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Abstract
Missing value imputation (MVI) has been studied for several decades being the basic solu‑
tion method for incomplete dataset problems, specifically those where some data samples 
contain one or more missing attribute values. This paper aims at reviewing and analyzing 
related studies carried out in recent decades, from the experimental design perspective. 
Altogether, 111 journal papers published from 2006 to 2017 are reviewed and analyzed. 
In addition, several technical issues encountered during the MVI process are addressed, 
such as the choice of datasets, missing rates and missingness mechanisms, and the MVI 
techniques and evaluation metrics employed, are discussed. The results of analysis of these 
issues allow limitations in the existing body of literature to be identified based upon which 
some directions for future research can be gleaned.

Keywords Missing values · Imputation · Supervised learning · Incomplete dataset · Data 
mining

1 Introduction

Data mining or big data analysis has been recognized as an important and challenging task 
for many problems in daily life. To perform big data analysis or data mining, a specific 
dataset for a chosen target problem is collected. However, in practice, the collected dataset 
usually contains some proportion of incomplete data that have one or more missing attrib‑
ute values. There are many reasons for incompleteness in datasets, arising from a variety 
of sources, the database system per se, the network, improper, mistaken data entries, and 
so on.

According to Strike et al. (2001) and Raymond and Roberts (1987), when the dataset 
contains a very small amount of missing data, e.g. the missing rate is less than 10% or 15% 
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for the whole dataset, the missing data can simply be removed from the dataset without 
having a significant effect on the final mining or analysis result. However, when the miss‑
ing rate exceeds 15%, careful consideration needs to be given to dealing with these missing 
data (Acuna and Rodriguez 2004). It should be noted that this does not mean that every 
domain problem dataset follows this kind of rule. Often small amounts of missing data 
may contain important information that cannot be ignored, such as the records containing 
very high amount of money spent by some consumers but some of their personal informa‑
tion is missing, e.g. age, income, education, etc.

Unlike the case deletion strategy, missing value imputation (MVI) is the solution 
method most commonly used to deal with the incomplete dataset problem. In general, MVI 
is a process in which some statistical or machine learning techniques are used to replace 
the missing data with substituted values. Statistical techniques, such as mean/mode and 
regression, have been applied for this purpose, for several decades (Little and Rubin 1987), 
with machine learning techniques, such as the k nearest neighbor, artificial neural network, 
and support vector machine techniques being employed in the last 10 years (Garcia‑Lae‑
ncina et al. 2010).

There is variety of MVI techniques suitable for application to different domain prob‑
lems. A large number of surveys of MVI from different perspectives have already appeared 
in the literature, such as for operation management (Tsikriktsis 2005), medical problems 
(Aittokallio 2009; Donders et al. 2006; Harel and Zhou 2007; Liew et al. 2011), pattern 
classification (Garcia‑Laencina et al. 2010), and questionnaires and surveys (Baraldi and 
Enders 2010; De Leeuw 2001).

Most of these surveys have mainly focused on describing the basic concepts of the rel‑
evant MVI techniques. However, from the experimental design procedure viewpoint, there 
are many technical issues that have not been adequately reviewed and analyzed. For exam‑
ple, it is not known which technique(s) are the most widely used, what kinds of domain 
problem datasets have been studied, how many dataset missing rates are considered in the 
simulations, and so on.

Therefore, unlike previous surveys, this survey provides statistical analyses of techni‑
cal questions related the experimental design procedure. Specifically, 111 journal papers 
published over the past decade, from 2006 to 2017, are reviewed and analyzed. In addi‑
tion, some limitations of related works are also discussed for indication of possible future 
research directions.

The rest of this paper is organized as follows. Section 2 describes the commonly used 
experimental design procedure for MVI. The related literature for each of the major com‑
ponents of the procedure is analyzed, with Sects. 3, 4, and 5 focused on the datasets used, 
as well as the related information including missing rates and missingness mechanisms, 
MVI techniques, and evaluation metrics, respectively. Section 6 discusses the limitations of 
related work and Sect. 7 offers some conclusions.

2  The experimental design procedure for missing value imputation

There are three technical issues that need to be considered in the experimental design pro‑
cedure for MVI outlined in Fig. 1. The first one is the chosen datasets for related experi‑
ments. The experimental dataset may contain a number of missing data or it may be a 
complete dataset. For complete datasets, a missing value simulation is performed. That is, 
the chosen dataset is simulated with different missing rates (e.g., 10% or 20%) using three 



1489Missing value imputation: a review and analysis of the literature…

1 3

different missingness mechanisms: missing completely at random (MCAR), missing at 
random (MAN), and missing not at random (MNAR). This results in different incomplete 
datasets having different proportions of missing data.

The second technical issue is the techniques used for missing value imputation. Dur‑
ing the imputation process, each incomplete dataset can be divided into a set of complete 
data and a set of missing data. The former is used for the ‘estimation’ of suitable values 
by different imputation methods to replace the missing values in the set of missing data. 
Consequently, this produces a ‘pseudo’ complete dataset for later data mining or analysis 
tasks, if any.

The third technical issue is performance evaluation of imputation results. The most 
straightforward method to evaluate the performance of the imputation method is to assess 
the differences between the real values in the original dataset and the estimated values 
in the ‘pseudo’ dataset. Another method involves using the ‘pseudo’ dataset to perform 
some data mining task, such as classification or clustering, then observing the final mining 
performance.

