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Abstract
Clustering ensemble has been increasingly popular in the recent years by consolidating 
several base clustering methods into a probably better and more robust one. However, clus-
ter dependability has been ignored in the majority of the presented clustering ensemble 
methods that exposes them to the risk of the low-quality base clustering methods (and con-
sequently the low-quality base clusters). In spite of some attempts made to evaluate the 
clustering methods, it seems that they consider each base clustering individually regardless 
of the diversity. In this study, a new clustering ensemble approach has been proposed using 
a weighting strategy. The paper has presented a method for performing consensus cluster-
ing by exploiting the cluster uncertainty concept. Indeed, each cluster has a contribution 
weight computed based on its undependability. All of the predicted cluster tags available 
in the ensemble are used to evaluate a cluster undependability based on an information 
theoretic measure. The paper has proposed two measures based on cluster undependability 
or uncertainty to estimate the cluster dependability or certainty. The multiple clusters are 
reconciled through the cluster uncertainty. A clustering ensemble paradigm has been pro-
posed through the proposed method. The paper has proposed two approaches to achieve 
this goal: a cluster-wise weighted evidence accumulation and a cluster-wise weighted 
graph partitioning. The former approach is based on hierarchical agglomerative clustering 
and co-association matrices, while the latter is based on bi-partite graph formulating and 
partitioning. In the first step of the former, the cluster-wise weighing co-association matrix 
is proposed for representing a clustering ensemble. The proposed approaches have been 
then evaluated on 19 real-life datasets. The experimental evaluation has revealed that the 
proposed methods have better performances than the competing methods; i.e. through the 
extensive experiments on the real-world datasets, it has been concluded that the proposed 
method outperforms the state-of-the-art. The substantial experiments on some benchmark 
data sets indicate that the proposed methods can effectively capture the implicit relation-
ship among the objects with higher clustering accuracy, stability, and robustness compared 
to a large number of the state-of-the-art techniques, supported by statistical analysis.
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1  Introduction

It is a very reasonable task in any field that anybody wants to group a host of data (Wang 
et  al. 2017; Ma et  al. 2018), also called dataset. It can be necessary due to lack of any 
insight on dataset. So, a first grouping in dataset, where there is no primary insight, can 
provide us with a good initial understanding and insight. Grouping unlabeled data samples 
into meaningful groups is a challenging unsupervised Machine Learning (ML) (Deng et al. 
2018; Yang and Yu 2017) problem with a wide spectrum of applications (Li et al. 2017a, 
b; Alsaaideh et al. 2017; Song et al. 2017), ranging from image segmentation (Chakraborty 
et  al. 2017) in computer vision to data modeling in computational chemistry (Spyrakis 
et al. 2015).

Due to its value, clustering has emerged as one of the leading tasks of multivariate anal-
ysis. It has been shown that Cluster Analysis (ClA) is among the most versatile concepts 
for analyzing datasets with many (more than 3) features (Kettenring 2006). The ClA is also 
an essential tool for capturing the structure of data (Li et al. 2017a, b, 2018a).

Data clustering is a preliminary task in the field of data mining and pattern recognition 
(Jain 2010). The clustering goal is to detect the underlying structures of a given dataset 
and divide the dataset into a number of homogeneous subsets, called clusters. Recently, 
different clustering methods have been suggested by employing various techniques (Xu 
et al. 1993; Ng et al. 2002; Frey and Dueck 2007; Wang et al. 2011, 2012). Any of these 
methods has its weak and strong points, and consequently may outperform the others for 
some specific applications. Clustering samples according to an effective metric and/or vec-
tor space representation is a challenging unsupervised learning task. This kind of methods 
finds application in several fields.

It can be claimed that no clustering method is superior to all other methods for all appli-
cations (for example if clusters of a dataset are of linear type, model based clustering meth-
ods is weak or if its clusters are extracted from a normal distribution, linkage based clusters 
may be non-suitable). Different partitions of a given dataset can be attained by applying 
different clustering methods, or by applying a clustering algorithm with different initiali-
zations or different parameters. So, selection of the best clustering algorithm for a given 
dataset is very challenging; or if we want to use a specific clustering algorithm, selection 
of the best parameters for it is still not possible. A lot of clustering techniques have been 
suggested, but the No Free Lunch (NFL) theorem (Wolpert and Macready 1996) recom-
mends that there is no particular, best technique that fits all cluster shapes and structures 
absolutely.

In some applications of clustering, usage of a robust one is inevitable; for example, if 
clustering mechanism is employed in a preliminary stage of a classification algorithm (to 
find and omit outliers) (Frey and Dueck 2007). Another reason to desire a robust cluster-
ing is hidden in the strong relationship between the ClA and Robust Statistics (Schynsa 
et al. 2010). Robust clustering methods are discussed in detailed by García-Escudero et al. 
(2010). Coretto and Hennig (2010) have shown experimentally that the RIMLE method, 
their previously proposed method, can be recommended as optimal in some situations, and 
always acceptable.

The outlier detection problem is a field that is very involved in ClA. It is also very 
involved in the robust covariance estimation problem. It is expected that if the outliers of a 
dataset are ignored, the maximum likelihood estimation can be employed to learn dataset 
with a perfect accuracy. It is believed that outliers affect the maximum likelihood estima-
tion method and the estimated parameters are pushed toward them. So many works have 
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been done to deal with the robust detection of outliers and present methods free from 
model assumptions. A very fast approach with low computational complexity has been 
designed by use of a special mathematical programming model to find the optimal weights 
for all the observations, such that at the optimal solution, outliers are given smaller weights 
and can be detected (Nguyen and Welsch 2010). In their work, the parameters of data are 
detected by a maximum likelihood estimation method in such a weighted manner that the 
participation weight of an outlier is very low. While the algorithm is efficient, its computa-
tional complexity is reasonable compared with its competitors.

The transfer distance between partitions (Charon et  al. 2006; and Denoeud 2008) is 
equal to the minimum number of elements that must be moved from one class to another 
(possibly empty) to turn one partition into another. This distance has studied under the 
name of “partition-distance”. On the base of the concept of the transfer distance between 
partitions, a consensus partition has been proposed by Guénoche (2011). Given a host of 
primary partitions over a dataset, Guénoche (2011) has proposed a consensus partition 
containing a maximum number of joined or separated pairs in dataset that are also joined 
or separated in the primary partitions. So, a score function has been defined mapping a 
partition to score value. In the first step, the problem is transformed to a graph partitioning 
problem. Then, using some mathematical tricks converts it to an integer linear program-
ming optimization. Finally, a partition that maximizes the score is explored. The score can 
be maximized by an integer linear programming only in certain cases. It has been shown 
that in those certain cases that the method converges to a solution the produced consensus 
partition is very close to the optimal solution. Although the method is a very simple and 
clear one, it fails in many cases as the paper declared it.

Different partitions created by different methods (or the same clustering method with 
different initializations and parameters) may reveal different viewpoints of the data. The 
mentioned different partitions create a diverse ensemble. Then a partition is extracted out 
of the ensemble in such a way that it exploits the maximum information among the ensem-
ble. This partition that is similar to all partitions of the ensemble as much as possible is 
named consensus partition. The function that takes a diverse ensemble as input and pro-
duces a consensus partition as output is named consensus function. The framework that 
first creates a diverse ensemble (by any method mentioned at the start of this paragraph) 
and then uses a consensus function to aggregate them into a final partition is named clus-
tering ensemble (Strehl and Ghosh 2003; Cristofor and Simovici 2002; Fern and Brodley 
2004; Fred and Jain 2005; Topchy et al. 2005; Li et al. 2018b).

Clustering ensemble usually produces a more robust, accurate, novel, and stable parti-
tion (it is worthy to be mentioned that a robust clustering method is the one whose per-
formance doesn’t fall very much in the presence of noise; an accurate clustering method 
is the one whose predicted clusters are equal to real predefined classes in the dataset; a 
novel clustering method is the one that uncovers some new clusters dissimilar to the clus-
ters detected by the ordinary simple clustering algorithms; a stable clustering method is the 
one that produces the same results irrespective to initialization) (Wu et al. 2013). One of 
the most challenging tasks in Cluster Analysis is how to obtain the robustness of a cluster-
ing. Hennig (2008) acclaimed that this problem is mainly due to the fact that robustness 
and stability in Cluster Analysis are not only data dependent, but even cluster dependent.

In clustering ensemble, there are two vital elements that both have effect on the qual-
ity of consensus partition: diversity among the base partitions and their quality. Some 
efforts have been done to give a weight to each base clustering based on its quality, 
while they have ignored diversity among base clusterings. Some other efforts have 
been done to select a subset of ensemble to maximize the diversity among the selected 
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ensemble. Indeed, they have defined a metric for measuring diversity of an ensemble 
at first. After selecting a subset of ensemble, then they have used a mentioned weight-
ing mechanism (Li and Ding 2008; Yu et al. 2014; Huang et al. 2015). By the way, all 
these efforts have assumed implicitly that all clusters of a base partition have the equal 
dependability. Although this assumption doesn’t cause bad partitions to be selected, it 
sometimes causes some clusters to be omitted because they are inside an unsuitable 
partition while they are suitable clusters and even make our ensemble more diverse. 
It means that some clusters in a partition may be more trustworthy than other clusters 
in the same partition. Based on this fact Zhong et al. (2015) have proposed a metric to 
access the cluster dependability. By the way, our clustering ensemble is inherently dif-
ferent from their method. On contrary to their methods, our method doesn’t need the 
original features of dataset and it doesn’t assume any distribution in dataset.

