al.
2016). In attempt to sovle the problem, various algorithms have been developed. Since EEG
signals are the redundant discrete-time sequences, numerous methods with combination of
time-domain, frequency-domain, time-frequency-domain and nonlinear analysis have been
proposed (Acharya et al. 2013). For the time-domain analysis, representative techniques such
as linear prediction (Sheintuch et al. 2014), fractional linear prediction (Joshi et al. 2014),
principal component analysis (PCA) based radial basis function neural network (Kafashan
et al. 2017), etc, have been proposed for seizure detection and EEG classification. For the
frequency-domain analysis, with an assumption that EEG signals are stationary, Fourier
transform is usually employed to extract features for epileptic seizure detection. Samiee
et al. (2015) applied the rational Discrete Short Time Fourier Transform (DSTFT) to extract
features for the separation of seizure epochs from seizure-free epochs using a Multilayer
Perceptron (MLP) classifier. Considering the non-stationary nature of EEG signals (Subasi
and Gursoy 2010), for the time-frequency-domain analysis, a wavelet transform tool together
with certain classifier has usually been used for the epileptic seizure detection. Hassan et al.
(2016) decomposed the EEG signal segments into sub-bands using Tunable-Q factor wavelet
transform (TQWT) and several spectral features were extracted. Then bootstrap aggregating
was employed for epileptic seizure classification. For the nonlinear analysis, various nonlin-
ear parameters extracted through different types of entropies (Acharya et al. 2015), Lyapunov
exponent (Shayegh et al. 2014), fractal dimension (Zhang et al. 2015), correlation dimen-
sion (Sato et al. 2015), recurrence quantification analysis (RQA) (Timothy et al. 2017) and
Hurst exponent (Lahmiri 2018) methods have been used for automatic detection of epileptic
EEG signals. Aarabi and He (2017) developed a method on the fusion of features extracted
from correlation dimension, correlation entropy, noise level, Lempel–Ziv complexity, largest
Lyapunov exponent, and nonlinear interdependence for the detection of focal EEG signals.

Despite the fact that these previous approaches have demonstrated respectable classifica-
tion accuracy, the potential of nonlinear methods has not been thoroughly investigated. The
EEG signal is highly random, nonlinear, nonstationary and non-Gaussian in nature (Acharya
et al. 2013), for which nonlinear features characterize the EEG more accurately than linear
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models (Wang et al. 2017). Considering this characteristics, several self-adaptive signal pro-
cessing methods, such as empirical mode decomposition (EMD) (Huang et al. 1998; Huang
and Kunoth 2013), local mean decomposition (LMD) (Park et al. 2011) and intrinsic time-
scale decomposition (ITD) (Frei and Osorio 2007), can be employed to extract effective and
predominant features from EEG signals (Li et al. 2013; Zahra et al. 2017). EMD decomposes
a multi-component signal into a series of single components and a residual signal while LMD
decomposes any complicated signal into a series of product functions. However, there exist
some drawbacks in these methods, in which the EMD method contains over envelope, mode
mixing, end effects and unexplainable negative frequency caused by Hilbert transformation
(Chen et al. 2011), while the LMD method has distorted components, mode mixing and
time-consuming decomposition (Li et al. 2015). To address these problems, recently, a new
technical tool named ITD, has been introduced by Frei and Osorio (2007) for analyzing data
from nonstationary and nonlinear processes. Compared with EMD, more local characteristic
information of the signal can be utilized in ITD method. In addition, the negative frequency
caused by Hilbert transform has been completely eliminated (Feng et al. 2016). Furthermore,
the computational efficiency has been significantly improved. With high decomposition effi-
ciency and frequency resolution, ITD can help decompose a complex signal into several
proper rotation components (PRCs) and a baseline signal, which leads to the accurate extrac-
tion of the dynamic features of nonlinear signals. Meanwhile, there is no spline interpolation
and screening process in ITD method which contains low edge effect (An et al. 2012; Xing
et al. 2017). ITD can better preserve and extract the EEG system dynamics which is effective
for the classification of normal, interictal and ictal EEG signals. Phase space reconstruction
(PSR) is another popular nonlinear tool for analyzing composite, nonlinear and nonstationary
signals (Takens 1980; Xu et al. 2013; Lee et al. 2014; Chen et al. 2014; Jia et al. 2017). The
principle of PSR is to transform the properties of a time series into topological properties of a
geometrical object which is embedded in a space, wherein all possible states of the system are
represented. Each state corresponds to a unique point, and this reconstructed space is sharing
the same topological properties as the original space. The dynamics in the reconstructed state
space is equivalent to the original dynamics. Hence reconstructed phase space is a very useful
tool to extract nonlinear dynamics of the signal (Takens 1980; Xu et al. 2013; Lee et al. 2014;
Chen et al. 2014; Jia et al. 2017). It is hypothesized that EEG system dynamics between
normal, interictal and ictal EEG signals are significantly different, which implies that PSR
offers the potential to compute the difference and classify these EEG signals.

