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Abstract
This study proposes a bald eagle search (BES) algorithm, which is a novel, nature-inspired
meta-heuristic optimisation algorithm that mimics the hunting strategy or intelligent social
behaviour of bald eagles as they search for fish.Hunting byBES is divided into three stages. In
the first stage (selecting space), an eagle selects the space with themost number of prey. In the
second stage (searching in space), the eaglemoves inside the selected space to search for prey.
In the third stage (swooping), the eagle swings from the best position identified in the second
stage and determines the best point to hunt. Swooping starts from the best point and all other
movements are directed towards this point. BES is tested by adopting a three-part evaluation
methodology that (1) describes the benchmarking of the optimisation problem to evaluate the
algorithm performance, (2) compares the algorithm performance with that of other intelligent
computation techniques and parameter settings and (3) evaluates the algorithm based on
mean, standard deviation, best point and Wilcoxon signed-rank test statistic of the function
values. Optimisation results and discussion confirm that the BES algorithm competes well
with advanced meta-heuristic algorithms and conventional methods.

Keywords Bald eagle behaviour · Meta-heuristic algorithm · Optimisation · Unconstrained
benchmark problem

1 Introduction

Optimisation remains a significant challenge in artificial computation (Sameer et al. 2019;
Tariq et al. 2018; Zaidan et al. 2017). Accordingly, many algorithms have been developed
to solve such a problem. However, two issues should be addressed to guarantee a successful
solution to this problem: how to identify the global and local optimisation and how to preserve
such optimisation until the end of the search (Qu et al. 2012).

Over the last two decades, nature-inspired computation has attractedwide interest amongst
researchers, given that nature is an important source of concepts, mechanisms and ideas for
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designing artificial computing systems that solve many complex mathematical problems
(Barhen et al. 1997). Individuals must adapt to their surrounding environments to ensure the
survival and long-term preservation of their breed (Whitley 2001). This process is known
as evolution (Fogel 1995, 2009; Fogel et al. 1965; Schwefel 1995; Michalewicz and Attia
1994). Maintaining the time of reproduction can also sustain the features that foster the
competitiveness of individuals and remove their weak features. Only those good individuals
from the surviving species can transmit genetically modified genes to their descendants. This
process, which is known as natural selection, has inspired ‘evolutionary algorithms’ (EAs),
which are amongst the most widespread and successful algorithms being applied in research.
Several types of EAs have been employed in the literature, including genetic algorithms
(Houck et al. 1995; Joines and Houck 1994; Kazarlis and Petridis 1998; Holland 1992),
genetic programming (Koza 1992), evolutionary programming and evolutionary strategies
(Yao et al. 1999; Rechenberg 1994; Whitley 2001; Yao et al. 1999b; Yao and Liu 1997).

Evolutionary optimisation techniques are the most widely used intelligent computing
techniques to solve many problems, such as the combinatorial and nonlinear optimisation
problems (Fiacco and McCormick 1968). These techniques easily address different types of
issues by using and integrating prior information into an evolutionary search yielding process
to efficiently explore a state space of possible solutions. However, EAs are unable to find
the optimal solution for numerous issues despite the aforementioned advantages; therefore,
many researchers have merged these algorithms with extant technologies to improve their
solutions (Whitley 2001).

Swarm intelligence (SI) is another form of intelligent computing technique that includes
particle swarm optimisation (PSO) (Birge 2003; Shi and Eberhart 1998; Kennedy and Eber-
hart 1995), which mimics the swarm behaviour of birds or fish (Li 2003); ant colony
optimisation (Dorigo et al. 2006), whichmimics the foraging and schooling behaviour of ants
and other algorithms, such as gravitational search (Rashedi et al. 2009), grey wolf optimiser
(GWO) (Mirjalili et al. 2014), artificial bee colony (Karaboga and Basturk 2007), moth-
–flame optimisation (Mirjalili 2015), whale optimisation (Mirjalili and Lewis 2016), group
search optimiser (He et al. 2006, 2009) and ant lion optimiser algorithms (Mirjalili 2015),
as well as many algorithms modified on the PSO algorithms, such as comprehensive learn-
ing particle swarm optimiser (CLPSO) (Liang et al. 2006) and fitness-distance-ratio-based
particle swarm optimisation (FDR-PSO) (Peram et al. 2003) and ensemble particle swarm
optimiser (EPSO) (Lynn and Suganthan 2017). SI solves many problems by simulating the
normal behaviour of some animals when moving from one place to another in search of food.
This technique is generally influenced by the size and nonlinearity of the problem. Despite
obtaining the optimal solution to computational and combinatorial problems, the majority of
the existing analytical methods are unable to converge such problems.

SI offers many advantages. For example, each individual can improve his/her search
efficiency by moving from one position to another, whilst all individuals within a swarm can
improve their respective positions. In EAs, the weak and inefficient individuals are neglected
and replaced by highly competent individuals. A swarm continuously explores new areas
within the search space to rapidly reach global optimisation areas. However, SI also has its
own disadvantages. For example, collective movement may induce a state of mass decline in
the local optimum and the continued failure of individuals to escape from this area can lead
to the early suspension of the exploration (Del Valle et al. 2008).

Nature-inspired techniques have been developed owing to their ability to address various
issues and the possibility of integrating evolutionary techniques with swarm techniques to
create new technologies that can solve these problems. Such technologies maximise the
advantages offered by SI in terms of searching within the best position in the swarm and
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capitalise on the capability of evolutionary techniques to explore the search space frequently
and avoid the local optimum. Thus, the introduction of techniques such as the bald eagle
search (BES), which is a nature-inspired technique for solving optimisation problems that
mimics the behaviour of bald eagles when searching for food, is useful. To the best of our
knowledge, an algorithm that mimics the behaviour of bald eagles, which are known for
pack hunting, has yet to be developed. Bald eagles search for food in three stages. In the first
stage, the eagles identify an area where they will conduct their search. In the second stage,
the eagles search for food within the selected area. In the third stage, the eagles choose and
attack a prey (Sörensen 2015).

Themovement of bald eagles in the three stages depends on a centre point. In the first stage,
the eaglesmove from the centre point towards the selected search area. In the second stage, the
eagles searchwithin the search space and around the centre point. In the third stage, the eagles
move towards a prey from the centre point of the search area. Themean point for all the points
of search was based on this point as a central point for the launch and search of the eagle. The
advantages of evolutionary and swarm techniques have been integrated into the construction
of the BES algorithm. The first and second stages are considerably similar to the search
behaviour of evolutionary techniques. Specifically, the first stage of the BES algorithm relays
and collects all search points starting from the original point to the best point. The second
stage is treated as an evolution stage for all search points and maximises the preferred search
points along the direction leading to the centre point. The third stage mimics the behaviour
of SI whilst moving towards the best point, with the benefit of the previous site for each point
of search. Considering that the centre point is a local search point enables this stage to direct
the search in a large area and overcome the shortcomings in the previous stages of search.

Themain objective of this study is to propose a novel nature-inspired technique for solving
optimisation problems. The remainder of this paper is organised as follows. Section 2 briefly
reviews the search behaviour of bald eagles and describes each stage of the proposed BES
algorithm. Section 3 discusses the evaluation methodology and the results. Section 4 presents
the conclusions.