This paper also wants to suggest a clustering ensemble based on assessing the clus-
ters’ undependability. It also considers weighting mechanism. The proposed mechanism 
defines diversity in cluster level. It considers the quality and diversity of clusters during 
clustering ensemble in order to improve consensus partition.

The dependability of any cluster is computed based on its undependability of the 
cluster. The undependability of any cluster is computed based on the entropy among the 
labels of its data points throughout all partitions of the ensemble. Through assessing 
and then emphasizing the more trustworthy clusters (the ones with more dependability) 
in the ensemble, an innovative cluster-wise weighing co-association matrix has been 
proposed. Then, a cluster-wise weighting bi-partite graph has been also introduced to 
represent the ensemble based on its corresponding cluster-wise weighing co-associa-
tion matrix. Finally, the consensus partition is extracted based on two mechanisms: (a) 
by considering the cluster-wise weighing co-association matrix as a similarity matrix 
and then applying a simple hierarchical clustering algorithm, and (b) by partitioning the 
cluster-wise weighting bi-partite graph into a certain number of parts (or clusters).

To sum up, the novelties of the paper includes:

1.	 Proposing a mechanism to assess the dependability of a cluster in the ensemble.
2.	 Proposing a clustering ensemble framework to let clusters in the ensemble contribute 

in the consensus partition according to their dependabilities.
3.	 Proposing a cluster-wise weighing co-association matrix considering the cluster depend-

ability.
4.	 Proposing a cluster-wise weighting bi-partite graph considering the cluster-wise weigh-

ing co-association matrix.

We have compared our proposed mechanism with some other state-of-the-art cluster-
ing ensemble methods by applying them to 19 real-world datasets. We have evaluated 
the results using Normalized Mutual Information (NMI), F-Measure (FM), Adjacent 
Rand Index (ARI), and Accuracy criterion (Acc). We assess the following aspects of the 
proposed method:

1.	 Effect of varying φ on undependability assessment quality.
2.	 Performance of the proposed method versus the base clustering algorithms.
3.	 Performance of the proposed method versus other state-of-the-art clustering ensemble 

methods.
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4.	 Effect of varying the number of base partitions on quality of the proposed method and 
other methods.

5.	 Effect of noise on the proposed method performance.
6.	 Execution time.

2 � Related works

Clustering ensemble integrates several base partitions to attain a more robust, accurate, 
novel, and stable consensus partition. In a wide categorization, they are divided into two 
groups based on their base clustering structures: (1) hierarchical clustering ensemble (Mir-
zaei et al. 2008) and (2) partitional clustering ensemble (Parvin and Minaei-Bidgoli 2015). 
The consensus function of partitional clustering ensemble is divided into two groups: (1) 
optimization based methods (Alizadeh et al. 2014) and (2) intermediate space clustering 
(Parvin and Minaei-Bidgoli 2015). Intermediate space clustering (i.e. the subgroup of par-
titional clustering ensemble) is divided into three groups: (1) the pair-wise co-association 
based methods, (2) the graph partitioning based methods (Strehl and Ghosh 2003; Fern 
and Brodley 2004), and the median partition based methods (Cristofor and Simovici 2002; 
Topchy et al. 2005; Franek and Jiang 2014).

Some approaches are based on Co-Association (CA) (Fred and Jain 2005; Wang et al. 
2009; Iam-On et al. 2011; Wang 2011). They first create a CA matrix whose (i, j) th ele-
ment indicates how many times ith data point and jth data point belong to a shared cluster 
through all base partitions of the ensemble. Then by considering the CA matrix as a simi-
larity matrix, a simple clustering technique that performs clustering task based on similar-
ity matrix, like a hierarchical clustering method, can be employed to make the final con-
sensus clustering (Jain 2010). The CA matrix has been introduced first in the name of the 
Evidence Accumulation Clustering (EAC) (Fred and Jain, 2005). Then, it has been general-
ized by introducing the probability accumulation method (Wang et al. 2009). Wang (2011) 
has introduced a CA-tree to enhance the consensus partition. Then, the CA matrix has been 
modified by taking the joint neighbors among clusters into consideration to enhance the 
consensus partition (Iam-On et al. 2011).

In some approaches, the clustering ensemble problem is first transformed into a graph 
(Strehl and Ghosh 2003; Fern and Brodley 2004). They have extracted the consensus parti-
tion through partitioning the mentioned graph into a predefined number of disjoint parts. 
The first set of these approaches includes Cluster-based Similarity Partitioning Algorithm 
(CSPA), Hyper Graph Partitioning Algorithm (HGPA), and Meta-CLustering Algorithm 
(MCLA). A Bi-Partite Graph Partitioning Algorithm then has been introduced to speed-up 
these approaches (Fern and Brodley 2004).

In another direction of research, some researchers have transformed the clustering 
ensemble problem into an optimization problem, and then they have tried to find a con-
sensus partition that its distance to all base partitions is minimum (Cristofor and Simovici 
2002; Topchy et al. 2005; Franek and Jiang 2014). The found consensus partition is named 
median partition. This approach is named median partition based clustering ensemble. 
Finding the median partition is an NP-hard problem and its state space is extremely large; 
so finding the best partition as median partition through a brute-force search is impossible 
for datasets even with moderate sizes. So some researchers have proposed a mechanism to 
reach an approximate solution by heuristic optimization methods like genetic algorithm 
(Cristofor and Simovici 2002). In another work, the Expectation Maximization (EM) has 
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been employed to find an approximate solution to the median partition problem (Topchy 
et al. 2005). In another recent research, the mentioned problem has been first transformed 
into a new Euclidean median problem. This has been possible by considering each partition 
as a vector. Then the median vector can be found by the method proposed by Weiszfeld and 
Plastria (2009). Finally the median vector is retransformed into a partition (i.e. the median 
partition).

All of the mentioned approaches have tried to find a solution to the clustering ensemble 
problem using different methodologies. Nonetheless, there is a shared limitation to almost 
all of those approaches. Their limitation is due to their inability to treating different clusters 
according to their qualities. Indeed, they have considered all clusters (or even base cluster-
ings) equally irrespective to their quality. This make them exposed to low-quality clusters 
(or low-quality base clusterings). For managing this inadequacy, some recent works have 
been done (Li and Ding 2008; Yu et  al. 2014; Huang et  al. 2015). Li and Ding (2008) 
transform the clustering ensemble problem into an optimization problem. They have also 
suggested assigning a weight to each clustering. The Attribute Selection systems have been 
recently extended to be employed to select (or to weight) the base clusterings (Yu et  al. 
2014). Indeed, the clustering ensemble weighing problem can be considered as a binary 
weighting system by Yu et  al. (2014), where a weight one (or a weight zero) for a base 
clustering shows that clustering is selected for (or correspondingly removed from) the 
ensemble. In their work, the clustering ensemble weighing problem indeed is the clustering 
ensemble selection problem. In another more recent research, a more mature work has been 
proposed (Huang et al. 2015). The authors have proposed a clustering ensemble weighing 
scheme where each base clustering is assigned to a weight according to its Normalized 
Crowd Agreement Index. All the mentioned works employ a weighting in the level of the 
base clusterings. So, all of them suffer from ignoring the cluster dependability.

Alizadeh et  al. (2014) have introduced a cluster ensemble selection approach. Their 
approach is done through ranking of all clusters according to their stabilities (i.e. their 
averaged NMI values) and then selecting a portion of the best clusters. In another work, 
Alizadeh et  al. (2015) have introduced a cluster ensemble problem with cluster-wise 
weighing. They have employed a binary weighting system, where a weight one (or a weight 
zero) for a base cluster shows that cluster is selected for (or correspondingly removed from) 
the ensemble. In their work, the cluster ensemble weighing problem is indeed the cluster 
ensemble selection problem.

Zheng et al. (2015) have proposed an instance-wise weighted nonnegative matrix fac-
torization for aggregating partitions with locally reliable clusters. Zhong et al. (2015) uses 
spatial data to approximate the cluster dependability. While these works seem to be cluster-
wise weighting schemes, after producing the ensemble they still need original features of 
dataset.

3 � Definitions

Definition 1  A dataset denoted by D is a set of 
{
d1, d2,… , dn

}
 where di is ith data point 

and n stands for the size of dataset. dij stands as jth feature in ith data point. F stands as the 
number of features.

Definition 2  A sub-sampling of dataset D is a random subset of dataset D and is denoted 
by DS where S is the size of subset and is a positive integer.
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Definition 3  A partition or clustering is a vector π = [π1, π2, …, πn]T where πi is a positive 
integer indicating to which cluster ith data point belongs. Note that it is assumed that no 
cluster should be empty.

Definition 4  A clustering pool or ensemble is a set of B partitions denoted by Π and 
defined by Eq. (1).

where πi is ith partition and has ci cluster, i.e. πj
i ∊ {1, 2, …, ci}. As it can be inferred from 

Eq. (1), clustering pool Π is a matrix with the size of n × B whose each column is a parti-
tion. An exemplary ensemble of three partitions is presented in Table 1. In the first and 
third partitions of this ensemble, there are 3 clusters, but in the second partition there are 
only 2 clusters. Any of partitions inside the ensemble has been done on a dataset with 15 
data points.

Definition 5  A cluster representation (CR) of a partition is defined as Eq. (2).

where � i
j
 is jth cluster inside ith partition and is a vector defined as Eq. (3).

Definition 6  A cluster representation of a clustering pool Π is defined as Eq. (4).