The novelty of this work lies in four aspects: (1) ITD method is employed to measure
the variability of EEG signals and the first and second proper rotation components (PRCs)
are extracted as predominant PRCs which contain most of the EEG signals’ energy; (2) dis-
crete wavelet transform (DWT) decomposes the predominant PRCs into different frequency
bands, which are used to construct the reference variables. (3) 3D phase space of the two
PRCs components is reconstructed, in which the properties associated with the EEG system
dynamics are preserved; (3) EEG system dynamics can be modeled and identified using neu-
ral networks, which employ the ED of 3D PSR of the reference variables as features; (4) the
difference of EEG system dynamics between normal, interictal and ictal EEG signals is com-
puted and used for the discrimination between the three groups based on a bank of estimators.
Detailed description is illustrated as follows. In the present study we propose a combined
and computational method from the area of nonlinear method and machine learning for the
classification of normal, interictal and ictal EEG signals. To explore the underlying motor
strategies in the three groups, neural networks together with ITD, discrete wavelet transform
(DWT) and PSR are implemented for this purpose. The complete algorithm encompasses
four principal stages: (1) EEG signals are decomposed into a series of proper rotation com-
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ponents (PRCs) and a baseline signal by using the ITD method. The first two PRCs of the
EEG signals are extracted, which contain most of the EEG signals’ energy and are considered
to be the predominant PRCs. (2) four levels DWT is employed to decompose the predom-
inant PRCs into different frequency bands, in which third-order Daubechies (db3) wavelet
function is selected for analysis. (3) Phase space of the PRCs is reconstructed based on db3,
in which the properties associated with the nonlinear EEG system dynamics are preserved.
Three-dimensional (3D) PSR together with Euclidean distance (ED) has been utilized to
derive features, which demonstrate significant difference in EEG system dynamics between
normal, interictal and ictal EEG signals. (4) Neural networks are then used to model, iden-
tify and classify EEG system dynamics between normal (healthy), interictal and ictal EEG
signals.

The rest of the paper is organized as follows. Section 2 introduces the details of the pro-
posed method, including the Bonn dataset, data description, ITD, DWT, PSR, ED, feature
extraction and selection, learning and classification mechanisms. Section 3 presents experi-
mental results. Sections 4 and 5 give some discussions and conclusions, respectively.

2 Method

In this section, we propose a method to discriminate between normal, interictal and ictal
EEG signals using the information obtained from nonlinear EEG dynamics. It is divided into
the training stage and the classification stage and follows the following steps. In the first
step, ITD is applied to decompose EEG signals into several PRCs to extract predominant
components. In the second step, DWT is employed to decompose the predominant PRCs into
different frequency bands. In the third step, PSR is applied to extract nonlinear dynamics of
EEG signals and Euclidean distances are computed. Finally, feature vectors are fed into the
neural networks for the modeling and identification of EEG system dynamics. The difference

Fig. 1 Flowchart of the proposed method for the classification of normal, interictal and ictal EEG signals
using ITD, DWT, PSR, ED and neural networks
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of dynamics between normal (healthy), interictal and ictal EEG signals will be applied for
the classification task. The flowchart of the proposed algorithm is illustrated in Fig. 1.

2.1 EEG database

In the present studyweuse the open andpublicly availableBonnUniversity database (Andrze-
jak et al. 2001) consisting of five different sets (Z, O, N, F and S), each of which contains
100 single-channel EEG segments of 23.6-s duration. All EEG signals were recorded at a
sampling rate of 173.61Hz using a 128-channel amplifier system with an average common
reference. Band-pass filter was set with the frequency 0.53–40Hz. Hence each signal has
4097 recordings, which means the data length of each signal is 4097. Set Z and O contain
surface EEG recordings that were carried out on five healthy subjects in relaxing state. Set
Z was recorded when subjects’ eyes were open while set O was recorded when subjects’
eyes were closed. Sets N, F, and S contain intracranial recordings from depth and strip elec-
trodes collected from five epileptic patients. Set N contains seizure-free intervals collected
from the hippocampal formation of opposite hemisphere, set F contains seizure-free intervals
collected from epileptogenic zone, and set S contains epileptic seizure segments originated
from all channels. EEG recordings from Z–O, N–F and S datasets were defined as normal
(healthy), interictal and ictal signals, respectively.

2.2 Intrinsic time-scale decomposition (ITD)

Intrinsic time-scale decomposition (ITD) is suitable for analyzing nonstationary and non-
linear signals such as the EEG signals. Without resorting to the spline interpolation to
signal extrema and sifting in mono-component separation, it decomposes a signal into proper
rotation components (PRCs) that are suitable to calculate the instantaneous frequency and
amplitude, based on the baseline defined via linear transform. The obtained decomposition
result precisely preserves the temporal information of each component regarding signal crit-
ical points and riding waves, with a time resolution equal to the time scale of the occurrence
of extrema in the raw signal (Feng et al. 2016). Based on the single wave analysis, it extracts
accurately the inherent instantaneous amplitude and frequency/phase information and other
relevant morphological features (Frei and Osorio 2007).

For a time series signal I (t), define the operator L to extract the baseline signal from
I (t) and the residual signal is called the proper rotation component (PRC). The decomposed
signal I (t) can be expressed as

I (t) = L I (t) + (1 − L)I (t) = B(t) + H(t) (1)

where B(t) is the baseline signal and H(t) is the proper rotation.
The decomposition procedure of a nonlinear signal can be summarized by the following

steps:

– Step 1 Find the local extrema of the signal I (t), denoted by Ik , and the corresponding
occurrence time instant τk, k = 0, 1, 2, . . .. For convenience τ0 = 0.

– Step 2 Suppose the operators B(t) and H(t) are given over the interval [0, τk ], and I (t)
is set on the interval t ∈ [0, τk+2]. Then on the interval [τk, τk+1] between two adjacent
extrema Ik and Ik+1, the piecewise baseline extraction operator is defined as

L I (t) = B(t) = Bk + (
Bk+1 − Bk

Ik+1 − Ik
) × (I (t) − Ik), t ∈ [τk, τk+1], (2)
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where
Bk+1 = β[Ik + (

τk+1 − τk

τk+2 − τk
)(Ik+2 − Ik)] + (1 − β)Ik+1, (3)

and 0 < β < 1, typically β = 0.5.
– Step 3 After extracting the baseline signal, the operator � for extracting the residual

signal as PRCs is defined as

�I (t) ≡ (1 − L)I (t) = I (t) − B(t) (4)

According to the definition, the PRC is a riding wave with the highest frequency on
the baseline. Therefore, ITD separates the PRC in a frequency order from high to low. In
addition, the PRC is obtained directly by subtracting the baseline from the input signal,
without resorting to any sifting within each iterative decomposition. Thus, ITD has low
computational complexity, and more importantly, avoids the smoothing of transients and
time-scale smearing due to repetitive sifting (Feng et al. 2016).