2 BES algorithm

2.1 Behaviour of bald eagle during hunting

‘Bald’ is a derivation of the old English word balde vgbyhuvu, which means ‘white’. Hence,
bald eagles are not bald. Bald eagles are occasional predators and are at the top of the food
chain only because of their size. Furthermore, bald eagles are considered scavengers that
feast on any available, easy and protein-rich food. Bald eagles are an opportunistic forager
that mainly select fish (alive or dead), especially salmon, as primary food. Birds that make
optimal hunting decisions can evaluate the energetic cost of the hunting attempt, energy
content of the prey and probability of success in various habitats utilising multiple attack
methods (Todd et al. 1982). Bald eagles frequently hunt from perches but may also hunt
whilst in flight. They are capable of spotting fish at enormous distances because obtaining
fish from water is difficult. Thus, only 1 in 20 attempts of attack may succeed (Stalmaster
and Kaiser 1997). Thereafter, bald eagles rest because hunting consumes substantial energy.
Figure 1 shows the behaviour of bald eagles during hunting time. When they start to search
for food over a water spot, these eagles set off in a specific direction and select a certain area
to begin the search. Accordingly, finding the search space is achieved by self-searching and
tracking other birds to the concentrations of fish (dead or alive) (Stalmaster 1987).
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Fig. 1 Behaviour of bald eagle during hunting

Thereafter, bald eagles will go directly to the particular area. The specified search space
can be justified because space selection is the first stage of hunting behaviour (see Fig. 2).
Foraging success is high within the range of 5 m from the shore (47%) compared with deep
in the water. That is, an important consideration for foraging habitat is bald eagles select the
middle space between the land surface and deep water that is distant from the shallow water
(Stalmaster and Gessaman 1982). Specifically, a pair of eagles hunt daily over 250 ha of open
pasture. When the eagles reach the area, they will begin their search; the selected area is not
farther than 700 m from their nest because the energy aspect is a critical factor in searching
(Lasserre 2001).

Furthermore, bald eagles take advantage of stormy air whilst flying high. Soaring is acti-
vated by increased wind speed, in which eagles consume substantial time on flying. Eagles
are observed to have slithering, graceful, motionless flights for hours at a time (Stalmaster
and Kaiser 1997; Hansen 1986; Hansen et al. 1984). They also have outstanding eyesight,
thereby enabling them to observe fish in water or dead fish from hundreds of feet up in the air.
An eagle’s eye is as large as a human eye but is more powerful. Moreover, an eagle’s eye has
perfect vision, which is four times that of humans. Eagles can also see in two directions at the
same time, forward and side views. Whilst eagled fly thousands of feet in the air, scanning
becomes easy with a twisting motion and the eagle can spot a prey over an area of nearly 3 m2

(Hansen 1986). The second stage of hunting behaviour is seeing the prey (see Fig. 2). Once
the eagles see the prey, they will start the last stage of hunting behaviour, which descends
with a gradual flow of motion to reach the prey at a high speed and snatch the fish from the
water (see Fig. 2). A consumption card estimated at five branches of the search energy spiral
is used by eagles in search of fish (Liang et al. 2006).
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Fig. 2 Co-sequences for the three main stages of hunting by BES

2.2 BES algorithm

The proposed BES algorithm mimics the behaviour of bald eagles during hunting to justify
the co-sequences of each stage of hunting. Accordingly, this algorithm can be divided into
three parts, namely, selecting the search space, searching within the selected search space
and swooping.

2.2.1 Select stage

In the select stage, bald eagles identify and select the best area (in terms of amount of food)
within the selected search space where they can hunt for prey. Equation (1) presents this
behaviour mathematically.

Pnew, i � Pbest + α ∗ r(Pmean − Pi ) (1)

where α is the parameter for controlling the changes in position that takes a value between
1.5 and 2 and r is a random number that takes a value between 0 and 1. In the selection
stage, bald eagles select an area on the basis of the available information from the previous
stage. The eagles randomly select another search area that differs from but is located near
the previous search area. Pbest denotes the search space that is currently selected by bald
eagles based on the best position identified during their previous search. The eagles randomly
search all points near the previously selected search space. Meanwhile, Pmean indicates that
these eagles have used up all information from the previous points. The current movement
of bald eagles is determined by multiplying the randomly searched prior information by α.
This process randomly changes all search points (Hatamlou 2012).
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Fig. 3 Improvised selection stage: a selection stage after one alteration, b selection stage after two alterations
and c selection stage after three alterations

We solve the Rosenbrock function in each stage based on the size of search point 10
to improve the efficiency of the random solution. Figure 3 shows that the selection stage
effectively improves all solutions within the search based on the mean and best points.
Figure 3a shows the location of the best and mean solutions within the search space. The
mean point has the best location in the search space, whereas the selected space depends on
the difference between the search and mean points. Figure 3b shows that search point 10 is
located near the best point. Figure 3c shows the improvement in all points within the search
space and the new best point within search point 3.

2.2.2 Search stage

In the search stage, bald eagles search for prey within the selected search space and move in
different directions within a spiral space to accelerate their search. The best position for the
swoop is mathematically expressed in Eq. (2).

Pi,new � Pi + y(i) ∗ (Pi − Pi+1) + x(i) ∗ (Pi − Pmean) (2)

x(i) � xr(i)

max(|xr |) , y(i) � yr(i)

max(|yr |) (a)

xr(i) � r(i) ∗ sin(θ(i)), yr(i) � r(i) ∗ cos(θ(i)) (b)
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Fig. 4 Bald eagles searching within a spiral space

θ(i) � a ∗ π ∗ rand . . . (c) and r(i) � θ(i) + R ∗ rand . . . (d),

where a is a parameter that takes a value between 5 and 10 for determining the corner between
point search in the central point and R takes a value between 0.5 and 2 for determining the
number of search cycles. Figure 4 shows that bald eagles move in a spiral direction within
the selected search space and determine the best position for swooping and hunting for prey.
We use a polar plot property to mathematically represent this movement. This property also
enables the BES algorithm discover new spaces and increase diversification by multiplying
the difference between the current and next points by the point of polar in the y-axis and by
adding the difference between the current and centre points with the point of polar in the
x-axis. We use the mean solution in the search point because all search points move towards
the centre point. All points in the polar plot take a value between − 1 and 1 and we use a
special equation for the spiral shape (a–d). Moreover, a and R represent the parameters for
the change in the spiral shape. Figure 5 shows the spiral shape when these parameters are
changed.

The points move around the centre point during the search stage. When parameters a and
R are changed, the algorithm increases diversification to escape from the local optimum and
to continuously obtain an efficient solution. Figure 6 shows the improvement in the fitness
function during the search stage, whilst Fig. 6a shows the location of the best and mean
points. The best point has a better location compared with the mean point in the search space.
Figure 6b shows the improvement in all points and the best solution that is obtained in point
4. Figure 6c shows the new location of all points in the search space and the best point that is
obtained in point 7. The search space depends on the movement of points from one location
to another, whereas the mean point is based on the movement of these points around a spiral.
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Fig. 5 Shape of the spiral when parameters a and R are changed

2.2.3 Swooping stage

In the swooping stage, bald eagles swing from the best position in the search space to
their target prey. All points also move towards the best point. Equation (3) mathematically
illustrates this behaviour.