(1)� =
[
�1,… ,�B

]

(2)CR
(
�i
)
= � i =

[
� i
1
,… , � i

ci

]

(3)� i
jk
=

{
1 �i

j
= k

0 otw

(4)
T = CR(�) = CR

([
�1,… ,�B

])
=
[
CR

(
�1

)
,… ,CR

(
�B

)]
=
[
�1
1
,… , �1

c1
, �2

1
,… , �2

c2
,… �B

1
,… , �B

cB

]

Table 1   An exemplary ensemble 
containing three base partitions, 
namely, π1, π2, and π3

π1 π2 π3

d1 2 2 3
d2 1 2 1
d3 1 2 1
d4 3 1 3
d5 2 1 2
d6 3 1 3
d7 3 1 1
d8 3 2 3
d9 3 1 3
d10 1 1 3
d11 2 2 2
d12 2 2 1
d13 1 2 1
d14 1 1 1
d15 2 2 2
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where T is a matrix with the size of n × b and b = ∑  B
i=1ci. Cluster representation of the 

exemplary ensemble of Table 1 is depicted in Table 2. Ti stands for ith column of matrix T. 
Tij is equal to 1 if jth data point belongs to ith cluster.

Definition 7  For a discrete random variable Y, the entropy denoted by H(Y) is defined as 
Eq. (5).

where Y is the set of values that y can take, and p(y) is the probability mass function of y.

Lemma 1  The H(Y) will be maximum when p(y) = 1

|Y| where |Y| is the number of different 
possible values in discrete random variable Y, or is the size of state space of the discrete 
random variable Y. The maximum H(Y) will be log 2|Y| as computed in Eq. (6).

Definition 8  The joint entropy of a pair of discrete random variables Y and X denoted by 
H(Y, X) is described as Eq. (7).

where p(y, x) is the joint probability of (Y, X). It should be noted that H(Y, X) = H(Y) + H(X) 
if Y and X are independent. In general, if a number of discrete random variables Yi are inde-
pendent form each other we can have Eq. (8).

(5)H(Y) = −
∑
y�Y

p(y) log2 p(y)

(6)

H(Y) = −
∑
y�Y

1

|Y| log2
1

|Y| =
∑
y�Y

1

|Y| log2 |Y| =
1

|Y| log2 |Y|
∑
y�Y

1 =
|Y|
|Y| log2 |Y| = log2 |Y|

(7)H(Y ,X) = −
∑
y�Y

∑
x�X

p(y, x) log2 p(y, x)

Table 2   Cluster representation 
of the exemplary ensemble of 
Table 1

�1
1

�1
2

�1
3

�2
1

�2
2

�3
1

�3
2

�3
3

d1 0 1 0 0 1 0 0 1
d2 1 0 0 0 1 1 0 0
d3 1 0 0 0 1 1 0 0
d4 0 0 1 1 0 0 0 1
d5 0 1 0 1 0 0 1 0
d6 0 0 1 1 0 0 0 1
d7 0 0 1 1 0 1 0 0
d8 0 0 1 0 1 0 0 1
d9 0 0 1 1 0 0 0 1
d10 1 0 0 1 0 0 0 1
d11 0 1 0 0 1 0 1 0
d12 0 1 0 0 1 1 0 0
d13 1 0 0 0 1 1 0 0
d14 1 0 0 1 0 1 0 0
d15 0 1 0 0 1 0 1 0
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Definition 9  The undependability of ith cluster of an ensemble Π (i.e. cluster Ti) with 
regard to a reference set (usually the reference set is the same ensemble Π) is denoted by 
U
(
Ti,�

)
 obtained according to Eq. (9).

where u
(
Ti,�

j
)
 is calculated based on Eq. (10).

where n is the number of data points and Ti ⋅ �
j

k
 is the inner product of two vectors Ti and τk

j.

When all data points of Ti belong to a same cluster in πj, u(Ti, πj) will hit its minimum 
at zero and when all data points of Ti equally belong to a all clusters of πj, it will reach 
its maximum value. We assume that all partitions πj in the ensemble Π are independent 
and so we averaged the undependability of ith cluster with regard to all partitions πj in 
Eq. (9).

The dependability of a cluster is in contradiction of its undependability. Its depend-
ability should have the highest value when its undependability has the minimum value 
(i.e. 0). Its dependability should also have the lowest value when its undependability has 
the maximum value (i.e. + ∞). As we want dependability values (denoted by R) to be in 
a certain range, we use an exponential transform.

Definition 10  Given an ensemble Π with B base partitions, the exponential dependability 
(ED) for a cluster Ti with regards to the ensemble Π is defined according to Eq. (11).

where φ is a positive parameter that controls the effect of the cluster undependability.

Definition 10 describes ED formally. As U(Ti,  Π) is a non-negative real value, 
so ED(Ti,  Π) is always a real number in the range (0,  1]. As cluster undependability 
increases ED value decreases. For all clusters in ensemble of Table 1, the ED values are 
calculated, and then their ED values are represented in Table 3. The parameter φ has 
been set to 0.4.

When the undependability of a cluster Ti is its lowest possible value, i.e. U(Ti, Π) = 0, its 
ED will thereby rises to its maximum, i.e., ED(Ti, Π) = 1. The ED of a cluster Ti tends to its 
lowest possible value, i.e. ED

(
Ti,�

)
= 0 , as its undependability tends to infinity.

By trial and error it has been understood that for very small values of φ, i.e. φ < 0.2, the 
ED decreases considerably as the cluster undependability increases. It has been also under-
stood that if we use very large values for φ, i.e. φ > 2, the cluster undependability and ED 
value will be linearly correlated. Empirically, it is suggested that the parameter φ should be 
set in the interval of [0.2, 1]. We will empirically show latter that the best φ is 0.4.

(8)H
(
Y1, Y2,… , Yn

)
= H

(
Y1
)
+⋯ + H

(
Yn
)

(9)U
(
Ti,�

)
=

1

B

B∑
j=1

u
(
Ti,�

j
)

(10)u
(
Ti,�

j
)
= −

cj∑
k=1

Ti ⋅ �
j
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log2

Ti ⋅ �
j

k

n

(11)ED
(
Ti,�
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= e

−
U(Ti ,�)
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Definition 11  The normalized undependability (NU) of ith cluster of an ensemble Π (i.e. 
cluster Ti) with regard to a reference set (usually the reference set is the same ensemble Π) 
is denoted by NU

(
Ti,�

)
 obtained according to Eq. (12).

where cj is the number of clusters in partition πj. Based on Lemma 1, it is straightforward 
to prove that NU(Ti, Π) is in the interval of [0, 1].

Definition 12  Given an ensemble Π with B base partitions, the normalized dependability 
(ND) for a cluster Ti with regards to the ensemble � is defined according to Eq. (14).

Definition 12 describes ND formally. As NU
(
Ti,�

)
 is a real number in the interval 

[0, 1] , so ND
(
Ti,�

)
 is always a real number in the same range. As NU value of a cluster 

increases, its ND value decreases. For all clusters in ensemble of Table 1, the nu values are 
calculated, then their NU values are calculated, and finally their ND values are represented 
in Table 4.

Fred and Jain (2005) have introduced the co-association matrix. Its (i, j)th entry shows 
how many partitions of the ensemble Π put the ith data point and the jth data point in the 
same cluster.

(12)NU
(
Ti,�

)
=

1

B

B∑
j=1

nu
(
Ti,�

j
)

(13)nu
(
Ti,�

j
)
=

u
(
Ti,�

j
)

log2 c
j

(14)ND
(
Ti,�

)
= 1 − NU

(
Ti,�

)

Table 3   Computation of U 
and ED for the clusters of the 
exemplary ensemble presented 
in Table 1

τ1
1

�1
2

�1
3

�2
1

�2
2

�3
1

�3
2

�3
3

u
(
�
j

i
,�1

) 0 0 0 1.38 1.41 1.25 0 1.25

u
(
�
j

i
,�2

) 0.97 0.72 0.72 0 0 0.95 0.92 0.92

u
(
�
j

i
,�3

) 0.72 1.37 0.72 1.38 1.50 0 0 0

U
(
�
j

i
,�

) 0.56 0.70 0.48 0.92 0.97 0.72 0.31 1.72

ED

(
�
j

i
,�

)
0.24 0.17 0.30 0.10 0.09 0.16 0.47 0.16

Table 4   Computation of NU 
and ND for the clusters of the 
exemplary ensemble presented 
in Table 1

�1
1

�1
2

�1
3

�2
1

�2
2

�3
1

�3
2

�3
3

nu
(
�
j

i
,�1

) 0 0 0 0.87 0.89 0.79 0 0.79

nu
(
�
j

i
,�2

) 0.97 0.72 0.72 0 0 0.92 0.92 0.92

nu
(
�
j

i
,�3

) 0.46 0.86 0.46 0.87 0.95 0 0 0

NU(τi
j, Π) 0.48 0.53 0.39 0.58 0.61 0.57 0.31 0.57

ND(τi
j, Π) 0.52 0.47 0.61 0.42 0.39 0.43 0.69 0.43
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Definition 13  The co-association matrix of an ensemble Π is denoted by CA and is cal-
culated based on Eq. (15)

where �k
ij
 is defined based on Eq. (16).

There are many efforts in the clustering ensemble literature that have used co-associa-
tion matrix (Fred and Jain, 2005; Wang, 2011; Yu et al. 2015; Mimaroglu and Erdil, 2011). 
Although co-association based clustering ensemble efforts are numerous, they almost 
always suffer from the inability to consider cluster quality or dependability. The NCAI 
index has recently been used to weigh the base partitions. Then they have made a weighted 
co-association matrix (Huang et  al. 2015). By the way, they have also ignored cluster-
wise weighing. In this paper, cluster-wise weighing co-association (CWWCA​) matrix is 
proposed.