Take the baseline B(t) as the input signal I (t), and repeat steps (1)–(3), until the baseline
becomes a monotonic function or a constant. Eventually, the raw signal will be decomposed
into PRCs and a trend (Feng et al. 2016)

I (t) =
ρ∑

i=1

Hi (t) + Bρ(t), (5)

where ρ is the decomposition level.
Samples of the ITD of EEG signals from the five sets are demonstrated in Fig. 2.

2.3 Discrete wavelet transform (DWT)

Wavelet transform is an effective time-frequency tool for the analysis of non-stationary sig-
nals. DiscreteWavelet Transform (DWT) is a procedure for the decomposition of input signal
H(t) (H(t) is the PRC of the EEG signal in this work) into sets of function, called wavelets,
by scaling and shifting of mother wavelet function. Consequently, the decomposition i.e. set
of wavelet coefficients are formed.

To accomplish this, the signal H(t) can be reconstructed as linear combination of wavelets
and weighting wavelet coefficients. The setting of appropriate wavelet function and the num-
ber of decomposition levels is of great importance for correctly reconstructing the signal
H(t). In order to extract five physiological EEG bands, four levels DWT with third-order
Daubechies (db3) wavelet function have been used (Table 1 represents the frequency distri-
bution of the DWT-based coefficients of the PRCs of the EEG signals at 173.6 Hz), from
which the choice of the mother wavelet is supported bymanyworks in literature (Vavadi et al.
2010; Tawfik 2016; Li et al. 2017). Figure 3 shows samples of EEG channel of five sets and
their decomposed frequency bands of predominant PRCs. Since the frequency components
above 40Hz is lack of use in epilepsy analysis, in order to reduce the feature dimension, the
advisable sub-bands (D4 and A4) are selected for feature acquisition.

2.4 Phase space reconstruction (PSR)

It is sometimes necessary to search for patterns in a time series and in a higher dimensional
transformation of the time series (Sun et al. 2015). Phase space reconstruction is a method
used to reconstruct the so-called phase space. The concept of phase space is a useful tool
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Fig. 2 Samples of ITD of EEG signals from five sets
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Fig. 2 continued
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Fig. 2 continued

Table 1 Frequency band of PRCs
of the EEG signal using fourth
level decomposition

Decomposition levels Sub-bands Frequency range (Hz)

1 D1 30–60

2 D2 15–30

3 D3 8–15

4 D4 4–8

4 A4 0–4

for characterizing any low-dimensional or high-dimensional dynamic system. A dynamic
system can be described using a phase space diagram,which essentially provides a coordinate
system where the coordinates are all the variables comprising mathematical formulation of
the system. A point in the phase space represents the state of the system at any given time (Lee
et al. 2014; Sivakumar 2002). Every db3 wavelet function of the PRC of the EEG signals can
be written as the time series vector V = {v1, v2, v3, . . . , vK }, where K is the total number
of data points. The phase space can be reconstructed according to Lee et al. 2014:

Y j = (Vj , Vj+τ , Vj+2τ , . . . , Vj+(d−1)τ ) (6)

where j = 1, 2, . . . , K − (d−1)τ , d is the embedding dimension of the phase space and τ is
a time lag. It is worthwhile to mention that the properties associated with the EEG dynamics
are preserved in the reconstructed phase space.
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Fig. 3 Samples of four levels DWT of PRC1 and PRC2 of the EEG signals from five sets
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(c) Four levels DWT of PRC1 and PRC2 of the EEG signal from Set N.
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(d) Four levels DWT of PRC1 and PRC2 of the EEG signal from Set F.

Fig. 3 continued

123



3070 W. Zeng et al.

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04
-1000

0

1000

P
R

C
1

DWT of PRC1 of the EEG signal from Set S

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04
-500

0

500

P
R

C
2

DWT of PRC2 of the EEG signal from Set S

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04
-1000

0

1000

D
1

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04
-500

0

500

D
1

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04
-1000

0

1000

D
2

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04
-500

0

500

D
2

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04

-500
0

500

D
3

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04
-400
-200

0
200
400

D
3

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04
-500

0

500

D
4

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04
-400
-200

0
200
400

D
4

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04

Time (second)

-500
0

500

A
4

0    2.88 5.76 8.46 11.52 14.4 17.28 20.16 23.04

Time (second)

-400
-200

0
200
400

A
4

(e) Four levels DWT of PRC1 and PRC2 of the EEG signal from Set S.

Fig. 3 continued

The behaviour of the signal over time can be visualized using PSR (especially when d = 2
or 3). In this work, we have confined our discussion to the value of embedding dimension
d = 3, because of their visualization simplicity. In addition, different studies have found this
value to best represent the attractor for human movement (Venkataraman and Turaga 2016;
Som et al. 2016). For τ , we either use the first-zero crossing of the autocorrelation function
for each time series or the average τ value obtained from all the time series in the training
dataset using the method proposed in Michael (2005). In this study, we consider the values
of time lag τ = 1 to test the classification performance. PSR for d = 3 has been referred to
as 3D PSR.

Reconstructed phase spaces have been proven to be topologically equivalent to the original
system and therefore are capable of recovering the nonlinear dynamics of the generating
system (Takens 1980; Xu et al. 2013). This implies that the full dynamics of the EEG system
are accessible in this space, and for this reason, features extracted from it can potentially
containmore and/or different information than the common features extractionmethod (Chen
et al. 2014).

