Artificial Intelligence Review (2020) 53:1233-1292
https://doi.org/10.1007/510462-019-09695-7

®

Check for
updates

Multi-agent system for microgrids: design, optimization
and performance

Khadija Tazi' © - Fouad Mohamed Abbou? - Farid Abdi'

Published online: 8 March 2019
© Springer Nature B.V. 2019

Abstract

Smart grids are considered a promising alternative to the existing power grid, combining
intelligent energy management with green power generation. Decomposed further into
microgrids, these small-scaled power systems increase control and management efficiency.
With scattered renewable energy resources and loads, multi-agent systems are a viable tool
for controlling and improving the operation of microgrids. They are autonomous systems,
where agents interact together to optimize decisions and reach system objectives. This
paper presents an overview of multi-agent systems for microgrid control and management.
It discusses design elements and performance issues, whereby various performance indica-
tors and optimization algorithms are summarized and compared in terms of convergence
time and performance in achieving system objectives. It is found that Particle Swarm Opti-
mization has a good convergence time, so it is combined with other algorithms to address
optimization issues in microgrids. Further, information diffusion and consensus algorithms
are explored, and according to the literature, many variants of average-consensus algorithm
are used to asynchronously reach an equilibrium. Finally, multi-agent system for multi-
microgrid service restoration is discussed. Throughout the paper, challenges and research
gaps are highlighted in each section as an opportunity for future work.

Keywords Multi-agent systems - Microgrid - Renewable energy sources - Optimization and
learning algorithms - Consensus - Performance indicators

1 Introduction

With the growing world population, energy demand is expected to increase by 34% up to
2035, with 20% more CO, emissions from fossil fuels, among which 60% is emitted by
coal (British Petrolium Company 2015). Therefore, CO, emissions from power production
account for 2/3 of man-made greenhouse gases, increasing concerns about global warm-
ing (British Petrolium Company 2015). As an alternative to the traditional electric grids
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and conventional power resources, smart grids are considered a promising solution, where
power generation, delivery and utilization are optimized by advanced mechanisms. In fact,
these grids are “smart” thanks to intelligent and independent demand—supply management
and autonomous decision-making. To alleviate dependency on fossil fuels, unit commit-
ment, energy forecast and Renewable Energy Sources (RES) are integrated for improved
operation. Building a reliable and robust smart grid, with environment-friendly energy
sources, is a topic of interest to many researchers. With the deployment of advanced con-
trol and management, power system complexity and vulnerability to failures is increasing
as well. With the total blackout of 2003 in the US (Kantamneni et al. 2015), the idea of
breaking the grid into smaller and connected systems emerged, to ensure an easier isolation
and correction of faults. There is actually a global shift from large centralized power plants
to small distributed renewable power plants due mainly to fluctuations and challenges
imposed on the Energy Management System (EMS) (Wen et al. 2016). This new idea was
systematically translated into microgrids, proposed in the context of Consortium for Elec-
tric Reliability Technology Solutions (CERTS) project, the first research project of this
kind in the field (Xu et al. 2017; Lasseter et al. 2011). Also, researchers are developing real
microgrids and test-beds all over the world in different sites: North Africa, North America,
Europe and Asia to study the behavior of microgrids and propose a standard microgrid
architecture (Hossain et al. 2014).

Microgrids are small-scaled power systems, equipped with local RES, diesel genera-
tors (DG), batteries and a control unit that balances demand with supply to increase self-
sufficiency, correct local faults and improve power quality. Microgrids can be either resi-
dential, industrial, commercial or stand-alone depending on the type of connected loads
(Kantamneni et al. 2015; Xu et al. 2017; Labeodan et al. 2015). They also differ in terms
of voltage forms (i.e. low voltage, medium voltage, hybrid voltage) and phases (i.e. single
phase, 3-phase and hybrid) (Kantamneni et al. 2015; Xu et al. 2017; Labeodan et al. 2015).
These microgrids are then connected through adequate technologies to form the smart grid,
or “smart city”, as shown in Fig. 1.

According to this figure, a microgrid is composed of producers, such as wind turbines
and PV panels, consumers and prosumers, such as batteries, which are producers when dis-
charging and consumers otherwise. All these components are connected to the main grid
through the Point of Common Coupling (PCC), and a switch to isolate the microgrid in
case of failures. The key elements for designing a stable and reliable microgrid are (Labeo-
dan et al. 2015; Tazi et al. 2017; Logenthiran et al. 2012; Khan and Wang 2017):

Size of the microgrid and technologies to be used;

Type of RES to be integrated and their positioning;

Energy dispatching algorithms and mechanisms for self-sufficiency;
Control strategy and communication protocols;

Switching modes and black start strategies;

Voltage/current control and active/reactive power balance.

In general, the deployed storage and green power generation capacities should at least
meet the demand of high-priority loads in case of failures to ensure a minimum of reli-
ability (Tazi et al. 2017). Even though microgrids bring many benefits to power systems,
there are still many unresolved design issues (Kantamneni et al. 2015). On the one hand,
a microgrid is characterized by “plug-and-play” (PnP) feature, and its topology is adaptive
and time-varying, where nodes, either consumers, producers or prosumers, can connect
and disconnect at run time (Khan and Wang 2017). In case of a failure, a microgrid can be
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Fig.1 Residential/commercial/industrial/remote microgrids forming a smart grid

disconnected to prevent spreading fluctuations to nearby microgrids. Considering its small
size compared to the main grid, evaluation of power quality and CO, footprint of micro-
grids is less complex, and power supply is consumer-centered (Kantamneni et al. 2015; Xu
et al. 2017; Labeodan et al. 2015). However, the long term behavior of microgrids and their
impact on the main grid performance is not methodically investigated. Given the power
system behavior, fluctuations at the level of a microgrid will definitely affect the main grid.
In addition, scalability of microgrids and the optimal size to ensure efficient power control
are not studied enough. Finally, the scattered nature of these systems raises many concerns
about data security, given that detailed consumption profiles should be stored remotely, and
sometimes on many servers (Khan and Wang 2017).

Hence, microgrid clusters are an interesting field of research, since they combine energy
production with advanced management and alleviate the need of conventional energy
resources. Microgrids are modeled as a physical layer, shown in Fig. 1, managed by a logi-
cal layer composed of intelligent entities, known as EMS (Tazi et al. 2017). In the tradi-
tional EMS, Remote Terminal Units (RTU) send measurements to State Estimator (SE),
which processes the received raw data through mathematical computations. The processed
data is fed to both System Control And Data Acquisition (SCADA) system and fault-detec-
tion tools like Contingency Analyzer (CA) for decision-making and system control (Tazi
et al. 2017; Logenthiran et al. 2012). Even though this control system is popular, it is not
flexible and does not cope with the PnP nature of microgrids. Other control systems were
thus proposed to improve system reliability and adapt to time-varying topologies, such as
Multi-Agent Systems (MAS). This control system is based on agents, which are autono-
mous entities that react to changes in the environment and make decisions without human
intervention (Labeodan et al. 2015; Khan and Wang 2017).
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An important selection of research articles about MAS optimization algorithms were
previously reviewed, analyzed and compared by other researchers, such as works in Khan
and Wang (2017), Khare and Kumar (2015) and Coelho et al. (2017). This significant
interest in MAS stresses the opportunities of this system in achieving a reliable and an
efficient microgrid management. Unlike other reviews, this paper throws light on the fol-
lowing perspectives of MAS design: (1) the problematic issues related to MAS architec-
ture, (2) the progress in MAS optimization and information diffusion, (3) and synthesis
of operational safety requirements and performance measurement techniques. This review
focuses on research papers in the field of MAS for microgrid management published in the
last decade, with a selection of eminent and interesting studies published even before. The
selected papers are either original research works that analyze MAS for microgrid manage-
ment from new perspectives or propose optimization techniques or solutions to unexplored
MAS issues.

The paper is organized as follows: we first introduce the building blocks of MAS: types,
characteristics, design, control layers and agent modeling and interactions. We then dis-
cuss learning and optimization algorithms and compare their performance in terms of con-
vergence time and achievement of system goals based on simulation results presented by
researchers. Next, we summarize the progress in information diffusion and consensus algo-
rithms, followed by operational safety thresholds and performance indicators. In the last
section, we synthesize multi-agent approach for multi-microgrids service restoration and
the main process to feed high-priority loads based on the literature.

2 What is a multi-agent system?

Multi-agent systems are smart systems, with Distributed Artificial Intelligence (DAI) for
optimized control and management, where complex computational and optimization prob-
lems are broken over many entities, known as agents (Kantamneni et al. 2015). In the con-
text of microgrids and power systems, Distributed Problem Solving (DPS) is a subfield of
MAS, where all agents should collaborate to decrease operational costs and increase user
comfort. For this purpose, an agent should learn and analyze the external environment,
update its local databases, react to local events autonomously. An agent should also col-
laborate and communicate with other agents, negotiate offers and achieve both local and
global objectives (Boussaada et al. 2016; Jin et al. 2011; Et-Tolba et al. 2014a; Moradi
et al. 2016).