Definition 14  Given an ensemble � , the cluster-wise weighing co-association matrix is 
computed based on Eq. (17).

where Wk
ij
 is defined based on Eq. (18).

where �k
�k
i

 is �k
i
 th cluster of kth partition and Dep

(
�k
�k
i

,�
)
 can be either ED

(
�k
�k
i

,�
)
 or 

ND
(
�k
�k
i

,�
)
.

We now have a weighting mechanism that sets a weight to each cluster in order to con-
sider the cluster dependability. Through this mechanism a data point that usually falls into 
a dependable cluster is highly likely to be placed into a correct cluster. Also by the clus-
ter-wise weighing co-association matrix we take into consideration the dependability of 
clusters. For more details, Table 5 provides CWWCA​ matrix for the ensemble presented in 
Table 1. We have used ED(Ti, Π) as cluster dependability during computation of Table 5.

We compute Table 6 like Table 5. We employ ND(Ti, Π) instead of ED(Ti, Π) as cluster 
dependability during computation of Table 6.

Definition 15  The cluster-wise weighting bi-partite graph ( CWWBG ) is defined based on 
Eq. (19).

(15)CAij =
1

M

B∑
k=1

�k
ij

(16)�k
ij
=

{
1 �k

i
= �k

j

0 otw

(17)CWWCAij =
1

B

B∑
k=1

Wk
ij

(18)Wk
ij
=

{
Dep

(
�k
�k
i

,�
)

�k
i
= �k

j

0 otw
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where ℕ(� ,D) = {1, 2,… , n, n + 1,… , n + b} is the set of nodes and �(� ,D) is the set 
of edges and b =

∑B

i=1
ci . The edge weight between two nodes x and y is defined based on 

Eq. (20).

(19)CWWBG(� ,D) = (ℕ(� ,D),𝔼(� ,D))

Table 5   Cluster-wise weighing co-association matrix based on computed ED(Ti, Π) as cluster dependability 
(where φ is 0.4) for the ensemble presented in Table 1

0.14 0.03 0.03 0.05 0.06 0.05 0 0.08 0.05 0.05 0.09 0.09 0.03 0 0.09
0.03 0.16 0.16 0 0 0 0.05 0.03 0 0.08 0.03 0.08 0.16 0.13 0.03
0.03 0.16 0.16 0 0 0 0.05 0.03 0 0.08 0.03 0.08 0.16 0.13 0.03
0.05 0 0 0.19 0.03 0.19 0.13 0.15 0.19 0.09 0 0 0 0.03 0
0.06 0 0 0.03 0.25 0.03 0.03 0 0.03 0.03 0.21 0.06 0 0.03 0.21
0.05 0 0 0.19 0.03 0.19 0.13 0.15 0.19 0.09 0 0 0 0.03 0
0 0.05 0.05 0.13 0.03 0.13 0.19 0.1 0.13 0.03 0 0.05 0.05 0.09 0
0.08 0.03 0.03 0.15 0 0.15 0.1 0.18 0.15 0.05 0.03 0.03 0.03 0 0.03
0.05 0 0 0.19 0.03 0.19 0.13 0.15 0.19 0.09 0 0 0 0.03 0
0.05 0.08 0.08 0.09 0.03 0.09 0.03 0.05 0.09 0.17 0 0 0.08 0.11 0
0.09 0.03 0.03 0 0.21 0 0 0.03 0 0 0.24 0.09 0.03 0 0.24
0.09 0.08 0.08 0 0.06 0 0.05 0.03 0 0 0.09 0.14 0.08 0.05 0.09
0.03 0.16 0.16 0 0 0 0.05 0.03 0 0.08 0.03 0.08 0.16 0.13 0.03
0 0.13 0.13 0.03 0.03 0.03 0.09 0 0.03 0.11 0 0.05 0.13 0.17 0
0.09 0.03 0.03 0 0.21 0 0 0.03 0 0 0.24 0.09 0.03 0 0.24

Table 6   Cluster-wise weighing co-association matrix based on computed ND(Ti, Π) as cluster dependability 
for the ensemble presented in Table 1

0.43 0.13 0.13 0.14 0.16 0.14 0 0.27 0.14 0.14 0.29 0.29 0.13 0 0.29
0.13 0.45 0.45 0 0 0 0.14 0.13 0 0.17 0.13 0.27 0.45 0.32 0.13
0.13 0.45 0.45 0 0 0 0.14 0.13 0 0.17 0.13 0.27 0.45 0.32 0.13
0.14 0 0 0.49 0.14 0.49 0.34 0.35 0.49 0.28 0 0 0 0.14 0
0.16 0 0 0.14 0.53 0.14 0.14 0 0.14 0.14 0.39 0.16 0 0.14 0.39
0.14 0 0 0.49 0.14 0.49 0.34 0.35 0.49 0.28 0 0 0 0.14 0
0 0.14 0.14 0.34 0.14 0.34 0.49 0.2 0.34 0.14 0 0.14 0.14 0.28 0
0.27 0.13 0.13 0.35 0 0.35 0.2 0.48 0.35 0.14 0.13 0.13 0.13 0 0.13
0.14 0 0 0.49 0.14 0.49 0.34 0.35 0.49 0.28 0 0 0 0.14 0
0.14 0.17 0.17 0.28 0.14 0.28 0.14 0.14 0.28 0.46 0 0 0.17 0.31 0
0.29 0.13 0.13 0 0.39 0 0 0.13 0 0 0.52 0.29 0.13 0 0.52
0.29 0.27 0.27 0 0.16 0 0.14 0.13 0 0 0.29 0.43 0.27 0.14 0.29
0.13 0.45 0.45 0 0 0 0.14 0.13 0 0.17 0.13 0.27 0.45 0.32 0.13
0 0.32 0.32 0.14 0.14 0.14 0.28 0 0.14 0.31 0 0.14 0.32 0.46 0
0.29 0.13 0.13 0 0.39 0 0 0.13 0 0 0.52 0.29 0.13 0 0.52
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After creation of cluster-wise weighting bi-partite graph based on Definition 15, we par-
tition the graph using the hyper-graph partitioning algorithm (Li et al. 2012). The nodes 
{1, 2, …, n} are the representatives of data points {1, 2, …, n}. So, each of them are clus-
tered according to their clusters in the results of the hyper-graph partitioning algorithm.

Cluster-wise weighting bi-partite graph is presented in Table  7 where ND(Ti,  Π) is 
employed as cluster dependability for the ensemble presented in Table 1.

4 � Proposed method

The proposed method is a clustering ensemble framework that is based on integration of 
undependability concept (definition 9 and definition 11) and cluster weighting. The pseudo 
code of the proposed method is presented in Fig. 1. The inputs of the algorithm are as fol-
lows: a real number of cluster denoted by c, a base clustering algorithm alg, a number of 
base clustering B; a dataset D; ground truth labels or the target partition P; the sampling 
rate r; the exponential transfer parameter φ. The outputs of the algorithm are as follows: 
the first output is the consensus partition denoted by πALED where it is obtained by the 
average linkage as the consensus function and the exponential dependability as the cluster 
evaluator metric; the second output is the consensus partition denoted by πALND where it 
is obtained by the average linkage as the consensus function and the normalized depend-
ability as the cluster evaluator metric; the third output is the consensus partition denoted 
by πGED where it is obtained by applying Tcut algorithm as the consensus function and the 
exponential dependability as the cluster evaluator metric; the fourth output is the consensus 
partition denoted by πGND where it is obtained by applying Tcut algorithm as the consensus 
function and the exponential dependability as the cluster evaluator metric; and NMI values 
of πALED, πALND, πGED, and πGND are respectively returned in nmiOutALED, nmiOutALND, 
nmiOutGED, and nmiOutGND.

In line 1, we first initialize SampleSize and size of dataset. In lines 2-8 an ensem-
ble is created. In this ensemble, each base partition is consisted of vc clusters where 
2 ≤ vc ≤

√
SampleSize and SampleSize is size of each sampling. In each iteration of the 

for statement, first a sub-sample with the size SampleSize is produced. Then we partition 
this sub-sample into vc clusters through a simple base clustering algorithm denoted by 
alg. In the following step the output of the base clustering alg is generalized by applied 
it on the total dataset resulting in a partition denoted by πi (line 6). Finally in the line 7, 
the cluster representation of partition πi is constructed according to definition 5. After the 
loop, the ensemble is created by concatenating B partitions, π1, π2, …, πB. In the next line, 
i.e. line 10, the cluster representation of ensemble Π is created according to definition 6. 
Then according to definition 10 and definition 12, ED(Ti, Π) and ND(Ti, Π) are respectively 
computed for all i  ∊ {1, 2, …, b}. Lines 13 and 14 respectively compute CWWCA​ with 
ED(Ti,  Π) and ND(Ti,  Π) as dependability measure. Lines 15 and 16 respectively com-
pute CWWBG with ED(Ti, Π) and ND(Ti, Π) as dependability measure. By applying hier-
archical average linkage clustering algorithm (Jain, 2010) on CWWCA​ED and CWWCA​ND, 

(20)�ij(Π,D) =

⎧
⎪⎨⎪⎩

Dep
�
Ty−n,Π

�
(1 ≤ x ≤ n) ∧ (n < y ≤ n + b) ∧

�
Ty−nx = 1

�

Dep
�
Tx−n,Π

�
(1 ≤ y ≤ n) ∧ (n < x ≤ n + b) ∧

�
Tx−ny = 1

�

0 otw
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we compute consensus partitions πALED and πALND in the lines 17 and 18. In the lines 19 
and 20, we obtain consensus partitions πGED and πGND by partitioning the bi-partite graphs 
CWWBGED and CWWBGND using the Tcut algorithm. In the last four lines of the pseudo 
code of the proposed approach, we calculate respectively Normalized Mutual Information 
(NMI), F-Measure (FM), Accuracy (Acc), and Adjacent Rand (AR) of πALED, πALND, πGED, 
and πGND.

