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Abstract
A standard screening procedure involves video endoscopy of the Gastrointestinal tract. It
is a less invasive method which is practiced for early diagnosis of gastric diseases. Manual
inspection of a large number of gastric frames is an exhaustive, time-consuming task, and
requires expertise. Conversely, several computer-aided diagnosis systems have been pro-
posed by researchers to cope with the dilemma of manual inspection of the massive volume
of frames. This article gives an overview of different available alternatives for automated
inspection, detection, and classification of various GI abnormalities. Also, this work elab-
orates techniques associated with content-based image retrieval and automated systems for
summarizing endoscopic procedures. In this survey, we perform a comprehensive review of
feature extraction techniques and deep learning methods which were specifically developed
for automatic analysis of endoscopic videos. In addition, we categorize features extraction
techniques according to image processing domains and further we classify them based on
their visual descriptions. We also review hybrid feature extraction techniques which are
developed by the fusion of different kind of basic descriptors. Moreover, this survey covers
various endoscopy data-sets available for the bench-marking of vision based algorithms. On
the basis of literature, we explain emerging trends in computerized analysis of endoscopy.
We also survey important issues, challenges, and future research directions to the develop-
ment of computer-assisted systems for detection of maladies and interactive surgery in the
GI tract.
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1 Introduction

The gastric burden is increasing with the fact of growing population and due to the formation
of cancer in the gastrointestinal tract (GI) around the world. Every year nearly 0.7 million
cases of specifically gastric cancer are reported (Siegel et al. 2015). It is estimated that cancer
cases in both sexes are 24,590 deaths are estimated in 2015 and 10,720 in the United States
alone. The worst conditions can be observed in developing countries (e.g. the Middle East
and the Asian countries) (Swannell 2010; Organization et al. 2015). The normal clinical
practice includes the intestinal biopsy (tissues sample of the mucosa is taken) of GI tract.
Which are then analyzed by experts (under microscope), to see if there are any cancerous or
abnormal cells exist. This is an invasive method for detection of gastric abnormalities and it
requires high-level of expertise (Qi 2008). On the other hand, endoscopy is a less invasive
method for screening GI tract (Kainuma et al. 2015). An endoscope is a flexible tube with
a mounted camera, light source, and an accessory channel (Pennazio 2006). Moreover, an
accessory channel can be used for cleansing of GI tract or inserting medical instruments.
Therefore, the endoscope can also be used for the intestinal biopsy (Wallace and Keisslich
2010).

TheGI tract canbe categorized into several parts, starting fromupper stomachpartsGI tract
have esophagus, stomach inmiddle, and duodenum as ending of stomach (upper GI tract), the
jejunum, ileum (small-bowel), ending at the colon, and rectum (Carpi et al. 2011; Filip et al.
2011). Therefore, the endoscopy procedures refer to different names according to the target
area ofGI tract1 e.g., for esophagus referred (esophagoscopy), area of stomach and duodenum
(gastroscopy), rectum and sigmoid colon (proctoscopy), sigmoid colon (sigmoidoscopy),
colon (colonoscopy) for whole GI tract (laparoscopy).

The endoscopic procedure helps the physician for the detection of gastric abnormalities in
their early stages. Timely detection of chronic diseases can be cured with proper treatments.
Thus, the screening process can be very useful for a substantial reduction in both, death-rate
as well as the cost of treatment. Specifically, the deaths occur due to different gastrointestinal
cancers, which can be cured if cancer was detected in its pre-malignant stage (Hamashima
et al. 2015). Still, video endoscopy is a painful procedure, it also requires both time and
expertise (Society 2016).

In contrast with the wired endoscopy, the wireless capsule endoscopy (WCE) is a painless
tool than traditionally used white light video endoscopy (VE) for examining the internal
cavity of the human body (Gastelum et al. 2015; Kim et al. 2005). Normally, a VE composed
of a light source, a charged couple camera (CCD), and a video monitor (which is used to
view the output of the endoscope).

1.1 Abnormalities in gastrointestinal tract

The GI tract is a crucial part of human body, it refers to stomach, small intestine and whole
digestive system. The GI tract can be divided into an esophagus, stomach, small bowel and
colon (Chu et al. 2015). Furthermore, the stomach has its own parts as the upper stomach,
middle stomach and lower stomach (Miyahara et al. 2007). A brief introduction of the parts
of a GI tract has given in Table 1.

There are many clinical conditions, including basic symptoms and mature diseases found
in theGI tract. Some of these abnormalities of the digestive system are listed below.Moreover,
some of them can be easily detected through a normal endoscopic procedure. However, there

1 http://www.cancer.net/navigating-cancer-care/diagnosing-cancer/tests-and-procedures/types-endoscopy.
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Table 1 Anatomy of the gastrointestinal tract

Disease Description

Esophagus When we eat food, the chewed food goes into the esophagus. The esophagus is
a tube-like organ that used to carry food to the stomach (Khashab et al. 2016).
The entry point of food into the stomach is called gastroesophageal (GE)
junction, which is located under the lungs (Owens and Appelman 2014a)

Stomach The stomach is a towel-like organ that holds food (Eberlein et al. 2002). After
the food arrived from esophageal the special enzymes are produced to digest
the food into that stomach (Rogy and Bünger 2015; Roukos et al. 2002)

Small-bowel Secretion of stomach juices and the food are mixed. Then, the food goes into
the entrance of small-intestine called duodenum (Callacondo-Riva et al.
2009). The small-intestine is like a narrow tube of approximately 6 meters in
length. Due to complexity and length of small intestine, the screening is a
difficult and time-consuming task (Axon 2008)

Colon The last portion of GI tract, and the most prone area for having tumors and
polyps. The colon cancer is the third most common disease found in the
Western countries (Chu et al. 2015; Kiesslich and Neurath 2007). The colon
is consisting of several parts, ascending colon, transverse colon, descending
colon and rectum (Hurlstone et al. 2004)

are some diseases in GI tract (e.g., cancer, polyps and ulcers) that do not exhibit visible signs
until it approaches an advance stage (Liedlgruber and Supervisor 2011).

(1) Cancer There are many types of cancer [e.g., adenocarcinoma (Kelley and Duggan
2003; Cobrin et al. 2006; Ueo et al. 2013; Gholami et al. 2015), lymphoma (Namikawa et al.
2005; Choi 2014), GIST (Korngold 2011), carcinoid tumor (Owens and Appelman 2014b),
squamous cell carcinoma (Callacondo-Riva et al. 2009; Takita et al. 2005), and small cell
carcinoma (Report 1990; Owens and Appelman 2014b)]. However, most of the cancers are
started from an unusual growth of cells. The older cells do not die and unusual growth of cells
forms cancer. Some common symptoms of gastric cancer include early satiety, abdominal
pain, nausea, vomiting, bloating, weight-loss, and anorexia (Rogy and Bünger 2015). It is
worth mentioning here, that cancer can start in any area of the GI tract.

(2) Polyps Polyps are similar to cancer, it is also an unusual mucosal growth and typically
these are benign (Kato et al. 2010). On the other hand, there could be diminutive colorectal
polyps, which are very dangerous if left untreated. Polyps can grow in any area of GI tract
similar to cancer. However, mostly found in the colon and small-bowel (Hazewinkel et al.
2013).

(3) Ulcer The ulcer is also referred to a disease caused by the acid that is produced by the
stomach itself. In peptic ulcer, the gastric cells are damaged with gastric juices. Normally
ulcer appears in the duodenum, small intestine or in gastric lining (Karargyris and Bourbakis
2009b; Mountford et al. 1980; Jensen et al. 2016).

(4) Helicobacter pylori Helicobacter pylori (H. pylori) bacterium can be found in many
areas of GI tract. The H. pylori causes inflammation in the mucosal wall. Therefore, an
infection caused by this bacterium leads to various chronic abnormalities (e.g., cancer, ulcer
and inflammation) (Ishihara et al. 2016; Leodolter et al. 2015; Kelley and Duggan 2003).

(5) Inflammation Inflammation refers to the condition of gastric abnormalities, involving
dyspepsia, chronic gastritis and acid reflex, are normally associated with the inflammation
of gastric lining. However, the main causes of inflammation of the GI tract are H. Pylori and
hookworms (Peljto et al. 2016; Seidel and Burdick 1998; Wu et al. 2016).
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(6)Celiac diseaseCeliac disease is one of themost difficult to diagnose because of its large
number of symptoms. This is an autoimmune disorder in the small intestine, the intolerance
of gluten found in wheat (Ciaccio et al. 2010; Boschetto et al. 2015; Gschwandtner et al.
2010).

(7) Crohn’s Disease Crohn’s disease is caused due to inflammation of the lining of the
gut. This is an intestinal inflammatory disease, it may also cause a severe abdominal pain.
In some cases ileum (part of small intestine) is effected from this disease (Pennazio 2006;
Eliakim 2004).

(8) Bleeding Bleeding is another abnormality that is normally found in GI tract while
screening. It may be caused by different other pathological conditions such as cancer, Crohn’s
disease, hepatitis c or ulcer (Lewis 2003; Jensen et al. 2016; Schlag et al. 2015).

(9) Barrett’s esophagus Barrett’s esophagus is a disease, specifically, associated with the
esophagus. In Barrett’s esophagus, the mucosal wall is damaged due to acid reflux disease,
also known as Gastroesophageal reflux disease (GERD). However, many CADx supportive
systems are designed for the diagnoses of Barrett’s esophagus (Dattamajumdar et al. 2001;
Shin et al. 2016).

1.2 Motivation: the need of computer-aided diagnosis (CADx) Systems

The endoscopy has several benefits, although, it comes along with certain trade-offs such as
a huge number of frames are generated (video recordings) from the screening procedure of
GI tract. If we consider the endoscopy of an individual, it can take up to 45 minutes to 8 hours
to complete the screening procedure and approximately more than 10 thousand endoscopy
frames are produced, depending on the target GI area. The time taken by the endoscopic
process depends on the target GI area and skills of the gastroenterologist. A point to note
here is that all endoscopic frames are not useful to the gastroenterologist because most of
the frames are redundant, and only a small number of images may have some abnormal
tissues (Sainju et al. 2014). Therefore, rest of images that not contain any abnormality can
be discarded by observing each frame (Lehmann et al. 1999).

Besides, it is a difficult and lengthy process for doctors to observe each frame separately.
Then, the abnormal frames can be easily overlooked by the medical experts. Therefore,
the clinical practitioners demand such systems, that can automatically discover potential
malignancies by analyzing the endoscopic frames.

Computer-aided diagnosing (CADx) systems are machine-vision based systems used for
helping doctors in the analysis of endoscopic imaging data. In a typical CADx system, a
decision is made on every frame based upon various characteristics (features), which were
extracted from the frame. However, some systems are only a sub-part of a whole CADx
system, the output of these systems is an image instead of decision (e.g., image enhancement
and image compression) (Khan and Wahid 2014; Gu et al. 2015; Turcza and Duplaga 2011).
Only for the purpose of the abnormality detection, a CADx system takes an image as input
and returns a decision based on its characteristics, whether the image has a normal mucosal
structure or some deformation, like (e.g., ulcer, blood, cancer, and polyps) (Albisser 2015).
List of abbreviations and Acronyms is provided in Table 2.