Pi,new � rand ∗ Pbest + x1(i) ∗ (Pi − c1 ∗ Pmean) + y1(i) ∗ (Pi − c2 ∗ Pbest ) (3)

x1(i) � xr(i)

max(|xr |) , y1(i) � yr(i)

max(|yr |)
xr(i) � r(i) ∗ sinh[θ(i))], yr(i) � r(i) ∗ cosh[θ(i))]
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Fig. 6 Improvements in the fitness function during the search stage a after one alteration, b after two alterations
and c after three alterations

θ(i) � a ∗ π ∗ rand and r(i) � θ(i)

where c1, c2 ∈ [1, 2].

The movement of the eagles takes different shapes. We use a polar equation to plot the
movement of these eagles whilst swooping. Additionally, we compute for the best point by
multiplying the difference between the current and centre points by the point of polar in the
x-axis andmultiplying the difference between the current and best points by the point of polar
in the y-axis. The best solution must be multiplied by a random number because parameters
c1 and c2 increase the movement intensity of bald eagles towards the best and centre points
(see Fig. 7).

The movement of points in the swoop equation when the parameters were changed was
circular to the best point. The mean of population in this stage can help the algorithm in
intensification and diversification, where all solution approaches the best solution. Figure 9
shows the improvised swoop process, whilst Fig. 9a shows the location of the mean. The best
point is in the same location and the location of the point. Figure 9b shows the improvement
of all points in the search space, obtains very near location from the best solution in points
1, 2, 5 and 6 and obtains the new best solution in point 6. Figure 9c shows all point to the
new location, which is better compared with the previous location, and obtains the new best
solution in point 5, which is better compared with the mean point. The three stages are critical
in obtaining a good solutionwithminimum iteration,where each stage depends on two crucial
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Fig. 7 Shape of swoop when parameter a is changed

characteristics, intensification and diversification. These characteristics are crucial to obtain
a new solution continuously and search a round optimal solution (Fig. 8).

2.2.4 Complete BES algorithm

The preceding sections introduced the main components of BES, which include the selec-
tion, searching and swooping stages. To describe the remaining operations and facilitate the
implementation of BES, the pseudo-code of its complete algorithm is provided in Algorithm
1. The initialisation procedure is first activated in lines 1–2 of Algorithm 1. Population P is
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Fig. 8 Improvised swoop stage: a swoop stage after on alteration, b swoop stage after two alterations and
c swoop stage after three alterations

initialised to be generated in the space of problems, whilst the iteration number t is set to
0. For each solution in P, the positional information is randomly generated. Thereafter, the
objectives of each particle are evaluated. We execute the following steps for each solution
in the population P: selection area for the searching around the best solution using lines
4–12, evaluate the new area, as well as the searching and selection areas by using spiral
movement, where random number generated in two axes and two movements. The solu-
tion moves towards the next point and the central point. We evaluate the new position for
hunting by using lines 13–21. Thereafter, the swoop stage begins by using the new position
in the searching space to swoop towards the prey. The new solution is evaluated by using
lines 22–30. The iteration counter k is increased by 2 in line 31, as three steps are run. The
preceding evolutionary phase is repeated until the pre-set maximum number of iterations is
achieved. Lastly, the final solutions in P are reported as the final population and the best
solution obtained in the population for solving the problem.
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3 Computational experiment

This section evaluates the performance of the proposed BES algorithm. Firstly, we describe
the evaluationmethodology and present the results of the experiments,which are conducted in
different optimisation problems. Secondly,we compare the performanceof theBESalgorithm
with that of other intelligent computational techniques. Thirdly, we discuss our findings in
detail. The no free lunch (NFL) theorem indicates that ‘for any algorithm, any elevated
performance over one class of problems is exactly paid for in performance over another
class’ (Wolpert andMacready 1997). A particular meta-heuristic may yield promising results
for a set of problems but may perform poorly on another set of problems. With NFL, this
field of study is highly active. Consequently, the extant approaches are enhanced, whilst new
meta-heuristics are proposed every year.
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3.1 Experimental settings and comparative methods

Firstly, we test the performance of the proposed BES on 30 benchmark functions of the
CEC 2014 Competition on Single Objective Real-Parameter Numerical Optimisation (Liang
et al. 2013) and 25 benchmark functions of the CEC 2005, because those benchmark testing
problems are most frequency used by other researchers in order to test thier strong points that
covers the various types of function optimisation a single objective problems in most cases
as shown in Tables 1 and 2. Detailed definitions of the functions can be found in Suganthan
et al. (2005).

The performance of the BES algorithm is also evaluated using the CEC 2014 benchmark
functions (Liang et al. 2013). The set of CEC 2014 benchmark functions consist of 30 suits
THAT are classified into four categories, namely, unimodal, simple multimodal, hybrid and
composition functions. Table 2 describes the search range and global optimum values of all
benchmark functions.

On the test functions, we compare BES with six recent popular meta-heuristic methods:

• Differential evolution (DE) algorithmAbasic variant of the DE algorithmworks by having
a population of candidate solutions (called agents). These agents are moved into the search
space using simple mathematical formulas to combine the positions of existing agents in
the population. If the new agent position is an improvement, then the position is accepted
and is part of the population, otherwise the new position is simply discarded. The process
is repeated and, in doing so, it is hoped, but not guaranteed, that a satisfactory solution
will be discovered (Storn and Price 1997).

• GWO algorithm The GWO algorithm mimics the hierarchy of leadership and hunting
mechanism of grey wolves in the wild as proposed by Mirjalili et al. (2014). Four types
of grey wolf, namely, alpha, beta, delta and omega, are used to simulate the leadership
hierarchy. Additionally, three main stages of hunting are implemented to perform an opti-
misation, namely, search, encroachment and attack of prey.

• EPSOAset of optimisation algorithms for particle swarmswith self-adaptivemechanism is
proposed by hybridising some PSO algorithms, called EPSO (Lynn and Suganthan 2017).

• FDR-PSO This algorithm has been proposed to solve the problem of premature conver-
gence observed in PSOs. In comparison with PSO, FDR-PSO added a social learning
component, drawing lessons from the neighbouring particle’s (nbest) experiment. The
neighbouring particles are selected on the basis of two criteria: (1) the particle must be
near the particle being updated and (2) the particle must be better adapted compared with
the particle being updated. Whether a neighbouring particle meets these criteria, the deci-
sion is made by the distance ratio fitness/distance one-dimensional called distance-fitness
ratio (Peram et al. 2003).

• CLPSO In PSO, the trajectory towards the global optimum is adjusted by the pbest and
gbest particles. Although gbest is the best experience of the population, this particle may
be a lower local optimum for a multimodal problem and far from the global optimum. To
solve this problem, CLPSO has been proposed in Liang et al. (2006). In CLPSO, the best
experiments of all particles are used to guide the search for a particle.