According to the three technical issues, related literatures are reviewed and analyzed by 
their experimental datasets collected, MVI techniques used, and performance evaluation 
methods considered, which are discussed in Sects. 3, 4, and 5, respectively.

3  Analysis of experimental datasets

3.1  Dataset domains

Table 1 shows the number of works using each type of dataset from the 111 related studies. 
As can be seen, most researchers use the UCI (University of California at Irvine) data‑
sets1 for their experiments. Often, several UCI datasets are used in each study, which can 
include a variety of domain problems. In contrast, medical related datasets, such as micro‑
array or gene datasets, are the most widely considered domain problem in MVI. Other 
domain problems considered less often include image data, software measurement and pro‑
ject, financial data, questionnaire based data.

The results indicate that in most MVI studies, more than one specific domain problem 
is considered. The advantage of doing this is to prove the domain scalability of the MVI 

Fig. 1  The experimental design procedure for MVI

1 http://archi ve.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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method used. However, further analysis of the dataset characteristics, including the number 
of features (i.e., attributes) and data samples, allows some limitations of past work to be 
identified. One major limitation is the problem of dataset size. That is, most studies use 
small scale UCI datasets that contain small numbers of features and/or data samples, with 
the number of features ranging from 4 to 89 and the usual number of data samples rang‑
ing from several hundred to thousands. Some exceptions are Folino and Pisani (2016) and 
Farhangfar et al. (2007), who used very large scale datasets containing a very high number 
of feature dimensions, i.e., 216, and a very large amount of data samples, i.e., 581,012 and 
256,000, respectively.

Another limitation of past studies is that although there are three different types of fea‑
tures, categorical, numerical, and mixed types, very few have analyzed differences in per‑
formance of MVI methods between different feature types. There are, however, two excep‑
tions to this, namely, Tsai and Chang (2016) and Stekhoven and Buhlmann (2012).

3.2  Missing rates

In general, most studies have examined imputation performance by performing different 
missing value simulations over a chosen dataset using different missing rates. Some have 
considered very small missing rates, e.g., less than 30%, while others have focused on large 
ranges of missing rates, such as from 5 to 80%. Figure 2 shows the number of works that 
consider missing rates that are less than 30%, between 30 and 50%, and greater than 50%.

As we can see from the figure, most studies discuss missing rates that are less than 30% 
with only twelve works considering missing rates that are larger than 50%. Of the studies 
using very large missing rates, seven of them used the UCI datasets (Eirola et  al. 2013; 
Kapelner and Bleich 2015; Kiasari et  al. 2017; Mesquite et  al. 2017; Purwar and Singh 
2015; Qin et  al. 2009; Zhu et  al. 2011), one the Digital Bibliographic Library Browser 

Table 1  The numbers of works using different domain datasets

a http://www.kdd.org/kdd‑cup

UCI Medical Images Software Financial Questionnaire KDDa Other

2017 5 3 0 1 0 0 0 1
2016 3 2 0 0 0 0 1 0
2015 7 2 0 0 1 0 0 0
2014 3 3 0 1 0 1 0 3
2013 5 3 1 0 0 0 0 0
2012 5 2 1 0 1 0 0 2
2011 6 3 0 0 0 1 0 0
2010 3 4 0 0 1 0 0 1
2009 3 4 0 0 0 1 0 1
2008 3 4 0 2 0 1 1 1
2007 4 1 0 0 0 1 0 3
2006 2 4 0 0 0 0 0 0
Total 48 34 2 4 3 5 1 12

http://www.kdd.org/kdd-cup
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(DBLP) dataset2 (Li et al. 2014), one the wireless sensor network dataset (Li and Parker 
2014), one the medical dataset (Janssen et al. 2010), one the traffic flow dataset (Chen et al. 
2017), and one a synthetic dataset (Graham et al. 2007).

In short, most of the datasets which have been used are relatively small, containing sev‑
eral hundreds to thousands of data samples, in contrast to the DBLP and wireless sensor 
networks datasets which contain 10,000 and 12,000 data samples, respectively.

3.3  Missingness mechanisms

According to Little and Rubin (1987), there are three types of missingness mechanisms 
that can cause an incomplete dataset. They are missing completely at random (MCAR), 
missing at random (MAR), and not missing at random (NMAR). MCAR occurs when the 
probability of an instance (case) having a missing value for an attribute does not depend on 
either the known values or the missing data.

On the other hand, MAR occurs when the probability of an instance having a missing 
value for an attribute may depend on the value of that attribute. In other words, when the 
distribution of an instance having missing values for an attribute depends on the observed 
data, but does not depend on the missing data. NMAR occurs when the probability of an 
instance having a missing value for an attribute may depend on the value of that attribute.

Therefore, there are three different ways to artificially simulate a collected dataset as 
an incomplete dataset containing a controlled missing rate. Figure 3 shows the number of 
works detailing simulations of the three types of missingness mechanisms.

The results show that most researchers have only used the MCAR mechanism for their 
experiments. Very few (i.e., 15 works) have considered all three mechanisms for each cho‑
sen dataset. Specifically, seven have used the UCI datasets (Garciarena and Santana 2017; 
Kapelner and Bleich 2015; Pan et al. 2015; Tian et al. 2014; Twala 2009; Twala et al. 2008; 
Valdiviezo and Van Aelst 2015; Xia et al. 2017; Zhu et al. 2012), three the software meas‑
urement/project datasets (Khoshgoftaar and Van Hulse 2008; Song et al. 2008; Van Hulse 
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Fig. 2  Number of works using missing rates that are less than 30%, between 30 and 50%, and greater than 
50%

2 http://dblp.uni‑trier .de/db/index .html.

http://dblp.uni-trier.de/db/index.html
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and Khoshgoftaar 2014), one for the medical dataset (Armitage et al. 2015), and two syn‑
thetic datasets (Ding and Simonoff 2010; Hapfelmeier and Ulm 2014).