The task of decision making in CADx involves many intermediate steps, by starting
from the acquisition of images, and applying several pre-processing procedures (e.g., feature
extraction, image segmentation, etc). There are several benefits of developing CADx systems
for GI diseases. Ultimately, the patients, clinical practitioners, and medical students will gain
assistance as follows.
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Table 2 List of abbreviations and
acronyms

Acronyms Definition

3C Color Curvelet Covariance

ACWE Active Without Edges Model

ANN Artificial Neural Network

BEEMD Bi-dimensional Ensemble Empirical Mode
Decomposition

BOF Bag of Features

CADx Computer-aided Diagnosis system

CBIR Content-based Image Retrieval

CCD Charge-Coupled Device

CD Celiac Disease

CH Chromoendoscopy

CLE Confocal Laser Endoscopy

CMOS Complementary Metal-Oxide
Semiconductor

CNN Convolutional Neural Network

DFTs Discrete Fourier Transform

DT-DWT Dual Tree- Discrete Wavelet Transform

DWFT Discrete Wavelet Frame Transform

ELM Extreme Learning Machine

EM Endomicroscopy

GE Gastroesophageal

GERD Gastroesophageal Reflux Disease

GF-LBP Gaussian Filtered- Local Binary Patterns

GIST Gastrointestinal Stromal Tumors

GI tract Gastrointestinal-tract

GLCM Gray Level Co-occurrence Matrices

H.Pylori Helicobacter Pylori

HDVE High-definition Video Endoscopy

HSV Hue Saturation Value

VLAD Vector of Locally Aggregated Descriptors

IMF Intrinsic Mode Functions

JLDCP Jumping Local Difference Count Pattern

LBP Local Binary Patterns

ME Zoom/ Magnifying Endoscopy

SDMD Symmetric Dense Micro-block Difference

NBI Narrow Band Imaging

OC-LBP Opponent Color-Local Binary Pattern

OCT Optical Coherence Tomography

PHOG Pyramidal Histogram oriented gradient

PNN Probabilistic Neural Network

RGB Red Green Blue

ROI Region of Interest

RCLPB Refined Completed LBP

SIFT Scale Invariant Features Transform
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Table 2 continued Acronyms Definition

SVM Support Vector Machine

U-LBP Uniform Local Binary Patterns

VE Video Endoscopy

WCC Wavelet Cross Co-occurrence

WCE Wireless Capsule Endoscopy

• The endoscopic inspection time will be reduced for the gastroenterologist.
• Low cost of treatment, because of detection of cancer in its early stages.
• An increase in accuracy of a physician in predicting the stage of the gastric malignancies.
• CADx system can also be used for training the clinical staff and medical student without

a need of an expert.

1.3 Comparison with the existing surveys

There are already existing surveys on different aspects of gastroenterology disease detection
and there brief summarizes are presented in Table 3. Cho et al. (2011) have discussed various
advancements in the optical technology of video endoscopy. Especially variation in NBI
and CLE and provides heir trade-offs. The bestowed work by Song and Ang (2014) gives
a brief description of various imaging modalities. In Beg and Ragunath (2015), also pro-
vides a good overview of the options that are available for the gastric endoscopy. Moreover,
their work describes, how various endoscopy advancements can be useful in the detection
different types of malignancies, and how these malignancies can be distinguished from the
other pathological conditions ? A similar work had done by Leggett and Iyer (2015), where
characteristics of various endoscopy technologies were compared and described in a great
detail.

Liedlgruber and Uhl in Liedlgruber and Uhl (2011) provide statistics about the quan-
tity of the work that has been done in the field of automated detection of gastrointestinal
diseases using computer vision techniques. Their work provides only a brief overview of
feature extraction techniques. They have the divided the endoscopic techniques on the basis
of the level of mucosal intervention. In the same way, Keuchel et al. (2015) offers a review
of quantitative measures of different pathological conditions and how they are helping in
quantifying different clinical procedures. Moreover, a survey of numerous CADx developed
for GI tract was presented. Their work provides a good overview of different aspects of GI
tract (e.g., cleansing and pH level of GI tract). Also, they reviewed different diseases and
abnormalities found in the GI tract. Furthermore, their work also provides a comparison
of CADx on different parameters of descriptors, classifiers and data-sets used for testing
CADx. Their work also describes the methods to measure the abnormalities, such as polyp,
ulcer, inflammation, and cancer. Different types of CADx system are reviewed in Ogoveanu
et al. (2015), with respect to their application in the investigation of GI tract with different
gastrointestinal pathology. However, their work lacks a comparative view of different fea-
tures extraction techniques. In above-mentioned surveys, there no single survey has tendency
specifically toward feature extraction. In our work, we focus on the features extraction tech-
niques that have been used in CADx systems which are specially developed for detection of
gastric abnormalities.
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1.4 Contributions of this article

The most significant task involved in the decision making of a CADx is the selection of an
appropriate features extraction technique. As, these features later used for the segmentation,
classification, and retrieval of the images. However, other sub-tasks such as image prepro-
cessing (Figueiredo et al. 2018) and image segmentation also have an important role in the
extraction of image descriptors. The main contributions of this paper listed as follows:

– In this paper, we review various endoscopy options available for screening of GI tract.
– We review and discuss various types of CADx with potential applications.
– We present a meticulous survey on feature extraction methods and classify them accord-

ingly to their visual description and domain.
– We discuss strengths and limitations of different features extraction techniques specific

various pathological conditions.
– We surveyed deep learning based representation learning techniques.
– This study also highlights the trends, open issues, and emerging challenges.Moreover, we

review different publicly available endoscopy data-sets for testing vision-based CADx
systems.

1.5 Organization of the paper

The rest of the article is organized as follows: Sect. 2 gives the introduction to CADx and
describes its various applications. An overview of advancements in imaging modalities is
given in Sect. 2. Moreover, this section also includes a brief overview of the anatomy of
GI tract and different abnormalities found in the endoscopic images of GI tract. Then, it
highlights the validation and accuracy measures used to asses the performance of CADx
systems. Furthermore, the existing features extraction techniques in are reviewed in Sect.
3, 4, and 5 combined with the methods have been developed for the automated diagnosis
abnormalities in GI tract via endoscopy videos. Feature extraction techniques developed in
the spatial domain are discussed in Sect. 3 then Sect. 4 describes features extraction methods
developed in the frequency domain of image processing. The automated features learning
methods are reviewed in Sect. 5. Section 6 discusses the diverse range of endoscopic images
data-sets that are publicly available, challenges and trends. Finally, this paper is concluded
in Sect. 7.

2 Computer-aided diagnosis (CADx) system for GI tract : an overview

CADx systems are developed for the automatic detection of gastric abnormalities from the
endoscopy of the GI tract. In recent years, a number of CADx systems have been developed.
However, every CADx system has its own limitations and advantages.

2.1 Basic architecture of a CADx system and possible outputs

A number of sub-tasks are involved in a basic CADx system. The architecture of a CADx
system with different applications is depicted in Fig. 1.

(1) Preprocessing of Endoscopy frames In context of gastric diseases, first endoscopy
frames are pre-processed by different image processing methods. Images acquired from

123



A survey of feature extraction and fusion of deep learning… 2643

Fig. 1 The architecture of a computer aided diagnostic system

endoscopy normally suffer from different kinds of noises and variations such as, e.g., lens
distortions, illumination invariance, scale invariance, rotation invariance, and specular high-
lights (Gueye et al. 2015; Tischendorf et al. 2010; Geng and Pahlavan 2015; Hafner et al.
2010b). Moreover, some other conditions like poor cleansing, bubbles, food presence, and
instrument inclusion makes the automatic detection of lesions more challenging (Bejakovic
et al. 2009). However, some of these issues can be treated with image pre-processing tech-
niques. Therefore, the endoscopy frameswere pre-processed by different technique according
to the nature of the acquisition environment and noise. On the contrary, image pre-processing
is also an important step in CADx of gastric diseases. The pre-processing step may involve
frames normalization (Vieira et al. 2015), contrast enhancement (Song andAng 2014), image
compression (Khan and Wahid 2014), image scaling, image rotation, and color space trans-
formation (Riaz et al. 2017). The image pre-processing is a crucial task, prior to features
extraction, sometimes it includes the division of images into sub-images or removal of unnec-
essary frame’s area (Alexandre et al. 2009).

After the image pre-processing, a compressed form of information has extracted, that are
called features or descriptors. Then, the pixels of each image are represented by a feature
vector (Vécsei et al. 2009). However, in some cases, after pre-processing, the region of
interest (ROI) is selected and features are extracted from the segmented region (normally it is
a lesion area). Further, these images are analyzed based on these extracted descriptors (Serpa-
Andrade et al. 2016) . Even though, the lesions can also be segmented based on extracted
features as illustrated in Riaz et al. (2013). Therefore, the lesion detection, retrieval, and
classification of gastroenterology frames, tasks are performed based on the extracted features.
In later sections, we have discussed the segmentation, features extraction, classification in
detail.

(2) Importance of Features Extraction As mentioned earlier, endoscopic videos contain
a large number of frames. However, these frames cannot be used directly for the task of
classification and recognition due to computational limitations (curse of dimensionality)
(Cong et al. 2016). There is a need to represent these images in a more compact form, while
preserving their discrimination power. Sometimes features are used to store and retrieve
images from database efficiently. Thus, features extraction can be used for data compression
purposes (Bonnel et al. 2009). We have divided feature extraction techniques in three broad
categories, features extraction method in spatial domain and frequency domain, these two
categories are divided according to Liedlgruber and Uhl (2011). However, the third category
includes both spatial and frequency domains methods, and requires multiple images to learn
feature automatically.
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Fig. 2 Types of CADx systems
based on their outputs
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2.2 Potential outputs of a CADx system for GI tract

A number of systems have been developed for detection of abnormalities in the GI tract. We
have categories them into three types, based on their respective outputs as described in Fig. 2.

(1) Content-based Image Retrieval (CBIR) In a content-based image retrieval system, a
query image is matched with the images in a database, comparison is based of descriptors
of images. Then, a image or set of images with a similar characteristic are fetched from the
database. Moreover, the images’ database is contracted by extracted features corresponding
to all images (André et al. 2010). However, it seems to be a simple image retrieval system,
however, it can be used for helping the gastroenterologist by finding images with the same
pathological conditions from a whole endoscopy sequence. A medical expert need to select
one or two abnormal images from whole sequence of frames. After that, all frames from the
video recording of an endoscopic procedure with a similar pathological conditions can be
retrieved.

The similarity of images is a generic term, conversely, if we talk more specifically in
the context of gastrointestinal diseases, can be images with similar pathological conditions
(e.g., bleeding, ulcer, and inflammation) or endoscopic images from the same area of GI tract
(Nosato et al. 2015). Therefore, we can refer a CBIR system as a CADx, instead of calling
it as a component (Bonnel et al. 2009). The working of CADx typical CADx has shown in
Fig. 1. The CADx with CBIR system takes a query image as input and search for its match,
nonetheless, the output may contains a single image or set of images.

(2) Disease Detection Classification and segmentation are two basic machine learning
problems. In context of disease detection, a system classifies or segments the lesion areas
and it refers to a CADx system. However, some CADx systems only segment the diseased
area in endoscopy images, but not classify them into several stages or disease (for example
see Hwang and Celebi 2010). Moreover, the frames or lesions can be categorized by training
models based on extracted features as describes below in detail.

(a) Image Classification Many CADx systems have been developed for the classification
of the endoscopic images. These CADx systems only decide, whether an endoscopy frame
belongs to abnormal or normal class. However, it can be a multi-level classification, where
if a CADx system detects an image as abnormal further, it classifies the input image to grade
or severity-level of disease (Yang et al. 2015).

Therefore, some classification systems can distinguish between multiple types of abnor-
malities (Nawarathna et al. 2014). Most of the classification systems are trained through
extracting features from images and these images are labeled with their respective classes
(also known as supervised learning). Different types of descriptors (described in Sects. 3, 4,
and 5) are extracted from endoscopy images in form of numeric values and used to train the
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classifiers. After completion of the training phase, the trained models are used to predict the
images class without providing the respective class label. The CADx automatically assigns
label to these images or video frames as shown in Fig. 1 according to their respective class.
Although, the classification system could have real-time constraints for finding abnormal
frames in a live video (Liedlgruber et al. 2011).