Figure 2 shows the two building blocks of an agent intelligence: deliberation and
means-ends reasoning (Blamah et al. 2013). The local database of an agent is initialized
with beliefs, which are perceptions of the environment, and infentions, which are possible
options to reach goals. These two are updated regularly to adapt the agent to its environ-
ment and any changes on the system. Intentions are updated using option generation func-
tion and filtering to choose the best options among the initial set of solutions and then build
an action plan to solve a given problem.

Agents communicate with each other by messages with defined ontology, semantics and
syntax. The standardization of Agent Communication Language (ACL) is a must to ensure
integrity and consistency of communication messages among different MASs (McArthur
et al. 2007a; Khalique 2005). Agent communication specifications and protocols produced
and published by Foundation for Intelligent Physical Agents (FIPA) in 2001 has become
de facto standards in MAS communication (McArthur et al. 2007a). FIPA produced four
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content language specifications with different message representations, where SL is the
most popular content language (McArthur et al. 2007a; Foundation for Intelligent Physi-
cal Agents (FIPA) 2011). Another popular semantic language is Web Ontology Language
(OWL), which is an extension of Resource Description Framework language (RDF), hav-
ing a well-defined model of theoretic semantics and axiomatic specification for interpreta-
tions (Khalique 2005). It supports actions, expressions and propositions and is FIPA-inter-
operable, but it lacks expressivities compared to FIPA-SL and is specifically designed for
web-based systems (McArthur et al. 2007a; Khalique 2005).

FIPA-ACL is not the first communication and information sharing language designed
for agents. In fact, Knowledge Query and Manipulation Language (KQML) is a high-level,
message-oriented communication language for information exchange that was developed
in early 1990 (Foundation for Intelligent Physical Agents (FIPA) 2011). FIPA-ACL and
KQML share the same syntax and are independent of ontology, transport mechanisms
and content language. However, they are different on many aspects as shown in Table 1
based on references (Foundation for Intelligent Physical Agents (FIPA) 2011; Mayfield
et al. 1996; Labrou et al. 1999). Readers are kindly referred to references (McArthur et al.
2007a; Khalique 2005; Foundation for Intelligent Physical Agents (FIPA) 2011; Nvari-
Moghaddam et al. 2017; Dimeas and Hatziargyriou 2004) for more concepts about mes-
sage ontology, communication robustness to failures and an example of MAS ontology for
a microgrid market auction.
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The design of a MAS for microgrid management is a process, by which the power sys-
tem is carefully analyzed through a number of steps (McArthur et al. 2007a, b). First, all
technical aspects should be clearly listed, including microgrid detailed topology, number,
type and priorities of connected loads, the total local supply provided by storage and on-
site green energy production and the maximum total demand that can be satisfied in island-
mode. Then comes the requirements and objectives specification that will be translated into
system equations and cost functions. Based on these studies, number of agents, optimi-
zation algorithms and performance indicators are then specified. Finally, interactions and
data exchange between agents, in both normal and island operation, should be detailed.
The result of this process is a final model with specific agents’ behaviors that would be
implemented using an appropriate agent platform, such as JADE. In addition to ontology
and semantic language specifications, there are other key design elements to build a MAS,
including architecture, control layers and agent specification. The following section dis-
cusses these design elements and their related research gaps.

3 Elements of multi-agent system design
3.1 MAS types and architectures

The type of MAS, which could be either homogeneous or heterogeneous, depends on the
microgrid architecture and the internal implementation of agents (Stone and Veloso 2000;
Abbas and Egerstedt 2011). In fact, when agents have the same internal structure including
goals, domain knowledge, sensor inputs and outputs, actions and planning procedure, the
system is said to be homogeneous. If agents differ in at least one of these elements, then the
system is said to be heterogeneous, where complex computations are handled efficiently by
independent entities (Abbas and Egerstedt 2011). However, these systems are not mature
enough due to limited research focus, difficulty to formulate their mathematical models
and vulnerability to failures due to the priority hierarchy of agents. Therefore, most studies
assume a homogeneous MAS to avoid dealing with system complexity, while heterogene-
ous MAS optimization and behavior is still an interesting research opportunity.

There are three MAS control architectures: centralized, distributed and hybrid. In the
centralized scheme, a supervisor agent, or microgrid central controller (MGCCO) agent or
Main Controller, manages the whole system (Wu et al. 2014; Colson and Nehrir 2011; Li
et al. 2016). It updates a central database with measurements and system statuses through
regular data exchange with other agents. It is also responsible for complex energy com-
putations, energy and demand forecast, data correction, RMS voltage/frequency control,
and load shifting and shedding (Kanchev et al. 2012). However, centralized MAS does not
benefit from DPS and parallel control and suffers from computational overhead, since the
supervisor agent monopolizes decision-making. Also, system reliability depends heavily
on availability of this agent, and the microgrid will always be at risk of cascading failures
(Wu et al. 2014; Colson and Nehrir 2011; Li et al. 2016). In addition, centralized MAS is
not suitable for time-variant microgrids.

A distributed MAS architecture is proposed as an alternative, where agents take deci-
sions locally, have power synchronization mechanisms and communicate with adjacent
agents (Kanchev et al. 2012). With DAI and DPS, this design reduces computational com-
plexity and overhead, and it is suitable for parallel control of microgrids with distributed
RES, storage and DG (Colson and Nehrir 2011). Distributed MAS is also resilient and
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robust to failures, so if an agent fails, the area can be isolated and controlled remotely by
neighbors. There are some drawbacks to this design, such as information diffusion and con-
sensus (Rahman and Oo 2017; Raju and Milton 2017). Cyber-security and data confidenti-
ality is also an issue of concern raised by the local access to consumers’ energy (Raju and
Milton 2017; De Azevedo 2016). Moreover, DPS can affect microgrid stability if there is
no coordination between agents in the system (De Azevedo 2016). Finally, some every-
day planning tasks, such as Economic Power Dispatch (EPD) and energy forecast, can be
achieved by a single entity. In this case, assigning multiple agents with similar tasks is a
waste of computational capacity (De Azevedo 2016).

To combine advantages from both architectures, some researchers propose a hybrid
MAS design, where a supervisor agent observes the microgrid and updates its local data-
bases without interfering with agents’ action plan (Jiang and Fei 2011; Dou et al. 2017). In
some research work, this design is combined with a peer to peer control, in which agents
keep a log of available and unavailable communication links and nearby isolated areas
(Dou et al. 2017). Another variant of hybrid architecture is breaking the microgrid into
smaller controllable areas, each with a “leader” agent used as a communication gateway
and a coordination entity (Tolbert et al. 2001). For example, Zone Agent manages agents
in a specific area, such as a floor or a room, and Home Energy Management (HEM) Agent
manages agents inside a house (Joumaa et al. 2011). This hybrid architecture, illustrated
in Fig. 3, is known as hierarchical MAS and is popular among researchers for its oppor-
tunities in advanced microgrid control (Dou et al. 2017; Tolbert et al. 2001; Joumaa et al.
2011; Zheng and Li 2010; Nunna and Doolla 2013).

Even though each MAS design has advantages and drawbacks, combining MAS with
Demand Response Programs (DRP) for energy management is a promising solution
to achieve an efficient control of power generation and delivery. Indeed, DRP define
a set of incentives and emergency actions for load shifting and shedding applied by
Demand Management System (DMS) (Tazi et al. 2017; Cintuglu et al. 2016). In fact,
DMS objective is to increase energy efficiency and conservation by encouraging con-
sumers to change their consumption schedules based on the variations of market energy
prices. DMS agent sends shifting/curtailment requests to consumers and receives their
positive/negative feedback for quality analysis. If the microgrid is under maintenance,
emergency or island-mode, the controller can enforce load shedding by imposing bigger
Time Of Use (TOU) tariffs or shutting down low-priority loads (Tazi et al. 2017; Logen-
thiran et al. 2012; Moradi et al. 2016). The objective of DRP is to decrease demand on

Micro-grid
Control
Agent
oL Local
cee Zone . Generation
Agent N Agent
I
N T 1
< DG RES Storage
Home . Managmt Agent Managmt
Agent N Agent Agent
N £ N J£ N Nn N
Load | 4 44 DG cee _\‘P("\_ _\P‘ _\“T Storage| Storage
Agent 1 Agent 1 AgentN| | Agent Agent| | Agentl Agent N

Fig. 3 Hierarchical design of multi-agent system
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peak periods and align it as much as possible with available energy, either from the grid
or from local energy production (Tazi et al. 2017; Palensky and Dietrich 2011).