3D PSR is the plot of three delayed vectors Vj , Vj+1 and Vj+2 to visualize the dynamics
of human EEG system. Euclidian distance (ED) of a point (Vj , Vj+1, Vj+2), which is the
distance of the point from origin in 3D PSR and can be defined as Lee et al. 2014

EDj =
√
V 2
j + V 2

j+1 + V 2
j+2 (7)

ED measures can be used in features extraction and have been studied and applied in
many fields, such as clustering algorithms and induced aggregation operators (Merigó and
Casanovas 2011).
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Table 2 The average correlation
coefficients between each PRC
and original EEG signals from
five sets of the Bonn database

EEG signal Average correlation coefficients

PRC1 PRC2 PRC3 PRC4

Set Z 0.916 0.468 0.068 0.043

Set O 0.932 0.501 0.145 0.018

Set N 0.932 0.480 0.184 0.078

Set F 0.948 0.442 0.168 0.102

Set S 0.961 0.365 0.131 0.093

2.5 Feature extraction and selection

In order to obtainmore efficient features, this paper proposes the following extraction scheme.
(1) ITD of the EEG signals and derivation of predominant PRCs. The signals obtained by

ITD method, which are a series of decomposing signals, cannot be directly used to classify
because of the high feature dimension. To solve this problem, the Pearson’s correlation
coefficient is calculated to measure the correlation between the first four PRCs and the
original EEG signals. The PRC with higher correlation coefficient is more highly correlated
to the original signal, which means the signal energy is mostly concentrated in this PRC as
well. In the present study most of the energy is concentrated in PRC1 and PRC2 components,
which have the most important information from the EEG signals and are considered to be
the predominant PRCs (seen from Table 2).

(2) Four levels DWT is employed to decompose the predominant PRCs into different
frequency bands, in which third-order Daubechies (db3) wavelet function is selected for
analysis. D4 and A4 of the PRC1 and PRC2 EEG signals are regarded as reference variables
[PRC1D4, PRC1A4, PRC2D4, PRC2A4]T and are used for feature derivation.

(3) Reconstruct the phase space of the reference variables with selected values of d and
τ ;

(4) Compute ED of 3D PSR of the reference variables. Concatenate them to form a feature
vector [EDPRC1D4

j , EDPRC1A4
j , EDPRC2D4

j , EDPRC2A4
j ]T .

For the Bonn epileptic database, EEG signals are analyzed and signal dynamics are
extracted by using ITD, DWT and 3D PSR. First, ITD of the EEG signals are exhib-
ited in Fig. 2. Four levels DWT of the PRC1 and PRC2 of EEG signals from the
five sets are demonstrated in Fig. 3. The db3 of the first two PRCs are utilized to
form the reference variables [PRC1D4, PRC1A4, PRC2D4, PRC2A4]T . Samples of the
3D PSR of the reference variables are exhibited in Fig. 4. After 3D PSR, features of
[EDPRC1D4

j , EDPRC1A4
j , EDPRC2D4

j , EDPRC2A4
j ]T for EEG signals of the five sets are

derived through ED computation, as demonstrated in Fig. 5. As we have analyzed before,
significant difference in EEG system dynamics have been reported between EEG signals of
five sets, which can also be seen obviously from Fig. 4.

2.6 Training andmodelingmechanism based on selected features

In this section, we present a scheme for modeling and deriving of EEG system dynamics
from normal, interictal and ictal EEG signals based on the above mentioned features.

Consider a general nonlinear EEG system dynamics in the following form:
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Fig. 4 Samples of 3D PSR of the reference variables [PRC1D4, PRC1A4, PRC2D4, PRC2A4]T of EEG
signals from five sets
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Fig. 4 continued
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Fig. 5 Samples of Euclidian distance of 3D PSR of the reference variables [PRC1D4,
PRC1A4, PRC2D4, PRC2A4]T of EEG signals
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Fig. 5 continued
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ẋ = F(x; p) + v(x; p) (8)

where x = [x1, . . . , xn]T ∈ Rn are the system states which represent the features
[EDPRC1D4

j , EDPRC1A4
j , EDPRC2D4

j , EDPRC2A4
j ]T , p is a constant vector of systemparam-

eters. F(x; p) = [ f1(x; p), . . . , fn(x; p)]T is a smooth but unknown nonlinear vector
representing the EEG system dynamics, v(x; p) is the modeling uncertainty. Since the
modeling uncertainty v(x; p) and the EEG system dynamics F(x; p) cannot be decou-
pled from each other, we consider the two terms together as an undivided term, and define
φ(x; p) := F(x; p) + v(x; p) as the general EEG system dynamics. Then, the following
steps are taken to model and derive the EEG system dynamics via deterministic learning
theory (Wang and Hill 2006, 2007, 2009).

In the first step, standard RBF neural networks are constructed in the following form

fnn(Z) =
N∑

i=1

wi si (Z) = WT S(Z), (9)

where Z is the input vector, W = [w1, . . . , wN ]T ∈ RN is the weight vector, N is the node
number of the neural networks, and S(Z) = [s1(‖ Z − μ1 ‖), ..., sN (‖ Z − μN ‖)]T , with
si (‖ Z − μi ‖) = exp[−(Z−μi )

T (Z−μi )

η2i
] being a Gaussian function, μi (i = 1, ..., N ) being

distinct points in state space, and ηi being the width of the receptive field.
In the second step, the following dynamical RBF neural networks are employed to model

and derive the EEG system dynamics φ(x; p):
˙̂x = −A(x̂ − x) + Ŵ T

j S j (x) (10)

where x̂ = [x̂1, . . . , x̂n] is the state vector of the dynamical RBF neural networks, A =
diag[a1, . . . , an] is a diagonal matrix, with ai > 0 being design constants, localized RBF
neural networks Ŵ T

j S j (x) = ∑N
i=1 wi j si j (x) are used to approximate the unknown φ(x; p),

where Ŵ j = [w1 j , . . . , wN j ]T , S j = [s1 j , . . . , sN j ]T , for j = 1, . . . , n.
The following law is used to update the neural weights

˙̂Wi = ˙̃Wi = −�i Si (x)x̃i − σi�i Ŵi (11)

where x̃i = x̂i − xi , W̃i = Ŵi − W ∗
i , W

∗
i is the ideal constant weight vector such that

φi (x; p) = W ∗
i
T Si (x) + εi (x), εi (x) < ε∗ represents the neural network modeling error,

�i = �T
i > 0, and σi > 0 is a small value.