Hierarchical agglomerative clustering as a well-known basic clustering algorithm (Jain, 
2010) usually takes a similarity matrix as input and produces a partition as output. If the 
CWWCA​ED matrix is employed as the input similarity matrix, partition πALED can be pro-
duced as output. If the CWWCA​ND matrix is employed as the input similarity matrix, parti-
tion πALND can be produced as output.

Consensus partitions πALED, πALND, and πGND are presented in Table 8 for the exemplary 
ensemble presented in Table 8 when φ is 0.4.

Fig. 1   Pseudo code of the proposed approach
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5 � Experimental study

In this section, the proposed methods have been evaluated versus the state-of-the-art clus-
tering ensemble methods on a diverse real-world collection of datasets. All experiments 
have been performed in Matlab R2015a 64-bit on a workstation.

In the current section, the proposed methods will be compared to some of the state-of-
the-art methods. Some of the methods that are compared to our methods include Hybrid 
Bi-Partite Graph Formulation (HB-PGF) (Fern and Brodley 2004), Sim-Rank Similarity 
(S-RS) (Iam-On et  al. 2008), Weighted Connected Triple (W-CT) (Iam-On et  al. 2011), 
Cluster Selection Evidence Accumulation Clustering (CS-EAC) (Alizadeh et  al. 2014), 
Weighted Evidence Accumulation Clustering (W-EAC) (Huang et  al. 2015), Wisdom of 
Crowds Ensemble (ECE) (Alizadeh et al. 2015), Graph Partitioning with Multi-Granular-
ity Link Analysis (GPM-GLA) (Huang et al. 2015), and Two_level co-association Matrix 
Ensemble (TME) (Zhong et  al. 2015), Elite Cluster Selection Evidence Accumulation 
Clustering (ECS-EAC) (Parvin and Minaei-Bidgoli 2015).

5.1 � Benchmarks

In our experiments, ninety real-world datasets have been used. Dataset names and their 
details have been presented in Table 9. All datasets are from UCI machine learning reposi-
tory (Bache and Lichman 2013) except datasets with the number 5 and 9. Prior doing any 
experimentation, all datasets have been first normalized so as to any feature in any dataset 
of the paper mapped into range [0, 1]. It means that before doing any step, a preprocessing 
step is taken just like Eq. (21).

Table 8   Consensus partitions 
πALED, πALND, and πGND obtained 
for the exemplary ensemble 
presented in Table 1

πALER πALNR πGNR

d1 2 1 1
d2 2 2 3
d3 2 2 3
d4 1 3 2
d5 3 1 1
d6 1 3 2
d7 1 3 2
d8 1 3 2
d9 1 3 2
d10 2 2 2
d11 3 1 1
d12 2 1 1
d13 2 2 3
d14 2 2 3
d15 3 1 1
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where ḋij is the jth normalized feature in the ith data point.

5.2 � Evaluation metrics

We have employed the Normalized Mutual Information (NMI) (Parvin and Minaei-Bidgoli 
2015), F-Measure (FM) (Parvin and Minaei-Bidgoli 2015), Accuracy ratio (Acc) (Parvin 
and Minaei-Bidgoli 2015), and Adjacent Rand Index (ARI) (Azimi and Fern 2009) to eval-
uate the quality of the partitions obtained whether by the proposed method or by the state-
of-the-art methods. A better partition has a larger value of NMI. It also has a larger value 
of other mentioned metrics. The range of all mentioned metrics belongs to [0,1], i.e. they 
don’t exceed one and aren’t negative. The larger the NMI, FM, Acc, or ARI, the better the 
clustering result. To be more precise in our conclusions, any result, reported in Tables or 
depicted in Figures, is averaged over 30 independent runs.

(21)ḋij =

(
dij − min

k∈{1,…,F}
dik

)

max
k∈{1,…,F}

dik − min
k∈{1,…,F}

dik

Table 9   Details of the used datasets

# Name # Of samples # Of features # Of 
real 
classes

Source

1 Semeion (S.) 1593 256 10 Bache and Lichman (2013)
2 Multiple-Features (M.F.) 2000 649 10 Bache and Lichman (2013)
3 Image-Segmentation (I.S.) 2310 19 7 Bache and Lichman (2013)
4 Forest-CoverType (F.C.T.) 3780 54 7 Bache and Lichman (2013)
5 MNIST (M.) 5000 784 10 LeCun et al. (1998)
6 Optical-Digit-Recognition 

(O.D.R.)
5620 64 10 Bache and Lichman (2013)

7 Landsat-Satellite (L.S.) 6435 36 6 Bache and Lichman (2013)
8 ISOLET (IS.) 7797 617 26 Bache and Lichman (2013)
9 USPS (U.) 11,000 256 10 Dueck (2009)
10 Letter-Recognition (L.R.) 20,000 16 26 Bache and Lichman (2013)
11 Breast-Cancer (B.C.) 683 9 2 Bache and Lichman (2013)
12 Bupa (B.) 345 6 2 Bache and Lichman (2013)
13 Glass (Gl.) 214 9 6 Bache and Lichman (2013)
14 Galaxy (Ga.) 323 4 7 Bache and Lichman (2013)
15 SAHeart (S.A.H.) 462 9 2 Bache and Lichman (2013)
16 IonoSphere (Io.S.) 351 34 2 Bache and Lichman (2013)
17 Iris (I.) 150 4 3 Bache and Lichman (2013)
18 Wine (W.) 178 13 3 Bache and Lichman (2013)
19 Yeast (Y.) 1484 8 10 Bache and Lichman (2013)
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5.3 � Parameter setting

Parameter alg is always simple k-means clustering algorithm. The initialization approach 
used for k-means is the deterministic Kaufman’s initialization (which was shown to be bet-
ter than random initializations (Peña et  al. 1999), and is expected to be adopted unless 
otherwise justified). So it will produce the same exact clustering results for any given k 
value for a given dataset. As we choose k values randomly from 2 to the square root of the 
number of objects, which will be for the largest dataset, L.R., 141, for the second largest 
dataset, U., 104, and for the rest of the datasets less than 100. So if instead of choosing ran-
dom k values, brute-force approach was adopted and all k values were chosen, we will not 
get 100 different clustering results for any dataset other than the two aforementioned ones. 
Therefore, one may suggest two mechanisms: (1) adopting different clustering methods in 
the consensus as that (i) allows for the datasets to be viewed by different methods with 
different implicit assumptions, which enriches the ensemble and covers the different down-
falls of any of the methods, and (ii) increases the number of different clustering results in 

Fig. 2   Effect of the parameter φ on nmiOutALER. Each value reported here is averaged over 30 runs

Fig. 3   Effect of the parameter φ on nmiOutGER. Each value reported here is averaged over 30 runs
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the pool of results which we were trying to produce, and (2) using resampling methods. We 
use the latter as we want our method to be as simple and general as possible.

Parameter B is chosen among the set {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. But its 
default value is 40. Parameter r is chosen among the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9, 1.0}. The default value for r is 0.9. Parameter φ is chosen among the set {0.1, 0.2, 0.4, 
0.6, 0.8, 1, 2, 4, 8}. But its default value is 0.4.

To compare all methods fairly and make a suitable and valid conclusion, we evaluate 
each method over 30 independent runs. In each run, the ensemble Π is the same for all 
methods. We finally have presented their averaged performances.

5.4 � Parameter φ

The parameter φ has a big influence on the relation of dependability-undependability. 
When it is small, even a little increment in undependability value results in a considerably 

Fig. 4   Effect of the sampling ratio on nmiOutGER. Each value reported here is averaged over 30 runs

Fig. 5   Effect of the ensemble size on nmiOutGER. Each value reported here is averaged over 30 runs



1360	 F. Rashidi et al.

1 3

reduction in dependability value. Effect of the parameter φ on nmiOutALER and nmiOut-
GER have been studied respectively in Figs. 2 and 3. As it can be observed from Figs. 2 
and 3, setting a value around 0.3 or 0.7 for parameter φ should be recommended; indeed 
the results in these figures suggest that a value around 0.3 or 0.7 is the best. So we, from 
here to the end of the paper, use value 0.4 for parameter φ.

5.5 � Sampling ratio

The sampling ratio has a big influence on efficacy of the proposed approach. From Fig. 4, 
it can be inferred that the best value for sampling ratio is a value in the range [0.85, 0.95], 
that we set 0.9 as the default value for this parameter in the rest of the paper.

5.6 � Ensemble size

To examine the best value for parameter B, an experimentation has been conducted and 
Fig. 5 has been presented. Effect of the parameter B on nmiOutGER has been studied in 

Fig. 6   The performances of the different methods averaged over all of 19 benchmarks for different B in 
terms of NMI

Fig. 7   The performances of the different methods averaged over all of 19 benchmarks for different B in 
terms of FM
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Fig. 5. As it can be observed from Fig. 5, setting a value around 40 for parameter B should 
be recommended. So we, from here to the end of the paper, use value 40 for parameter B.