(b) Image Segmentation Image segmentation is an important and also a difficult process,
specifically the in case of gastroenterology images. Because the dynamic imaging envi-
ronment of the GI tract possess various challenges, as described in earlier sections. Image
segmentation (also known as ROI selection or perceptual grouping of pixels) refers to a pro-
cess of extracting a sub-image or set of pixels with similar characteristics from an image. In
the context of CADx, these pixels represent the diseased area in a frame (Szczypiński et al.
2014). CADx are developed for the classification and segmentation of gastric images share
some essential steps or components. They take images as input, perform pre-processing on
these images, however some CADx use images without the pre-processing step. Although,
this is a problem specific decision to pre-process the gastric images or not. After the image
pre-processing, segmentation is performed for the selection of the abnormal area from endo-
scopic images (Rajivegandhi et al. 2015). However, many systems that only segment the
abnormal areas in the images also provide annotations on these images (van der Sommen
et al. 2014).

The segmentation of different irregularities with a CADx is a challenging job. There exist
CADx for detection of other abnormalities such as e.g., polyps, bubbles, and blood, which
can be found in GI tract discussed in later sections. The segmentation could be a real-time
task or it can be done on a recorded video (Ševo et al. 2016). Figure 1 shows the architecture
of a typical CADx.

The performance of these types of CADx is measured using parameters given in Table 4.
These accuracymeasures are used tomeasure the effectiveness of a system that has developed
for classification or segmentation of gastric lesions in endoscopic frames.

(3) Systems Output Summary of Endoscopic Procedures There is also a third form of
CADx that output not in form of a decision, neither an image. It gives the summary of an

Table 4 Accuracy measures used to evaluation the performance of classification and segmentation methods

# Description Formula

Classification (Ali et al. 2017)

1 True negative (TN), True positive (TP),
False negative (FN), and False positive
(FP).

2 Accuracy (ACC) ACC = T P+T N
P+N

3 Area under the curve (AUC) AUC = ∫ ∞
−∞ T PR(T )FPR′(T )dT

4 Sensitivity or true positive rate (TPR) T PR = Sensi tivi t y = T P
T P+FN

5 Specificity or true negative rate (TNR) T N R = Speci f ici t y = T N
FP+T N

6 False positive rate (FPR) FPR = 1 − T N R

Segmentation (Riaz et al. 2013)

1 Dice similarity coefficient (DSC), where
annotated (A) image and segmented
(S) image

DSC = 2 × A∩S
A+S′

2 F-measure, where precision (P) and recall F = 2 × P×R
P+R
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endoscopic procedure in form of a text document. The summary of GI tract is mostly used for
WCE, due to a large amount of images and no control over the endoscopy movement (Bao
et al. 2015). The system takes the images or set of frames in case of endoscopy video, and
returns the summary with respect to another dimension which is time (Wang et al. 2016b). A
summary contains temporal information, along with that, on which frame-interval contains a
specific area of the GI-tract (Zou et al. 2015) or location of a diseased (abnormal) frame in the
GI-tract. Information extracted by such systems could be crucial for the gastroenterologist
in decision making for surgery or biopsy.

2.3 Summary and insights

In this section, an overview of CADx systems is given. CADx system are developed specif-
ically for detection of diseases in GI tract. Also, a brief introduction of these components
belongs to a typical CADx system is given. Various pre-processing tasks and the problems in
exploration of GI environment are mentioned in a great detail. The CADx system are divided
into three categories with respect to their respective outputs. Additionally, these invariants
of CADx systems are explained. It is clear from our survey, that a small number of CADx
systems exist for the image retrieval application. A large amount of work has been done
on frames classification and segmentation. However, the segmentation of gastric lesion still
needs much attention of researchers. The CADx systems that provide summaries of endo-
scopic procedures are also very rare in literature. Since development of such system is very
complex in nature. Therefore, to develop these kinds of systems, one must have to consider
various aspects and challenges in machine-vision.

2.4 Video endoscopy (VE)

The major categories of endoscopy include wired endoscopy with white light, the flexible
wired standard endoscopy we referred in our paper as video endoscopy (VE). The second
category in white light endoscopy is WCE which has been widely used for the inspection of
the whole GI tract. Both of these technologies are described in upcoming subsections and the
classification of these endoscopy techniques is presented in Fig. 3 and output and working
with FOV shown in Fig. 4.

(1) White Light Endoscopy Endoscopy as we know, a procedure performed by a flexible
tube like instrument having amounted camera and light source on its distal tip (Thekkek et al.
2015). The gastroenterologist can have a good control over the movement of VE than WCE
and can also perform cleansing by using the accessory channel while examining the GI tract
(Beg and Ragunath 2015). Therefore, the standard VE still considered to be a most effective
and less invasive way to discover small-size lesions and also used for biopsy of these lesions
by employing the accessory channel (Iakovidis et al. 2006). (See Fig. 4a)

(2)Wireless Capsule Endoscopy (WCE)WCE is a more convenient way to intervene and
inspect the GI tract. However, there are some issues involved with the usage of WCE for
inspection of the gastric tract (see Fig. 4b). Primarily, an issue that is associate with WCE, is
no control over the movement of camera (Liu et al. 2015). However, several methods have
been proposed for controlling the movement of WCE (Carpi et al. 2011; Gao et al. 2009).
Secondly, WCE is lacking an accessory channel and cannot be used for a real-time biopsy
(Francisco et al. 2015). The third issue is the cost of the capsule, on top of the extra cost of
screening by a medical expert. Because the capsule is disposable and it is used for only one
time (Albisser 2015). Although with these issues, the WCE provides a painless solution to
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Fig. 3 Technological variations in the endoscopy for examining the GI tract in the pursuit of a better visual-
ization of abnormal regions

Fig. 4 Multiple endoscopy technologies and their respective FOVs, working, and outputs have depicted in
this figure, a shows the working of a standard video endoscopy where the FOV is feasible for easy movement,
b zoom endoscopy with reduced FOV not easy for the gastroenterologist to navigate through GI, c the WCE
move along the GI tract without any navigation and it also has an uncontrolled FOV, d CLE with its mucosal
intervention and a reduced FOV, e CH endoscopy and its two types of outputs, f NBI endoscopy and its output
frame is visualized (some contents have adapted from Hegenbart et al. 2015)

the screening of the GI tract (Keuchel et al. 2015). There are some areas e.g. (small bowel)
unreachable by using VE. Therefore, WCE is a less invasive option for such areas which are
difficult to get to for VE (Ogoveanu et al. 2015).

2.5 Enhanced endoscopic technologies

VE is a standard definition video endoscopy which is equipped with the CCD camera with
pixel resolution of more than 400,000 pixels per image. Moreover, the details preserved by
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an endoscope frames are depending on the number of pixels (resolution) of this CCD camera.
There are multiple advancements have been made for enhancing the visibility of the frames
for the gastroenterologist and these are discussed in detail by Song andAng (2014). However,
a brief overview of some of these techniques has given as follows.

(1) High-Definition Video Endoscopy (HDVE) The advancements in the technology lead
to themore density of transistor embedded in a single chip and resolution of the camera is also
has increased. Advancements in the CCD technology and currently in the complementary
metal-oxide semiconductor (CMOS) technology can allow embedding a large amount of
pixels (more resolution) in a small chip. These chips are used in new high-definition (HD)
endoscopes. The images produced by a HDVE have a resolution of 85 thousand to more than
1 million pixels (Bhat et al. 2014). Therefore, the area that is visible by standard VE can be
magnified by 150 times or more in a HDVE. Moreover, the mucosal vascular structures are
now more visible by using the HDVE instead of the standard VE (Penny et al. 2016; van
der Sommen et al. 2014). The issue with the HDVE is its FOV (see Fig. 4c), the movement
of endoscope become difficult because of a small FOV. Therefore, in recently developed
endoscope, the medical expert can switch between VE and HDVE (Gotoda et al. 2016).

(2) Zoom/Magnified Endoscopy (ME) Magnifying endoscopy have similar benefits as
the HDVE. Therefore, one can easily confused in the HDVE and ME due to their similar
advantages, the output ofME is shown in Fig. 4c. However, themagnification can be achieved
through some filter of lens in the standard VE (Leggett and Iyer 2015). The ME is also used
for visualizing the mucosal structure in a large scale normally used with other imaging
technologies (e.g., NBI and CH) (Muto et al. 2016; Lopez-Ceron et al. 2013).

(3) Optical Coherence Tomography (OCT) The issue with HDVE and ME is difficulty
for the gastroenterologist in controlling the movement of the endoscope when the image has
magnified. The solution to this problem is resolved by using optical coherence tomography
(OCT) is an independent of endoscopy. it is an adaptive feature to standard VE (Qi 2008). It
is used through the accessory channel of endoscopy. The OCT also provides great resolution,
with and the VE helps in the movement in finding the abnormal area. OCT is a recent optical
technique based on low-coherence interferometry. The OCT uses B-mode ultrasongraphy by
focusing light beam on a target area and collect the scattered reflected light to construct a
cross-sectional image (Beg and Ragunath 2015).

2.6 Chromoendoscopy (CH)

The Chromoendoscopy (CH) is traditionally used to investigate the mucosal structures using
staining techniques. The mucosal surface is highlighted by sprinkling colourants over the
mucosal surface and visualizing it under the light as shown in Fig. 4d. These dyes make the
malignant area more prominent and reported useful in the gastric surveillance (Wong Kee
Song et al. 2007).

(1) Virtual Chromoendoscopy (VCH) The digital or virtual chromoendoscopy (VCH)
involves image processing algorithms and band-pass filters to give the effect of a dye-based
(Traditional) chromoendoscopy (Kaltenbach et al. 2008). One advantage ofVCHover the CH
is the unnecessary cleaning. There is no need for spraying and suction for the cleansing of dyes
for further endoscopic procedures (Buchner et al. 2010).Moreover, the gastroenterologist can
switch between HDVE and VCH by using a single button, which makes it more user-friendly
(Goetz et al. 2013).

(a) Narrow Band Imaging (NBI) Narrow Band Imaging is a type of chromoendoscopy
which uses optical filters (digital image processing) and limited bandwidth characteristics of
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light (Kodashima et al. 2014). NBI highlights the mucosal irregularities specially associated
with polyps and dysplasia (see Fig. 4e). NBI uses as described above NBI is VCH it uses to
filter light to improves the mucosal vascular structures, veins, and capillaries without dyes
(Buchner et al. 2010).

(b) FICE and I-Scan FICE (Fuji-non Inc, Japan) system (Van Gossum 2015) and iSCAN
systems (Pentax, Japan) (Leggett and Iyer 2015) use reflectance of light is processed instead
of filtering the light that is coming from the source as done in NBI (see Fig. 4d). The reflected
light is processed by a spectral estimationmatrix circuit. The sensed high contrast color image,
that is constructed through a combination of red, green and blue wavelengths (Coda 2014;
Goetz et al. 2013; Nishimura et al. 2014).

(2)Endomicroscopy (EM)Themost used imaging technology for visualization ofmucosal
vascular structures is CLE. Endomicroscopy is performed by focusing a beam of photons at
various mucosal layers (Luck et al. 2004).

(a) Confocal Laser Endomicroscopy (CLE) The confocal laser endomicroscopy (CLE)
can have many time magnified image than standard VE. Therefore, CLE provides details of
inner layers of GI mucosa. The CLE system is endoscope based, we have denoted it as CLE
and the other probe-based referred as pCLE (Gómez et al. 2010). The CLE uses standard
VE with confocal imaging aperture. However, this system is now obsoleted (Francisco et al.
2015).

(b) Probe-based CLE (pCLE) The probe-based confocal laser endomicroscopy (pCLE)
is a separate system that is inserted through the instrument channel of the VE. It contains
its own processor, the images are acquisition is done by placement of probe on the mucosal
layer (Wallace and Keisslich 2010; Buchner et al. 2010). The output of pCLE is depicted in
Fig. 4f.

2.7 Summary and insights

The video endoscopy is a basic and minimal invasive tool for screening the GI tract. It is very
useful in histology and surveillance of gastric disease. Currently, many advanced variations
of video endoscopy exist as discussed in this section. Standard endoscopy is used more in
practice. However, it has limited access to lower GI tract. Because the screening of small
bowel is difficult due to the narrowness and twisty tract. Therefore, theWCE can be used, for
screening far areas in the GI tract. There is no doubt, that these technology areas developed
for assisting medical expert. However, adopting hybrid approaches (by combining the two
different imaging technologies advantageously) can provide more flexibility in selecting
FOV, desired magnification. Moreover, advancement in nanotechnology has opened the new
pathways to gastrointestinal screening (Yan et al. 2012).