One of the main issues in DMS is the creation of new demand peaks. Indeed, having
a large number of consumers shift their consumption from t; to t, can result in another
peak at t, (Jin et al. 2011; Pau et al. 2017). This is common in distributed MAS, where
agents coordination mechanisms are asynchronous either in the same or between adja-
cent microgrids. To solve this problem, a cloud-based MAS, illustrated in Fig. 4, is an
interesting solution to investigate further (Boussaada et al. 2016; Palensky and Dietrich
2011; Pau et al. 2017; Boroojeni et al. 2017). In this architecture, a cloud-based DMS
center receives energy requests from HEM agents and generates schedules for loads
based on their priorities, the overall demand and available energy. This design combines
Zigbee devices and protocols with energy auction protocols architecture (Labeodan
et al. 2015; Tazi et al. 2017). The cloud-based MAS concept can be extended to manage
microgrid clusters for optimal power sharing and efficient load shifting and shedding
(Boroojeni et al. 2017).

Even though this last architecture is a promising candidate for smart grid manage-
ment, it raises up questions about the size of a microgrid for the best system perfor-
mance. There are few, if nonexistent, studies that explores the sizing of microgrids and
the feasibility of cloud-based management for a smart grid. Also, load shifting and
shedding can cause fluctuations on the power system, so it is recommended to investi-
gate the behavior of microgrids in case of multiple load shifting/shedding requests.

Cloud EMS

Receives many requests at the same time.
Schedules allocation of power to reduce
peak period at time t.

(6) Allowed Start/end times +
max power allocation at time t. ‘.

-/(4) Decline if TOU Tariffs are too high.

JI -
.))) Or Request Start and End Times for Loads.

Smart
Agent 1 Load Meter
Agent 2 Agent

E E ‘))) (2) TOU Tarifts Request (("

(3) TOU Tantts Send

Fig.4 A cloud-based MAS architecture for a single microgrid
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3.2 MAS control layers

Another important element of MAS design is the number of control layers and agents
assigned accordingly. There are many control parameters in power systems, such as
breakers and switches, voltage and current, active and reactive powers, and energy fore-
cast and dispatch. By defining control layers, each agent will be assigned a specific task
and an area to control. Control layers are defined as follows (Khan and Wang 2017; Cin-
tuglu et al. 2016; Lewis et al. 2013; Mao et al. 2014; Rivera et al. 2014a):

e In Primary Control, the objective is system stability and reliability achieved by real-
time measurement exchange. At this stage, demand and supply should be balanced
by controlling injected active power, frequency is adjusted by droop control algo-
rithm. Voltage is measured at fixed intervals.

e Phase synchronization and voltage/frequency restoration are achieved at the Sec-
ondary Control. Power to be regulated is computed at this stage using Microgrid
Regulation Error (MRE), as shown in Eq. (1). Service restoration is ensured by local
agents’ bids, which is critical in case of failures recovery and island-mode.

Pyre = APpec + k- Af 1)
where Pypp: power to be regulated; APp: power mismatch at PCC; k: system fre-
quency characteristic constant; Af: frequency mismatch.

e Tertiary Control focuses on energy dispatch and economic schedules. At this stage,
power import and export are done based on economic profit and cost-effective sched-
ules.

The choice of control levels and agents to deploy in each one is based on the physi-
cal architecture of the microgrid and MAS design. In the literature, some researchers
use 2 level control, while most of them use 3 level control to distribute complexity and
decision-making over many agents.

3.3 Agent specification

The choice and specification of agents in MAS is another key design element for a suc-
cessful modeling. Having an agent for each device in the microgrid would reduce man-
agement overhead and dispatch computations over many entities. Each device would be
interfaced by a corresponding agent that takes care of state management, control and
measurement. However, with increasing number of agents, system latency increases as
well (Lewis et al. 2013; Chung and Oh 2013; Nguyen and Flueck 2011). Latency in
MAS communication network cannot be zero or constant and depends on the microgrid
status (i.e. normal operation, island-mode), but the overall objective is to decrease it as
much as possible to ensure near real-time communication (Nguyen and Flueck 2011).
There is a tradeoff between the number of agents and communication latency, while the
optimal number of agents for building a robust MAS system is an interesting topic of
research. Kumar et al. (2011) conducted a simulation to study the impact of the num-
ber of agents on the performance of optimization algorithms. They concluded that hav-
ing many agents increases both system accuracy and convergence time to an optimal
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solution. On the opposite, having a relatively small number of agents results in a faster
convergence and a lower system latency.

According to the literature, the number of agents depends on the topology and size of
the microgrid. In some research works, devices are modeled as producer, consumer, con-
troller or observer agents. In other research works, an agent is assigned a specific task,
such as load shifting and energy forecast. Dimeas and Hatziargyriou (2015) use a Transla-
tor Agent responsible for complex calculations on behalf of other agents, which reduces
modifications overhead and latency. However, similar to the centralized architecture, if this
agent fails, other agents will be affected. Table 2 classifies agents that appear in the differ-
ent works discussed in this survey, namely references (Kantamneni et al. 2015; Xu et al.
2017; Labeodan et al. 2015; Tazi et al. 2017; Logenthiran et al. 2012; Coelho et al. 2017;
Et-Tolba et al. 2014a; Nvari-Moghaddam et al. 2017; Dimeas and Hatziargyriou 2004;
McArthur et al. 2007b; Rahman and Oo 2017; Raju and Milton 2017; De Azevedo 2016;
Jiang and Fei 2011; Dou et al. 2017; Tolbert et al. 2001; Joumaa et al. 2011; Zheng and
Li 2010; Nunna and Doolla 2013; Palensky and Dietrich 2011; Pau et al. 2017; Boroojeni
et al. 2017; Lewis et al. 2013; Mao et al. 2014; Rivera et al. 2014a; Chung and Oh 2013;
Nguyen and Flueck 2011; Kumar et al. 2011; Dimeas and Hatziargyriou 2015), based on
the nature of their behavior and provides a description of their tasks as well.

As discussed above, the main benefit of MAS for microgrid control is the deployment of
DAI and DPS algorithms in agents to optimize power generation, delivery and utilization.
The next section discusses optimization algorithms and techniques and their application
areas, advantages and limitations.

4 MAS optimization techniques

One of the benefits of MAS is the integration of DAI and DPS to optimize control and
power management in microgrids. Optimization algorithms and frameworks allow agents
to evaluate many options based on the environment state to find the optimal solution to
achieve a system goal. Based on the literature, optimization techniques include reinforce-
ment learning, data-driven modeling techniques, mathematical programming models, heu-
ristic and metaheuristic optimization algorithms, non-linear control methods and other
algorithms such as auctions and programming platforms. The following sections discuss
these techniques and compare them in terms of convergence time, area of application and
main features.

4.1 Reinforcement learning optimization

Reinforcement Learning (RL) is a machine learning technique thanks to which agents take
decisions based on the environment’s state. Since it does not require an initial model of the
agent’s environment, RL is suitable for time-varying topologies, such as microgrids (Dou
et al. 2017; Hu and Wellman 1998). Therefore, it is suitable for MAS to optimize conver-
gence to a global solution (Schneider et al. 1999). Definitions and examples of Markov
Decision Process (MDP), Game Theory and Nash Equilibrium are discussed in details in
references (Schneider et al. 1999; Busoniu et al. 2010; Aristidou et al. 2011). Q-learning
is a variant of RL that uses Q-functions and values (Hu and Wellman 1998; Busoniu et al.
2010), where agents have no prior knowledge of neither the reward function nor the state
transition functions. The agent has to choose a policy from a pole of actions, based on
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trial-and-error method, and then it computes its discount factor (Leo et al. 2014). Another
variant of RL is Distributed Value Function (DVF), where agents communicate with their
neighbors to pursue a global objective (Hu and Wellman 1998). This method was created
to overcome the lack of coordination between agents and the problems in computing the
global reward in other methods.

According to the literature, RL techniques can be applied to storage power injection
and system stability optimization. Q-learning algorithms are applied to dynamic Demand-
Response (DR) scheduling, by enabling agents to learn from consumption and energy fore-
cast data to generate day-ahead schedules for loads, storage and DG (Jiang and Fei 2011).
User satisfaction is a system objective, and all generated schedules are periodically cor-
rected by DMS Agent to improve their accuracy. MDP is applied to battery charge and dis-
charge to achieve cost reduction, where Battery Agent is trained using Bayesian RL (BRL)
algorithm with respect to predefined State Of Charge (SOC) levels (Nvari-Moghaddam
et al. 2017). The objective is to find the best start time for charging/discharging a battery
with reduced cost using an appropriate reward function. For additional performance, a
hybrid coordinated Q-learning algorithm combines Q-tables with RL to control a stand-
alone microgrid with PV panels (Leo et al. 2014). Each agent builds its Q-table based on
the action space, and then it coordinates with other agents to differentiate “dangerous”
actions from “safe” ones. Since microgrids are PnP topologies, connection/disconnection
of devices to/from the grid results in significant power fluctuations. DVF is a good choice
for stabilizing the microgrid, as discussed by researchers in Shirzeh et al. (2015). They
propose a DVF-based approach to mitigate fluctuations when connecting or disconnect-
ing devices. Power to be injected or consumed by a node (e.g. load) is first computed, then
reactive power control is achieved through DVF.