With Eqs. (8)–(10), the derivative of the state estimation error x̃i satisfies

˙̃xi = −ai x̃i + Ŵ T
i Si (x) − φi (x; p) = −ai x̃i + W̃ T

i Si (x) − εi (12)

In the third step, by using the local approximation property of RBF neural networks, the
overall system consisting of dynamical model (12) and the neural weight updating law (11)
can be summarized into the following form in the region �ζ

[ ˙̃xi˙̃Wζ i

]
=

[ −ai Sζ i (x)T

−�ζ i Sζ i (x) 0

] [
x̃i
W̃ζ i

]
+

[ −εζ i

−σi�ζ i Ŵζ i

]
(13)

and ˙̂Wζ̄ i = ˙̃Wζ̄ i = −�ζ̄ i Sζ̄ i (x)x̃i − σi�ζ̄ i Ŵζ̄ i (14)
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where εζ i = εi − W̃ T
ζ̄ i
Sζ̄ (x). The subscripts (·)ζ and (·)ζ̄ are used to stand for terms related

to the regions close to and far away from the trajectory ϕζ (x0). The region close to the
trajectory is defined as �ζ := {Z |dist(Z , ϕζ ) ≤ dι}, where Z = x, dι > 0 is a constant
satisfying s(dι) > ι, s(·) is the RBF used in the network, ι is a small positive constant. The
related subvectors are given as: Sζ i (x) = [s j1(x), . . . , s jζ (x)]T ∈ RNζ , with the neurons
centered in the local region �ζ , and W ∗

ζ = [w∗
j1, . . . , w

∗
jζ ]T ∈ RNζ is the corresponding

weight subvector, with Nζ < N . For localized RBF neural networks, |W̃ T
ζ̄ i
Sζ̄ i (x)| is small,

so εζ i = O(εi ).
By the convergence result, we can obtain a constant vector of neural weights according to

W̄i = meant∈[ta ,tb]Ŵi (t) (15)

where tb > ta > 0 represent a time segment after the transient process. Therefore, we
conclude that accurate identification of the function φi (x; p) is obtained along the trajectory
ϕζ (x0) by using W̄ T

i Si (x), i.e.,

φi (x; p) = W̄ T
i Si (x) + εi2 (16)

where εi2 = O(εi1) and subsequently εi2 = O(ε∗).

2.7 Classificationmechanism

In this section, we present a scheme to classify normal, interictal and ictal EEG signals.
Consider a training dataset consisting of EEG signal patterns ϕk

ζ , k = 1, . . . , M , with the

kth training pattern ϕk
ζ generated from

ẋ = Fk(x; pk) + vk(x; pk), x(t0) = xζ0 (17)

where Fk(x; pk) denotes the EEG system dynamics, vk(x; pk) denotes the modeling uncer-
tainty, pk is the system parameter vector.

As demonstrated in Sect. 2.6, the general EEG system dynamics φk(x; pk)
:= Fk(x; pk) + vk(x; pk) can be accurately derived and preserved in constant RBF neural
networks W̄ kT S(x). By utilizing the learned knowledge obtained in the training stage, a bank
of M estimators is constructed for the training EEG signal patterns as follows:

˙̄χk = −B(χ̄k − x) + W̄ kT S(x) (18)

where k = 1, . . . , M is used to stand for the kth estimator, χ̄k = [χ̄k
1 , . . . , χ̄k

n ]T is the state
of the estimator, B = diag[b1, . . . , bn] is a diagonal matrix which is kept the same for all
estimators, x is the state of an input test EEG signal pattern generated from Eq. (8).

In the classification phase, by comparing the test EEG signal pattern (standing for a
normal, interictal or ictal EEG signal pattern) generated from EEG system (8) with the set
of M estimators (18), we obtain the following test error systems:

˙̃χk
i = −bi χ̃

k
i + W̄ kT

i Si (x) − φi (x; p), i = 1, . . . , n, k = 1, . . . , M (19)

where χ̃k
i = χ̄k

i − xi is the state estimation (or synchronization) error. We compute the
average L1 norm of the error χ̃k

i (t)

‖χ̃k
i (t)‖1 = 1

Tc

∫ t

t−Tc
|χ̃k

i (τ )|dτ, t ≥ Tc (20)
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where Tc is the cycle of EEG signals.
The fundamental idea of the classification between normal, interictal and ictal EEG

signals is that if a test EEG signal pattern is similar to the trained EEG signal pattern
s (s ∈ {1, . . . , k}), the constant RBF network W̄ sT

i Si (x) embedded in the matched esti-
mator s will quickly recall the learned knowledge by providing accurate approximation to
EEG system dynamics. Thus, the corresponding error ‖χ̃ s

i (t)‖1 will become the smallest
among all the errors ‖χ̃k

i (t)‖1. Based on the smallest error principle, the appearing test EEG
signal pattern can be classified. We have the following classification scheme.

Classification scheme If there exists some finite time t s, s ∈ {1, . . . , k} and some i ∈
{1, . . . , n} such that ‖χ̃ s

i (t)‖1 < ‖χ̃k
i (t)‖1 for all t > t s , then the appearing EEG signal

pattern can be classified.