3 Features extraction techniques in spatial domain

In this paper, our main focus is on feature extraction techniques employed in CADx system
for gastric diseases prevailing in theGI-tract. The features extraction is an important phase for
detection of abnormalities besides the preprocessing and segmentation of endoscopic frames.
Moreover, various training models are trained by extracting descriptors from endoscopy
images (Ali et al. 2017). These trained models are further used for the segmentation and
classification of gastric frames. There are several techniques have been proposed for features
extraction. However, choosing an efficient feature extraction method depends on the nature
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Fig. 5 Features extraction methods used in CADx for detection of gastric diseases, divided according to
respective domains

of application, disease, and imaging modalities for which these were being extracted. If
feature extracted for classification, it might be possible that these features are not suitable
for segmentation or retrieval applications. In proceeding sections, the summaries existing of
CADx systems are given and features extraction methods used in these CADx systems are
discussed in great detail.

As we know, a digital image is represented by a 2D array of pixel values in the spatial
domain of image processing. The spatial image processing refers to directly manipulation
and analysis of these pixels. Consequently, for an early diagnosis of malignancies from
gastric images, every pixel is precisely investigated (Gono et al. 2004). There are several
feature extraction methods have been developed for the automated diagnosis of disease from
endoscopic frames. We have classified them according to their perceptual information as
described below. Furthermore, we have divided these categories according to their respective
information into subcategories, which are used for classification of gastric lesions (see Fig. 5).

3.1 Color features in spatial domain

Color features are basic visual characteristics of images. Colors clues about the mixture of
lights of different bandwidth from the visual spectrum. In the context of gastric frames, the
colors are very important for visualizing the mucosal surface (in case of NBI and CH). Fur-
thermore, the colors play an important role in the detection of clinical pathologies like an
ulcer, bleeding, and inflammation, etc. (Cui et al. 2010; Li and Meng 2009a, b; Yuan et al.
2015a). Endoscopic frames are normally acquired in combination of three channels (red,
green, and blue) RGB frames and every channel gives the intensity of a particular primary
color. However, the endoscope generates gray images with a single intensity channel (for
example see Fig. 4d). In a normal gastric environment, the images have a low contrast. The
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reason for the low contrast of gastric frames is a less usage of color space (Riaz et al. 2012).
Various color spaces are designed for representation of images and they have different appli-
cations accordingly.However, somenotable color spaces areRGB,HSV,CIE-LAB,CIELUV,
and CIEXYZ with three channels, but we do not say which one is effective for detection of
specific malignancies. The features extraction methods involving color descriptors in spatial
domain are summarized in Table 5.

(1) Color Histograms Basic information which can be extracted from a channel of an
image is its histogram (Ghosh and Fattah 2017; Deeba et al. 2018). A histogram hints about
the likelihood of a pixel intensity and gives a guess about the distribution of colors. RGB and
YUV color space used by (Häfner et al. 2007) individual channels and combined RGB for the
analysis of zoom endoscopy images. Similarly, the (Krishnan et al. 1998) used the HSI and
RGBchannels histogram.Additionally, used these color histogram features to train andANN.
RGB histogram features are employed for bleeding detection from WCE frames in Ghosh
et al. (2015).Moreover, theHSVhistogram color features were preferred over the use of RGB
histogram features in some studies. WCE images which are normally represented in RGB
color space can be transformed into other color spaces. Such as HSV color space, for better
uniformity in colors. For instance, HSV color histograms were adopted for classification
of bleeding frames in Poh et al. (2010). Local RGB color image histograms are used for
computing threshold for the segmentation colonoscopy images in Tjoa et al. (2002) and
CIE-LAB color difference method was used to minimize the error of segmentation.

(2)ColorMovementsAswe know, colors are very sensitive to illumination variations. In a
dynamic environment like GI-tract images acquired under various lighting conditions, which
poses new challenges for detection of gastric abnormalities while using colors as descriptors.
Color moments are designed for dealing with color variations occur due to illumination
changes. Using HSI color space and Tchebichef polynomials are used as basic functions for
detection of bleeding and ulcer in WCE frames (Li and Meng 2009a). Similarly, in Li and
Meng (2009b) bleeding regions are classified. Likewise, many feature extraction methods
have been developed that uses different order statistics to represent the color features in RGB
of WCE frames, initially converting them in to HSI color space (Lee et al. 2007). In the
same way, precancerous lesions are detected from endoscopy frames by using 14 statistical
features (Martinez-Herrera et al. 2016). Camera distortion in WCE is a big issue for many
algorithms due to lack of control over the movement of the camera. The variable distance of
camera to the mucosal wall causes undesired results. CIE-LAB color space separates light
and uniform spaced channels. Hence, color moments are computed from channels of images
as variances, entropy, and kurtosis for detection of ulcer and bleeding regions (Vieira et al.
2015). HSI color space is employed for color feature extraction due to its similarity to human
visual perception system (Cui et al. 2010). Likewise, a number of color features are computed
by computing statistical measures of different channels and their combinations for detection
of bleeding from WCE frames.

(3) Salient Color Features For bleeding detection salient regions are detected by colors
by transformation of RGB images into CMYK and CIE-LAB color space then first order
moments are calculated to form features’ set (Yuan and Meng 2015). Salient super pixels
are identified for detection of bleeding regions by using color features in CIE-LAB color
space (Iakovidis et al. 2015). RGB frames are transformed to HSV color space for color nor-
malization, further, these images are converted back to RGB color space and color spectrum
transformation has been performed for segmentation of bleeding regions (Jung et al. 2008)

(4) Local Color Local color information is extracted from images by dividing every image
into small patches. Further features are extracted from these blocks. Pixel values of everypatch
are used as a color descriptor (Li and Meng 2007). Then, the local color features computed
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from endoscopic images and additional every block is analyzed for potential bleeding by
color values in Lau and Correia (2007). In some methods descriptors also may include pixel
spatial location as well as color information as given in Alexandre et al. (2007). Similarly, in
pixel values and spatial distances of different pixels are compared for segmentation of CH
images in Riaz et al. (2009).

3.2 Texture features in spatial domain

Texture refers to a repetitive pattern in an image; In addition, it gives information about the
characteristics of the surface of the image like e.g., coarseness and smoothness.

Many texture extraction techniques are proposed and applied for texture classification
such as a Multi-scale Symmetric Dense Micro-block Difference (MSDMD) technique is
introduced. It merges K-rotation with Gaussian distribution to experiment and utilize dense
micro-block changes as local features to obtain pixel-level changes. Following, a High-order
Vector of Locally Aggregated Descriptors (HVLAD) is formed, to encode the local descrip-
tors to obtain a global descriptor. Finally, by fusing an average Spatial Pyramid Pooling, the
multi-scale SDMD is carried out to produce an MSDMD-based texture descriptor (Dong
et al. 2018b).

A multi-scale frequency and difference based representation (CDR) of image textures
for classification is proposed. The local counting vector (LCV) is used to extract different
types of textural formations employing the discrete local counting projection, while the
differential excitation vector (DEV) is used to represent the variation of textures according to
the differential excitation projection. Then,multiple texture features are formed by combining
CDRs at various scales (Dong et al. 2018a).

Likewise, texture analysis is widely used in various fields. Specifically, texture analysis
gained much importance in medical image analysis. Furthermore, texture features are very
useful for detection of the cancerous region from endoscopic frames. The texture represen-
tation methods used to analyze endoscopic frames in spatial domain are discussed with their
applications in upcoming paragraphs. An overview of these techniques is shown in Table 6.

(1) Local Binary Patterns (LBP)Local binary patterns (LBP) are very useful for represent-
ing images’texture. The simplest form LBP is calculated by comparing neighboring pixels
with the central pixel and assigns it a binary code respectively. Additionally, these binary
codes are transformed into decimals. The texture of image is represented locally, by comput-
ing occurrence of these codes by forming a histogram. The most important advantage of LBP
is its rotation invariance (Constantinescu et al. 2015). Various advancements have been made
to enhance the LBP’s representational power. Therefore, multi-scale LBP is proposed which
deals with illumination variations of WCE frames of small bowel (Li et al. 2011). The LBP
with various neighborhood pixel size 8,16, and 24 are used with a combination of uniform
LBP in Gross et al. (2009). Multiple variations of LBP e.g., LBP59, LBP256, LBP10, and
difference based LBP are used for classification in Dahal et al. (2015). Uniform LBP is com-
bined with vector quantization for feature extraction and then employed for classification of
endoscopic frames (Lee et al. 2013).

A new LBP based features jumping and refined local pattern (JRLP) is presented for
texture classification in Wang et al. (2018b). The local jumping information is extracted by
first calculating jumping local difference count pattern (JLDCP)with second-order difference
count pattern and diagonal difference count pattern to represent the jumping information
further the detailed information of left by JLDCP is recorded to extract a refined completed
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LBP (RCLBP). The JRLP-based texture descriptors are created by combining both JLDCP
and RCLBP.

(2) Statistical Texture Features Statisticalmeasures arewidely used to represent the texture
of images. Statistics about intensity distribution delivers information about image’s texture.
In some developed methods, gray-level co-occurrence matrices (GLCM) are extracted by
calculating the frequency of certain pixels in pairs. Further, several statistics ( energy, contrast,
correlation and homogeneity) are calculated from these matrices to represent the texture
of images (Dahal et al. 2015). Similarly, Haralick’s features are used in Bejakovic et al.
(2009) for lesion detection from WCE frames. In Ghosh et al. (2018), a method presented
to classify bleeding frames using statistical features computed from YIQ color space. In
Ameling et al. (2009), texture features are extracted by computing GLCM for classification
of colonoscopy images. These texture features are also used byMagoulas et al. (2004) where
energy-angular second moment, entropy, inverse difference moment, and correlation are
computed for analysis of WCE frames. In their previous work, they have used same features
for detection of the colorectal lesions from VE videos (Maroulis et al. 2003).

3.3 Geometric features in spatial domain

(1) Edge-Based Features The gastric lesions normally do not own any particular shape or
size. However, some lesions e.g., polyps can be represented through a geometric model.
Therefore, the curvature of a lesion can be calculated by finding edges or contour of polyps
(Krishnan et al. 1998a). As the same, inKang andDoraiswami (2003) uses Sobel andCanny’s
edge detectors to model the shape of polyps. On the other hand, Celiac disease detection
performed through the edge based features (Boschetto et al. 2016). For contraction detection
wrinkle skeleton comprised of 14 features: 2 features of edge sharpness, a set of 4 local,
a set of 8 directional features, and entropy related features (Spyridonos et al. 2006). The
tensor gradients are calculated prior to determination of these features, the further statistical
classifier is used for classification of endoscopic frames.

(2) Shape-Based Features More efficient methods for modeling shapes are used for ana-
lyzing pit-patterns from NBI images where fractal dimension, smooth spiral curve, Koch
snowflake, Sierpinski triangle, and checkerboard (Häfner et al. 2015). An extension of higher
order local auto-correlation (HLAC) features is used for retrieving multi-scale objects from
optical colonoscopy images (Nosato et al. 2015). The HLACmethod can calculate some geo-
metrical features. Moreover, HLAC features represent the expressed characteristics for the
whole endoscopic image, derived from the product-sum operations of the auto-correlation
formula. In Hwang et al. (2007), elliptical shape-based features are used for detection of
polyps in colonoscopy frames. Point-based SIFT features are employed for tracking the path
of GI tract (Bao et al. 2015) which helps in the construction of 3D trajectory of WCE. Sev-
eral geometric features with fuzzy logic used to classify the colon polyps (Krishnan and Goh
1999). Summaries of these methods are described in Table 7.