Notably, fine-tuning the control parameters for each problem can improve the performance
of the algorithm. However, finding separate parameter settings for each problem can take
a long time. Such tuning processes can lead to an unfair comparison for each algorithm in
evaluating the algorithm’s overall performance over the entire test suite. Table 3 shows the
recommended setting of the algorithm zones.
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Table 1 CEC 2005 test functions

Benchmark functions Initialisation range Search range F(x*)

Unimodal functions [− 100, 100]D [− 100, 100]D − 310

F1: Shifted sphere function [− 100, 100]D [− 100, 100]D − 450

F2: Shifted Schwefel’s problem 1.2 [− 100, 100]D [− 100, 100]D − 450

F3: Shifted rotated high conditioned elliptic function [− 100, 100]D [− 100, 100]D − 450

F4: Shifted Schwefel’s problem 1.2 with noise in fitness [− 100, 100]D [− 100, 100]D − 450

F5: Schwefel’s problem 2.6 with global optimum on
bounds

[− 100, 100]D [− 100, 100]D − 310

Multimodal functions [− 100, 100]D [− 100, 100]D − 310

F6: Shifted Rosenbrock’s function [− 100, 100]D [− 100, 100]D 390

F7: Shifted rotated Griewank’s function without bounds [− 0, 600]D [− 600, 600]D − 180

F8: Shifted rotated Ackley’s function with global optimum
on bounds

[− 32, 32]D [− 32, 32]D − 140

F9: Shifted Rastrigin’s function [− 5, 5]D [− 5, 5]D − 330

F10: Shifted rotated Rastrigin’s function [− 5, 5]D [− 5, 5]D − 330

F11: Shifted rotated Weierstrass function [− 0.5, 0.5]D [− 0.5, 0.5]D 90

F12: Schwefel’s problem 2.13 [− 100, 100]D [− 100, 100]D − 460

Expanded functions [− 100, 100]D [− 100, 100]D − 310

F13: Expanded extended Griewank’s plus Rosenbrock’s
function (F8F2)

[− 3, 1]D [− 3, 1]D − 130

F14: Shifted rotated expanded Scaffer’s F6 [− 100, 100]D [− 100, 100]D − 300

Hybrid composition functions [− 100, 100]D [− 100, 100]D − 310

F15: Hybrid composition function [− 5, 5]D [− 5, 5]D 120

F16: Rotated hybrid composition function [− 5, 5]D [− 5, 5]D 120

F17: Rotated hybrid composition function with noise in
fitness

[− 5, 5]D [− 5, 5]D 120

F18: Rotated hybrid composition function [− 5, 5]D [− 5, 5]D 10

F19: Rotated hybrid composition function with a narrow
basin for the global optimum

[− 5, 5]D [− 5, 5]D 10

F20: Rotated hybrid composition function with the global
optimum on the bounds

[− 5, 5]D [− 5, 5]D 10

F21: Rotated hybrid composition function [− 5, 5]D [− 5, 5]D 360

F22: Rotated hybrid composition function with high
condition number matrix

[− 5, 5]D [− 5, 5]D 360

F23: Non-continuous rotated hybrid composition function [− 5, 5]D [− 5, 5]D 360

F24: Rotated hybrid composition function [− 5, 5]D [− 5, 5]D 260

F25: Rotated hybrid composition function without bounds [− 2, 5]D [− 5, 5]D 260

In experiments, we use 30-D problems for test problems and set the maximum number of
evaluations (NFE) at 100,000 for each problem algorithm to ensure a fair comparison. Each
algorithm has been run 30 times (with different initial random values) on each test problem
and the evaluation is based on the average performance over 60 runs.
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Table 2 CEC 2014 test functions

Benchmark functions Search range F(x*)

Unimodal functions [− 100, 100]D − 310

F1: Rotated high conditioned elliptic function [− 100, 100]D 100

F2: Rotated Bent Cigar function [− 100, 100]D 200

F3: Rotated discus function [− 100, 100]D 300

Simple multimodal functions

F4: Shifted and rotated Rosenbrock’s function [− 100, 100]D 400

F5: Shifted and rotated Ackley’s function [− 100, 100]D 500

F6: Shifted and rotated Weierstrass function [− 100, 100]D 600

F7: Shifted and rotated Griewank’s function [− 100, 100]D 700

F8: Shifted Rastrigin’s function [− 100, 100]D 800

F9: Shifted and rotated Rastrigin’s function [− 100, 100]D 900

F10: Shifted Schwefel’s function [− 100, 100]D 1000

F11: Shifted and rotated Schwefel’s function [− 100, 100]D 1100

F12: Shifted and rotated Katsuura function [− 100, 100]D 1200

F13: Shifted and rotated HappyCat function [− 100, 100]D 1300

F14: Shifted and rotated HGBat function [− 100, 100]D 1400

F15: Shifted and rotated expanded Griewank’s plus Rosenbrock’s function [− 100, 100]D 1500

F16: Shifted and rotated expanded Scaffer’s F6 function [− 100, 100]D 1600

Hybrid functions

F17: Hybrid function 1 (N � 3) [− 100, 100]D 1700

F18: Hybrid function 2 (N � 3) [− 100, 100]D 1800

F19: Hybrid function 3 (N � 4) [− 100, 100]D 1900

F20: Hybrid function 4 (N � 4) [− 100, 100]D 2000

F21: Hybrid function 5 (N � 5) [− 100, 100]D 2100

F22: Hybrid function 6 (N � 5) [− 100, 100]D 2200

Composition functions

F23: Composition function 1 (N � 5) [− 100, 100]D 2300

F24: Composition function 2 (N � 3) [− 100, 100]D 2400

F25: Composition function 3 (N � 3) [− 100, 100]D 2500

F26: Composition function 4 (N � 5) [− 100, 100]D 2600

F27: Composition function 5 (N � 5) [− 100, 100]D 2700

F28: Composition function 6 (N � 5) [− 100, 100]D 2800

F29: Composition function 7 (N � 3) [− 100, 100]D 2900

F30: Composition function 8 (N � 3) [− 100, 100]D 3000

3.2 Evaluation procedure

The experimental results will be described on the basis of the mean, standard deviation (SD),
best point and Wilcoxon signed-rank test statistic of the function values.

(a) Mean Mean (x) is computed as the sum of all the observed outcomes from the sample
divided by the total number of these outcomes.
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Table 3 Parameter settings for the algorithms used in the comparative study

Algorithm Parameter References

BES c1, c2, α � 2, a � 10, R � 1.5 and Popsize � 100 Our proposed

DE Popsize � 100,Cr � 0.5, F ∈ [0.8, 1] Brest et al. (2006)

GWO Popsize � 100 Mirjalili et al. (2014)

CLPSO c � 3 − 1.5, ω � 0.9 − 0.2 Liang et al. (2006)

EPSO – Lynn and Suganthan (2017)

FDR-PSO c1 � 1, c2 � 1, c3 � 2, ω � 0.9 − 0.2, χ � 0.729 Peram et al. (2003)

x̄ � 1

n

n∑

i�1

xi

(b) SD SD is a measure that quantifies the variation or dispersion of a set of data for the
function values.

SD �
√√√√ 1

N − 1

N∑

i�1

(xi − x̄)2

(c) Best point The best point reflects the minimum value.
(d) Wilcoxon signed-rank test The Wilcoxon signed-rank test statistic determines the

difference between two samples (Derrac et al. 2011) and provides an alternative test
of location that is affected by the magnitudes and signs of these differences. This test
answers the following hypotheses:

H0 : mean(A) � mean(B)

H1 : mean(A) �� mean(B),

whereA andBdenote the results of the first and second algorithms, respectively. This test
also checks whether one algorithm outperforms the other. Let di denote the difference
between the performance scores of two algorithms in solving ith out of n problems. Let
R+ denote the sum of ranks for the problems, in which the first algorithm outperforms
the second. Lastly, let R− represent the sum of ranks for the problems in which the
second algorithm outperforms the first. The ranks of di � 0 are divided evenly amongst
the sums. If these sums have an odd number, then one of them is disregarded.