4  Missing value imputation techniques

In general, missing value imputation techniques can be classified into two types, namely, 
statistical and machine learning based techniques (Aittokallio 2009; Garcia‑Laencina et al. 
2010). Related studies have considered some of these techniques as the basis for relevant 
experiments regardless of whether the work focuses on proposing a novel imputation tech‑
nique or on comparing some chosen imputation techniques for specific domain problems.

The following subsections describe the analysis related to the questions as to what kinds 
of baseline techniques have been used for MVI and which is the most popular. Note that 
describing the concepts of these statistical and machine learning based techniques is not 
the main focus of this paper.

4.1  Statistical techniques

Table 2 lists the statistical techniques that have been used in studies published from 2006 to 
2017. As we can see, expectation management (EM), linear regression (LR), least squares 
(LS), and mean/mode are the top four most widely used statistical techniques, having been 
applied in 23, 15, 33, and 28 works respectively.

Among these top four statistical techniques, the mean and mode methods are the sim‑
plest imputation methods for imputing numerical and categorical attribute values, respec‑
tively. In the mean approach, missing attributes are filled in by the average value of that 
attribute in all the observed data. On the other hand, the mode approach uses the attribute 
value in all the observed data that appears most often to fill in the missing attribute values.

In the EM algorithm, it consists of two steps where the E‑step calculates the expecta‑
tion of the complete data sufficient statistics given the observed data and current parameter 
estimates, and the M‑step updates the parameter estimates through the maximum likeli‑
hood approach based on the current values of the complete sufficient statistics. The EM 
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Fig. 3  Number of works discussing the different missingness mechanisms



1493Missing value imputation: a review and analysis of the literature…

1 3

Table 2  The statistical techniques used in the literature

Techniques Works

Expectation maximization (EM) Aussem and de Morais (2010), De Souto et al. 
(2015), Di Nuovo (2011), Ding and Ross (2012), 
Doquire and Verleysen (2012), Folino and Pisani 
(2016), Garcia et al. (2011), Garciarena and San‑
tana (2017), Ghanad‑Rezaie et al. (2010), Ghorbani 
and Desmarais (2017), Graham et al. (2007), Hron 
et al. (2010), Hruschka et al. (2007), Jerez et al. 
(2010), Kang (2013), Li and Parker (2014), Lin 
et al. (2006), Luengo et al. (2012), Merlin et al. 
(2010), Peng and Zhu (2008), Polikar et al. (2010), 
Stekhoven and Buhlmann (2012), Twala (2009), 
Twala et al. (2008), Zhang and Liu (2009) and Zhu 
et al. (2012)

Gaussian mixture model (GMM) Di Zio et al. (2007), Garcia‑Laencina et al. (2013) 
and Kang (2013)

Hot deck (HD) Di Zio et al. (2007), Farhangfar et al. (2007, 2008), 
Jerez et al. (2010), Ghorbani and Desmarais (2017), 
Kang (2013), Nishanth and Ravi (2016), Silva‑
Ramirez et al. (2011) and Tian et al. (2014)

Linear discriminant analysis (LDA) Farhangfar et al. (2007)
Linear/logistic regression (LR) De Souto et al. (2015), Di Nuovo (2011), Farhangfar 

et al. (2007, 2008), Eirola et al. (2013), He et al. 
(2009), Iacus and Porro (2007), Jerez et al. (2010), 
Peng and Zhu (2008), Qin et al. (2007, 2009), 
Saar‑Tsechansky and Provost (2007), Shao et al. 
(2017), Silva‑Ramirez et al. (2011, 2015) and Zhu 
et al. (2012)

Least squares (LS) Iterative local LS (ILLS): Cheng et al. (2012), Chiu 
et al. (2013), Hron et al. (2010), Hu et al. (2006), 
Pati and Das (2017), Rahman and Islam (2013), 
Sun et al. (2009) and Tuikkala et al. (2008)

Least trimmed squares (LTS): Hron et al. (2010)
LS adaptive (LSA): Chiu et al. (2013) and Rao et al. 

(2013)
Local LS (LLS): Brock et al. (2008), Celton et al. 

(2010), Cheng et al. (2012), Chiu et al. (2013), Gan 
et al. (2006), Hu et al. (2006), Liu et al. (2010), 
Luengo et al. (2012), Oh et al. (2011), Pati and 
Das (2017), Rahman and Islam (2013), Rao et al. 
(2013), Sehgal et al. (2008, 2009), Tuikkala et al. 
(2008), Wang et al. (2006), Yu et al. (2011) and 
Zhang et al. (2008)

Noniterative partial least squares (NIPALS): Rao 
et al. (2013)

Ordinary LS (OLS): Brock et al. (2008) and Oh et al. 
(2011)

Partial LS (PLS): Brock et al. (2008) and Oh et al. 
(2011)

Sequential local LS (SLLS): Chiu et al. (2013)
Low rank matrix decomposition/tensor completion Liu et al. (2013)
Markov chain Monte Carlo (MCMC) Ding and Ross (2012) and Saha et al. (2017)
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algorithm then proceeds in an iterative manner until the difference between the last two 
consecutive parameter estimates converges to a specified criterion. According to the final 
parameter estimates and the observed data, the expectation of each missing value can be 
calculated, which will be used as the imputation value.