One of the main challenges of RES integration is the intermittent behavior and stochas-
tic nature of renewable resources. To address this issue, minority-game based EMS ena-
ble agents to compete and efficiently share the generated green energy among consumers
(Huang et al. 2016). In fact, agents adjust their behavior based on other players’ historical
actions and preferences, while Consumer agents compute attractiveness and priority fac-
tors and predict demand by supervised learning. Kalman’s filter is used in this approach to
minimize prediction errors. Game theory is suitable as well for storage control optimiza-
tion, where agents compute the required and the target storage capacity to minimize costs
(Vytelingum 2010). They then compete to maximize their profits and reach Nash equilib-
rium by charging storage during off-peak periods. Game Theory is suitable also for market
operation, in which agents seek their interests by negotiating bid prices either as buyers or
sellers (Esfahani et al. 2018). Different communication protocols are used in this work to
minimize delays and make the algorithm interoperable.

4.2 Data-driven modeling optimization

Data-driven modeling techniques are also a good candidate for operation optimization of
microgrids using power flow measurements and energy prices data. Yoo et al. (2013) pro-
pose a fuzzy-based algorithm for controlling batteries under Emergency Demand Response
(EDR) programs. The Battery Agent learns from past data to keep SOC between 30% and
100% charge and use the RES energy as the main charging source. Fuzzy logic can be
extended to energy management and scheduling by deploying a fuzzy controller in Strategy
Agent (Serraji et al. 2015). The objective of this controller is to serve demand first by local
generated energy, then buy energy from the main grid in case of supply shortage.

@ Springer



Multi-agent system for microgrids: design, optimization and... 1249

In another research work, Queiroz et al. (2016) propose a data analysis and prediction-
oriented MAS to optimize microgrid control. Two different predictions strategies are
embedded in two different sets of agents: lower level agents responsible for short term
learning to generate rapid decisions and corrective actions, and higher level agents, respon-
sible for robust data analysis to generate long term decisions. This system is composed of
the following modules for data analysis: Data Extraction Module, Data Analysis Module
and Decision Module. However, this study does not measure system latency and memory
resources required to build the system.

Besides microgrid control, data-driven modeling techniques are very useful for solar/
wind energy forecast. Elamine et al. (2015) combine Particle Swarm Optimization (PSO)
and back propagation (BP) to train their Neural Network (NN) with past wind speed
records to predict wind energy (Gamarra and Guerrero 2015). Based on historical data,
RES Agents forecast energy production, and DG Agents use previous diesel prices to
schedule DG dispatch (Logenthiran et al. 2012). For real-time management and error
reduction, DMS Agent corrects consumption and production schedules upon reception
of real-time market prices and weather forecast. Historical data can be analyzed by Con-
sumer Agents to find the best price that would motivate a consumer to accept load shifting
requests (Mets 2012). Historical data is also useful to find the lowest price for starting a
device, and solve Economic Load Dispatch (ELD) optimization problem. Producer Agents
can use historical data for unit commitment and energy bids (Tazi et al. 2017; Logenthiran
et al. 2012). Logenthiran et al. (2012) use past market prices and load demand records to
produce a tentative day-ahead planning for optimized microgrid operation.

4.3 Mathematical programming models

Mathematical Programming (MP) models provide analysis and design tools to break down
large-scale problems into small, manageable sub-problems and then reassemble sub-solu-
tions into a global optimal solution (Herskovits et al. 2005). Many MP-based optimization
frameworks for microgrid control were proposed by researchers, and a selection of these
works is discussed hereby.

Model Predictive Control (MPC) is an advanced MP process control method that satis-
fies a predefined set of constraints to achieve an objective by generating future predictive
values using current states (Wen et al. 2016; Minchala-Avila et al. 2015). MPC, combined
with a leader-following consensus algorithm, is used to regulate frequency in microgrids
and find a common storage ratio for local units during peak demand or generation (Wen
et al. 2016). It is also used to achieve power balance by scheduling the operation of Port-
Hamiltonian (PH) systems connected to a DC microgrid (Pham et al. 2017). Combined
with Bellman’s Dynamic Programming principle, MPC is suitable for finding battery refer-
ence current, either in charge or discharge modes (Morstyn et al. 2018). The MAS ensures
balance in the grid by means of sliding mode control with boundaries to prevent rapid
power fluctuations.

Mixed-Integer Linear Programming (MILP) is a mathematical optimization program
that can be applied to problems where some decision variables should be integers, while
other variables could be non-integers (Minchala-Avila et al. 2015). In the context of MAS
optimization, MILP can be used to express different system objectives, such as power bal-
ance in multi-microgrid environments (Ren et al. 2014) and operational cost reduction
(Tenfen and Finardi 2015).
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Lagrangian Relaxation is another interesting mathematical optimization technique, in
which a complex constrained optimization problem is approximated by a simpler formu-
lation (Desale et al. 2015). In fact, constraints are transferred to the objective function in
form of weighted sums, called Lagrangian multipliers (Desale et al. 2015; Disfani et al.
2014). Disfani et al. (2014) use a hybrid price-update Lagrangian Relaxation to find the
optimal energy bidding cost for both communities and utilities. They compare the perfor-
mance of modified sub-gradient algorithm with Lower—Upper-Bound Switching algorithm
(LUBS) in active/reactive power balance in a microgrid.

4.4 Heuristic and metaheuristic optimization

Since microgrids have time-varying topologies, their constraints are non-convex, complex
and non-linear based on inequalities, so heuristic and metaheuristic algorithms are suitable
to achieve a better system performance in this case (Kumar et al. 2011; Wu et al. 2015).
Heuristic and metaheuristic optimization encloses different classes of algorithms, such as:
nature-inspired, population-based, single-point, greedy, iterative, algorithms with dynamic
and static objective functions (Gogna and Tayal 2013). An algorithm could fall into two
of these subcategories or more, depending on the underlying theory, e.g. Fire-Fly (FF)
optimization algorithm is a nature-based, a population-based and an iterative algorithm.
Among these classes, population-based, nature-inspired optimization techniques use the
concept of natural evolution of biological systems to build the search process. Even though
the population size of solutions increases the computational complexity, these algorithms
are self-taught, simple, reliable, efficient and can even be extended and hybridized (Ding
et al. 2013; Himabindu and Jyothi 2017). Therefore, population-based metaheuristics, also
called p-metaheuristics, are popular thanks to the parallel exploration of the search space,
resulting in lower convergence and execution times (Salgueiro-Sicilia and Rivera 2017).

Given these advantages, an active research on population-based and nature-inspired
approaches is still going on, and a large number of algorithms were proposed, tested and
deployed in many applications. Swarm intelligence (SI) is a subcategory that regroups
algorithms inspired by collective behaviors, such as bird schooling and ant/bee colonies
(Himabindu and Jyothi 2017). A swarm is composed of relatively homogeneous, self-
organizing and decentralized individuals that collaborate to reach an objective in a dis-
tributed environment (Himabindu and Jyothi 2017; Mahalem and Chavan 2012). In order
to ensure reliability and flexibility of the system, SI is based on four principles: Proxim-
ity, Quality, Resource Diversity and Stability (Himabindu and Jyothi 2017). Following is
a selection of popular SI algorithms used in MAS optimization: Particle Swarm Optimi-
zation (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO), Artificial
Bee Colony (ABC), Artificial Immune System (AIS), Chaotic Bat Optimization (CBO)
and Whale Optimization (WO) (Salgueiro-Sicilia and Rivera 2017; Mahalem and Chavan
2012; Adarsh et al. 2016; Reddy et al. 2017; Shabir and Singla 2016). A selection of these
algorithms is first introduced briefly before discussing their application in MAS optimiza-
tion for microgrid management.