R+ �
∑

di>0

rank(di ) +
1

2

∑

di�0

rank(di )

R− �
∑

di<0

rank(di ) +
1

2

∑

di�0

rank(di )

We use MATLAB to find the p value for comparing the algorithms at a significant level
of α � 0.05. The null hypothesis is rejected when the p-value is less tha n the significant
level. R+ represents a high mean algorithm that shows superiority over other algorithms

across different sets of experiments. When
(
R+ � n×(n+1)

2

)
, this algorithm outperforms all

algorithms across all experiments.

123



Novel meta-heuristic bald eagle search optimisation algorithm 2253

Table 4 Comparative results on the unimodal benchmark functions. CEC 2005 test functions

Problems Statistics BES DE/best/1 DE/rand/1 GWO EPSO CLPSO FDR-PSO

F1 Mean 2.54E−13 30.04215 0.001557 1619.29 3.57E−03 8456.677 1.59E+00

STD 9.64E−14 114.3291 0.000639 1061.882 5.97E−03 2653.327 8.08E−01

Best 1.14E−13 5.68E−14 0.000412 207.1187 0.000333 3314.996 3.49E−01

Winner / − + + + + +

F2 Mean 3.58E−04 1304.298 35,520.12 13,918.57 3062.083 48,987.67 5976.6

STD 5.58E−04 1336.021 6697.749 3716.508 1143.627 9091.653 2046.091

Best 1.78E−06 243.5314 24,076.23 7579.364 1512.356 33,066.63 2280.343

Winner / + + + + + +

F3 Mean 424,534.6 13,258,785 2.28E+08 29,447,491 8,035,917 2.38E+08 17,931,228

STD 177,530.9 6,956,047 47,226,682 15,421,433 3,242,596 86,784,215 6,780,924

Best 179,757.8 5,738,012 1.43E+08 7,104,698 2,122,823 97,026,471 7,599,379

Winner / + + + + + +

F4 Mean 1.18E+03 8.20E+03 49,747.03 20,851.57 16,095.22 57,566.8 13,210.99

STD 9.03E+02 5.10E+03 9485.325 4757.41 5503.273 13,882.48 3154.892

Best 136.9326 1505.053 25,632.61 8712.111 8160.798 31,702.48 6741.11

Winner / + + + + + +

F5 Mean 3808.727 4.26E+03 4.77E+03 6067.666 6531.804 19,950.64 4498.863

STD 751.3042 1.35E+03 1.41E+03 2627.344 1490.606 1951.32 1018.822

Best 2.75E+03 1598.197 1.31E+03 1538.454 4011.876 15,642.48 3343.646

Winner / + + + + + +

3.3 Experimental results

Tables 4, 5, 6, 7, 8, 9, 10 and 11 present the experimental results of the unimodal, multimodal,
hybrid and expanded functions, where ‘Mean’ and ‘Best’ denote the mean and minimum val-
ues, respectively, of the algorithm amongst the 30 runs; ‘STD’ denote standard deviation and
the index greater than the median indicates the rank of the algorithm in terms of mean values
amongst the six algorithms; ‘Winner’ indicates the winner between the BES algorithm and
other algorithms by using the Wilcoxon test and Superscript + denotes that BES has signif-
icant performance improvement over the comparative method and superscript − otherwise.
The best results amongst the comparative algorithms of each problem are shown in italics.

3.4 Results and discussion

3.4.1 CEC 2005 benchmark functions

Table 4 shows the results of the unimodal functions. BES obtains the best result in functions
f2–f5, obtains significant result compared with other algorithms and also determines the
second best result after DE/best/1.

Table 5 shows the results of the seven multimodal functions. BES obtains the best results
in four functions, obtains the second best mean values in one function (f10) and ranks third
in f11 and fourth in f9, thereby exhibiting the best overall performance.
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Table 5 Comparative results on multimodal benchmark functions. CEC 2005 test functions

Problem Statistics BES DE/best/1 DE/rand/1 GWO EPSO CLPSO FDR-
PSO

F6 Mean 14.59163 16,683,589 515.4254 49,760,768 764.0062 1.67E+09 4939.805

STD 11.77044 53,306,445 397.5199 92,454,010 1141.437 6.86E+08 4982.12

Best 0.102552 7.664112 58.39584 230,910.7 57.12508 5.69E+08 315.4345

Winner / + + + + + +

F7 Mean 0.01779 2.484019 1.093496 114.1146 1.10798 637.9848 1.190527

STD 0.020298 7.603139 0.054107 83.74462 0.148083 121.9135 0.188011

Best 2.84E−13 0.00838 1.034927 8.415945 0.656189 395.6984 1.030021

Winner / + + + + + +

F8 Mean 21.01276 21.05521 21.04873 21.06576 21.08927 21.10556 21.02348

STD 0.050082 0.058582 0.076623 0.038447 0.060285 0.045758 0.059419

Best 20.8578 20.92556 20.83246 20.99647 20.88136 21.00448 20.91516

Winner / + + + + + +

F9 Mean 96.36371 54.28236 141.0055 104.8878 66.74963 185.4411 69.79172

STD 27.40986 14.06197 9.380712 24.73606 15.14341 16.58373 23.11518

Best 48.75287 34.14963 119.3419 55.97502 21.44116 140.0474 35.54721

Winner / – + + – + –

F10 Mean 125.0188 223.6509 227.3427 180.078 94.93207 362.0407 172.7515

STD 45.55562 30.74557 11.93888 62.57511 36.32295 22.08793 49.2869

Best 49.74789 129.7594 200.8293 78.26293 53.89494 306.642 86.34158

Winner / + + + – + +

F11 Mean 26.72306 31.22171 42.42874 19.45602 27.36569 36.93599 22.55814

STD 5.551898 10.05158 1.104764 2.871001 3.75895 1.831779 4.178208

Best 17.85074 11.86539 39.76568 15.20534 19.26707 32.77143 13.65139

Winner / + + – + + –

F12 Mean 6920.658 33,813.73 361,261 88,617.99 25,464.79 452,552.4 36,160.32

STD 9400.036 28,571.61 62,591.25 38,089.88 13,721.59 84,126.72 17,501.06

Best 2.71E+02 4746.136 234,494.5 32,123.28 9063.297 263,658.2 9404.816

Winner / + + + + + +

Table 6 Comparative results on the expanded benchmark functions. CEC 2005 test functions