For regression based imputation methods, the relationships among attributes are esti‑
mated, and then the regression coefficients are used to estimate the missing attribute values. 

Table 2  (continued)

Techniques Works

Mean/mode Armitage et al. (2015), Chen et al. (2017), De Souto 
et al. (2015), Di Zio et al. (2007), Ding and Ross 
(2012), Farhangfar et al. (2007, 2008), Folino and 
Pisani (2016), Hron et al. (2010), Hruschka et al. 
(2007), Huang et al. (2017), Jerez et al. (2010), 
Kang (2013), Khoshgoftaar and Van Hulse (2008), 
Kiasari et al. (2017), Lin et al. (2006), Luengo et al. 
(2012), Liao et al. (2014), Mesquite et al. (2017), 
Moons et al. (2006), Munoz and Rueda (2009), Nis‑
hanth and Ravi (2016), Pati and Das (2017), Polikar 
et al. (2010), Rao et al. (2013), Silva‑Ramirez et al. 
(2011, 2015), Sun et al. (2009), Tian et al. (2014), 
Tuikkala et al. (2008), Twala (2009), Twala et al. 
(2008), Valdiviezo and Van Aelst (2015) and Xia 
et al. (2017)

Multiple imputation by chained equations (MICE) Burgette and Reiter (2014), Ding and Ross (2012), 
Garciarena and Santana (2017), Jerez et al. (2010), 
Liao et al. (2014), Janssen et al. (2010), Moons 
et al. (2006), Stekhoven and Buhlmann (2012) and 
Valdiviezo and Van Aelst (2015)

Multiple imputation by sequential regression trees 
(MIST)

Valdiviezo and Van Aelst (2015)

Naïve Bayes (NB) Farhangfar et al. (2007, 2008), Graham et al. (2007), 
Khoshgoftaar, and Van Hulse (2008), Leung and 
Leung (2013), Nishanth and Ravi (2016) and 
Subasi et al. (2011)

Principal component analysis (PCA) Bayesian PCA: Brock et al. (2008), Celton et al. 
(2010), Cheng et al. (2012), Chiu et al. (2013), Liu 
et al. (2010), Luengo et al. (2012), Oh et al. (2011), 
Pati and Das (2017), Rahman and Islam (2013), 
Rao et al. (2013), Sehgal et al. (2008, 2009), Sun 
et al. (2009), Tuikkala et al. (2008), Wang et al. 
(2006), Xia et al. (2017), Yu et al. (2011) and 
Zhang et al. (2008)

PCA: Chen et al. (2017), Saha et al. (2017), Van Gin‑
kel and Kroonenberg (2014) and Zuccolotto (2012)

Sampling Data augmentation (DA): Hruschka et al. (2007), Van 
Ginkel et al. (2007) and Zhang and Liu (2009)

Random sampling (RS): Farhangfar et al. (2007) and 
Lin et al. (2006)

Singular value decomposition (SVD) Brock et al. (2008), Gan et al. (2006), Liu et al. 
(2010), Luengo et al. (2012), Oh et al. (2011), Paul 
et al. (2017), Rao et al. (2013), Saha et al. (2017) 
and Yu et al. (2011)
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Particularly, linear regression and logistic regression are used for the prediction of numeri‑
cal and categorical attribute values, respectively. In general, the method of least squares 
(LS) (or ordinary least squares) is used in linear regression to produce the final estimation 
by minimizing the measured and predicted values of the attributes.

More specifically, for the category of least squares (LS), various estimation techniques 
can be used to replace ordinary least squares (OLS) to produce the final prediction result, 
such as ILLS, LTS, LSA, LLS, NIPALS, OLS, PLS, and SLLS.

Figure  4 shows the year‑wise distribution of works applying the top four statistical 
techniques. Although LS is the most widely used MVI technique, there has had been no 
related work considering this technique within the last 3  years, except for Pati and Das 
(2017). Instead, researchers have tended to prefer the EM, LR, and mean/mode techniques. 
Of these, the mean/mode technique is the second mostly widely used, having been used in 
publications appearing each year from 2006 and 2017. This survey indicates that the mean/
mode technique should be regarded as one of the representative baseline statistical MVI 
techniques.

Regarding the researches using one of the top four statistical MVI techniques, we can 
further analyze the relationships between these techniques and their experimental datasets, 
which are shown in Table 3.

As we can see that the major statistical MVI technique for medical domain datasets 
is LS. This indicates that most medical domain datasets contain the numerical data type 
of missing values. Moreover, these medical domain datasets are usually simulated with 
the missing rates that are smaller than 30%, and related studies using the LS techniques 
only consider the MCAR and MAR missingness mechanism. On other hand, EM, LR, and 
mean/mode are the widely used statistical MVI techniques for UCI datasets where the sim‑
ulated missing rates mostly range from 30 to 50%.

4.2  Machine learning based techniques

Table 4 lists the machine learning based techniques that have been applied in the literature 
from 2006 to 2017. The top four techniques are clustering, DT, KNN and RF, which have 
been used in 14, 17, 52, and 9 related works, respectively.