Additionally, we have conducted another experiment to assess the performances of 
our methods and the state-of-the-art methods in terms of NMI. The final results of this 
experimentation are reported in Fig.  6. Indeed, we first evaluate a method in terms of 
NMI in 30 different independent runs on a dataset (it is worthy to be mentioned that in 
each run the ensemble size is fix and is β), and then the performance averaged over the 
30 runs is considered as the performance of the method on that dataset for ensemble size 
β. After computing performances of that method on all of 19 datasets for ensemble size 
β, the performance averaged over all of 19 datasets is considered as the performance 
of that method for ensemble size β. After computing performances for all methods in 
all different ensemble sizes, we plot the Fig.  6. Indeed, Fig.  6 summarizes the perfor-
mance of the different methods over the datasets by averaging their NMI values. Figure 7 
also summarizes the performance of the different methods over the datasets by averaging 
their FM values. Indeed, previous experiment has been done for FM index instead of 
NMI index in Fig. 7.

NMI is not independent of the datasets and therefore is not comparable across them. In 
other words, averaging NMI across datasets is not very informative. For instance, its val-
ues are around 0.2 in the F.C.T. dataset, 0.6 in S. dataset, and 0.8 in O.D.R. dataset. So, an 
NMI value of 0.5 would not be known if it is good or bad unless it is compared with other 
methods over the same dataset. So, we should use some normalized form of NMI which 
would be meaningful while comparing a single method over the datasets. Our approach is 
to use the methods’ ranks. The method has the rank of 1 at a given dataset if it shows the 
highest NMI value at that dataset compared with the other methods, etc. Averaging ranks 
can be meaningful as an averaged rank of 2.5 for example means that, on average, this 
method scores as the second or the third best method across the datasets. Figure 8 depicts 
the methods’ ranks on all of 19 datasets for different values of ensemble size. The Figs. 6 
and 7 prove that the proposed methods outperform the state-of-the-art in any ensemble 
size. Figure 8 also approves the results of Figs. 6 and 7. Figure 8 states among the proposed 
methods, CWWBG based on Definition 15 and using ND(Ti, Π) as dependability measure 
is the best. So, usage of the normalized cluster dependability as cluster weight can be better 
than exponential cluster dependability.

Fig. 8   The ranks of the different methods for different B 
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Table 10   The averaged performances of the different methods over 30 different runs in terms of NMI 

Names HB-
PGF

TME GPM-
GLA

WCE W-
EAC

CS-
EAC

W-CT ECS-
EAC

S-RS πALND πGND

S. 61.51 64.19 60.54 61.78 62.95 62.51 64.13 64.10 65.20 65.75 68.59
M. F. 62.55 69.03 63.26 62.98 61.91 63.37 66.73 65.03 68.57 67.86 69.28
I. S. 62.87 55.74 62.05 59.18 59.70 60.77 59.76 60.74 63.52 63.20 62.71
F. C. T. 22.47 21.73 19.26 20.28 23.19 23.27 23.59 24.22 23.50 26.03 26.19
M. 61.73 57.44 57.75 61.06 60.35 62.59 58.82 62.63 61.74 65.69 66.16
O. D. R. 76.88 81.50 83.88 78.00 77.22 78.86 79.14 80.67 81.89 82.63 85.50
L. S. 58.91 52.02 58.60 59.03 58.72 59.07 59.70 61.48 62.07 62.95 65.60
IS. 69.59 72.27 74.83 69.92 70.14 71.29 71.43 73.99 73.84 75.54 76.56
U. 57.04 59.04 62.43 56.62 58.74 55.16 61.01 59.99 62.28 64.56 67.12
L. R. 43.01 44.63 41.93 42.04 43.78 42.49 43.50 43.00 44.26 46.35 47.07
B. C. 82.18 86.41 81.37 84.24 82.42 86.20 86.76 87.15 86.81 87.64 88.41
B. 49.07 52.04 49.12 49.86 50.19 50.41 50.97 51.64 52.16 53.42 54.84
Gl. 32.17 33.04 31.31 30.67 31.82 31.67 31.55 32.19 31.03 34.72 35.22
Ga. 28.56 28.67 28.57 27.23 28.22 26.26 27.85 27.86 26.07 29.29 29.46
S. A. H. 80.38 84.32 78.90 81.61 81.29 84.07 84.29 85.01 85.86 87.30 87.91
Io. S. 11.11 10.64 9.96 9.30 10.36 9.46 11.78 10.44 11.56 12.45 13.00
I. 81.23 85.51 80.08 82.87 82.36 84.49 85.33 86.53 87.02 87.26 88.08
W. 79.25 82.51 78.55 80.49 80.14 81.39 82.45 81.37 86.01 86.66 89.07
Y. 32.40 33.22 31.43 31.48 32.03 31.11 31.44 28.29 32.09 33.52 35.39

Table 11   The averaged performances of the different methods over 30 different runs in terms of FM 

Name HB-
PGF

TME GPM-
GLA

WCE W-EAC CS-
EAC

W-CT ECS-
EAC

S-RS πALND πGND

S. 64.75 67.57 63.73 65.03 66.26 65.80 67.51 67.47 68.63 69.21 72.20
M. F. 65.84 72.56 66.59 66.29 65.17 66.71 70.24 68.45 72.18 70.38 72.82
I. S. 66.18 61.20 65.32 62.29 62.84 63.97 62.90 63.94 72.13 69.68 69.17
F. C. T. 25.81 25.95 25.54 24.50 25.46 25.55 26.83 27.44 26.74 30.43 30.57
M. 64.93 61.78 61.89 64.27 63.53 65.88 62.13 65.98 64.15 69.15 69.64
O. D. R. 80.93 85.79 87.93 82.11 81.28 83.01 83.31 84.92 87.20 88.98 91.02
L. S. 65.01 62.28 64.68 66.14 64.81 66.18 66.84 68.72 69.34 70.26 73.05
IS. 73.25 76.07 78.45 73.60 73.83 75.04 75.19 77.88 77.73 79.52 80.59
U. 63.20 65.31 67.61 62.76 64.99 63.33 67.38 66.30 69.77 70.96 72.65
L. R. 45.27 46.98 44.14 44.25 46.08 44.73 45.79 45.26 46.59 48.79 49.55
B. C. 91.06 95.74 90.16 93.34 91.32 95.51 96.13 96.56 96.19 97.11 97.96
B. 73.79 78.25 73.86 74.98 75.48 75.81 76.64 77.66 78.44 80.33 82.47
Gl. 33.86 34.78 32.96 32.28 33.49 33.34 33.21 33.88 32.66 36.55 37.07
Ga. 30.06 30.18 30.07 28.66 29.71 27.64 29.32 29.33 27.44 30.83 31.01
S. A. H. 84.61 88.76 83.05 85.90 85.57 88.49 88.73 89.48 90.38 91.89 92.54
Io.S. 16.70 16.00 14.98 13.99 15.58 14.22 17.72 15.70 17.39 18.72 19.55
I. 89.72 94.22 88.50 91.44 90.91 93.15 94.03 95.29 95.81 96.06 96.93
W. 83.42 86.85 82.68 84.73 84.36 85.67 86.79 85.65 90.54 91.22 93.76
Y. 34.11 34.97 33.08 33.14 33.72 32.75 33.09 29.78 33.78 35.28 37.25



1363Diversity based cluster weighting in cluster ensemble: an…

1 3

5.7 � Experimental results

Different numbers of clusters have been employed during obtaining the consensus parti-
tion of any different method; and accordingly NMI, FM, Acc, and ARI values are evalu-
ated. Any reported performance is a performance that is averaged over 30 different runs. 
The averaged performances of the different methods over 30 different independent runs in 
terms of NMI, are reported in Table 10. It is worthy to be mentioned that for abstracting 
the results, the two best dominant methods among the four proposed methods are reported 
here. This two methods are selected based on previous results and are πALND and πGND. 
Based on the results of Table 10, our proposed methods outperform all of the state-of-the-
art methods in almost all datasets in terms of NMI.

The same results of Table  10, have been reproduced in terms of FM, ARI, and Acc 
respectively in Tables 11, 12, and 13. The averaged performances of the different methods 
over 30 different independent runs in terms of FM, ARI, and Acc are reported respectively 
in Tables 11, 12 and 13. Based on the results of Table 11, our proposed methods outper-
form all of the state-of-the-art methods in almost all datasets in terms of NMI.

According to the results reported in Tables 10, 11, 12 and 13 the proposed method is 
superior to the state-of-the-art ensemble methods in terms of NMI, FM, ARI, and Acc.