PSO is an optimization algorithm based on swarm behavior first proposed in 1995,
where a single particle is characterized by velocity and fitness value (Das et al. 2008).
These parameters are updated stochastically and used to find the global best position
(Das et al. 2008; Wahab et al. 2015). This algorithm is very popular in optimization
thanks to its efficient memory usage and the rapid convergence to a solution in continu-
ous non-linear environments (Wahab et al. 2015). Next, ACO, considered one of the most
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successful swarm-based algorithms, is inspired by ant system and was first proposed in
1992 (Mahalem and Chavan 2012). The system is composed of ants, pheromone, dae-
mon action and decentralized control, where the goal is to find paths leading to the “food”
(Agarwal and Mehta 2014). Then comes ABC, which is one of the recent swarm-based
algorithm proposed in 2005 based on the intelligent behavior of bees when searching for
food sources (Mahalem and Chavan 2012; Wahab et al. 2015). In this algorithm, three
types of bees are defined: scout bee, which randomly looks for new food sources; employed
bee, which visits and exploits the found source; and on-looker bee, which waits on the
dance area to make decisions on the food sources based on the information communicated
by the employee bees (Mahalem and Chavan 2012; Agarwal and Mehta 2014). Inspired by
human immune system, AIS emerged as an interesting concept in mid 1980, but got the
full attention of researchers until 1990 (Himabindu and Jyothi 2017; Mahalem and Chavan
2012). The optimization is carried out by antigens that go through 3 phases: initialization,
cloning and hyper mutation (Mahalem and Chavan 2012). Thanks to its self and non-self
discrimination features, AIS is considered a good candidate to build intrusion detection and
classification systems (Himabindu and Jyothi 2017). Concerning Chaotic Bat Optimiza-
tion (CBO), it is an algorithm based on the hunting technique of bats by emitting frequen-
cies, proposed in 2010, so it is a relatively new optimization algorithm (Adarsh et al. 2016;
Soares et al. 2018). It is characterized by its stochastic properties and irregularity, and sim-
ulation results show the promising performance of CBO in achieving objectives. Finally,
as its name suggests, Whale Optimization (WO) algorithm is one of the newest algorithms
in p-metaheuristics, proposed in 2016 (Reddy et al. 2017; Shabir and Singla 2016). This
algorithm optimizes the search by following the hunting mechanisms of whales in nature
through 3 phases: Encircling prey; Bubble net hunting method; Search the prey. According
to simulation results, WO outperforms other algorithms, such as PSO and DE, in solving
EPD, ELD and RES sizing (Khan and Singh 2017).

Besides SI, evolutionary algorithms, which is another subset of p-metaheuristic algo-
rithms, includes as well a selection of interesting optimization algorithms (Himabindu and
Jyothi 2017; Mahalem and Chavan 2012). One of the most popular ones in this category
is Genetic Algorithm (GA) proposed in the 1970s, which is a heuristic search inspired by
natural selection (Wahab et al. 2015). To reach the global objective, chromosomes undergo
three phases: crossover, reproduction and mutation controlled by fitness values (Ding
et al. 2013; Himabindu and Jyothi 2017; Wahab et al. 2015). Table 3 presents the input
parameters and evolutionary mechanisms of a selection of these algorithms based on refer-
ences (Ding et al. 2013; Himabindu and Jyothi 2017; Salgueiro-Sicilia and Rivera 2017;
Mahalem and Chavan 2012; Adarsh et al. 2016; Khan and Singh 2017).

The choice of an optimization algorithm has always been an important issue in
this field, and multiple comparative studies were carried out for an efficient algorithm
selection. On the one hand, it has been shown that parameters’ selection and initial-
ization have a significant impact on the performance of algorithms (Khan and Singh
2017). Based on the extensive simulations conducted by researchers in Khan and Singh
(2017), one can conclude that p-metaheuristic algorithms can generate good results
when applied to the appropriate optimization area with suitable starting values. Table 4
depicts a non-exhaustive list of application areas for a selection of optimization algo-
rithms based on (Gogna and Tayal 2013; Soares et al. 2018; Khan and Singh 2017). On
the other hand, it is reported in (Salgueiro-Sicilia and Rivera 2017; Shabir and Singla
2016; Khan and Singh 2017) that FF, PSO and DE are the most popular algorithms in
the field of optimization thanks to their computational efficiency, parallel search abili-
ties and quality of the returned solutions. In fact, FF and PSO have a good optimization
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Table 3 Input parameters and evolutionary mechanisms of the discussed algorithms based on references
(Ding et al. 2013; Himabindu and Jyothi 2017; Salgueiro-Sicilia and Rivera 2017; Mahalem and Chavan
2012; Adarsh et al. 2016; Khan and Singh 2017)

Optimization algorithm  Input Evolutionary mechanism
GA Crossover rate Selection; recombination; mutation
Mutation rate
PSO Learning factors C; and C, New velocity
Inertia weight w New position
Current velocity and position of the Global best position
particle
ACO Evaporation rate Update of the path
Pheromone path initialization
ABC Food sources New position of the bees
AIS Mutation operator; antigens Mutation; cloning
CBO Frequency of each bat New pulse emission rate
Current velocity and position New loudness
WO Current position Update the path and distance
Coefficient vectors between whale and prey

Table 4 Application areas of
selected optimization algorithms
based on Gogna and Tayal

Optimization algorithm Application

PSO Decisi ki d planni
(2013), Soares et al. (2018), NZlcllrzllorrlleItI\ljorllI(l%rz?nir?ga;nn(;riiachine learn-
Khan and Singh (2017) ing

Chemical and electrical engineering

Economic power/load dispatch

Stand-alone hybrid renewable energy
systems

GA Sequencing in flexible management systems
Feature selection
Machine learning
Scheduling
Data mining and analysis

DE Image processing
Chemical and electrical engineering
Function optimization
Circuit design
PV modeling techniques

ACO Scheduling and process planning
Set partitioning and covering
RES sizing

AIS Power system optimization

Network security
Clustering and classification
Design optimization

FF Feature selection and parameter optimization
Fault detection
Image processing
Classification and clustering

WO Scheduling
Cost reduction
Chemical and thermal engineering
Constrained design
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performance in overall when combined with MAS for microgrid control and are popular
because of two main reasons: they are easier to hybridize and to implement (Salgueiro-
Sicilia and Rivera 2017; Khan and Singh 2017). It has even been shown in (Shabir and
Singla 2016; Khosla et al. 2007) that PSO outperforms GA in computational effort and
outperforms other algorithms, such as AIS and ABC, in the evaluation of the search
space (Khan and Singh 2017). In addition, a study conducted by Roche (2012) con-
cludes that combining different optimization algorithms with PSO enhances the overall
performance of the system.

Therefore, according to the literature, PSO and its hybrid versions are extensively
deployed in MAS to optimize microgrid-related issues, such as reactive power dispatch,
which affects transmission losses and tap ratios of transformers and compensators (Zhao
et al. 2005). This issue is addressed by combining GA with PSO in such a way that DG
agents compute the dispatch power at the lowest cost using GA, and then PSO finds the
agent with the lowest dispatch cost. PSO is also useful in advanced and enhanced con-
trol of combined heat and power (CHP) micro-systems and electrical heaters, consider-
ing consumption reduction and user comfort (Jiang and Fei 2011; Hurtado et al. 2015;
Wang 2013). Another issue in MAS is the communication delays between agents, which
is addressed by asynchronous PSO used to reach a global consensus between agents (Gazi
and Ordonez 2014). In this asynchronous variant, each agent is required to compute the
error between the actual and received information and update the target position.

As highlighted before, combining PSO with other optimization algorithms improves the
overall performance of the system and thus is a good candidate to solve ELD and EPD. On
the one hand, ELD objective is to serve as many loads as possible with the lowest cost by
generating dispatch schedules ahead of time (Gogna and Tayal 2013). Hybrid GLOBest-
PSO and Back Propagation (GLOBest-BPPSO) is a good combination to find both local
and global ELD solutions in the same iteration in less time and with smaller memory
requirements (Elamine et al. 2016). On the other hand, EPD objective is to reduce pro-
duction cost as much as possible by finding the optimal share of power generation among
connected DGs (Kumar et al. 2011). It is important to consider rippling effect from steam
admission value when generating DG schedules (Gogna and Tayal 2013). Bee colony and
Nelder-Mead method are combined to find the local lowest cost, while PSO is used to find
the lowest global generation cost. This version of PSO is called Hybrid Multi-Agent based
PSO (HMAPSO). In addition to ELD and EPD, Market Clearing Price (MCP) is a compu-
tational problem addressed by combining PSO with Game Theory (Dou et al. 2016). The
problem is first converted to a linear problem using Math Program with Equilibrium Con-
straint (MPEC) and MILP, and then Nash equilibrium is reached using both game theory
and PSO.

Even though PSO is popular in MAS optimization, it has been shown that other
p-metaheuristic algorithms generate better results and are accordingly used to solve issues
related to microgrid management (Khan and Singh 2017). Adapted Ant Colony Optimiza-
tion (A-ACO) is used to solve ELD problem by searching for the shortest path between
start and end times of devices (Dethlefs et al. 2014). Microgrid operational cost can be
reduced by almost half using Enhanced Bee Colony Optimization (EBCO) (Whei-Min
et al. 2015). Because of the poor stability of traditional bee colony optimization in high
dimensional search spaces, EBCO is improved by two factors: penalty factor to adjust the
search in case of bad decisions, and self-adaption repulsion factor to serve search direction
change when needed.