Among the top four machine learning based techniques, cluster analysis is only the 
unsupervised learning technique whose task is to group a set of similar objects into the 
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same clusters. Specifically, each cluster center (or centroid) is the mean of the objects 
in the same cluster. To impute the missing values, the distance between incomplete data 
and the identified cluster centroids is calculated where the closest centroid’s values are 
used to fill in missing values.

On the other hand, KNN is one representative supervised learning (classification) 
technique where missing values are imputed using the values calculated from the k near‑
est observed data. In particular, the nearest neighbors can be identified by some spe‑
cific distance function, usually the Euclidean distance. For missing value imputation, 
the missing data is used as the testing case, in which the complete and missing attributes 
represent the input features and output class label (or prediction), respectively. Next, its 
k nearest observed data using the complete attributes can be identified whose class label 
is used to impute the missing attribute.

In DT, it is a tree‑like model that each internal node denotes a test of an attribute and 
each branch represents an outcome of the test. The leaf nodes represent classes or class 
distributions. The upper‑most node in a tree is the root node with the highest entropy. 
In the tree‑growing process, the attribute having the highest information gain is chosen 
to split the node into child nodes. In related literatures, C4.5/5.0 and CART are used for 
imputing categorical and numerical attribute values, respectively.

About RF, multiple decision trees are constructed based on the bootstrapping pro‑
cedure and the final predictions are given by averaged values or majority votes of each 
tree’s prediction. The imputation process by DT and RF is similar to KNN where the 
internal and leaf nodes represent the input features and output class label, respectively.

Figure  5 shows the year‑wise distribution for the number of works that have used 
the top four machine learning based techniques. KNN is no doubt the most popular 
MVI technique in this category, and can be regarded as the most representative base‑
line machine learning based MVI technique. On the other hand, the clustering and RF 

Table 3  The number of works for 
the relationships between the top 
four statistical MVI techniques 
and their experimental datasets

Techniques Missingness 
mechanisms

Dataset domains Missing rates

EM MCAR: 19
MAR: 11
NMAR: 7

UCI: 12
Medical: 4
Images: 1
Finance: 1
Questionnaire: 2
Others: 4

< 30%: 9
30–50%: 12
> 50%: 2

LR MCAR: 12
MAR: 7
NMAR: 3

UCI: 9
Medical: 4
Questionnaire: 1
Others: 3

< 30%: 4
30–50%: 7
> 50%: 2

LS MCAR: 28
MAR: 3
NMAR: 0

UCI: 3
Medical: 30
Others: 4

< 30%: 30
30–50%: 2
> 50%: 0

Mean/mode MCAR: 20
MAR: 11
NMAR: 3

UCI: 19
Medical: 8
Images: 1
Software: 2
Questionnaire: 2
Others: 1

< 30%: 11
30–50%: 16
> 50%: 3
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Table 4  The machine learning based techniques used in the literature

Techniques Works

Artificial neural networks (ANN) Aydilek and Arslan (2012), Gautam and Ravi (2015), Nishanth and 
Ravi (2016) and Shao et al. (2017)

Association rule (AR) Li et al. (2014)
Collateral missing value  

estimation (CMVE)
Sehgal et al. (2008, 2009)

Clustering Fuzzy c‑means (FCM): Aydilek and Arslan (2013), Di Nuovo (2011), 
Li et al. (2010), Somasundaram and Nedunchezhian (2011), Tian 
et al. (2014) and Zhang et al. (2015)

Fuzzy k‑means (FKM): Luengo et al. (2012) and Pan et al. (2015)
Hierarchical clustering (HC): Celton et al. (2010)
K‑means (KM): Eirola et al. (2013), Kang (2013), Luengo et al. 

(2012) and Somasundaram and Nedunchezhian (2011)
Self‑organizing map (SOM): Garcia‑Laencina et al. (2013), Jerez 

et al. (2010), Merlin et al. (2010) and Somasundaram and 
Nedunchezhian (2011)

Decision tree (DT) Classification and regression tree (CART): Burgette and Reiter 
(2014), Ding and Simonoff (2010), Doove et al. (2014), Ghanad‑
Rezaie et al. (2010), Hapfelmeier et al. (2012), Iacus and Porro 
(2007) and Purwar and Singh (2015)

C4.5: Ding and Simonoff (2010), Fortes et al. (2006), Hruschka et al. 
(2007), Nishanth and Ravi (2016), Saar‑Tsechansky and Provost 
(2007), Twala (2009) and Twala et al. (2008)

Extreme learning machine Shao et al. (2017)
Genetic algorithm (GA) Garcia et al. (2011)

K‑nearest neighbor (KNN) KNN: Armitage et al. (2015), Bras and Menezes (2007), Brock et al. 
(2008), Celton et al. (2010), Chiu et al. (2013), De Souto et al. 
(2015), Ding and Ross (2012), Doquire and Verleysen (2012), 
Farhangfar et al. (2008), Eirola et al. (2014), Gan et al. (2006), 
Garcia‑Laencina et al. (2009, 2013), Hron et al. (2010), Hu et al. 
(2006), Huang et al. (2016, 2017), Iacus and Porro (2007), Jerez 
et al. (2010), Kang (2013), Khoshgoftaar, and Van Hulse (2008), Li 
and Parker (2014), Liu et al. (2010), Luengo et al. (2012), Nishanth 
and Ravi (2016), Oh et al. (2011), Pan et al. (2015), Pati and Das 
(2017), Paul et al. (2017), Rao et al. (2013), Sehgal et al. (2008, 
2009), Stekhoven and Buhlmann (2012), Song et al. (2008), Sun 
et al. (2009), Tian et al. (2014), Tsai and Chang (2016), Tuikkala 
et al. (2008), Valdiviezo and Van Aelst (2015), Van Hulse and Kho‑
shgoftaar (2014), Wang et al. (2006), Xia et al. (2017), Yu et al. 
(2011), Zhang (2008, 2011, 2012), Zhang et al. (2008, 2011, 2015) 
and Zhu et al. (2011)

Grey based KNN: Zhang (2012) and Zhu et al. (2012)
Iterative KNN: Bras and Menezes (2007), Chiu et al. (2013), Hu et al. 