According to results reported in Table 13, our proposed method Cluster-Wise Weight-
ing Bi-Partite Graph with ND as dependability measure outperforms almost all datasets 
in terms of Acc. In Table 13, the sign “ + ” (or “- ”) indicates that the result of the πGND 
is meaningfully better (or worse) than the competent method validated by t test with the 
confidence level 0.95. The sign “ ∼ ” indicates that the result of the πGND is meaninglessly 

Table 12   The averaged performances of the different methods over 10 different runs in terms of ARI 

Name HB-
PGF

TME GPM-
GLA

WCE W-
EAC

CS-
EAC

W-CT ECS-
EAC

S-RS πALND πGND

S. 49.95 40.03 50.06 50.56 50.26 50.78 50.94 51.74 47.24 51.43 52.91
M. F. 50.50 55.74 52.17 51.36 46.34 49.13 47.12 51.26 52.59 54.46 57.68
I. S. 51.88 30.76 54.30 52.41 51.59 54.51 53.18 54.94 52.34 54.23 54.83
F. C. T. 11.39 13.78 12.85 13.67 13.58 12.66 14.76 13.32 12.34 14.69 15.17
M. 48.89 39.72 54.32 55.06 48.89 53.05 49.95 55.81 53.63 56.95 57.01
O. D. R. 76.04 71.06 77.71 77.85 75.68 76.12 75.88 77.55 74.16 79.35 80.65
L. S. 53.21 56.04 52.97 53.62 53.09 53.82 54.36 55.75 56.84 57.39 59.74
IS. 55.86 39.16 55.44 55.71 55.01 54.68 56.58 57.57 56.61 58.33 59.54
U. 44.21 44.13 45.01 45.37 44.59 45.12 45.04 46.99 50.51 50.69 55.44
L. R. 14.94 12.49 15.42 14.74 15.89 15.89 14.17 16.43 16.48 17.82 21.43
B. C. 54.43 58.19 53.63 56.71 54.35 58.38 59.07 59.18 58.51 59.78 59.89
B. 24.47 27.34 24.58 25.21 26.15 25.82 26.04 27.02 27.13 28.96 29.89
Gl. 9.88 8.82 9.17 8.33 9.35 8.94 8.51 10.67 8.36 12.07 12.35
Ga. 8.13 6.07 7.75 6.77 7.91 6.46 7.44 7.74 5.95 8.62 8.92
S. A. H. 52.53 56.69 51.91 53.48 53.63 55.75 56.06 56.69 57.39 59.16 59.94
Io. S. 10.95 9.61 9.88 9.11 9.38 8.65 11.09 9.52 10.99 11.23 12.42
I. 64.09 67.89 62.87 65.08 64.81 66.21 67.14 68.88 68.54 68.96 70.24
W. 60.76 63.99 59.79 61.92 61.17 62.64 64.16 62.45 66.79 67.31 69.69
Y. 14.27 11.39 13.55 14.24 13.93 13.83 14.22 14.49 14.46 15.33 17.18
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Table 13   The averaged performances of the different methods over 30 different runs in terms of Acc 

The sign “ + ” (or “ − ”) indicates that the result of the πGND is meaningfully better (or worse) than the com-
petent method validated by t-test with the confidence level 0.95. The sign “ ∼ ” indicates that the result of 
the πGND is meaninglessly better (or worse) than the competent method validated by t test with the confi-
dence level 0.95

Name HB-
PGF

TME GPM-
GLA

WCE W-EAC CS-
EAC

W-CT ECS-
EAC

S-RS πALND πGND

S. 70.29+ 72.31+ 69.58+ 70.49+ 71.36+ 71.03+ 72.26+ 72.23+ 73.07+ 73.54 75.73
M. F. 71.06+ 75.89~ 71.61+ 71.38+ 70.59+ 71.68+ 74.26+ 72.94+ 75.71~ 74.36 76.23
I. S. 73.61~ 65.49+ 73.69~ 68.58+ 68.96+ 69.75+ 69.00+ 69.73+ 75.68- 74.85 73.47
F. C. T. 48.14+ 47.44+ 45.49+ 47.02+ 49.03+ 49.17+ 49.96+ 50.97+ 49.11+ 53.42 53.77
M. 72.72+ 66.73+ 66.94+ 70.96+ 69.44+ 73.09+ 67.27+ 73.88+ 71.72+ 76.45 77.82
O. D. R. 82.64+ 86.75+ 88.64+ 83.62+ 82.93+ 84.37+ 84.63+ 85.69+ 87.11+ 87.79 90.48
L. S. 68.39+ 63.67+ 68.17+ 69.48+ 68.26+ 68.51+ 68.96+ 70.27+ 71.71+ 72.46 75.38
IS. 76.53+ 78.72+ 80.92+ 76.79+ 77.07+ 77.91+ 78.03+ 80.16+ 80.04+ 81.48 82.86
U. 69.21+ 70.69+ 72.54+ 68.91+ 70.46+ 67.33+ 71.17+ 70.39+ 71.91+ 73.59 75.56
L. R. 57.85+ 58.85+ 57.17+ 57.26+ 58.32+ 57.54+ 58.15+ 57.85+ 58.62+ 59.72 60.18
B. C. 91.45+ 95.83+ 90.63+ 93.56+ 91.69+ 95.61+ 96.21+ 96.62+ 96.26+ 97.15 97.98
B. 76.94+ 80.45+ 76.99+ 77.86+ 78.25+ 78.51+ 79.17+ 79.98+ 80.61+ 82.14 83.92
Gl. 51.61+ 52.09+ 51.15+ 50.87+ 51.42+ 51.35+ 51.28+ 51.62+ 51.57+ 53.02 53.35
Ga. 49.69~ 49.75~ 49.69~ 48.95+ 49.51+ 48.54+ 49.32+ 49.33+ 48.47+ 50.07 50.16
S. A. H. 85.74+ 89.37+ 84.41+ 86.85+ 86.56+ 89.13+ 89.34+ 90.01+ 90.83+ 92.21 92.81
Io. S. 43.47+ 43.17+ 42.73+ 42.31+ 42.99+ 42.41+ 43.92~ 43.04+ 43.78+ 44.36 44.73
I. 90.23+ 94.38+ 89.14+ 91.87+ 91.31+ 93.38+ 94.18+ 95.42+ 95.94+ 96.14 96.98
W. 84.72+ 87.68+ 84.07+ 85.84+ 85.52+ 86.65+ 87.63+ 86.63+ 90.97+ 91.59 93.95
Y. 51.74+ 52.19+ 51.21+ 51.24+ 51.54+ 51.04+ 51.22+ 49.55+ 51.57+ 52.35 53.39
Sum-

mery
17/2/0 17/2/0 17/2/0 19/0/0 19/0/0 19/0/0 18/1/0 19/0/0 17/1/1 – –

Fig. 9   The effect of the uniform noise level for the different clustering ensembles averaged over 19 datasets

better (or worse) than the competent method validated by t-test with the confidence level 
0.95. The last row of the table summarizes the results of the table. The results reported in 
Table 13 indicate the proposed method completely outperforms the state-of the-art meth-
ods. Those reported results have been validated by paired t-test.
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All the results presented in Tables  10, 11, 12, and 13 indicate the two following 
statements:

(a)	 Usage of our proposed cluster dependability as the cluster weight can improve cluster-
ing performance; because not only one consensus function, but two different consensus 
functions have been employed during results and both almost outperforms the state-
of-the-art methods in all benchmarks. It means that enabling our cluster weighting has 
been effective.

(b)	 Usage of Tcut should be preferred to the average linkage method.

5.8 � Robustness analysis

To study the robustness of all the methods against noise, a number of noisy datasets by 
adding some synthetic data points generated uniformly distributed in feature space are 
produced. The number of the added synthetic data points is ϱ percent of the data size (i.e. 
ϱ * n). It is worthy to be mentioned that ϱ ∊ {0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
,  0.40,  0.45}. The NMI results on the mentioned datasets with different noise levels are 
depicted in Fig. 9. The results depicted in the Fig. 9 are the ones averaged on all 19 datasets, 
where each result for any dataset is also an averaged over 30 independent runs. According to 
Fig. 9, our proposed method, Cluster-Wise Weighting Bi-Partite Graph with ND as depend-
ability measure, outperforms is the method with the most robustness against noise.

To sum up, as the experimental results on various datasets illustrated, the proposed 
methods outperform the state-of-the-art clustering ensemble approaches. It is worthy to be 
mentioned that our method, Cluster-Wise Weighting Bi-Partite Graph with ND as depend-
ability measure, not only outperform the other methods in terms of NMI, FM, ARI, and 
Acc, but also it always consumes less time to produce consensus partition. It means in all 
datasets, the proposed method, i.e. Cluster-Wise Weighting Bi-Partite Graph with ND as 
dependability measure, has produced consensus partition in much less time. As the number 
of used datasets is large, and they have different numbers of clusters, it is a fair conclusion 
that our method is faster than the state-of-the-art clustering ensemble approaches.

6 � Conclusion

The paper presents a method for performing consensus clustering by exploiting the esti-
mated uncertainty of clusters. It proposes a clustering ensemble method through a combi-
nation of several steps: First, the dependability of each cluster is estimated via an entropy 
measure and an exponential transformation, which reflects the spread of the cluster among 
different clusters of a clustering solution. The proposed method builds upon the clustering 
ensemble paradigm. The multiple clusters are reconciled through the cluster uncertainty. 
The paper proposes two approaches to achieve this goal: locally weighted evidence accu-
mulation and locally weighted graph partitioning. The former approach is based on hier-
archical agglomerative clustering and co-association matrices, while the latter is based on 
bi-partite graph formulating and partitioning. The proposed approached are then evaluated 
on 19 real-life datasets. The experimental evaluation reveals that the proposed method has 
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better performance than the competing methods; indeed, wide experimentations on real-
world datasets show that our framework outperforms the state-of-the-art.

The main novelty of the paper is the incorporation of the uncertainty concept into the 
consensus functions. The contributions stated in the paper have been formulated to better 
reflect them in the paper. The proposed methods are indeed adaptations of some existing 
concepts for consensus clustering. Furthermore, dependability measure is a derivative of 
the uncertainty measure. Based on the definitions and intuitively, the proposed uncertainty 
measure is highly sensitive to the cluster size: It punishes clusters with larger sizes. This is 
the only drawbacks of the proposed method. So to solve this drawback, we have proposed 
normalized dependability measure. This measure is less sensitive to the cluster size.