Supply—demand balance and efficient reserve management is an optimization issue
of concern that can be addressed by Modified-Harmony Search Algorithm (M-HSA)
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(Jiao et al. 2017). Harmony Search Algorithm is a computational technique that aims
at maximizing or minimizing the objective function based on music theory. To enhance
the convergence time, M-HSA explores the search space from both sides and assigns
a weight to the optimal solution and a penalty to the remaining ones. Besides Hybrid
PSO and Bee Colony, Artificial Immune System (AIS) is another interesting option to
solve EPD, which is shown to produce cost-efficient generation schedules (Bhuvane-
swari et al. 2010).

Even though there are not many successful applications of WO and CBO reported
in published works, these algorithms are gaining more attention for the great potential
they can achieve (Khan and Singh 2017; Roche 2012). Reddy et al. (2017) and Trivedi
(2016) use Whale Optimization (WO) algorithm to solve the EPD and ELD in a high
dimensional and constrained space, where environmental variables are also considered.
According to the simulation results, WO outperforms other evolutionary algorithms,
such as PSO and DE, converging faster and generating better costs. Finally, Chaos Bat
Optimization (CBO) algorithm is used to optimize EPD in a high dimensional space,
and simulation results show how this algorithm outperforms PSO, DE and Teacher
Learning-Based Optimization (TLBO) (Adarsh et al. 2016).

4.5 Non-linear control techniques

Non-linear control techniques deal with non-linear and time-variant systems that do not
obey the superposition principle and might have multiple equilibrium points (Billings
1985). For more details about these type of systems, the reader is kindly referred to ref-
erence (Billings 1985). Even though these techniques are not as popular as heuristic and
metaheuristic techniques for optimization, there are some research work that propose
control schemes based on non-linear system theory. Since microgrids and MAS are non-
linear systems, these techniques are suitable to optimize issues related to power man-
agement, such as secondary voltage and battery control. Input—Output Feedback Lin-
earization (I0FL) is one of these techniques that algebraically transforms a non-linear
problem into a linear one so as linear control techniques could be applied (Bidram et al.
2013; Megretski 2016). This technique cancels nonlinearities and transforms closed-
loop dynamics to a linear form by decomposing agents’ dynamics into the rth order
dynamical system, and then combined with Lyapunov technique, secondary voltage con-
trol is enforced. Lyapunov technique ensures stability of the system near equilibrium
point. However, the proposed solution in Bidram et al. (2013) assumes a time-invariant
topology with a D-graph communication network.

Sliding control mode is another technique that transforms the dynamics of a non-
linear system by means of discontinuous control signal to make the system “slide” and
lose its nonlinearity (Weigen et al. 2000). It is very suitable to overcome limitations of
V-I droop control of batteries, which results in diverge SOC and rapid life deterioration
of storage (Morstyn et al. 2017). Sliding mode technique generates the level of partici-
pation to achieve SOC balance by sliding closer to the average SOC of neighbors. This
method still suffers from overloading the same batteries and excessive battery current
variations; hence, boundary layers for smoothing transitions are added. The proposed
algorithm is designed for time-variant topologies (Morstyn et al. 2017).
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4.6 Other optimization models

Other frameworks and algorithms are proposed by researchers to optimize microgrid
issues such as fair allocation of resources, market transactions and agents’ consensus.
In some cases, load shifting is not enough to balance demand with supply, so load shed-
ding or curtailment is used instead, where low-priority loads are temporarily discon-
nected from the microgrid. But which dwelling should be penalized by shutting down its
loads? Researchers address this issue by designing algorithms for a fair load curtailment
and resources allocation. These algorithms include Constrained Equal Losses (CEL)
algorithm (Kim et al. 2010) and Distributed Load-Shedding (DLS) approach (Lim et al.
2014). CEL divides the amount of loads to be shut-down over many participants to
decrease consumers’ penalties and discomfort. It assigns priorities to residential loads
based on user preferences to prioritize critical loads (Kim et al. 2010). For demand—sup-
ply balance, DLS shuts down some loads in case of an islanded microgrid using energy
prices as a consumer incentive to accept load shedding requests (Lim et al. 2014).

To achieve an important operational cost reduction, energy market auction is a popu-
lar technique, where agents negotiate their bidding costs directly with each other, such
as peer-to-peer approaches (P2P) (Zhang et al. 2018a; Zhou et al. 2018). Consumers and
generators are called prosumers acting in an internal energy market inside a microgrid.
The internal market is composed of 3 models: the pricing model for internal transac-
tions, decision-making model for scheduling bids, and implementation model for inter-
action regulation (Zhou et al. 2018). Agents use non-cooperative Game Theory concept
to reach Nash equilibrium, and their actions have rewards for RL (Lim et al. 2014).
Other approaches to build an energy market auction environment include Continuous
Double Auction (CDA) and Zero-Intelligence plus (ZIP) strategy for bids (Nunna and
Doolla 2013), FIPA auction protocol (Dimeas and Hatziargyriou 2004; Dimeas and Hat-
ziagyriou 2004), fair distribution of resources through an auction algorithm (Dimeas
and Hatziargyriou 2005), distributed finite-time optimal resource management through
auction (Zhao and Ding 2018), and a multi-agent based transaction energy framework
for smart microgrids (Nunna and Srinivasan 2017).

Finally, MAS are fully decentralized and cooperative environments, where a prob-
lem is broken into sub-problems and assigned to multiple agents. Cooperative MAS
is discussed further by researchers and evaluated using scenarios, such as enhanced
energy cost reduction (Dimeas and Hatziagyriou 2004) and frequency control (Lewis
et al. 2013). Frequency control is achieved by local DGs, where one of the DG units is
selected as a commander to define the reference frequency and lead other DGs to stabi-
lize the grid (Lewis et al. 2013). For this purpose, a main entity, such as Task Decom-
posing System (TDS), assigns cooperatively tasks to agents in the system to achieve
hybrid cooperative control (Ming et al. 2003).

Table 5 summarizes algorithms and approaches discussed in this section, their cor-
responding optimization framework designs, the main observations and simulation
results. The comparison is carried out in terms of convergence time and performance in
achieving system goals. Table 6 summarizes advantages and disadvantages of a selec-
tion of optimization algorithms. A couple of observations from both these tables are
noteworthy. First, the performance of the proposed algorithms in the fourth section of
Table 5 is compared with the performance of PSO in the same test settings. It is found
that MAS-based PSO has a relatively good performance in microgrid optimization.
In addition, optimization techniques are mostly used in hybrid form, where multiple
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algorithms are combined to overcome disadvantages discussed in Table 6. For example,
MP methods are used as a first step to simplify and reformulate system constraints and
objective functions, then heuristic algorithms and non-linear control techniques are used
to optimize the system operation and reach equilibrium.

However, there is still no clear study about the computational resources required to keep
system latency under a certain threshold for hybrid MAS. Also, most researchers assume a
time-invariant topology, which limits the possibility to apply the proposed methods in real
settings. It is thus important to explore and confirm the behavior and performance of these
algorithms in time-variant topologies. In addition, performance and convergence of data-
driven optimization depends on the quality and size of data fed to the system. A study on
this relationship and its effect on the overall system performance is a must to validate the
solutions proposed by researchers.

Since information diffusion and consensus is considered a stand-alone optimization area
of research (Zhang et al. 2018a), the following section is dedicated to the discussion of
research progress in this field.

5 Information diffusion and consensus

MAS optimization techniques do not guarantee an efficient control of microgrids without
a robust communication network and message protocols to reduce communication delays.
Examples of message protocols are FIPA Contract Net Interaction protocol, Contract Net
Protocol (CNP) (Colson and Nehrir 2011; Mao et al. 2014; Pipattanasomporn et al. 2009),
and Service Level Agreements (SLA) (Amato et al. 2016). The objective of these commu-
nication protocols is to find the shortest channel between agents and emphasize their self-
organization. For this purpose, MAS is modeled as a directed graph (D-graph) for easier
spanning tree search and thus avoid central entities intervention (Raju et al. 2017; Basso
et al. 2013; Oliveira et al. 2012). For improved spanning tree search, D-graphs are com-
bined with Laplacian matrix for an efficient shortest path search (Kanchev et al. 2012).