(2006) and Pati and Das (2017)
Sequential KNN: Bras and Menezes (2007), Chiu et al. (2013) and 

Pati and Das (2017)
Weighted KNN: Luengo et al. (2012) and Shao et al. (2017)

Kernel‑based imputation Zhu et al. (2011)
Multilayer perceptron (MLP) Garcia‑Laencina et al. (2013), Gautam and Ravi (2015), Jerez et al. 

(2010), Nishanth et al. (2012) and Silva‑Ramirez et al. (2011, 
2015)
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techniques have recently been utilized in a number of studies, whereas DT has been 
consistently used each year from 2006 and 2016.

According to the researches using one of the top four machine learning based MVI tech‑
niques, Table 5 shows the relationships between these techniques and their experimental 
datasets.

Regarding Table 5, KNN is the most widely used machine learning based MVI tech‑
nique, especially for UCI and medical datasets. However, for the questionnaire datasets, 
related studies have never considered machine learning based MVI techniques before. On 
other hand, for the missing rates, if we count the number of works by DT and RF (an 
ensemble of DTs) together, very few studies simulated with the missing rates that are 
smaller than 30% (i.e. 3 out of 22) whereas 13 and 6 works consider the 30–50% and larger 
than 50% missing rates, respectively. This is different from clustering and KNN that most 
studies simulated with the missing rates that are smaller than 30% (i.e. 10 out of 16 and 34 
out of 60, respectively).

5  Evaluation methods

5.1  Direct evaluation

The final step after imputation of the missing values is to evaluate the imputation results. 
The most commonly used method is to directly assess the difference between the original 

Table 4  (continued)

Techniques Works

Random forest (RF) Doove et al. (2014), Hapfelmeier and Ulm (2014), Hapfelmeier 
et al. (2012), Iacus and Porro (2007), Kapelner and Bleich (2015), 
Nishanth and Ravi (2016), Purwar and Singh (2015), Shah et al. 
(2014), Valdiviezo and Van Aelst (2015) and Xia et al. (2017)

Rough set theory (RST) Clark et al. (2014)
Support vector machine/regression 

(SVM/SVR)
Aydilek and Arslan (2013), Iacus and Porro (2007), Luengo et al. 

(2012), Tuikkala et al. (2008) and Wang et al. (2006)
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Fig. 5  The year‑wise distribution for the number of works that have used the DT, clustering, KNN, and RF 
techniques
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values in the collected dataset and the estimated or predicted values in the simulated incom‑
plete dataset. There are two types of attribute values, namely, discrete and continuous. For 
evaluation of results of the imputation of discrete values, the percentage of values that have 
been predicted correctly (or incorrectly) for the missing values is usually used, e.g. Nis‑
hanth and Ravi (2016) and Valdiviezo and Van Aelst (2015). The percentage of correct 
predictions (PCP) can be obtained by

On the other hand, for the imputation of continuous values, the mean absolute percent‑
age error (MAPE) and/or root‑mean‑square error (RMSE) related measures are used. Gau‑
tam and Ravi (2015) and Silva‑Ramirez et al. (2015). MAPE and RMSE can be computed 
by Eqs. (2) and (3), respectively.

where xi  is the actual value, x̂i is the predicted value and n is the total number of missing 
value.

5.2  Classification accuracy

Another strategy for assessing the imputation quality is to examine the classification per‑
formance of some chosen classifiers trained by the imputed datasets. Different from the 
direct evaluation strategy, after the imputation process is completed, the imputed dataset 

(1)PCP = 100 ×
number of correct predictions

total number of predictions

(2)MAPE =
100

n

n∑

i=1

||||

xi − x̂i

xi

||||

(3)RMSE =

√
1

n

∑n

i=1

(
xi − x̂i

)2

Table 5  The number of works 
for the relationships between 
the top four machine learning 
based MVI techniques and their 
experimental datasets

Techniques Missingness 
mechanisms

Dataset
domains

Missing
rates

Clustering MCAR: 14
MAR: 5
NMAR: 3

UCI: 13
Medical: 6
Finance: 1
Others: 1

< 30%: 10
30–50%: 5
> 50%: 1

DT MCAR: 11
MAR: 7
NMAR: 5

UCI: 9
Medical: 2
Others: 6

< 30%: 1
30–50%: 7
> 50%: 4

KNN MCAR: 45
MAR: 20
NMAR: 10

UCI: 23
Medical: 30
Images: 1
Software: 4
Others: 8

< 30%: 34
30–50%: 24
> 50%: 2

RF MCAR: 7
MAR: 6
NMAR: 4

UCI: 6
Medical: 2
Others: 4

< 30%: 2
30–50%: 6
> 50%: 2
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without missing values is used to train some specific classifier(s), and another testing set 
is chosen to test their classification performance. Since using different imputation methods 
for the same incomplete datasets is likely to produce different imputation results, the clas‑
sifier with higher classification accuracy is indicated by the better imputation quality of its 
training and datasets. Consequently, the better imputation methods can be identified.