3 Experimental results

Experiments are implemented using matlab software and tested on an Intel Core i7 6700K
3.5GHz computer with 32GB RAM. We assign feature vector sequences for all the EEG
signals in the Bonn database. Based on the method described in Sect. 2.5, we extract
features through EEG signal time series which means input of the RBF neural networks
x = [EDPRC1D4

j , EDPRC1A4
j , EDPRC2D4

j , EDPRC2A4
j ]T . In order to eliminate data differ-

ence between different features, all feature data are normalized to [−1, 1].
Several experiments are carried out to verify the effectiveness of the proposedmethod. The

classification results will be evaluated with the 10-fold and leave-one-out cross-validation
styles. The data are divided into the training and test subsets. For the 10-fold cross-validation,
the data set is divided into ten subsets. Each time, one of the ten subsets is used as the test
set and the other night subsets are put together to form a training set. For the leave-one-out
cross-validation style, each time we select one EEG signal pattern for classification, the rest
of the EEG signal patterns for training. This process is repeated K (representing the number
of EEG signal patterns) times and the leave-one-out classification accuracy is calculated as
the average of the classification accuracy of all of the individually left-out patterns.

For the evaluation, six performance parameters are used including the Sensitivity (SEN),
the Specificity (SPF), the Accuracy (ACC), the Positive Predictive Value (PPV), the Negative
Predictive Value (NPV) and the Matthews Correlation Coefficient (MCC) (Azar and El-Said
2014). To be accurate, a classifier must have a high classification accuracy, a high sensitivity,
as well as a high specificity (Chu 1999). For a larger value ofMCC, the classifier performance
will be better (Azar and El-Said 2014; Yuan et al. 2007).

In the past literature, various approaches focused on the classification of EEG signals
between Sets A and E. However the effectiveness of the classification between different
groups of datasets was not investigated thoroughly. It is therefore more desirable to figure out
the ability of the proposed method to classify EEG signals containing different combinations
of datasets (Z, O, N, F and S). To address this issue, 11 different classification problems
are made from aforementioned datasets. All experiments described in Table 3 focus on
distinguishing normal, interictal and ictal EEG signals. Cases 1 to 8 deal with the binary
classification while cases 9 to 11 accomplish multi-class classification.

The classification results on different cases have been illustrated in Tables 4, 5, 6, 7, 8,
9, 10, 11, 12, 13 and 14 with 10-fold and leave-one-out cross-validation styles. Our study
demonstrates the accuracy improvements to differentiate between normal, interictal and ictal
EEGsignals.Overall, our classification approach achieves goodperformance,which indicates
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Table 3 Different experimental cases in the present study

Case Groups Description

Class 1 Class 2 Class 3 Class 4 Class 5

1 Z–S Normal (eyes open) Ictal – – –

2 O–S Normal (eyes closed) Ictal – – –

3 N–S Interictal Ictal – – –

4 F–S Interictal Ictal – – –

5 NF–S Interictal Ictal – – –

6 Z–F Normal Interictal – - –

7 ZONF–S Non-seizure Seizure – – –

8 ZO–NFS Normal epileptic – – –

9 Z–N–S Normal Interitcal Ictal – –

10 ZO–NF–S Normal Interitcal Ictal – –

11 Z–O–N–F–S Normal (eyes open) Normal (eyes closed) Interictal Interictal Ictal

Table 4 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 1: Z–S

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Normal (eyes open) Ictal

10-fold
cross-validation

Normal (eyes open) 99 1 99% 99% 99% 99% 99% 0.98

Ictal 1 99

Table 5 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 2: O–S

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Normal (eyes closed) Ictal

10-fold
cross-validation

Normal (eyes closed) 100 0 99% 100% 99.5% 100% 99.01% 0.99

Ictal 1 99

Table 6 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 3: N–S

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Interictal Ictal

10-fold cross-validation Interictal 99 1 98% 99% 98.5% 98.99% 98.02% 0.97

Ictal 2 98

that the proposed pattern recognition system can effectively differentiate between different
classes of EEG signals by using nonlinear features and neural network based classification
tools.
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Table 7 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 4: F–S

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Interictal Ictal

10-fold cross-validation Interictal 99 1 100% 99% 99.5% 99.01% 100% 0.99

Ictal 0 100

Table 8 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 5: NF–S

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Interictal Ictal

10-fold cross-validation Interictal 200 0 94% 100% 98% 100% 97.09% 0.955

Ictal 6 94

Table 9 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 6: Z–F

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Normal Interictal

10-fold cross-validation Normal 99 1 100% 99% 99.5% 99.01% 100% 0.99

Interictal 0 100

Table 10 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 7: ZONF-S

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Non-seizure Seizure

10-fold cross-validation Non-seizure 396 4 94% 99% 98% 95.923% 98.51% 0.937

Seizure 6 94

Table 11 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 8: ZO–NFS

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Normal Epileptic

10-fold cross-validation Normal 198 2 92.67% 99% 95.2% 99.29% 90% 0.905

Epileptic 22 278

4 Discussion

The experimental results of this study demonstrate that normal, interictal and ictal EEG
signals could be detected automatically by means of hybrid feature extraction methods and
neural networks. The proposed scheme focuses not only on providing evidence to support
the claim that interictal and ictal EEG signals demonstrate altered dynamics compared to
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Table 12 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 9: Z–N–S

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Normal Interitcal Ictal

10-fold cross-validation Normal 99 1 0 – – 99% – – –

Interictal 0 99 1

Ictal 0 1 99

Table 13 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 10: ZO-NF-S

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Normal Interitcal Ictal

10-fold cross-validation Normal 199 1 0 – – 99.4% – – –

Interictal 0 199 1

Ictal 0 1 99

Table 14 Performance of the proposed classification approach evaluated by 10-fold cross-validation method
with Case 11: Z–O–N–F–S

Evaluation methods Predicted groups Actual groups SEN SPF ACC PPV NPV MCC

Z O N F S

10-fold cross-validation Z 94 1 1 2 2 – – 94% – – –

O 1 93 1 2 3

N 1 2 94 1 2

F 1 2 1 94 2

S 1 2 1 1 95

normal EEG signals, but also on providing an automatic and objective method to distinguish
between the three groups of EEG signals.