3.4 Hybrid features in spatial domain

In above-described feature extraction methods, descriptors extracted by processing frames
in the spatial domain. These features extraction methods may work well in some specific
conditions (e.g., for bleeding detection colors are good features). However, for detection of
complicated abnormalities (e.g., cancer, polyps, and ulcers), these features have a limited
discrimination power when they are separately used for CADx. They can be combined with
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other features to cope with various issues of gastric environment like rotation, scale, and
illumination variation in the images. Two or more types of features are combined to achieve
a better discrimination for lesions. Hybrid approaches used for automated diagnosis of gastric
lesions are listed below. The overview of hybrid methods presented in Tables 8 and 9.

(1) Color Texture Features in Spatial Domain Red color and filter-based texture features
are combined for finding inflammation area from endoscope frames in Ševo et al. (2016).
Multiple abnormalities are detected through a combination of texture, color, and edge-based
features in Zhao et al. (2015).

(a) LBP-based Color Texture Same as above, color and texture features are combined in
Kodogiannis et al. (2007), where modified LBPs are extracted from RGB and HSV color
channels of endoscopic frames and then combined. By doing so, color features are com-
bined with texture information in Zhang et al. (2009). The method presented in Wang et al.
(2016b) used I channel histogram from HSI, HV histogram from HSV, RGB histogram,
Norm RGB histogram, RG histogram from the opponent histogram, and hue histogram for
representation of endoscopy images and the LBP textures are combined. Similarly, color
histogram, PHOG, and LBP texture from the super-pixels are extracted in Cong et al. (2015).
In Szczypiński and Klepaczko (2009), for extraction of texture and color information from
images, texture and color components Y, R, G, B, U, V, I, Q, color saturation, and hue are
combined to obtain a comprehensive characterization of a colored texture. Color moments
from the histogram of RGB and HSV color WCE image are extracted and combined with
LBP features for representation of color texture (Emam et al. 2015). Gaussian filtered LBP
(GF-LBP) features are extracted from endoscopic images. Moreover, colors are extracted
from the pyramidal histogram of endoscopy images (Li et al. 2015). Endoscopic images
are processed by dividing in patches then from these patches LBP features extracted. LBP
features are extracted from HSV and RGB channels for a patch-based classification (Yao
et al. 2010). Similar work was conducted by Liu et al. (2015), where LBP moments are
combined with color moments. LBP texture spectra along with color histogram are com-
bined to get texture color information in Kodogiannis and Lygouras (2008). Likewise,
multiple texture descriptors, color features, and their combination are described in Letter
(2007). Color histograms are combined with LBP and HSV color components histograms
are added with different combinations of LBP features. Then the LBP with the central pixel
of neighborhood of 8 and 16 pixels are extracted (Sousa et al. 2009). Uniform-LBP fea-
tures are computed by accounting each channel of endoscopy frame for combining texture
and color information (Li and Meng 2012). Endoscopy images are transformed from RGB
to HIS color space and then chrominance moments are calculated from the histogram. For
texture features, LBP features are extracted and then added with color features. Addition-
ally, Tchebichef polynomials are used to model these color-texture features (Li and Meng
2009b).

(b) Statistical Color Texture Color and texture features are combined by computing dom-
inant colors from GLCM of the images, 8 dominant colors are computed from every single
image (Giritharan et al. 2008). A method bi-dimensional ensemble empirical mode decom-
position (BEEMD) has proposed in Charisis et al. (2010) where intrinsic mode functions
(IMFs) computed from each channel of the image to represent color texture features. Statis-
tical moments energy, mean, standard deviation, skew, kurtosis, and entropy are computed
from histograms of images by representing images in RGB and HIS color spaces. Moreover,
a different combination of these moments was used for classification of abnormal colon
images (Adler et al. 2012). In the same way, GLCM features combined with color features
in Moccia et al. (2018).
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(2) Geometric and Color Information Combined with Texture Features

(a) Geometric Texture In Cong et al. (2016), three types of descriptors are combined as
texture color and shape (LBP, RGB histogram, and PHOG feature respectively). Addition-
ally, deep unsupervised features’selection is performed to select important features. In the
same way, point-based features such as SIFT are merged with LBP and shape-based features
HOG for classification of endoscopy frames in Yuan et al. (2015b). Likewise, topological
features are calculated from statistical moments of the histogram of images. Then, the geo-
metrical features are computed to find any potential the abnormal area from ME and NBI
images in Dunaeva et al. (2015). In Zhang et al. (2016), clusters are formed based on the
similarity of features and a high order kernel-based graph matching algorithm is proposed.
A graph is represented by a combination of nodes and edges. Where in images pixels are
denoted by nodes and edges are meant by the relation of similarity between these nodes.
Similar work has performed in Maghsoudi (2017) where super-pixel algorithm is used for
segmentation.

(b) Geometric Color Color statistics such as mean, standard deviation are computed
then combined with geometric parameters to detect polyps in colon images (Krishnan
and Goh 1997). In the same way, heterogeneous color features are calculated by com-
bining colors and point-based SIFT features in Huang et al. (2015). In Riaz et al. (2013),
multiple features are combined for segmentation of lesions in endoscopic frames. Visual
information, such as colors, edges, and textures are used to segment chromoendoscopy
images. Similarly, an edge-based model is proposed named as Active Without Edges Model
(ACWE) in Figueiredo et al. (2010). This method uses active-contours without edges
model of Chan and Vese to segment the aberrant crypts foci to shape or structure. The
prior medical knowledge confirms that the anomalous crypts’lines stain darker than nor-
mal crypts. Commonly, inside each focus, the shape of the crypts’clefts matches a similar
pattern.

3.5 Summary and insights

In this section, we have discussed various feature extraction methods. These methods have
been developed for the detection, classification, and summarization of gastric conditions
from endoscopy videos. Moreover, these methods are based on techniques which are used
to analyze images in the spatial domain of image processing. For better understanding,
we have grouped these techniques in three broad categories as color, texture, and geo-
metric features. Furthermore, these categories are expanded into subcategories according
to feature extraction methods. In the context of gastrointestinal diseases diagnoses, colors
are very important visual characteristics and colors play an important role in the detec-
tion of gastric ulcer, inflammation, and bleeding. On the other hand, texture features also
provide a good description of malignancies like cancer, ulcer, polyp, and Celiac disease.
As described earlier, in some methods, geometric features are used to establish a cor-
relation between gastric lesions and a geometrical model. However, the selection of a
suitable features extraction method for the diagnoses of gastric lesion highly dependent
on its application, nature of imaging modalities, and type of gastric abnormalities. More-
over, researchers are trying to develop hybrid approaches to cope with multiple issues by
combining similar or different types of features. Such as, colors are combined with texture
to gain more discriminative power or colors are combined with geometric or shape-based
features.
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4 Features extraction techniques in frequency domain

As we know, in the spatial domain of image processing images are processed by a direct
manipulation of pixels of an image. In most cases, images are used as they are without
any transformation. Conversely, in frequency domain of image processing, every image
is represented as combination of different frequency components (also known as Fourier
analysis) or normally these components are the complex exponential. Therefore, images are
not processed directly, rather they are first transformed into the frequency domain by using
the Fourier transform or some other frequency transform and then features are extracted
from the processed images in frequency domain. In this section, we will elaborate features
extraction methods used to extract features by describing images in terms of its frequency
components.

4.1 Color features in frequency domain

(1)DWT-based Color Features In the frequency domain, color features of endoscopic frames
are extracted by transforming images by different methods. Color information is extracted
through coefficient of wavelets by transformation of endoscopic image using pyramidal
discrete wavelet transform (Pyramidal-DWT) in Häfner et al. (2009a). They have applied DT-
DWT to themagnified endoscopic images for extraction of features containing scale, rotation,
mean, and standard deviation from RGB color channels. Color Eigen sub-bands features are
proposed in Kwitt and Uhl (2008). In contrast to the Pyramidal-DWT, six complex orienta-
tion sub-bands per decomposition scale are computed for feature vector construction (Kwitt
et al. 2010). Where the color information is represented by extraction of features from color
channels of the images in LAB color space. Then variance is calculated from de-correlated
detail sub-bands of the stationary wavelet transform to represent features. Moreover, they
have shown upright performance as comparedwith the performanceDT-DWTbased features.
Similarly, the patch-based color features are extracted by transforming images in CIE-LAB
color space and further computing DWT of three channels (Li et al. 2004). In addition,
each block of endoscopic frames is divided into 16x16 blocks and the fractal dimension is
computed from each block in Yamaguchi et al. (2015).

(2) Fourier Filter Based Color Features The images are transformed to Fourier domain
later these endoscopy images are filtered using ring filters (Hafner et al. 2010a). Ring-shaped
band-pass filters have been applied to get multi-scale analysis by selecting minimal and
maximal ring width of 1 and 15, respectively. Similar kind of work is conducted in Vécsei
et al. (2009), where ring-shaped filters of different size are used to filter images and further
statistical information is computed from each channel of RGB frame. An overview of color
feature extraction method has given in Table 10.

4.2 Texture features in frequency domain

As mentioned earlier, texture in spatial domain refers to characteristics of image surface
(e.g., smoothness or coarseness). In the spatial domain, we have seen that most methods are
based on statistical analysis of pixels or super-pixels. However, in the frequency domain,
the images are processed, by first transforming an image into the frequency domain. Then,
images are manipulated by performing some operations in the frequency domain to extract
texture information. In most cases, statistical measures of outputs of operations are computed
and represented as texture.
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(1) Statistical Features in Frequency Domain Statistical methods of wavelet sub-bands
have generally used for image classification tasks. Linear regression is used to model the
descriptors of adjacent sub-bands. The regression residuals are then employed to represent the
difference from a sample to a class of texture (Dong et al. 2015b). Similarly, a Heterogeneous
and Incrementally Generated Histogram (HIGH) texture descriptors are modeled by wavelet
coefficients by using four local features in wavelet sub-bands. Then, a non-negative multi-
resolution vector (NMV) of the image is created by concatenating all sub-band textures. The
low-dimensional basis of the linear subspace ofNMVs is computed usingHessian regularized
discriminative non-negative matrix factorization (Dong et al. 2015).

In Hassan and Haque (2015), the WCE frames are transformed through computing DFTs.
Then, normalized co-occurrence matrices are computed by taking the log transform of the
spectrum magnitude. Moreover, the texture features are represented by computing various
statistics from the co-occurrencematrices ofWCE images. Similarly, inKarkanis et al. (2001),
four statistical measurements of GLCM were used by apply DWT on patches of images of
different sizes, for lesion detection in endoscopy frames. A performance comparison of DT-
DWTwithGaborwavelet transform (GWT) andDWTwas presented inHäfner et al. (2009b).
In the same way to overcome issues of shift invariance and direction selectivity in DWT a
dual-tree complex wavelet transform (DT-DWT) is proposed in Häfner et al. (2008).

(2) LBP in Frequency Domain The images are transformed through the curve-let trans-
formation for texture feature extraction. Furthermore, uniform-LBP are extracted form
coefficient of the transformed domain to represent the texture of WCE image for ulcer clas-
sification in Li and Meng (2009c).

(3) Gabor Filter Based Texture Analysis In the same way, contour-let transform was per-
formed onWCE frames and further, the log of Gabor filters was applied. Likewise, the texture
features are represented by computing mean and standard deviation of filters’ responses
(Koshy and Gopi 2015). Gabor texture features with scale, rotation, and illumination varia-
tions are used by exploiting shift invariance properties (Riaz et al. 2011, 2012). Moreover,
these texture features extraction methods are described in Table 11.

4.3 Hybrid features in frequency domain

Several types of features are combined together to create new hybrid features with additional
discriminative power. These hybrid approaches are widely adopted in both domains.We have
grouped these features extraction methods into a combination of basic features (e.g., color,
texture, and geometric) and an overview of these hybrid approach is presented in Tables 12
and 13.