Information diffusion among agents is meant to reach consensus, also called agreement,
rendez-vous and synchronization (Gazi and Ordonez 2014; De Azevedo et al. 2017). One
of the most used consensus algorithms in the literature is Average-Consensus Algorithm,
where a virtual leader is needed to update consensus values, while the other agents are
considered followers (Huang et al. 2017; Wang et al. 2015). This algorithm uses individual
weights maintained and updated locally by each agent based on local and received informa-
tion. Average-consensus algorithm has many applications, such as EPD, surplus/deficient
active power management and optimization of storage discharge cycles (Wen et al. 2016;
Huang et al. 2017). Incremental Cost Consensus Algorithm is a variant, where each agent
maintains a consensus variable updated with regular information exchange with neighbors
(Li et al. 2016; Lewis et al. 2013; Chow M and Zhan 2011). Each time a mismatch between
demand and supply is detected by smart meters, the feedback coefficient, also called regu-
lation ratio, is updated (Li et al. 2016; Guanghui et al. 2018). Adaptive consensus-based
dispatch algorithm is another variant of this algorithm, where an adaptive law is used to
update weights and converge to a consensus (Guanghui et al. 2018). A random multi-radius
geographical spacial network is used to represent the communication network, while the
analysis of constraints and objective functions is carried out by logarithmic barrier func-
tion and Lypunov energy function.
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These algorithms are based on leader-following consensus, where a leader supervises
update of weights and communicates the target consensus value to agents (De Azevedo
et al. 2017; Huang et al. 2017; Wang et al. 2015; Chow M and Zhan 2011; Guanghui
et al. 2018). To overcome the issues related to a leader failure, one method is to break
the leader’s tasks over multiple agents to increase robustness (Chow M and Zhan 2011).
An agent then handles negotiations and agreements, called a consensus manager, and
another agent implements final decisions, called a local controller. Another method,
called consensus + innovations approach, considers each agent as its own leader in
fully distributed environments (Hug et al. 2015). In fact, each agent is assigned a quad-
ric function to compute the power cost for buying/selling energy within the upper and
lower boundaries set to regulate agents’ negotiations.

Combining Metropolis weights to average-consensus algorithm is proven to increase
both efficiency and robustness of MAS (De Azevedo et al. 2017), since these weights
are easier to compute and suitable for time-varying topologies (Xiao et al. 2006; Bui
et al. 2017). Each agent keeps a matrix representation of its neighbors and a trust factor
to track updated statuses, so if an agent is dropped, weights are updated quickly and eas-
ily. Combine-Then-Adapt (CTA) diftusion strategy is then used to broadcast information
such as energy cost, available power and local demand (De Azevedo et al. 2017). CTA
diffusion strategy is an information-sharing algorithm based on weights and matrices
as well, where each agent is connected to a circuit breaker, and based on its status (ON/
OFF), it updates its local Metropolis weight (Xiao et al. 2006; Bui et al. 2017). CTA
equation is given as follows (Raju and Milton 2017):

Dik—1 = Z AjiX -1
CTApy = b JEN; Y 2
P { Xig = Pixot — HiSix(Dip—1) @

where x;,_,: state of agent i at time k—1; ¢;.: is the intermediate variable for agent i at
time k—1; p;: is a nonnegative updating parameter of agent i; S;;(¢; ;): is the stochastic
gradient for agent i of the intermediate state ¢ at time k— 1.

Some issues in information sharing and consensus are still not thoroughly investigated
by researchers, such as control collisions, communication network noises and failures and
agents resources management. In fact, power systems in general are sensitive to control,
especially devices such as buses and transformers. Hence, if at least two agents generate
control commands for the same device at the same time, or the generated control com-
mands are conflicting, there will be a collision resulting in equipment damage. This issue
can be solved by control tokens (Yoon et al. 2011), where a flag is updated when an agent
issues a control command to a device. The flag is updated again when an agent releases the
token for other agents to take control over it. Other approaches and algorithms are needed
to address this sensitive issue in MAS for microgrid control.

In general, researchers neglect communication noises when designing consensus and
information diffusion algorithms, which is an ideal scenario given that all types of com-
munication networks are subject to noises and delays. Wang et al. (2015) address this
issue by an average-consensus algorithm with binary-valued observations, where agents
keep only an estimate of neighbors’ states and receive information in a binary form. A
control law is designed also to ensure the convergence and consistency of local values
with the system objective. As a side note, Zigbee and Wireless Mesh Networks (WMN)
are a good candidate to build microgrid communication backbone, with less deployment
costs and time and an efficient, reliable and noiseless communication network (Kim and
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Lim 2012). More research about information diffusion and routing algorithms in noisy
environment is needed.

Since sensor resources are actually limited and feedback is not continuous, agents
should be event-triggered and remain on idle mode when no events are happening. This
issue is addressed by asymptotical and asynchronous convergence, where MAS should
be strongly connected and balanced (Chen and Hao 2012). Agents should have also an
error measurement mechanism to filter inconsistent data. Finally, all reviewed articles
assumed homogeneous agents, which is not always the case. When having heterogeneous
MAS, dynamic compensators interface agents and their communication to reach consensus
dynamically (Hu et al. 2017). Thanks to this approach, agents estimate the next triggering
period based on the previous interactions, which reduces error handling overhead. Conges-
tion avoidance algorithms are required in these systems to monitor communications and
avoid collision as well. In addition, reaching consensus in such systems is different than in
homogeneous MAS. Zhang et al. (2017) propose a consensus algorithm based on Hybrid
Critic-Action Neural Network and Adaptive Dynamic Programming (ADP) for continuous-
time heterogeneous linear MAS with communication delays. They use model transforma-
tion to transform it into a discrete-time delay-free model, and then they apply an appropri-
ate control strategy based on Hamilton—Jacobi—-Bellman (HJB) equations and Lyapunov
technique.

Table 7 summarizes consensus and information diffusion algorithms discussed in this
section, with the area of application, decision variables and the main features. According to
simulation results, communication network topology, high connectivity of MAS and sam-
pling times are important prerequisites to guarantee the convergence of the system to a
value.

Optimization and consensus algorithms discussed in Sects. 4 and 5 have as objectives
the reduction of operational costs, the balance between demand and supply and the use
of locally-produced green energy. At the same time, microgrids are power systems that
are subject to physical layer thresholds that should be strictly respected for operational
safety. Therefore, while cooperating to achieve MAS objectives, agents are also required to
respect these thresholds. The next section synthesizes physical layer thresholds for micro-
grid operational safety and summarizes performance indicators used to measure MAS per-
formance in microgrid management optimization.

6 Microgrid performance indicators

In addition to energy generation management, demand—supply alignment and power cost
reduction, MAS should ensure the operational safety of microgrids by controlling voltage
and current flows. These measures are defined by the grid code of the country in which the
microgrid is deployed. Thresholds of small-scaled power systems are defined and should
be respected to ensure a normal operation of devices. Table 8 synthesizes microgrid physi-
cal layer thresholds for a safe operation (Bollen et al. 2009; Honarmand 2015; RASCO
2005).

Therefore, equations should be embedded in agents to compute the necessary values
for physical layer control. These equations include also performance indicators, such as
power cost, CO, footprint and user comfort indices. Based on the reviewed articles, Table 9
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summarizes a selection of performance metrics and provides a brief description and the
corresponding equation if applicable.

It is noteworthy that CO, emissions are significantly affected by aging infrastructures
and incomplete DG combustion. Therefore, maintenance of power systems is a must to
decrease CO, footprint and its impact on the environment (Kanchev et al. 2012). Agents
listed in Table 2 use equations in Table 9 and thresholds in Table 8 to issue control com-
mands to devices. However, an interesting research opportunity is to explore the behavior
of the system if two agents or more issue contradicting control commands. The organiza-
tion and monitoring of agents’ commands and interactions with the physical layer is there-
fore necessary even in fully distributed environments.

7 MAS for multi-microgrids service restoration

As shown in Fig. 1, microgrids, of different types, MAS, management strategies and objec-
tives are connected to each other to form a smart grid. In normal mode, a smart grid MAS
controls the trade and flow of energy between different microgrids (Ren et al. 2014; Nunna
and Doolla 2014). When an area in the microgrid fails, the concerned agent, such as Zone
Agent, identifies the causes and sends a request to Breaker/Switch Agent to isolate that
area and mitigate the impact of cascading failures (Solanki J et al. 2005; Manickavasagam
2011). The remaining agents will then activate emergency service restoration algorithms
for microgrid recovery (Colson and Nehrir 2011). As soon as the fault is been isolated,
agents should launch the recovery procedure, by stabilizing voltage, balancing demand
with supply and fulfilling any other system constraints (Boussaada et al. 2016). In case
of a microgrid blackout, agents are required to launch a black start, which is difficult and
dangerous for connected loads and diesel generators (Cai et al. 2011). The general proce-
dure for service restoration in microgrids is composed of two steps: Emergency Reaction
Step, for system stabilization, and Restorative Step, for loads restoration (Boussaada et al.
2016; Cai et al. 2011). At first, Generation agents should estimate the available power from
local energy storage and power production to feed high priority loads. Since diesel gen-
erators do not generate power immediately, load shedding is the solution to the immediate
imbalance between demand and supply (Cai et al. 2011; Leng and Polmai 2014). Load
agents communicate their priorities to the appropriate agent in the control hierarchy, and
energy is then dispatched using island-mode control algorithms (Hernandez et al. 2014).
If the local power production cannot satisfy the local demand, MGCCO agent will send a
request to nearby microgrids to trade their extra energy through a virtual auction market
(Ren et al. 2014). Universal Market Intelligent agent is responsible for managing a fair auc-
tion between all microgrids, and IP agent stores the details of all transactions.