Problems Statistics BES DE/best/1 DE/rand/1 GWO EPSO CLPSO FDR-PSO

F13 Mean 8.487249 11.92546 17.43139 7.166694 7.726158 32.99436 14.84338

STD 3.658165 3.374358 1.007515 2.802968 3.215878 3.983259 2.542399

Best 3.11751 3.432903 15.624 4.44821 4.25801 24.89331 8.778688

Winner / + + + + + +

F14 Mean 12.71934 13.53093 13.81469 12.67162 13.21311 13.68121 13.14486

STD 0.225599 0.230809 0.136006 0.531075 0.314512 0.152146 0.342664

Best 12.21889 12.99864 13.44302 11.5179 12.46994 13.3699 12.45767

Winner / + + + + + +
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Table 7 Comparative results on hybrid benchmark functions. CEC 2005 test functions

problem Statistics BES DE/best/1 DE/rand/1 GWO EPSO CLPSO FDR-PSO

F15 Mean 424.7033 390.9729 315.3441 484.9082 346.7444 702.3434 394.7499

STD 92.4719 103.5547 85.81975 88.37767 105.5986 60.39995 159.2829

Best 180.8602 137.6303 203.7066 357.4855 126.0998 596.7025 172.8625

Winner / + – + + + +

F16 Mean 349.8725 311.8774 280.1378 294.8007 245.7533 536.9206 267.6681

STD 147.3519 102.7791 47.45666 166.0575 168.4909 46.23015 163.6782

Best 122.6517 160.1561 228.3058 119.1686 82.59358 411.0915 57.17688

Winner / + + + + + +

F17 Mean 261.1338 349.543 323.9705 376.8497 259.0219 586.6951 388.1169

STD 159.2747 93.30077 56.84546 158.7857 142.7435 74.82946 181.4352

Best 108.146 232.7708 249.8718 122.1886 106.8439 447.2026 164.64

Winner / + + + + + +

F18 Mean 934.9513 924.1293 907.0517 956.9986 951.1687 1111.869 903.0941

STD 36.28793 17.59137 0.854958 22.89824 21.96692 28.90185 47.22523

Best 800 907.922 905.9079 915.7854 918.8487 1063.307 800.0262

Winner / – – + + + –

F19 Mean 935.1817 918.347 907.2287 957.7005 940.2793 1107.025 930.8864

STD 50.65561 11.40584 0.755932 17.83637 32.39813 26.51699 11.59625

Best 800 907.9179 906.499 920.6906 800.0085 1058 912.5285

Winner / – – + + + +

F20 Mean 945.9586 916.9416 907.0598 951.0267 932.5527 1103.514 921.248

STD 25.71717 7.503387 0.539631 22.61306 39.79584 31.6637 24.46258

Best 900 906.0478 905.9592 918.8813 800.0114 1025.034 800.0444

Winner / – – + + + –

F21 Mean 731.4421 618.5815 500.0009 908.2824 816.667 1228.001 646.8711

STD 333.38 233.3088 0.000959 216.6567 344.443 26.19435 273.9703

Best 500 500 500.0003 505.1438 500.0001 1149.816 500.0406

Winner / + + + + + +

F22 Mean 998.6506 957.0858 926.9182 1009.381 1054.05 1268.658 1015.344

STD 38.43831 39.59547 16.7434 53.88538 40.4425 49.65976 29.3925

Best 938.2246 895.7831 888.3293 919.5867 953.3575 1183.691 961.9779

Winner / – – + + + +

F23 Mean 839.5792 874.9123 534.1654 934.4245 711.6103 1227.433 624.3454

STD 291.2889 176.9421 0.000582 182.645 266.3846 22.33277 187.0287

Best 537.2922 602.8678 534.1643 572.3199 534.1753 1161.971 534.1643

Winner / + – + + + –

F24 Mean 345.9346 668.644 876.4201 774.5896 326.3784 1298.387 271.4754

STD 378.4717 349.8999 235.7744 344.7307 337.9403 27.94609 270.15

Best 200 200 200.0049 203.1733 200.0005 1214.368 200.0665

Winner / + + + + + +

F25 Mean 339.939 592.8892 941.6735 853.1318 271.2072 1304.863 271.8627

STD 363.0738 332.4363 140.218 315.1444 270.9198 33.91557 271.3796

Best 200 200 200.0153 298.119 200.0006 1245.324 200.0661

Winner / + + + + + +
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Table 8 Comparative results on the unimodal benchmark functions. CEC 2014 test functions

problem Statistics BES DE/best/1 DE/rand/1 GWO EPSO CLPSO FDR-
PSO

F1 Mean 3.66E+03 3338818 1.11E+08 53,846,624 3.36E+05 33,781,186 3.23E+05

STD 3.61E+03 6,714,714 26,076,081 43,004,178 2.17E+05 10,233,995 2.20E+05

Best 8.36E+01 197,657.3 57,688,916 14,100,054 90,677.98 15,555,720 4.82E+04

Winner + + + + + +

F2 Mean 1.40E−10 15.38533 609.6707 1.62E+09 120.5307 21,940.74 3117.584

STD 4.16E−10 84.26893 1845.188 1.5E+09 182.3628 12,971.31 2588.538

Best 2.84E−13 5.68E−13 1.11E+00 1.06E+08 0.067181 2700.568 73.36015

Winner + + + + + +

F3 Mean 2.57E−10 0.134084 128.2374 37,426.69 56.18939 715.1103 1514.171

STD 4.68E−10 0.284771 52.92267 9393.975 131.0564 714.7068 1786.227

Best 3.41E−13 5.49E−07 50.197 18,879.99 0.013271 33.71222 35.39964

Winner + + + + + +

• DE/best/1 ranks first in f9, EPSO ranks first in f10 and GWO obtains the best mean values
in f11. BES ranks fourth and surpasses three other algorithms in f9, ranks second and
surpasses five other algorithms in f10 and ranks third and surpasses four other algorithms
in f11.

• DE/best/1, EPSO and FDR-PSO rank first, second and third, respectively, in f9, followed
by BES, which is significantly different from (better than) DE/rand/1, GWO and CLPSO.
f9, the Rastrigin function shifted and rotated, has a very large number of local optima,
thereby making it difficult for the algorithms to obtain the global optimum in at least one
executions.

• Of the remaining four benchmarks, BES constantly obtains the best results and its perfor-
mance is extremely different from that of the other algorithms.

Particularly, BES results reach or substantially approximate the real optimum in such func-
tions as f6 and f7, which is a narrow peak (or have an extremely narrow valley ranging from
the local optimum to the global optimum).

Table 6 shows the results of the expanded functions. BES obtains the best result. In two
functions, BES also obtains significant result compared with the other algorithms.

Table 7 shows the results of the 11 hybrid functions. BES occupies the first rank in five
functions (i.e. f16, f1, f21, f24 and f25), third in function f22, fourth in functions f18, f19
and f23 and fifth in function f15. The relatively low performance of BES in f15 is partially
consistent with those of the subfunctions, including f11, because hybrid functions also have
many local optima. In summary, the overall performance of BES is the best amongst the six
algorithms on the benchmark suite, including unimodal, multimodal, hybrid and expanded
functions.