(1) Colors Texture Features in Frequency Domain

(a) Gabor-based Color Texture The local sample means and variances of the color com-
ponent are combined with color channels, then Gabor- based texture features are joined with
these color features (van der Sommen et al. 2014), then with same features random forest
classifier used in Janse et al. (2016). Similarly, in Szczypiński et al. (2014) various color com-
ponents and their ratios were used to analyzeWCE images and homogeneous texture features
are combined to get both color and texture information. In the same way, Log of Gabor filters
(LoG) is used to extract texture features. For color texture features, LoG filters are applied
to every channel of WCE frame in RGB color space (Karargyris and Bourbakis 2009b). In
Coimbra et al. (2006), Gabor-based texture features are combined with scalable colors for
partitioning WCE frames into various parts of GI tract. Then, again MPEG-7 features are
used for classification of WCE frames (Coimbra and Cunha 2006). On the contrary, domi-
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nant color descriptors and edge histogram features from the combination ofMPEG-7 features
were extracted. Additionally, these features were used for detection of Crohn’s disease (Gir-
gis et al. 2010). Gabor-based (homogeneous texture features) feature and other MPEG-7
features are used in the classification of WCE images with Crohn’s disease (Bejakovic et al.
2009).

(b) GLCM-based Color Texture GLCM is extended in the frequency domain and wavelet
cross co-occurrence (WCC) matrices have been proposed by Häfner et al. (2009c) where
LUV color space is used to extract color and texture characteristics from every image by
computing the statistics of GLCM which is computed from sub-bands of wavelets. In the
sameway, Bonnel et al. (2009) computed GLCM fromwavelet domain and color information
have mixed by exploiting RGB color channels. Similarly, GLCM based texture features are
extracted from sub-bands of DWT by transforming every channel of image (Lima et al.
2008). In Barbosa (2008), GLCM features were extracted by transforming images by taking
DWT of WCE frames, then computing all statistical measures from images in RGB and
HSV color spaces. Correspondingly, wavelet-based GLCM is computed from images and
then color moments are computed from every channel to form features’ set in Sobri et al.
(2012).

(c) LBP Color Texture in Wavelet Domain Images are converted from RGB color space
to CIE-XYZ. Further, the LBP features are extracted from the contour-let transform of WCE
images in Mathew and Gopi (2015). However, HSI and RGB color spaces are also tested
for detection of bleeding. Although, features extracted from the transformation of images
in CIE-XYZ color space have good performance. Likewise, in Iakovidis et al. (2006) color
channels of an endoscopic frame first transformed by DFT and then GLCM is calculated
in the wavelet domain. Furthermore, opponent color-local binary pattern (OC-LBP) fea-
tures are extracted by each color channel and their intra color histograms. In Li and Meng
(2010a), middle-level sub-band images result from DWT of images are used to extract
texture information by LBP features. Furthermore, LBP features are extracted from three
color channels of sub-band images. Similarly, in Li and Meng (2009d) DWT-based LBP are
extracted from RGB and HSI and used for WCE images for classification. Moreover, in Li
and Meng (2010b), color information is included by taking YCbCr color space into account
for extraction of DWT-based LBP features for a color texture representation of endoscopic
images.

(d) Statistical Color Texture in Wavelet Domain Second order statistics are computed
from the Color Curvelet Covariance (3C) of images, in 3C images are transformed by
DCT and converting images from RGB to the HSV color space. Furthermore, the coef-
ficients are modeled by Gaussian Mixture Model (GMM) (Martins et al. 2010). As the
same in Barbosa et al. (2009), where 3C is used to form the features’ set for detection of
tumors in small-bowel. In Serpa-Andrade et al. (2016), a combination of statistical fea-
tures, texture features with color are combined, texture features using DCT in HSI color
space are extracted. The final feature set is formed by combining of the Hu moment and
Fourier descriptors. ME frames are transformed from DT-CWT then, texture features are
computed from six level sub-band images. Furthermore, statistics or Wiebull parameter are
computed for representation of the pit-pattern characteristics of gastric lesions in Hafner
et al. (2010b). In the same way, texture information is combined with features of wavelet
domain by computing statistics from sub-bands of transformed images for detection of
the frames with Celiac disease (Vécsei et al. 2008). Statistical measures like, mean, vari-
ance, standard deviation, skewness, and kurtosis statistics were computed from sub-bands
of images. Moreover, second order statistics include entropy, energy, inverse difference
moment, contrast, and co-variance are computed from sub-bands. A color channel his-
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togram has been used for merging color information into textures. In Iakovidis et al.
(2005), 3C are used for texture color extraction by using discrete wavelet frame transform
(DWFT) instead of DWT. As well colors features are included by computing features from
three color channels of the images. For completing this task, endoscopic images are con-
verted to multiple color spaces (RGB color image was converted to HSV and YCbCr color
spaces), then these images in different color spaces are transformed with DWT (Huang et al.
2008).

(2) Geometric Information Combined with Texture Features A watershed-based method
for segmentation of polyps is proposed in Hwang and Celebi (2010). However, a marker
selection technique proposed by combining Gabor texture and k-mean clustering for polyp
shape analysis. Motility is a term used to represent the contraction of the muscles that unite
and drive contents in the gastrointestinal (GI) tract. Therefore, in Drozdzal et al. (2015)
contraction of GI tract is detected for classification of a specific area in WCE frames, for
edges detection, Gabor filters are used. The contraction detector and lumen size estimation are
used for detection of stable motility (Drozdzal et al. 2015). SUSAN’s edge detector and LoG
is used for detection of edges of polyps in colonoscopy frames and produce crisp segments
(Karargyris and Bourbakis 2009a). Furthermore, geometric parameters like center curvature
are used for clustering and segmenting the polyps. Grid-based color and position information
is merged and compared with other features extraction techniques like LBP and CWC, for
the detection of polyps (Alexandre et al. 2009).

(3) Texture Features Combined with Other textures In some studies, texture features are
combined with other type texture features to increase the discrimination power.

A multi-scale rotation-invariant representation (MRIR) texture based on multiscale
wavelet transform splits the magnitude pattern (MP) mapping of texture and the sign pat-
tern (SP) mapping of texture employed as a step function. The step function fits the wavelet
sub-bands of the MP for calculating the sampled directional mean vectors (SDMVs) of the
sub-bands and concatenated with frequency vectors (FVs) of SP mappings to form MRIR
vector to get textural representation (Dong et al. 2017). Likewise, in Nawarathna et al. (2014),
texture features extracted from Gaussian filters of multiple shapes and sizes are combined
with LBP features named as Leung-Malik LBP (LM-LBP). These features are then used for
detection of multiple pathological conditions from endoscopy images.

4.4 Summary and insights

In this section, we have given an extensive review of features extraction methods which pro-
cess images in the frequency domain. In frequency domain, images are first transformed to
Fourier domain where images are represented in terms of the frequency component. Further-
more, by processing frequency components of images and different features can be extracted
from images. These methods well-performed for detection of abnormalities from endoscopy.
Yet, frequency methods are computational extensive due to the overhead of transformation.
Even though by using fast and efficient methods of transformation can reduce the computa-
tional complexity of these methods. For instance, we have seen the color texture approaches
in the frequency domain have gained much focus of researchers. In contrast, geometrical
methods not efficiently applied in the frequency domain. Since, in the frequency domain,
geometric characteristics cannot be preserved. Whereas from gastric abnormalities, polyps
and contraction of gastric tract have a specific geometric shape and therefore can be easily
targeted in the spatial domain.
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5 Feature learningmethods

In previous sections, we have categories features extractionmethods based on their respective
domain. In this section, we will discuss some features learning approaches, where the feature
are extracted and represented without any explicit method. Although these features are calcu-
lated based on some input parameters. Features learning or representation learning methods
automatically find representation from input frames, which is needed for classification or
recognition tasks. It does not requires to explicitly defining feature set or attributes. Several
features learning methods have been developed for the fact that images are preprocessed for
classification or learning tasks and in some recognition problems, the features can be defined
explicitly. Thus, its beneficial to discovering representation of images based on input data
without hard-coding the features extraction algorithms. These methods can be divided into
two categories: first the bag of features (BOF) approach where a dictionary of visual words is
learned by some already existing specific feature extraction method. Secondly, deep learning
based features extraction methods where the power of the neural network is employed for
extraction of important characteristics of images. A summary of these methods has been
given in Table 14.

5.1 Bag of features

BOF model is widely used in various classification tasks. In BOF, features of images are
treated as word in documents. A dictionary or code-book is learned for computing occurrence
of each visualword exists in the images. Furthermore, this histogram is used as a feature vector
for every image (Yuan et al. 2017b). A resembling work is done in Gueye et al. (2015), where
SIFT features are extracted from every frame and then a dictionary is formed by collecting
distinct visual words from every image. The vocabulary is formed by a clustering algorithm
like k-means. Furthermore, a histogram of these words from every image is computed to
represent features by means of vector quantization. Moreover, these features are used for
classification of colon images for abnormalities. Similarly, densely sampled SIFT features
are computed from local features with the BOF model for the classification of lesion patterns
in endoscopic frames in Miyaki et al. (2015). K-mean is used for forming visual vocabulary
and used to quantize feature set for each image. Furthermore, cancerous regions and normal
surrounding tissue patches are used to form a code-book. Likewise in André et al. (2010),
BOF approach is used with a dense detector and a bi-scale SIFT description for retrieval of
pCLE imagery from an image database.

InYuan et al. (2015a), visualwordbased color histogram features fromRGB,HSV,YCbCr,
CMYK, and LAB color spaces are tested for bleeding detection from endoscopic frames.
Moreover, two level of saliency is used for extraction of the bleeding area. The illumination
of elements have a good separation in CIE-LUV color space from colors. Therefore, the
normalization in colors, illumination component L is filtered using a homomorphic filtering.
Furthermore, a vocabulary is formed by clustering visual words, and then the adaptive color
histogram is formed by means of these color words (Riaz et al. 2017).

(1) BOF of Texture (Texton) Texton refers to a visual vocabulary of words formed with
texture features as described in Riaz et al. (2012), where Gabor texture features are used to
create a dictionary of texture features. Similarly, in Lung Malik based Gabor filter’s bank
is used by Nawarathna et al. (2014) to extract texton from WCE for detection containing
multiple abnormalities. Moreover, they have mixed LBP features with texton using the code-
book model.
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Fig. 6 Concepts of artificial neural network (ANN) and deep learning: a a basic single layer neural network
with activation function. Normally the activation function is a sigmoid real-value function or ReLU for better
convergence, b a standard ANN with one hidden layer, c an abstract model of deep ANN with many hidden
layers, d an example of deep convolutional neural network (some contents adapted from Badrinarayanan et al.
2017; Schmidhuber 2015; Hu et al. 2018; Krizhevsky et al. 2012)

InBOFmethods,we have to explicitly define the parameters for learning the representation
(for example size of bins of the histogram and the types of features which are extracted
from images). However, there are methods which does not require explicit type definition of
descriptors. These methods learn the representation based on the input data. Next, we will
discuss the applications of a revived field of Artificial Neural Networks in the extraction of
features and segmentation.

5.2 Deep learningmethods

A simple Artificial Neural Network (ANN) is a network of connected processing units called
neurons. A simple neuron is a real-valued threshold based function which gets activated
through input value received fromweights input links. The intensity of each link is multiplied
with its weight and weighted sum of input links is passed to a neuron which has a threshold
value as shown in Fig. 6a. Whenever the input value of a neuron is more than its threshold
value, its activated (Schmidhuber 2015). An ANN with a single layer of neurons only can
learns a simple function like the classification of data into only two categories (a linearly
separable data). For more complex tasks, hidden layers play their role in providing flexibility
in learning more non-linear decision boundary as shown in Fig. 6b.

In the early days of ANN, the addition of more hidden layers is restricted by the available
computation power, number of weights learned by an ANN also increased with number of
hidden units therefore, a huge amount of parameters are learned during a training session of
ANN. Thus, it is computation extensive task and such systems was not easily available at
that time. The other limitation of training a Deep ANN was the availability of large data-sets
for training because small data-set cause under-fitting of the Deep ANN. Deep Learning is

123



2686 H. Ali et al.

a recent trend in the field of ANN which has revolutionized almost every area of life. Deep
Learning is performed by increasing the hidden layer in an ANN as shown in Fig. 6b.