The proportion of related works that utilize this type of evaluation strategy is much 
smaller than the number utilizing the direct evaluation strategy. Moreover, studies which 
consider both evaluation strategies at the same time are even rarer. Figure  6 shows the 
number of works using these evaluation methods and Table 6 lists the related works that 
consider the classification accuracy of classifiers and two evaluation methods at the same 
time. As we can see that very few studies consider both evaluation methods at the same 
time.

Ten different classification techniques have been employed in related works for analysis 
of the classification accuracy of the classifiers, as shown in Fig. 7. As can be seen, KNN, 
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Fig. 6  The number of works using the different evaluation methods

Table 6  Evaluation strategies of related works

Year Classification accuracy of classifiers Two evaluation methods

2017 Garciarena and Santana (2017), Ghorbani and Desmarais (2017), Kiasari 
et al. (2017) and Xia et al. (2017)

2016 Folino and Pisani (2016), Huang et al. (2016) and Tsai and Chang (2016)
2015 De Souto et al. (2015), Pan et al. (2015) and Purwar and Singh (2015) Pan et al. (2015)
2014 Clark et al. (2014) and Li and Parker (2014) Li and Parker (2014)
2013 Garcia‑Laencina et al. (2013), Leung and Leung (2013) and Kang (2013) Kang (2013)
2012 Doquire and Verleysen (2012), Luengo et al. (2012), Nishanth et al. 

(2012) and Zhang (2012)
Zhang (2012)

2011 Di Nuovo (2011) and Oh et al. (2011) Oh et al. (2011)
2010 Ghanad‑Rezaie et al. (2010) and Polikar et al. (2010)
2009 Garcia‑Laencina et al. (2009) and Sun et al. (2009) Sun et al. (2009)
2008 Farhangfar et al. (2008), Song et al. (2008) and Twala et al. (2008)
2007 Hruschka et al. (2007) and Saar‑Tsechansky and Provost (2007) Hruschka et al. (2007)
2006 Lin et al. (2006) Lin et al. (2006)
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DT, NB, SVM, and MLP are the top five classifiers constructed for evaluating the imputa‑
tion results.

5.3  Computational time

In addition to the two afore‑mentioned evaluation strategies, it is also important to take into 
consideration the computational time for each MVI method. This issue is especially critical 
for machine learning based MVI techniques which require some time for the model train‑
ing step. Moreover, when the size of the dataset as well as the missing rate is very large, 
the imputation process is likely to take a lot of time. Among the articles reviewed, only 16 
examined the computation time, these are Huang et al. (2017), Kiasari et al. (2017), Saha 
et al. (2017), Valdiviezo and Van Aelst (2015), Li and Parker (2014), Shah et al. (2014), 
Tian et al. (2014), Aydilek and Arslan (2013), Liu et al. (2013), Rahman and Islam (2013), 
Stekhoven and Buhlmann (2012), Zhu et  al. (2012), Zhang et  al. (2011), Tuikkala et  al. 
(2008), Farhangfar et al. (2007), and Lin et al. (2006).

5.4  Missing data simulation strategies for missing value imputation

The simulation of an incomplete dataset with a specific missing rate is usually performed 
several times in order to avoid producing biased imputation results. This is because the 
missing data in the incomplete dataset can be different for each simulation even with the 
same missing rate. In general, there are two strategies used to perform a missing data simu‑
lation. The first one is to directly use the whole of the chosen dataset, making it become an 
incomplete dataset based on a specified missing rate.

The second strategy is to first divide the chosen dataset into training and testing sub‑
sets by some method such as n‑fold cross validation (CV) (Kohavi 1995), or by adopting 
fixed proportions for the training and testing subsets, e.g. 70% and 30%, respectively. Then, 
either the training or testing subset is used to perform the missing data simulation for a 
specific missing rate.

Figure 8 shows the number of works that have used the different strategies, including the 
whole dataset (denoted as whole), training set obtained by cross validation (CV‑training), 
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Fig. 7  The number of works using the ten different classifiers
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and the testing set obtained by cross validation (CV‑testing). Note that studies that do not 
clearly describe their simulation strategies are not counted here.

This result shows that most studies use the whole dataset strategy, with the imputation 
results usually evaluated by the direction evaluation method. Only a small proportion of 
related studies use the cross validation method for missing data simulation. It should be 
noted that there is no study which has considered both training and testing subsets when 
performing missing data simulation for a specific missing rate. This simulation method 
is much closer to real world problems based on historical data where the collected data 
contain some missing values and the new unknown testing data may also contain some 
missing values.

6  Discussion

The above results of analysis of the related literature show the existence of some limita‑
tions related to technical issues in the experimental procedure, which can be regarded as 
future research directions for MVI. They are discussed in greater detail below.

6.1  The chosen datasets

The domain problem datasets for MVI can be broadly classified into two categories. The 
first type is based on a number of UCI datasets that cover various domain problems. The 
second is based on specific (real world) domain datasets. Although a survey of related 
works in the first category study show variety of different domain datasets, they are not 
as large in scale as real world datasets, which often contain a very large number of feature 
dimensions (e.g. over 100) and/or data samples (e.g. over 100,000).