3.4.2 CEC 2014 benchmark functions

Table 8 shows the results of the unimodal functions. BES obtains the best result in all func-
tions and also obtains significant result compared with other algorithms. Notably, numerous
algorithms, such as GWO, work well with unimodal (Mirjalili et al. 2014) but have lost their
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Table 9 Comparative results on simple multimodal benchmark functions. CEC 2014 test functions

Problems Statistics BES DE/best/1 DE/rand/1 GWO EPSO CLPSO FDR-
PSO

F4 Mean 2.31E+00 6.64E+01 76.9344 236.8712 40.74908 114.2538 38.29721

STD 1.19E+01 3.90E+01 5.056233 69.24669 42.58184 23.00387 36.24049

Best 5.26E−06 0.115627 72.5197 123.7805 0.001727 64.89047 0.000288

Winner + + + + + +

F5 Mean 20.86845 2.10E+01 2.09E+01 21.00382 20.39839 20.43222 20.8303

STD 0.061067 5.03E−02 6.02E−02 0.042132 0.076816 0.042371 0.199972

Best 2.07E+01 20.811 2.08E+01 20.92822 2.03E+01 20.34403 20.24299

Winner + + + – – +

F6 Mean 23.34192 11.85587 29.99691 14.13764 13.31339 16.17393 6.521669

STD 3.047271 3.067448 5.070855 3.428804 3.080206 1.471535 2.545097

Best 15.6302 6.432108 8.44128 8.706738 8.784592 12.7068 2.78886

Winner – + – – – –

F7 Mean 0.019991 0.017199 1.14E−12 14.09249 0.016863 0.045864 0.011479

STD 0.018088 0.01589 1.97E−12 16.17478 0.016947 0.021889 0.012675

Best 1.25E−12 4.55E−13 1.14E−13 2.775252 2.27E−13 0.018348 4.55E−13

Winner + – + + + +

F8 Mean 87.95414 43.28241 104.2255 77.20764 11.30973 4.21E−05 36.68078

STD 23.85544 12.55066 8.683879 20.30793 3.09877 2.03E−05 8.782298

Best 45.76804 26.86388 87.3676 50.17775 4.974795 1.48E−05 23.87901

Winner – + + – – –

F9 Mean 107.5547 65.41736 190.9359 99.69832 54.92164 78.96062 60.80355

STD 19.11751 25.15243 11.07124 30.89929 20.53798 8.471923 17.46669

Best 76.61167 21.88909 169.1393 63.35056 21.88909 58.21998 34.82354

Winner – + + – – –

F10 Mean 2395.764 1087.293 2899.698 2402.956 91.63457 5.670689 934.9101

STD 670.425 348.3981 275.1467 594.0224 83.30696 2.1848 334.7705

Best 1313.635 501.8853 2388.886 1077.178 13.08199 1.28E+00 255.8953

Winner – + + – – –

F11 Mean 3098.091 4975.222 6862.322 3008.655 2604.073 2913.618 2802.815

STD 492.9754 1824.373 314.5081 540.8616 363.7578 272.0616 681.6785

Best 2165.823 1591.716 6075.617 1707.095 1903.92 2445.099 1406.739

Winner + + + – + +

F12 Mean 1.319921 2.207899 2.323063 2.089164 0.279357 0.462208 0.793526

STD 0.246955 0.277922 0.277316 1.179885 0.137024 0.067729 0.478633

Best 8.25E−01 1.515601 1.558147 0.092044 0.064829 0.311574 0.261251

Winner + + + – – –

F13 Mean 0.36879 0.463613 0.450412 0.592605 0.336463 0.307429 0.318912

STD 0.073468 0.09945 0.066037 0.547487 0.079248 0.045056 0.083561

Best 0.213096 0.266073 0.306414 0.232018 0.200541 0.206259 0.15523

Winner + + + + + +

F14 Mean 0.265301 0.525637 0.444774 2.984409 0.265005 0.271494 0.259482
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Table 9 continued

Problems Statistics BES DE/best/1 DE/rand/1 GWO EPSO CLPSO FDR-
PSO

STD 0.115124 0.271945 0.189488 4.944169 0.03983 0.037788 0.045261

Best 0.154129 0.216997 0.230968 0.196436 0.194277 0.18306 0.15637

Winner + + + + + +

F15 Mean 16.10439 15.40795 17.05153 138.0471 5.984547 12.0924 4.85754

STD 6.990639 5.143547 1.300929 369.2851 2.082659 1.740555 1.193944

Best 6.777028 3.313125 13.59799 9.621125 2.511469 8.559943 2.669869

Winner + + + – + –

F16 Mean 10.82171 12.07852 12.87917 11.24053 10.59807 10.60224 10.84561

STD 0.603008 0.327701 0.232058 0.63931 0.526349 0.459981 0.497321

Best 9.725559 11.38094 12.2683 9.325099 9.71136 9.602978 9.717548

Winner + + + + + +

Table 10 Comparative results on the hybrid benchmark functions. CEC 2014 test functions

problem Statistics BES DE/best/1 DE/rand/1 GWO EPSO CLPSO FDR-
PSO

F17 Mean 2210.814 44,3994.9 3,319,317 2,271,602 78,044.64 2,835,460 86,263.1

STD 1637.401 407,856 1,279,977 2,576,033 49,587.78 1,270,462 63,505.04

Best 675.6954 32,406 1,126,824 143,404.6 19,750.75 868,162.6 8326.808

Winner + + + + + +

F18 Mean 2608.092 9617.067 45,769.54 7,642,787 2382.131 710.7192 1750.337

STD 2524.524 9985.268 91,579.42 17,223,279 2814.034 495.2381 1642.422

Best 150.4415 293.7062 505.7654 1533.875 108.5105 170.8821 123.5649

Winner + + + + + +

F19 Mean 15.21444 8.939514 7.619889 46.21017 8.507054 11.80276 6.943834

STD 18.90164 2.037473 0.858237 26.781 1.925868 1.554026 1.832491

Best 5.489727 4.813866 5.849286 12.10587 5.598836 9.027436 4.223448

Winner + – + + + –

F20 Mean 220.9628 2706.475 7127.191 19,733.45 1365.607 6641.315 6409.78

STD 191.7257 6259.003 3720.62 11,521.12 1838.436 3475.523 4156.745

Best 96.52486 458.1002 2358.113 4625.688 202.7854 972.6185 647.059

Winner + + + + + +

F21 Mean 1550.811 74,935.51 640,503.3 1,062,936 43,146.02 375,699.8 58,747.33

STD 839.2444 59,608.75 284,054.9 2,095,392 24,076.9 192,067.8 38,984.23

Best 581.2392 8412.206 254,961.8 70,085.64 1756.285 87,221.12 11,776.67

Winner + + + + + +

F22 Mean 333.7552 386.9185 305.1935 448.7551 353.3228 300.3243 333.1851

STD 152.6302 187.7473 85.56478 164.2229 116.4933 97.55436 136.5961

Best 27.01889 35.35308 149.3847 159.8945 148.1649 160.0519 140.1542

Winner + + + + + +
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Table 11 Comparative results on the composition benchmark functions. CEC 2014 test functions