References

Alizadeh H, Minaei-Bidgoli B, Parvin H (2014) To improve the quality of cluster ensembles by selecting a 
subset of base clusters. J Exp Theor Artif Intell 26(1):127–150

Alizadeh H, Yousefnezhad M, Minaei-Bidgoli B (2015) Wisdom of crowds cluster ensemble. Intell Data 
Anal 19(3):485–503

Alsaaideh B, Tateishi R, Phong DX, Hoan NT, Al-Hanbali A, Xiulian B (2017) New urban map of Eurasia 
using MODIS and multi-source geospatial data. Geo-Spat Information Science 20(1):29–38

Azimi J, Fern X (2009) Adaptive cluster ensemble selection. In: Proceedings of IJCAI, pp 992–997
Bache K, Lichman M (2013) UCI machine learning repository [Online]. http://archi​ve.ics.uci.edu/ml
Chakraborty D, Singh S, Dutta D (2017) Segmentation and classification of high spatial resolution images 

based on Hölder exponents and variance. Geo-spatial Inf Sci 20(1):39–45
Charon I, Denoeud L, Guénoche A, Hudry O (2006) Maximum transfer distance between partitions. J Clas-

sif 23(1):103–121
Coretto P, Hennig Ch (2010) A simulation study to compare robust clustering methods based on mixtures. 

Adv Data Anal Classif 4:111–135
Cristofor D, Simovici D (2002) Finding median partitions using information-theoretical-based genetic algo-

rithms. J Univers Comput Sci 8(2):153–172
Deng Q, Wu S, Wen J, Xu Y (2018) Multi-level image representation for large-scale image-based instance 

retrieval. CAAI Trans Intell Technol 3(1):33–39
Denoeud L (2008) Transfer distance between partitions. Adv Data Anal Classif 2:279–294
Dueck D (2009) Affinity propagation: clustering data by passing messages, Ph.D. dissertation, University of 

Toronto
Fern XZ, Brodley CE (2004) Solving cluster ensemble problems by bi-partite graph partitioning. In: Pro-

ceedings of international conference on machine learning (ICML)
Franek L, Jiang X (2014) Ensemble clustering by means of clustering embedding in vector spaces. Pattern 

Recogn 47(2):833–842
Fred ALN, Jain AK (2005) Combining multiple clusterings using evidence accumulation. IEEE Trans Pat-

tern Anal Mach Intell 27(6):835–850
Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315:972–976
García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2010) A review of robust clustering methods. 

Adv Data Anal Classif 4:89–109
Guénoche A (2011) Consensus of partitions: a constructive approach. Adv Data Anal Classif 5:215–229
Hennig B (2008) Dissolution point and isolation robustness: robustness criteria for general cluster analysis 

methods. J Multivar Anal 99:1154–1176
Huang D, Lai JH, Wang CD (2015) Combining multiple clusterings via crowd agreement estimation and 

multi-granularity link analysis. Neurocomputing 170:240–250
Iam-On N, Boongoen T, Garrett S (2008) Refining pairwise similarity matrix for cluster ensemble problem 

with cluster relations. In: Proceedings of international conference on discovery science (ICDS), pp 
222–233

Iam-On N, Boongoen T, Garrett S, Price C (2011) A link-based approach to the cluster ensemble problem. 
IEEE Trans Pattern Anal Mach Intell 33(12):2396–2409

Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31(8):651–666
Kettenring JR (2006) The practice of cluster analysis. J Classif 23:3–30

http://archive.ics.uci.edu/ml


1367Diversity based cluster weighting in cluster ensemble: an…

1 3

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. 
Proc IEEE 86(11):2278–2324

Li T, Ding C (2008) Weighted consensus clustering. In: Proceedings of SIAM international conference on 
data mining (SDM)

Li Z, Wu XM, Chang SF (2012) Segmentation using superpixels: a bi-partite graph partitioning approach. 
In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)

Li C, Zhang Y, Tu W et al (2017a) Soft measurement of wood defects based on LDA feature fusion and 
compressed sensor images. J For Res 28(6):1285–1292

Li X, Cui G, Dong Y (2017b) Graph regularized non-negative low-rank matrix factorization for image clus-
tering. IEEE Trans Cybern 47(11):3840–3853

Li X, Cui G, Dong Y (2018a) Discriminative and orthogonal subspace constraints-based nonnegative matrix 
factorization. ACM TIST 9(6):65:1–65:24

Li X, Lu Q, Dong Y, Tao D (2018b) SCE: a manifold regularized set-covering method for data partitioning. 
IEEE Trans Neural Netw Learn Syst 29(5):1760–1773

Ma J, Jiang X, Gong M (2018) Two-phase clustering algorithm with density exploring distance measure. 
CAAI Trans Intell Technol 3(1):59–64

Mimaroglu S, Erdil E (2011) Combining multiple clusterings using similarity graph. Pattern Recogn 
44(3):694–703

Mirzaei A, Rahmati M, Ahmadi M (2008) A new method for hierarchical clustering combination. Intell 
Data Anal 12(6):549–571

Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: Analysis and an algorithm. In: Advances in neu-
ral information processing systems (NIPS), pp 849–856

Nguyen TD, Welsch RE (2010) Outlier detection and robust covariance estimation using mathematical pro-
gramming. Adv Data Anal Classif 4:301–334

Parvin H, Minaei-Bidgoli B (2015) A clustering ensemble framework based on selection of fuzzy weighted 
clusters in a locally adaptive clustering algorithm. Pattern Anal Appl 18(1):87–112

Peña JM, Lozano JA, Larrañaga P (1999) An empirical comparison of four initialization methods for the 
K-Means algorithm. Pattern Recogn Lett 20(10):1027–1040

Schynsa M, Haesbroeck G, Critchley F (2010) RelaxMCD: smooth optimisation for the minimum covari-
ance determinant estimator. Comput Stat Data Anal 54:843–857

Song XP, Huang C, Townshend JR (2017) Improving global land cover characterization through data fusion. 
Geo-Spat Inf Sci 20(2):141–150

Spyrakis F, Benedetti P, Decherchi S, Rocchia W, Cavalli A, Alcaro S, Ortuso F, Baroni M, Cruciani G 
(2015) A pipeline to enhance ligand virtual screening: integrating molecular dynamics and fingerprints 
for ligand and proteins. J Chem Inform Model 55(10):2256–2274

Strehl A, Ghosh J (2003) Cluster ensembles: a knowledge reuse framework for combining multiple parti-
tions. J Mach Learn Res 3:583–617

Topchy A, Jain AK, Punch W (2005) Clustering ensembles: models of consensus and weak partitions. IEEE 
Trans Pattern Anal Mach Intell 27(12):1866–1881

Wang T (2011) CA-Tree: a hierarchical structure for efficient and scalable coassociation-based cluster 
ensembles. IEEE Trans Syst Man Cybern B Cybern 41(3):686–698

Wang X, Yang C, Zhou J (2009) Clustering aggregation by probability accumulation. Pattern Recogn 
42(5):668–675

Wang L, Leckie C, Kotagiri R, Bezdek J (2011) Approximate pairwise clustering for large data sets via sam-
pling plus extension. Pattern Recogn 44(2):222–235

Wang CD, Lai JH, Zhu JY (2012) Graph-based multiprototype competitive learning and its applications. 
IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):934–946

Wang B, Zhang J, Liu Y, Zou Y (2017) Density peaks clustering based integrate framework for multi-docu-
ment summarization. CAAI Trans Intell Technol 2(1):26–30

Weiszfeld E, Plastria F (2009) On the point for which the sum of the distances to n given points is mini-
mum. Ann Oper Res 167(1):7–41

Wolpert DH, Macready WG (1996) No free lunch theorems for search. Technical Report. SFI-TR-95-02-010. 
Citeseer

Wu J, Liu H, Xiong H, Cao J (2013) A theoretic framework of k-means based consensus clustering. In: pro-
ceedings of international joint conference on artificial intelligence

Xu L, Krzyzak A, Oja E (1993) Rival penalized competitive learning for clustering analysis, RBF net, and 
curve detection. IEEE Trans Neural Netw 4(4):636–649

Yu Z, Li L, Gao Y, You J, Liu J, Wong HS, Han G (2014) Hybrid clustering solution selection strategy. Pat-
tern Recogn 47(10):3362–3375



1368	 F. Rashidi et al.

1 3

Yu Z, Li L, Liu J, Zhang J, Han G (2015) Adaptive noise immune cluster ensemble using affinity propaga-
tion. IEEE Trans Knowl Data Eng 27(12):3176–3189

Zheng X, Zhu S, Gao J, Mamitsuka H (2015) Instance-wise weighted nonnegative matrix factorization for 
aggregating partitions with locally reliable clusters. In: Proceedings of IJCAI 2015, pp 4091–4097

Zhong C, Yue X, Zhang Z, Lei J (2015) A clustering ensemble: two-level-refined co-association matrix with 
path-based transformation. Pattern Recogn 48(8):2699–2709

Yang H, Yu L (2017) Feature extraction of wood-hole defects using wavelet-based ultrasonic testing. J For 
Res 28(2):395–402

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Affiliations

Frouzan Rashidi1,2 · Samad Nejatian2,3 · Hamid Parvin4,5 · Vahideh Rezaie2,6

1	 Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
2	 Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
3	 Department of Electrical Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
4	 Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University, 

Nourabad Mamasani, Iran
5	 Young Researchers and Elite Club, Nourabad Mamasani Branch, Islamic Azad University, 

Nourabad Mamasani, Iran
6	 Department of Mathematics, Yasooj Branch, Islamic Azad University, Yasooj, Iran


	Diversity based cluster weighting in cluster ensemble: an information theory approach
	Abstract
	1 Introduction
	2 Related works
	3 Definitions
	4 Proposed method
	5 Experimental study
	5.1 Benchmarks
	5.2 Evaluation metrics
	5.3 Parameter setting
	5.4 Parameter φ
	5.5 Sampling ratio
	5.6 Ensemble size
	5.7 Experimental results
	5.8 Robustness analysis

	6 Conclusion
	References