Deep learning can be used in many fields. Therefore, choosing the number of hidden
layers, type of hidden layers, their connections type, and output layer units are application
dependent. Deep learning can be generative or unsupervised when non-labeled data or target
class is not available (e.g., Deep Belief Networks (DBN), Restricted Boltzmann Machine
(RBM), Deep Boltzmann Machine (DBM), regularized Auto-encoders, etc.). The super-
vised (discriminative) Deep learning models are useful when we have class labels with data
(e.g., Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) etc). The
hybrid models of Deep learning also exist, for instance, for speech recognition the output
probabilities of a neural network into a Hidden Markov Model (HMM) (Deng and Yu 2014).

In medical image analysis four successful deep models are as follows: CNN, Fully con-
volutional network (FCN), AE, and DBN (Hu et al. 2018). A CNN is based on convolutional
layers ReLU activation function layer, pooling layer (max pooling can be average pooling),
and fully connected layers as shown in Fig. 6d. Convolutional layers learns representations
which amplify aspects of the input that is important for discrimination suppress irrelevant
variations. For example, endoscopy frame are composed of pixels and each pixel from each
channel of frame fed to the input layer of CNN. Then, the first layer of CNN normally learns
features related to edges in a particular location and orientation thus provide translation and
rotation invariant description of images. The pooling layers are used for down-sampling
features ultimately reduces the dimension of the feature representation. Similarly, the Auto-
encoder is a unsupervised model for learning feature with a low dimension (Badrinarayanan
et al. 2017).

In FCN model up-sampling is used instead of down-sampling and the de-convolutional
layer is used. FCN normally used for pixel classification (segmentation). Generally, CNN
has shown its excellent performance in image recognition problems. However, the input of
CNN structure is bounded by comparatively small images due to the fully connected layers
(a huge number of weights). It reduces its ability to be directly applied to large input images.
Alternatively, FCN does not owns any fully-connected (FC) layer and it can be applied to
images of virtually any sizes compared to CNN (LeCun et al. 2015).

Sources of parsimony in the deep neural networks in object recognition is due to variations
of extraneous factors in input images, such as scale, area and angle variations (Kondor 2008).
These sources of deformations can be represented by symmetry groups (A symmetry group
is a set of transformations that preserve the identity of an object and obey the group axioms)
(Gens and Domingos 2014). Therefore, these sets of composable variations preserve the
information of target class. The deep convolutional neural networks can have shift invariance
by computing descriptors by using weights model in each part of the frames. However, a
convolution layer uses fewer parameters than a fully connected layer and preserves many
useful transformations but the CNN fails or minimally cope other groups of symmetries
(Cohen and Welling 2016). Other group of symmetries, such as smoothness, adaptability,
generality, equivariance/invariance, depend on restrictions imposed during learning (Anselmi
et al. 2017).

In the classification task, transformation symmetries express equivalence classes that
record part of the intraclass variations. It also keeps the output (class labeling) distributions
by implying a quotient space up to transformation, points remain equal and representation
in invariant to transformation. However, the hypothesis space is restricted to this quotient
description space is essential for learning from high-dimensional data by decreasing the
examples’ complexity of training (the size of the labeled training set) (Gu et al. 2015). By
using pooling and convolution, CNN has explicit parametrization for translation equivariance
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and robustness (filtering with local kernels and pooling). The pooling gradually decreases
the dimensionality to reduce the number of parameters and calculation in Deep CNN. This
lessens the training time and managing over-fitting. After pooling, dimensionality should not
be too high or too low. When dimensionality after dimension reduction is too large, dimen-
sion reduction is meaningless. Many vital features will be discarded in the process when
dimensionality after dimension reduction is too small (Cao et al. 2019; Mallat 2016).

There are multiple theories regarding the cause of translation invariance in CNN. One
idea is that translation invariance is due to the increasing receptive field size of neurons in
successive convolution layers. Another possibility is that invariance is due to the pooling
operation. Some suggest that it is due to data augmentation while training CNN. There is
widespread consensus in the literature that CNNs are capable of learning translation-invariant
representations (Kauderer-Abrams 2017; Mallat 2016).

By usingweight sharing, CNNcan learnmore complex transformation beyond translations
by explicitly learning the symmetry or convolution group when new data is provided for
training. It learns different properties of representation for instance sparsity, weight-sharing
topologies and locality rather of handcrafting them (Anselmi et al. 2017).

In practice, designing a desirable model requires trial and error. The design of the deep
neural network (types of layers, number of layers, number of units in a single layer, connection
setting, activation functions and various training parameters) are not the only decisions we
have to make; also the optimization algorithm and its parameters interplay tightly with these
choices. The specific dataset and the chosen loss function also define the loss surface along
whichwewant to optimize. There are a lot of hyperparameters involve in design and infinitely
many ways to create a deep neural network. Therefore, it is not feasible to automate neural
networkmodel selection.We design it manually and every one has its ownway of designing a
deep neural network. A better way is to mimic the design of a model that has been developed
for a similar application and tweak according to our requirements.

As CNN architectures are covariant to translations with convolutions, CNN can linearize
the operation of very complex nonlinear transformations in high dimensions. To calculate
invariants to shifts and linearize diffeomorphisms, different scales can be separated and non-
linearity is applied by cascading filters, computing a wavelet transform and point-wise con-
tractive nonlinearity. Linearization is a strategy used inmachine learning to reduce the dimen-
sionwith a linear projector. CNNgradually contract the representation space. Such operations
are defined by linear operators which belong to groups of local symmetries. We can avoid the
curse the variability of input data, the capacity to approximate the output class. Moreover,
the various group of symmetries discussed in Anselmi et al. (2017); Dieleman et al. (2016).

Similar models use power of the Deep NN to learn a representation model for endoscopy
frames (Pogorelov et al. 2017). The abstract level of understanding or representation is created
automatically in the hidden layer, where each layer contains different level of abstraction. The
images are directly fed to neural network moreover, a large number of annotated images are
needed for training the ANN. However, the images computer generated images can be used
for training the of convolutional neural network (CNN) as suggested by Ahn et al. (2018);
Mahmood et al. (2018). Normally, the training procedure is computationally exhaustive and
requires lots of resources. On the contrary, a CNN was employed for learning features from
WCE in Yu et al. (2015). It is a hybrid method (named as HCNN-NELM) where a CNN and
extreme learning machine (ELM) are combined for features learning and classification tasks.
The CNN layers are used to extract visual information at different abstract levels. Addition-
ally, this information is used for classifier’s learning tasks using ELM. In the same way, deep
CNN is used for classification of digestive organs of WCE frames (Zou et al. 2015). In addi-
tion, the SVM classifier was trained on extracted features ( learned by the CNN). In Pan et al.
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(2011), bleeding frames are detected using a probabilistic neural network (PNN). Here, the
color features are extracted from directional pixel values of individual channels of RGB and
HSI color spaces. The best part of the deep learningmodels is they can be used easily for other
similar recognition applications using transfer learning (Sevakula et al. 2018). As hookworms
(He et al. 2018), polyps (Zhang et al. 2017), and cancer (Hirasawa et al. 2018) is detected in
WCE images by using CNN. However, (Turan et al. 2018) used recurrent CNN for estimating
the trajectory of wireless capsule in the GI tract. Laser based endomicroscopy images are
analyzed with CNNs (Garcia et al. 2017; Nan et al. 2017) for detection of abnormal areas.
AlexNet is used in Yuan et al. (2017a) for classification of polyps images and above 90%
accuracy is achieved. In somemethods, the gastric cancer is detected bymodalities other than
endoscopy as in Gibson et al. (2018). CT-scan images are used andmultiple Deep NNmodels
alongwith proposedV-Dense networkmodel. Similarly, a FCNbasedCNN-CRF is trained on
synthetic data-set along with real data-set due to unavailability of data due to privacy issue in
Mahmood et al. (2018) In Iakovidis et al. (2018), a Weakly Supervised Convolutional Neural
Network (WCNN) is proposed with Deep Saliency Detection (DSD) algorithm. The local-
ization is performed and 96% highest accuracy is achieved on VE and 88% onWCE frames.

5.3 Summary and insights

In this section, we have discussed several automatic feature learning methods. As we dis-
cussed earlier, in features learning methods features are learned based on images data.
Furthermore, these important feature then extracted from data for classification or image
retrieval task. In BOF model, the extracted features can be any kind of features texture, col-
ors, or point-based local features as SIFT. Moreover, these features can be extracted by using
both domains as in Texton features. On the other hand, deep learning methods use the power
of multi-layer ANN for learning abstract information from images. CNN have multiple lay-
ers each layer is for a different level of abstraction. Although, these methods are better in
performance. However, the training of CNN is computationally intensive and require special
hardware.Moreover,A large amount of annotated images are also required for trainingCNNs.

6 Trends, challenges, and future research directions

Advancements in surgical-vision techniques have revolutionized the surgical procedures and
ultimately provides computer-assisted interventions. A successful CADx system requires
efficient features extraction and image representation methods. Therefore, there is a need to
design such features extraction methods those deal with dynamics of the gastric environment
and provides a better description of the gastric lesion.

In this section, we review the option available for enhancing the performance of existing
systems.

6.1 Hybridization and fusion of features

It is apparent from the extensive literature review, that much of features extraction methods
have a tendency towards development hybrid features as shown in Fig. 7. In both domains,
single visual characteristics of gastric images are not much developed because of uncertain
nature of gastric lesions.Moreover, there aremanymethods,we have found in literaturewhich
are composed of basic color and texture information extraction. The least development has
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Fig. 7 A study of post-1997 publications in the computer aided diagnosis of endoscopic images. Normalized
trends in publications containing phrases “gastrointestinal”, “abnormality detection”, “endoscopy”, “feature
extraction”, “image-retrieval”, and “classification”, containing IEEE, Elsevier, and Springer Publications. It
shows the tendency of researchers toward development of features extraction methods specific domains and it
is clear from this graph that hybridization of features gaining much attention of researchers. Also, maximum
accuracy and AUC achieved by these features extraction methods in CADx depicted in the graph

been made in the extraction of geometric information along with texture and color feature.
However, the extraction of features depends on nature of abnormalities. Even though, features
can be combined to deal with multiple diseased conditions in endoscopic gastrointestinal
frames and able to cope with various imaging conditions.

6.2 Usage of endoscopic technologies

The literature review confirms that the WCE is an emerging technology and now has widely
used by the practitioners for the screening of whole GI tract and specifically small-intestine
as shown in Fig. 8. It is fact that WCE has uncontrolled movement and screen procedure is
normally unattended, a large number of frames are generated and a few frames are useful for a
gastroenterologist. Therefore, moremethods are developed for detection of abnormality from
WCE images. Flexible wired VE is more used for screening the GI parts which are easily
accessible e.g., esophagus and colon. However, the enhancements are normally used with VE
because of presence of instrument channels and more control over movement of the camera.

6.3 Dynamics of images acquisition

In the gastrointestinal environment, ideal conditions for image acquisition are very rare. On
the other hand, camera distortion and specular reflections are very common in an endoscopic
frame sequence. Moreover, uncontrolled movement of endoscopic camera leads to scale,
rotation, and illumination invariance. Presence of air bubbles, poor cleansing, the presence
of food, and gastric juices are some challenges. Gastrointestinal area variations have poses
novel challenges to the automatic detection of gastric diseases. The accuracies of existing
CADx systems were presented in Table 15. It shows a changed performances for diagnoses
of images in different GI areas.

123



2690 H. Ali et al.

Fig. 8 Number of articles shows the usage of imaging modalities for automated detection of abnormalities in
specific GI areas. Post-1997 publications in the area of computer aided diagnosis of endoscopic images

6.4 Insufficient color space

Gastrointestinal color images do not possess a sufficient color space to provide a better
discrimination for abnormal regions. However, for detection of ulcer and bleeding in frames,
colors have a significant importance. Specifically, in imaging technologies like CH and NBI,
the involvement of colors in the detection of lesions will also increase. Consequently, owning
a lack of color space utilization, colors cannot be completely ignored. Transformation of
images in other color spaces may have increased the discrimination power of color features.
In literature, we have seen, that many color spaces are employed for different discrimination
tasks.