Recently, different methods reported in the literature have been proposed to automatically
detect the normal, interictal and ictal EEG signals. It should be noted that all of the recent
methods demonstrated in Table 15 were evaluated using 10-fold cross-validation.

For case 1 (A–E), Isik and Sezer (2012) used tools including Wavelet Transform (WT),
Multilayer Perceptron (MLP) and Elman artificial neural networks (ANN), and the achieved
classification accuracy was 96%. Du et al. (2012) extracted principal component features
using principal components analysis (PCA) on 15 high-order spectra (HOS) features. Then
eight different classifier including ANN, MLP, RBF network, random forest, rotation forest,
logistic regression, model trees, simple logistic regression, and bagging were employed to
evaluate the classification performance of the proposed features, in which the simple logistic
regression achieved the highest accuracy of 94.5%. Zhang et al. (2018) combined fuzzy
distribution entropy with wavelet packet decomposition, Kruskal–Wallis nonparametric one-
way analysis of variance and k-nearest neighbor (KNN) classifier to classify the EEG signals
and the achieved best accuracy was 100%. In our proposed method, the achieved accuracy
is 99%.
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Table 15 Summary of classification performance (10-fold cross-validation style) obtained for some cases
using the same dataset in the literature

References Methodology Cases ACC (%)

Isik and Sezer (2012) Wavelet transform and ANN Z–S 96

Du et al. (2012) HOS-PCA + logistic regression Z–S 94.5

Zhang et al. (2018) Fuzzy distribution entropy, wavelet packet
decomposition and KNN

Z-S 100

Tawfik (2016) Weighted permutation entropy + SVM O–S 99.25

Ahmedt-Aristizabal et al. (2018) RNN + LSTM O–S 94.75

Tawfik (2016) Weighted permutation entropy + SVM N-S 99.02

Ahmedt-Aristizabal et al. (2018) RNN + LSTM N–S 97.25

Tawfik (2016) Weighted permutation entropy + SVM F–S 98.18

Ahmedt-Aristizabal et al. (2018) RNN + LSTM F–S 96.5

Joshi et al. (2014) Fractional linear prediction + SVM NF–S 95.33

Diykh et al. (2017) Complex networks NF–S 97.8

Jaiswal and Banka (2017) LNDP and 1D-LGP Z–F 99.90

Kaya et al. (2014) 1D-LBP + BayesNet Z–F 99.50

Kumar et al. (2014) Fuzzy approximate entropy + SVM ZONF–S 97.38

Mursalin et al. (2017) Improved Correlation Feature selection and
Random forest classifier

ZONF-S 97.4

Kaya et al. (2014) 1D-LBP + BayesNet ZO–NFS 93

Acharya et al. (2018) 13-layer deep convolutional neural network ZO-NFS 88.7

Jaiswal and Banka (2017) LNDP and 1D-LGP Z–N–S 98.22

Kaya et al. (2014) 1D-LBP + BayesNet Z–N–S 95.67

Li et al. (2017) DT-CWT + nonlinear features + SVM,
KNN, random forest and rotation forest

Z–N–S 98.87

Wang et al. (2011) Wavelet packet entropy + artificial neural
network

ZO–NF–S 97.13

Acharya et al. (2012) Wavelet packet decomposition + Gaussian
mixture model

ZO–NF–S 99

Zahra et al. (2017) Multivariate empirical mode decomposition
+ artificial neural network

Z–O–N–F–S 87.2

Proposed work ITD, DWT, PSR, ED and neural networks Z–S 99

O–S 99.5

N–S 98.5

F–S 99.5

NF–S 98

Z–F 99.5

ZONF–S 98

ZO–NFS 95.2

Z–N–S 99

ZO–NF–S 99.4

Z–O–N–F–S 94

Average 98.15
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For cases 2–4, the classification accuracy achieved by our proposed method is 99.25%,
99.02%, and 98.18% respectively. Tawfik (2016) achieved the classification accuracy of
85%, 93.5%, and 96.5%, respectively, for these experimental cases with the combination of
weighted permutation entropy and SVM. Recently, with the development of deep learning
method, Ahmedt-Aristizabal et al. (2018) used recurrent Neural Networks (RNNs) via the
use of Long-Short Term Memory (LSTM) networks and achieved classification accuracy of
94.75%, 97.25%, and 96.5% for these experimental cases, respectively. However, there are
efficient formulas behind deep learning success (Goceri 2018), parameters such as batch size
should be chosen carefully (Goceri and Gooya 2018). In comparison, the achieved accuracy
for cased 2–4 in our proposed method is 99.5%, 98.5% and 99.5%, respectively.

For cases 5–7, our proposed method achieved the classification accuracy of 98%, 99.5%
and 98%, respectively. For case 5 (NF-S), Joshi et al. (2014) utilized the fractional linear
prediction technique together with the SVMclassifier and the reported classification accuracy
was 95.33%. For the same case, Diykh et al. (2017) used complex networks approach and
reported the classification accuracy of 97.8%. For case 6 (Z–F), Jaiswal and Banka (2017)
employed the local neighbor descriptive pattern (LNDP) and one-dimensional local gradient
pattern (1D-LGP) together with ANN for the classification and reported the accuracy of
99.90%. Kaya et al. (2014) used one-dimensional local binary pattern (1D-LBP) to extract
the histogram features and fed them into the BayesNet classifier for the classification. The
reported accuracy was 99.50%. For case 7 (ZONF-S), Kumar et al. (2014) used the DWT-
based fuzzy approximate entropy to extract features and fed them into the SVM classifier
to achieve the classification accuracy of 97.38%. Mursalin et al. (2017) used the improved
correlation-based feature selection method (ICFS) together with Random Forest classifier
and reported the classification accuracy of 97.4%.