In addition, in terms of attribute values, the chosen dataset can contain categorical, 
numerical, or both categorical and numerical types of data. Using different types of data 
may affect the imputation performances of different MVI methods.

We now discuss the missing rate used for the simulation for a chosen dataset. It is very 
hard to define the missing rates as practical, say less than 30%. To deal with real world 
problems, however, it would be better to be able to perform simulations with larger missing 
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rates (e.g. 70%) or a wide range of missing rates (e.g. from 10 to 90%). The findings from 
this kind of simulation would be more practical.

About the missing mechanisms, different domain problem datasets with missing data 
may be occurred based on the MCAR, MAR, and NMAR scenarios. Consideration of only 
one type of scenario in the incomplete dataset simulation is not enough to fully understand 
the imputation performance of the MVI methods.

Another issue that could affect the imputation results is whether to perform feature and/
or instance selection before or after MVI. Feature and instance selection are aimed at filter‑
ing out unrepresentative features and data samples from a given dataset, respectively. Per‑
forming one or both of these tasks before MVI could make the complete dataset ‘cleaner’, 
which might lead to produce better imputation results.

Alternatively, performing feature and/or instance selection over an imputed dataset after 
MVI could make the classifier perform better than one based on the imputed dataset with‑
out feature and/or instance selection. There have been very few studies which have consid‑
ered the effect of feature/instance selection on MVI (Aussem and de Morais 2010; Doquire 
and Verleysen 2012; Hapfelmeier and Ulm 2014; Huang et al. 2016; Sun et al. 2009; Tsai 
and Chang 2016).

6.2  The MVI techniques

The various baseline MVI techniques discussed in related works can be classified into two 
types, statistical or machine learning based techniques. The analytical results detailed in 
Sect. 4 clearly identify the most popular MVI techniques. However, there has been no com‑
prehensive study comparing these well‑known MVI techniques in terms of different domain 
datasets containing a wide range of missing rates based on different missing mechanisms. The 
findings of this study allow us to understand which technique(s) are more suitable for which 
kind of incomplete dataset. The results can be regarded as guidelines for the choice of the 
most representative MVI technique(s) in future work.

Several novel approaches have been proposed that do not require performing the MVI pro‑
cess to tackle the incomplete datasets; see for example, Conroy et al. (2016), Polikar et  al. 
(2010), and Yan et al. (2017). It would very useful to examine the final classification accu‑
racy of these constructed classifiers based on these approaches as well as the imputed datasets 
by the representative baseline MVI technique(s). This study can answer the question: When 
should we perform missing value imputation?

Furthermore, most of the proposed novel (hybrid) approaches are either statistical tech‑
niques (such as the studies on dynamic Fisher’s linear discrimination by Leung and Leung 
2013; iterative bi‑cluster based least squares by Cheng et al. 2012; interval imputuation by 
PCA by Zuccolotto 2012, etc.), or machine learning based techniques (such as the studies 
by Folino and Pisani (2016) who combined genetic programming and ensemble learning 
models; Zhang et al. (2015) who combined particle swarm optimization and fuzzy c‑means; 
Silva‑Ramirez et al. (2015) who combined MLP and KNN, and so on). The results show that 
there have been very few studies where a combination of both types of MVI techniques is 
considered.

6.3  The evaluation methods

Evaluation is very critical for validation of the performance of the MVI technique and reach‑
ing the final conclusions. As noted in Sect. 5, the direct evaluation method, the classification 
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accuracy of the classifiers, and consideration of the computational time are the three main 
ways to evaluate the MVI technique. Using all three of these evaluation metrics would allow 
us to fully understand the performance as well as provide suggestions for the development of 
better technique(s). However, this has not been the case, all three evaluation metrics are not 
used together in most related studies, which is one of the main limitations of current work in 
the literature and should be considered in future research.

It is suggested that when the chosen dataset is divided into training and testing subsets for 
missing data simulation, it would be more practical to make both subsets become incomplete 
rather than focus on only one of them. For instance, start with a collected historical dataset 
which is incomplete. After performing the MVI process the imputed dataset is used to train a 
classifier, after which a new testing dataset can be collected, ready for the classification task. 
However, it could happen that this testing dataset is also incomplete, so MVI is required. After 
performing MVI over the incomplete testing dataset, it can then be fed into the constructed 
classifier.

It this case, the missing rates of the training and testing datasets can significantly affect the 
final classification accuracy of the classifiers and what is the best combination of MVI tech‑
niques and classifiers should be answered.

7  Conclusion

Missing value imputation (MVI) for incomplete datasets is a very important problem in 
data mining and big data analysis. If the incomplete datasets are not well imputed, the final 
mining or analysis result could be affected. This paper discusses a literature review and 
analysis of 111 related journal articles published from 2006 to 2017.

The review and analysis focus on the issues encountered during the MVI process. They 
include (1) the chosen datasets as well as their domain problems, missing rates, and miss‑
ingness mechanisms in the simulation, (2) the MVI techniques employed, and (3) the eval‑
uation methods considered.

The analysis results show the existence of many limitations encountered in the current 
literature, which can be improved upon in future. In summary, these include the scalability 
of datasets, the wide range of missing rates with the MCAR, MAR, and NMAR missing‑
ness mechanisms, the representative MVI baseline techniques, the development of novel 
hybrid approaches by combining statistical and machine learning based techniques, the 
consideration of three evaluation metrics together, and missing data simulation for both 
training and testing datasets.
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