Since fluctuations at one microgrid can affect nearby microgrids, a global electrical
system agent should keep a view on the smart grid to ensure collaboration for service
restoration (Hernandez et al. 2014). This global agent is called an Arbiter, which keeps
stability and low recovery cost for both the main grid and the faulty microgrid (Rivera
et al. 2014b). One option for optimizing service restoration in a multi-microgrids envi-
ronment is by breaking the system into sub-problems assigned to different agents across
MAS. Decomposing complexity over many entities reduces computations overhead and
increases system reactivity to failures (Wang 2017). Meanwhile, MGCCO agent of the
faulty microgrid can request power support from nearby microgrids by combining all
their diesel generators inertia and angles to produce enough power to feed high-priority
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Fig.5 Sequential diagram of the general multi-microgrid restoration procedure

loads (Wang 2017; Resende et al. 2011). This procedure requires appropriate energy
dispatch algorithms, and nearby microgrids should use load shedding and shifting in
case of energy deficiency.

Effective service restoration depends on the real-time communication between DG
agents across microgrids for proper emergency power dispatch (Joumaa et al. 2011).
To minimize any communication delays that could be fatal to the system (Tolbert et al.
2001; Nguyen and Flueck 2011), a D-graph can be used to represent paths between all
diesel generators across microgrids to generate spanning trees for quick path search
(Boussaada et al. 2016; Tolbert et al. 2001). To increase restoration efficiency, PI con-
trollers are deployed to reduce errors between real and measured values, and socket
messages are efficient in decreasing communication delays (Nguyen and Flueck 2012;
Abidi et al. 2017). In case MGCCO agent of the failing microgrid receives REJECT to
its power request, it should find alternatives to satisfy local demand until resolution of
failures. One of these solutions is shutting down some neighborhood facilities (e.g. pub-
lic lighting) with Direct Load Control (Et-Tolba et al. 2014b). Figure 5 shows the syn-
thesized sequential diagram of multi-microgrid service restoration procedure that was
discussed in this section based on references (Nunna and Doolla 2014; Solanki J et al.
2005; Manickavasagam 2011; Cai et al. 2011; Leng and Polmai 2014; Hernandez et al.
2014; Rivera et al. 2014b; Wang 2017; Resende et al. 2011; Et-Tolba et al. 2014b).

The reviewed articles focus on the effect of a single microgrid failure on neighbor-
ing microgrids, but transient stability of adjacent microgrids in case of multi-microgrid
failures is an important issue to investigate. The effect of scattered failures on the main
grid and service restoration strategies should be explored in depth, given that serious
voltage and frequency fluctuations and major energy shortage are expected. The follow-
ing section summarizes all these research gaps and opportunities highlighted through-
out the paper, which are important for power system risk analysis and infrastructure
management.
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8 Summary of recommendations

Throughout this review, potential research opportunities were highlighted to the readers for
future work, as summarized in this section.

8.1 MAS architecture and design

According to the literature, MAS architecture and design affect the convergence to an opti-
mal solution and system equilibrium, so the microgrid topology should be wisely chose
according to its type. Since there is no clear study on the optimal size of a robust micro-
grid, researchers are recommended to investigate the effect of connecting more loads on its
operational efficiency. It is also important to study the long term behavior and impact of
microgrids on the main grid, given that fluctuations and cascading failures are very com-
mon in these systems. Concerning the logical control layer, it has been shown that MAS
communication delays become on overhead with increasing agents, so MAS modeling
should be thoroughly investigated as well to produce a set of recommendations for building
control units.

The proposed optimization frameworks are built upon the assumption of a homogene-
ous MAS, which simplifies mathematical formulation of the problem and computational
overhead. An interesting research aspect in MAS is the design of optimization techniques
for heterogeneous agents and the scrupulous investigation of the needed resources and
infrastructure to implement and deploy these solutions. Even though heterogeneous sys-
tems are not mature enough because of their complexity, they are an interesting field of
research thanks to their advantages, such as system stability.

Load shifting and shedding in a fully distributed MAS is shown to create a new peak
demand when there is no coordination between agents. A cloud-based hybrid MAS is
thus a good candidate for an efficient DMS in microgrids, where a central entity super-
vises shifting requests over time. Research on cloud-based schemes feasibility for smart
grid management and the impact of load shifting and shedding on grid stability have to be
conducted as well.

8.2 Optimization techniques

Optimization techniques, such as RL algorithms, MP techniques, heuristic and metaheuris-
tic optimization algorithms, non-linear control and data-driven modeling techniques are
been well studied and applied to solve many issues in microgrid management as discussed
in this paper. PSO, and its hybrid variants, are the most popular algorithms used in MAS
optimization thanks to the efficient PSO memory usage and fast convergence. Even though
data-driven modeling optimization techniques have a good performance, the required com-
putational resources, memory space and learning time are expected to be very high. A
detailed study on the computational requirements to support on-line gradient learning and
keep latency under acceptable thresholds is essential to guide the choice of optimization
algorithms. Also, there should be a study about the impact of data fed to agents on the per-
formance of the system.

In addition, most research works assume a time-constant microgrid, which is an ideal
situation given that microgrids are intended to be of type PnP. It is interesting to investigate
the behavior of the proposed optimization frameworks and algorithms under time-variant
topologies and conclude guidelines to adapt existing algorithms. Also, most researchers set
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one main system objective and then formulate their mathematical solutions under multiple
constraints. However, one should explore the feasibility of combining multiple optimiza-
tion algorithms with different objectives into the same MAS and the effect on the con-
vergence and system stability. The study of communication delays, convergence time and
collisions among agents is an interesting research opportunity.

8.3 Information diffusion and consensus

Average-consensus algorithm is the most popular algorithm for reaching agent equilibrium
that is based on leader-followers theory. In this review, progress in this area is noteworthy,
and variants of this algorithm were proposed to deal with specific issues, such as noises
and collisions. However, there are a couple of aspects that are not investigated properly.
First, agent resources are assumed to be unlimited, with no possibility of collisions. Some
research works discussed hereby address this issue, but it is not enough and test scenarios
assume simple test constraints. A potential research opportunity is to study the effect of
collisions on MAS performance and design control mechanisms to organize agents interac-
tions with the physical layer. Researchers should incorporate agents resources constraints
in their hybrid consensus algorithms and compare their performance with their previous
findings. Erroneous measurements and leader failures should be considered in the study
and design phase since the impact is expected to be fatal to both MAS and the microgrid.

8.4 Multi-microgrids service restoration

As shown in Fig. 1, microgrids of different types are connected to form a “smart city”, and this
interconnection imposes additional control, as fluctuations and failures can affect the whole grid.
In-depth research on emergency energy dispatch and transient stability in a multi-microgrid envi-
ronment is necessary for the future smart city vision. Adapting existing hierarchical MAS and
secondary droop control to multi-microgrids management could be a first step in this study.

9 Conclusion

Conventional energy resources are one of the factors behind global warming because of
CO, emissions, so the urge to develop and deploy other environment-friendly energies
increases over time. Power generation is not the only problem in the present power system,
since power utilization and delivery are issues of concern as well. Traditional power sys-
tems have obsolete infrastructures and do not cope with the growing populations. Hence,
smart grids, broken-down to microgrids, are a solution that combines power grid with a
communication network for data exchange and feedback. With the time-variant microgrid
topology, MAS is the best control strategy to handle all optimization issues in power grids.

In the present review, a selection of papers about advanced optimization algorithms and
techniques is discussed, and progress in MAS for microgrid control is summarized. Mul-
tiple research gaps and opportunities are highlighted for future work. Simulation results
conducted by researchers show the impact of MAS design and connectivity on the con-
vergence time. It is observed also that PSO, and its hybrid variants, outperforms other
optimization algorithms, such as GA, in terms of convergence time and memory usage.
Concerning information diffusion and consensus, average-consensus algorithm is popular
among researchers, and other variants are proposed to address consensus under specific
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conditions, such as heterogeneous MAS, communication delays and noises. Finally, the
general service restoration procedure in a multi-microgrid environment was summarized,
and the main process to feed high-priority loads was briefly discussed.
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