For case 8 (ZO–NFS), Kaya et al. (2014) reported accuracy of 93%. Acharya et al. (2018)
used the 13-layer deep convolutional neural network (CNN) algorithm and reported the
accuracy of 88.7%. In comparison, the achieved accuracy in our proposed method is 95.2%.

Case 9 (Z–F–S) is a multi-class classification problem including three classes. Jaiswal and
Banka (2017) reported the accuracy of 98.22% and 97.06% by using LNDP and 1D-LGP,
respectively. Kaya et al. (2014) reported the classification accuracy of 95.67% with 1D-LBP.
Li et al. (2017) used the dual-tree complex wavelet transform (DT-CWT) to decompose EEG
signals into five constituent sub-bands, which were associated with the nonlinear features
of Hurst exponent (H), Fractal Dimension (FD) and Permutation Entropy (PE). Then four
classifiers including SVM, KNN, random forest and rotation forest were employed and the
reported classification accuracy was 98.87%. In comparison, the achieved accuracy in our
proposed method is 99%.

Case 10 (ZO–NF–S) is another multi-class classification problem including three classes.
Wang et al. (2011) reported the accuracy of 97.13% by using wavelet packet entropy features
together with a classifier of artificial neural network. Acharya et al. (2012) reported the
classification accuracy of 99% with Wavelet packet decomposition and Gaussian mixture
model. In comparison, the achieved accuracy in our proposed method is 99.4%.

Case 11 (Z–O–N–F–S) is a five-class classification problem. Zahra et al. (2017) decom-
posed the EEG signal to its multiple intrinsic scales by using the multivariate empirical mode
decomposition algorithm. After removing the intrinsic mode functions (IMFs) belonging to
noise and other unnecessary artifacts, classification on the remainder of IMFs has been per-
formed by employing a feature vector via artificial neural network framework. The reported
accuracy was 87.2%. In comparison, the achieved accuracy in our proposed method is 94%.

Different from the above discussedmethods, this study proposes a hybridmethod to extract
effective features based on ITD, DWT, PSR and ED. These features are fed into dynamical
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estimators which are consisting of RBF neural networks to classify different classes of EEG
signals. Comparison of the classification performance to other state-of-the-art methods on
the same database is demonstrated in Table 15. The proposed method provides an average
classification accuracy of 98.15% for the eleven cases through 10-fold cross-validation. Due
to the use of 10-fold cross-validation, the classification performance is robust. The method
studied in this paper has the potential to serve as a supportive technical means to other
approaches such as fMRI for the diagnosis of epilepsy.

Because the dimension of the features and the number of the neurons used in the study is 4
and83,521, respectively, the computational load is relatively high. It is also time-consuming to
carry out the ITD and DWT computation which may increase the complexity. However, with
the development of computer technology, more powerful workstations and high-performance
computers have been used to improve the computational capacity and reduce the computing
time. This makes it easier to carry out ITD and DWT computation and become applicable in
real-time applications, which significantly reduces the complexity. Hence it is acceptable to
implement the experiments on an Intel Core i7 6700K 3.5GHz computer with 32GBRAM in
the present study. In future work the authors will try to optimize the algorithm structure and
adopt new computing technology and equipment to improve the computational performance
and further reduce the complexity.

In general, the experimental results have shown that the proposedmethod can acquire high
accuracy in epilepsy detecting on two-class, three-class andfive-class classification problems.
This demonstrates that our scheme is appropriate in solving problems with multiple classes.
Automated analysis of epileptic seizure activity has a strong clinical potential. Also, it can be
more important to produce mobile health technologies about the disease (Goceri and Songul
2018). Another important property is its computational simplicity after employing high-
performance computers, which reduces the complex and makes it possible to be deployed in
clinical applications. Consequently, this new approach can better meet clinical demands in
the aspects of efficiency, functionality, universality and simplicity with satisfactory accuracy.
These characteristics would make this method become an attractive alternative offer for
actual clinical diagnosis. There are many factors in the proposed method that work together
to improve the classification performance, which includes the following advantages. ITD
could extract most important information of the EEG signals through predominant PRCs.
DWT decomposes the predominant PRCs into different frequency bands, which are used to
construct the reference variables. PSR plots EEG system dynamics along the advisable db3
sub-bands (D4 and A4) of PRCs trajectory in a 3D phase space diagram and visualizes the
EEG system dynamics. ED measures and derives features, which are fed into RBF neural
networks for themodeling, identification and classification of EEG systemdynamics between
normal, interictal and ictal EEG signals. However, some limitations such as the regulation
principle of the embedding dimension and time lag, the relationship between the classification
performance and the PSR parameters, still need to be improved and overcome. It would be
of interest to develop strategy for adaptive selection of PSR parameters which could create
best classification performance.

5 Conclusions

In this study, effective feature extraction techniques including ITD, DWT, PSR and ED have
been introduced for epileptic EEG signal classification. All the techniques extract informa-
tive features for classification, which are computationally simple and easy to implement.
The results of this study indicate that the pattern classification of EEG signals can offer an
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objective method to assess the disparity of EEG system dynamics between normal, interictal
and ictal EEG signals. However, some limitations such as the relatively small size of the
database, the regulation principle of the embedding dimension and time lag, still need to
be improved and overcome. In future research, features introduced in other methods such
as complete ensemble empirical mode decomposition (CEEMD), various entropies, Hurst
exponent, mean-frequency (MF) and root-mean-square (RMS) bandwidth, Lempel–Ziv com-
plexity, largest Lyapunov exponent, fractal dimension and other nonlinear features, can also
be explored in the proposed framework to evaluate its classification performance. The results
of the present study can be improved further by using wide database with more patients and
various features. In addition, the future scope of this research will include identification of
seizure stages besides the seizure detection part.
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