6.5 Color space transformations

Color spaces are basic constructs to represent images. The selection of the best color
space to represent an image is a difficult and application dependent task. However, exten-
sive analysis can be conducted to figure out color space which can help in diagnoses
of gastric diseases. Many researchers have conducted experimentation for classification
and segmentation of gastric images by transforming images into different color spaces
prior to feature extraction task (Riaz et al. 2017). The usage of HSV and CIE-LAB are
in many cases worked well due to their color uniformity and better separation over the
whole visible light spectrum (Sousa et al. 2009). Still we are not sure which color space
better represents the heterogeneous endoscopy images. However, analysis of feature extrac-
tion techniques can be conducted by transforming images into different color spaces and
analyzing their discrimination power for a specific endoscopy imaging technology or dis-
ease.

6.6 Gastric lesions with a specific geometric structure

Gastric lesions do not have any specific shape or geometric structure. However, some lesions
like polyps have an elliptical shape. Moreover, variations in gastrointestinal environment
effect the shape of polyps and often it appears to be random. Therefore, it is become
more challenging to geometrically model any gastric lesion in terms of specific descrip-
tors.
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6.7 Designingmore generic and image-adaptive features

It is obvious that above-mentioned issues can be addressed by developing such feature
extraction methods which can deal with these imaging variations (Lucas et al. 2018).
Computer-aided diagnoses will more accurate if the extracted descriptors are more robust
to scale, rotation, and illumination invariance (Ahn et al. 2018). Moreover, the scale and
rotation variations can be dealt with kernel-based feature extraction methods (e.g., LBP and
SIFT). However, illumination variations are easily coped by utilization of different color
space representations of images. The texture in the lesion also have some repetitive shapes.
The combination of texture and shape-based features can be a better option.

6.8 Generic features

We have seen many feature extraction methods. However, these methods are application
dependent detect only a specific disease. Some features are applicable for classification,
these may not appropriate for image retrieval or segmentation tasks. Moreover, most of these
feature extractionmethods are developed for general recognition applications. Also, there is a
need to develop methods that well-perform specifically on gastric images. We can encounter
multiple gastric abnormalities in a single endoscopic sequence and most of the features
are used to represent a single type of lesions (e.g., cancer, ulcer, or bleeding). However, it
is a necessity to design more robust, generic, imaging modality, GI area, and application
independent features for representation of gastric frames.

6.9 The power of deep neural network

After so much research in field of image processing and machine learning, we still do not
know what attributes best represent the abnormalities in endoscopy frames. There are lots
of methods for manual feature extraction have been proposed but no one claims to be more
generalized. Thesemanual features do not best cope with the versatility of images acquisition
and dynamic conditions of gastric tract (Shichijo et al. 2017). Therefore, deep learning
came into the big picture. The deep convolutional neural network shuns the need of manual
electing features for representing image (Sharma et al. 2017) (Razzak et al. 2018). With
multi dimensional applications of deep learning, deep learning methods can be used for
segmentation of images as well (Guo et al. 2017).

Representation learning is one of the central issues in machine learning. However, without
fully understanding the work of deep neural network, we still able to use it for learning
efficient image representations. In this paper, our focus is on features learning. Moreover, the
deep neural network can be used in different fields everyday life, for instance, translate text,
recognize music, poetry, painting, predict behaviours of humans and calculate the quantum
energy ofmolecules. The understanding of these groups of symmetries is an issue that goes far
beyond the applications of learning. If we accomplish to specify them one day, we will better
understand the geometry of the data in large dimensions. But this geometry is underlying
many scientific problems.

(1) Segmentation using Deep Learning Deep neural network can be used for anatomical
partitioning of endoscopy images (Hirasawa et al. 2018; Lai 2015). Several methods have
been suggested by the researchers segment areas in medical images (e.g., for brain tumor
de Brébisson and Montana 2015). Moreover, some already trained models (e.g., SegNet
Badrinarayanan et al. 2017 and Wang et al. 2018a) can be fine-tuned for segmentation of
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cancer areas in endoscopic frames of GI tract (Nan et al. 2017). Various types of mucosal
structures can also be segmented using deep convolutional network (e.g., example Separator-
Net and Object-Net presented in Kainz et al. 2017). Random fields used in modeling human
perception and can also be helpful when mixed with CNN as idea presented in Arnab et al.
(2018).

(2) Texture Feature Extraction Using Deep Learning Basic texture feature extraction
methods like Gabor- based, LBP, and GLCM can be combined with deep learning methods
to represent the gastric anomalies in a better way. Gabor-based texture descriptors can be
learned from images using different orientation and scales (Luan et al. 2017).We can perform
same for LBP, GLCM, and color-texture hybrid features. Moreover, other features like color
and geometric for gastric images can be learned using deep learning methods (Komura and
Ishikawa 2017). Gabor filters can be used to optimize the energy and computation of CNNs,
as Sarwar et al. (2017) shows that the convolutional layers have representation like randomly
tuned Gabor filters.

6.10 Publicly available expert annotated images data-sets and challenges

Many computer-aided diagnostic challenges organized by different researchers around the
world. These challenges and there corresponding publicly available image data-sets have
summarized as below:

(1) Challenge on Analysis of Images to Detect Abnormalities in Endoscopy (AIDA-E)
There is an increased burden of gastrointestinal diseases around the world. It is challenging
to develop methods for screening the GI tract for potential abnormalities and early diagnoses
of tissue malignancies. Several researchers are still interested in the automatic detection of
gastric abnormalities andworking on different scales and optical technologies. Therefore, the
aim of this challenge is to provide standard data-sets and benchmarks, so that the performance
new developed methods can be compared on common the parameters. This challenge has
many sub-challenges under its umbrella and having different needs and endoscopic imagery
for testing vision-based algorithms, summarized as follows:

(a) Gastric Chromoendoscopy Images in Cancer Surveillance This challenge is about
detection of gastric abnormal frames for classification of chromoendoscopy images the clas-
sification is based on the taxonomy provided by Ribeiro (2005). The CH images belong to
three groups; Group 1 contains CH images with normal mucosa. Group II have images with
mucosal abnormal condition metaplasia. Group III has images of patients which were suf-
fering from dysplasia. The aim of this challenge is to classify these images based on color,
shape and irregular texture (see Chromogastro2 in Table 16).

(b) Esophagus Micro-Endoscopy Images in Barrett’s Surveillance This challenge is about
early detection of cancer from BE which is a premalignant state of mucosal cells. In BE, the
normal cells are replacing with metaplastic cells containing goblet cells. The main challenge
is to classify eachCLE image according to histologically. The imageswill be classified gastric
metaplasia (GMP), intestinal metaplasia or proper Barrett’s esophagus (BAR), or neoplasia
(NPL) (see CLE_barrett3 in Table 16).

(c) Confocal Endoscopy in Celiac Imaging A CLE images data-set containing various
pathologies of CD has provided for automatic detection of mucosal damage. Small-bowel
mucosa damaged from mild or with increased intraepithelial lymphocytes and Crypt Hyper-
plasia (CH) tomore severe damage referred to villousAtrophy (VA). The aimof this challenge

2 https://aidasub-chromogastro.grand-challenge.org.
3 https://aidasub-cleceliachy.grand-challenge.org/description/.
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to develop a CADx system to classify images in either a normal mucosa or villous atrophy
(VA), crypt hypertrophy (CH) of both (VACH). Each classified image showed a normal
mucosa, villous atrophy or crypt hypertrophy, as increase severity of CD damage to the
intestinal mucosa (see CLE_celiachy4 in Table 16).

(2) Endoscopy Vision Challenge In this challenge, data-sets has been provided for
endoscopic surgical vision related tasks. These data-sets are developed for performance com-
parisons and bench-marking of different vision-based algorithms. Computer vision-based
methods including 3D surface reconstruction, lesion surveillance, tracking, and surgical
instruments segmentation from endoscopic frames or videos. Some sub-challenges of this
grand challenge are as follows:

(a) Automatic Polyp Detection in Colonoscopy Videos This challenge is about polyp seg-
mentation and tracking in colonoscopy videos, it also provides ground truth values along
with colon images by indicating polyp pixels. Moreover, the challenging task can be divided
into two sub-task, first is segmentation of polyps with more accuracy and the second sub-task
is the detection of frames with polyps and take account of the occurrences of polyps in the
whole video sequence (see CVC-ColonDB5 ETIS-Larib6 ASU-Mayo Clinic7 in Table 16).

(b)Detection of Abnormalities in Gastroscopic Images In this challenge, 800 gastroscopic
images are provided for detection of abnormality in these images. In training data, 260 are
abnormal frames and 205 are normal frames. In testing set 129 are normal and 104 abnormal
frames (see Gastric_Data8 in Table 16).

(c)EarlyBarrett’sCancerDetectionHDendoscopic frames are provided to test algorithms
which are developed for detectionofBarret’s cancer.HDVE images of 39patients are gathered
where 17 have cancer and 22 are healthy are grouped into 2 sets, 50 images have cancer
and 50 have no cancer present in them. The challenge is to detect images with cancer (see
HD_barrett9 in Table 16).

(d) Gastrointestinal Image ANAlysis (GIANA) This challenge is also about segmentation
and tracking polyps from endoscopic frames. It comes with two data-sets one is for detection
and another data-set is for segmentation of polyps. 300 images for training and 612 images for
testing the algorithms developed for polyp frame detection. Moreover, 18 video sequence for
polyp detection and segmentation data-set contains 168 frames (see CVC-VideoClinicDB10

CVC-DB11 CVC-ClinicHDSegment12 in Table 16).
(d) Instrument Segmentation and Tracking This challenge has two parts one is segmen-

tation of surgical instruments and the other part is tracking of these segmented surgical
instruments in the whole video sequence. Images data-sets both for tracking and segmenta-
tion of surgical instruments have been provided. Moreover, this images data-set contains two
types rigid and robotic instruments for segmentation (see data description13)

4 https://aidasub-clebarrett.grand-challenge.org.
5 https://polyp.grand-challenge.org/site/Polyp/CVCClinicDB/.
6 https://polyp.grand-challenge.org/site/Polyp/EtisLarib/.
7 https://polyp.grand-challenge.org/site/Polyp/AsuMayo/.
8 https://endovissub-abnormal.grand-challenge.org/data/.
9 https://endovissub-barrett.grand-challenge.org/data_description/.
10 https://endovissub2017-giana.grand-challenge.org/polypdetection.
11 https://endovissub2017-giana.grand-challenge.org/polypsegmentation/.
12 https://endovissub2017-giana.grand-challenge.org/polypsegmentation/.
13 https://endovissub-instrument.grand-challenge.org/data/.
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7 Conclusion

Computer-aided diagnosis (CADx) is the future of clinical practices. By using a less inva-
sive endoscopy to observe the gastrointestinal tract is the most reasonable approach for
screening. As a result, efficient computer vision techniques are needed for the detection of
abnormalities from the endoscopic sequence. Moreover, advancements in surgical-vision
techniques will revolutionize the surgical procedures and ultimately provides computer-
assisted interventions. A successful CADx system requires efficient features extraction and
image representation methods. Therefore, there is need to design such features extraction
methods those deal with dynamics of the gastric environment and provides a better descrip-
tion of the gastric lesion. In this paper, we have presented a survey of existing CADx systems
have been developed for detection of gastric abnormalities.Moreover, we have reviewed them
based on their feature extraction techniques. These features extraction techniques are grouped
based on their respective domain and descriptors.We have alsomentioned various endoscopy
modalities, and abnormalities. This survey also has discussed various open issues, trends, and
challenges. Moreover, image data-sets associated with these medical-imaging challenges in
the field of computer-assisted endoscopy are described.
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