problem Statistics BES DE/best/1 DE/rand/1 GWO EPSO CLPSO FDR-
PSO

F23 Mean 284.5123 315.5549 315.2441 334.6579 315.2441 315.4332 315.2441

STD 51.83408 7.62E−01 4.37E−10 8.359714 1.40E−12 0.124629 5.44E−12

Best 200 315.2441 315.2441 322.1923 315.2441 315.2999 315.2441

Winner + + + + + +

F24 Mean 200 244.2448 224.7383 200.0082 229.3168 227.0902 225.3499

STD 9.41E−07 5.902141 2.140124 0.003444 4.955529 0.842493 2.695402

Best 200 226.8997 222.4876 200.0035 224.2898 225.4053 222.0449

Winner + + + + + +

F25 Mean 200 205.8454 224.8012 212.422 212.2191 209.9482 208.5969

STD 0 2.187855 4.769287 2.227545 2.680017 1.265677 2.509102

Best 200 202.8076 212.7112 207.9581 203.8049 207.7148 203.7192

Winner + + + + + +

F26 Mean 156.8014 130.0926 100.4594 113.7454 107.0267 100.3773 150.2324

STD 50.24401 67.68126 0.050006 34.43978 25.28844 0.078374 50.66672

Best 100.2133 100.3335 100.331 100.2734 100.2174 100.1795 100.2125

Winner + + + + + +

F27 Mean 811.2298 599.9518 382.1877 678.0352 410.1491 425.2634 493.4649

STD 208.9184 151.1121 84.46454 133.7809 33.09232 11.16921 85.47025

Best 401.2241 400.8831 300.741 416.6879 400.8492 410.5939 369.72

Winner – – – – – –

F28 Mean 1503.785 1154.765 845.7761 1116.426 1087.282 1004.397 1617.405

STD 326.2962 240.2191 29.49447 221.6198 140.1024 66.43646 752.626

Best 1006.089 883.819 789.5174 862.4582 866.1551 885.9148 878.4516

Winner – – – – – +

F29 Mean 289,353.1 308,356.8 283,097.4 872,829.6 1139.867 4975.601 1351.865

STD 1,578,238 1,623,985 1,533,502 2,300,167 342.8063 2873.029 375.1286

Best 738.8932 1119.632 1322.552 6892.181 672.4576 1648.231 806.1212

Winner + + + + + +

F30 Mean 2376.079 5426.9 3572.649 52,771.45 2398.848 9028.825 2339.541

STD 881.5484 5424.438 762.7805 35,428 601.3887 3101.532 553.7704

Best 1069.026 1217.581 1768.253 8317.771 1100.716 3204.835 1260.93

Winner + + + + + +

performance on these functions. BES can be effective for solving these functions compared
with other algorithms.

Table 9 shows the results of the 13 multimodal functions. BES obtains the best results
in four functions (f4, f13, f14 and f16). Additionally, EPSO obtains the best results in four
functions (f5, f9, f11 and f12), CLPSO obtains the best results in two function (f8 and f10),
FDR-PSOobtains the best results in two functions (f6 and f15) andDE/rand/1 obtains the best
result in f7. The results of BES were poor in these functions. The reason is that the number of
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localisation areas is extremely large, which makes approaching global optimisation difficult
compared with other functions.

Table 10 shows the results of the six hybrid functions. BES obtains the best result in five
functions (i.e. f17, f18, f20, f21 and f22). The statistical tests show that BES performance
is significantly different from the other five algorithms. Note that in this group of hybrid
functions, the variables are randomly divided into subcomponents, whilst the different basic
functions are used for different subcomponents, thereby resulting in a significant reduction
in the performance of algorithms (e.g. GWO and DE) but the performance of BES remains
as competitive as the basic features.

Table 11 shows the results of the eight composition functions. BES obtains the first rank
in six functions (i.e. f23, f24, f25, f26, f29 and f30). The relatively low performance of BES
in f27 and f28 is partially consistent with those of the subfunctions, including f9, f6 and f11,
given that compositional functions have numerous local optima.

In summary, the overall performance of BES is the best amongst the six comparative
algorithmsof the benchmark suite, including the two sessions ofCEC2005 andCEC2014.On
some test functions with many local optima, the performance of BES is not very satisfactory.

We mainly used a linearly reduced BES population size in our experiments. In later
iterations, the number of solutions was reduced to a single digit. Thus, veering away from
the local optimum is difficult. We also tested the use of BES. The relatively large population
size fixed in BES can effectively improve the performance for this test function but loses
performance in many other test functions. Generally, the strategies to reduce population size
facilitate the improvement of the overall performance of BES but an effective algorithm
for certain problems. However, we must compare these two strategies and choose the best
strategy for the majority of real optimisation problems.

Amongst the other five algorithms, BES showed the best performance throughout the
suite. However, in all test functions, all algorithms are not consistently better compared with
the others. Each algorithm achieves the best result in some functions. BES ranks first amongst
the 33 functions. DE/best/1, DE/rand/1, GWO, EPSO, CLPSO and FDR-PSO immediately
complete 2, 7, 1, 6, 2 and 4 functions, respectively. Each algorithm shows advantages and
disadvantages of its benchmark suite, whichwe consider to be the same for various real-world
problems. Therefore, when choosing an EA for a new optimisation problem, using terms to
describe and quantify the boundaries of effective algorithm performance is important. We
solve the characteristics of problem instances by using objective measurements and tools.

Notably, BES performance is not considerably competitive compared with the top
ranked algorithms in the CEC 2005 and CEC 2014 competitions. The majority of
these algorithms use complex search mechanisms, such as blending operators, his-
tory memory, replacement strategies and super heuristic controllers, as well as fine-
tuning settings for the test suite. However, our goal is simply to test the perfor-
mance of BES on a test suite by using simple frameworks and parameters. We
expect that BES will also significantly improve its performance by introducing more
complex mechanisms and by combining powerful operators with other heuristics. Fig-
ures 9 and 10 show the overall performance of BES compared with other algorithms.
Accordingly, we can observe the superiority of BES amongst the six algorithms.
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Fig. 9 Comparison amongst the algorithms by using CEC 2005
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Fig. 10 Comparison amongst the algorithms by using CEC 2014

4 Conclusion

This study proposed a novel optimisation algorithm that mimics the hunting strategy, social
hierarchy and behaviour of bald eagles. The optimisation results and discussion confirm that
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the BES algorithm is the best competitor amongst the six comparative algorithms of the
benchmark suite in two sessions of CEC 2005 and CEC 2014. These algorithms include
GWO, DE/best/1, DE/rand/1, EPSO, FDR-PSO and CLPSO. On some test functions with
numerous local optima, the performance of BES is not very satisfactory because we used
a linearly reduced BES population size in our experiments. In later iterations, the number
of solutions was reduced to a single digit. Thus, breaking away from local optimum was
difficult. We also tested the use of BES. The relatively large population size fixed in BES can
effectively improve the performance for this test function but loses many other test functions.
Generallly, strategies to reduce population size help improve the overall performance of
BES, but an effective algorithm for certain problems. However, we must compare these two
strategies and choose the best strategy for the majority of the real optimisation problems.
Amongst the other five comparison algorithms, BES showed the best performance throughout
the suite. However, in all test functions, all algorithms are not consistently better compared
with the others. In fact, each algorithm achieves the best result on some functions. BES ranks
first in 33 functions. DE/best/1, DE/rand/1, GWO, EPSO, CLPSO and FDR-PSO quickly
complete 2, 7, 1, 6, 2 and 4 functions, respectively. Each algorithm shows the advantages and
disadvantages of its benchmark suite, whichwe consider to be the same for various real-world
problems. Therefore, when choosing an EA for a new optimisation problem, using terms to
describe and quantify the boundaries of effective algorithm performance is important. We
solve the characteristics of problem instances by using objective measurements and tools.
Notably, BES performance is not very competitive compared with the top-ranked algorithms
in the CEC 2005 and CEC 2014 competitions. The majority of these algorithms use complex
search mechanisms, such as blending operators, history memory, replacement strategies and
super heuristic controllers, as well as fine-tuning settings for the test suite. However, our
goal is simply to test the performance of BES on a test suite by using simple frameworks
and parameters. We expect that BES will also significantly improve its performance by
introducing more complex mechanisms and by combining powerful operators with other
heuristics. Future studies may examine the potential of using the prey identification process
of bald eagles to minimise energy consumption by taking advantage of several factors, such
as wind and gravity, amongst others. Moreover, some searching patterns, such as cross-based
ones, may outperform others in certain computational environments.
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