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Abstract

The Index is a data structure which stores data in a suitably abstracted and compressed form
to facilitate rapid processing by an application. Multidimensional databases may have a lot
of redundant data also. The indexed data, therefore need to be aggregated to decrease the
size of the index which further eliminates unnecessary comparisons. Feature-based indexing
is found to be quite useful to speed up retrieval, and much has been proposed in this regard
in the current era. Hence, there is growing research efforts for developing new indexing
techniques for data analysis. In this article, we propose a comprehensive survey of indexing
techniques with application and evaluation framework. First, we present a review of articles
by categorizing into a hash and non-hash based indexing techniques. A total of 45 techniques
has been examined. We discuss advantages and disadvantages of each method that are listed
in a tabular form. Then we study evaluation results of hash based indexing techniques on
different image datasets followed by evaluation campaigns in multimedia retrieval. In this
paper, in all 36 datasets and three evaluation campaigns have been reviewed. The primary
aim of this study is to apprise the reader of the significance of different techniques, the dataset
used and their respective pros and cons.

Keywords Image retrieval - Hashing - Metric - Indexing - Nearest-neighbor search

1 Introduction

With the explosive growth of multimedia data technologies, it becomes challenging to
fulfill diverse user needs related to textual, visual and audio data retrieval. The advances
in the integration of computer vision, machine learning, database systems, and information
retrieval have enabled the development of advanced information retrieval systems (Gani
et al. 2016). As multidimensional databases are gigantic, it has become important to develop
data accessing and querying techniques that could facilitate fast similarity search. The
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issues of feature extraction and high-dimensional indexing mechanism are crucial in visual
information retrieval (VIR) due to the massive amount of data collections. A typical VIR
system (Wang et al. 2016) operates in three phases namely feature extraction phase, high-
dimensional indexing phase, and retrieval system design phase. Potential applications (Datta
et al. 2005, 2008) include digital libraries, commerce, medical, biodiversity, copyright, law
enforcement and architectural design. Figure 1, below, displays the block diagram of the
query by visual example.

The most important aspect of any indexing technique is to make a quick comparison
between the query and object in the multidimensional database (Bohm et al. 2001). Multi-
dimensional databases may have a lot of redundant data also. The indexed data, therefore,
need to be aggregated to decrease the size of the index which further eliminates unnecessary
comparisons.

1.1 Basic concepts

Feature and feature extraction Feature corresponds to the overall description of the image
contents. ‘Local’ and ‘global’ are the terms used in the context of image features. Shape, color,
and texture individually describe contents of an image, but that information is not descriptive
enough. In this regard Histograms, SIFT, and CNN based computer vision techniques are
developed to extract more informative contents. Feature aggregation techniques like Bag-of-
visual-words (BoVW), VLAD, and Fisher vector produces fixed length vector which helps
to approximate the performance of similarity metrics.

Index The image index is a data structure which stores data in a suitably abstracted and com-
pressed form to facilitate rapid processing by an application. Feature-based indexing is found
to be quite useful to speed up retrieval and is currently needed in this generation. Typically,
any information retrieval system demands the following principle requirements (Téllez et al.
2014): size of the index, parallelism, the speed of index generation and speed of search.
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Fig. 1 Overview of visual information retrieval processes
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Fig. 2 Tllustration of different query schemes

Query processing The retrieval process starts with feature extraction for a query image. The
primary aim is to extract and match the corresponding query features with pre-computed
image dataset features under issue such as scalability of image descriptors and user intent to
search. A query can be processed in a number of ways, depending on the type of indexing
and extracted features.

Query formation Query formation is an attempt to define user’s precise needs and subjec-
tivity. It is very difficult to capture the human perception and intention into a query. There
is different query formation schemes proposed in literature such as query by text, query by
image example, query by sketch, query by color layout etc. In Fig. 2 different query formation
techniques are presented.

Relevance feedback The different user intent may contain image clarity, quality, and associ-
ated meta-data. With the use of earlier user logs and semantic feedback; query refinement and
iterative feedback techniques are highly recommended to satisfy the user. The ultimate goal
is to optimize the interaction between system and user during a session. Feedback methods
may range from short-term techniques, that directly modify the queries to long-term methods,
that make the use of query logs.

1.2 Indexing techniques

Indexing phase is one of the most important aspects of any VIR system. Indexing tech-
niques are a powerful means to make a quick comparison between the query and object in
the multidimensional database (Bohm et al. 2001). Multidimensional databases may have a
lot of redundant data also. The indexed data, therefore, need to be aggregated to decrease
the size of the index which further eliminates unnecessary comparisons. Most of the VIR
systems are designed for specific types of image such as sports, species, architecture design,
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art galleries, fashion, etc. Generally, in VIR four kinds of techniques are adopted for index-
ing: inverted files, hashing based, space partitioning and neighborhood graph construction.
To facilitate the indexing and image similarity there is need to pack the visual features.
The different techniques of image similarity and indexing are highly affected by the feature
extraction/aggregation and query formation as discussed above. For hashing techniques we
refer readers to previous survey (Gani et al. 2016; Wang et al. 2016, 2018). In Gani et al. 2016
surveyed indexing techniques in the past 15 years from the perspective of big data. They cat-
egorize the indexing techniques in three different categories viz. Artificial Intelligence, Non-
artificial Intelligence and Collaborative Artificial Intelligence on the basis of time and space
consumption. The main intent of the paper is to identify indexing techniques in cloud com-
puting. Other recent surveys on hashing are reported in Wang et al. (2016, 2018). The concept
of learning to hash are delineated there. The survey in Wang et al. (2016) only categorizes and
emphasizes on the methodology of data sensitive hashing techniques with big data perspective
without any performance analysis. Wang et al. (2018) analyze and compare a comprehensive
list of learning to hash algorithms in brief. In this work, they consider similarity preserving and
quantization to group the hashing techniques exists in the literature. In addition, they have ana-
lyzed the query performance of pair-wise, multi-wise and quantization techniques for limited
datasets. The recently conducted survey has been focused only on hash based indexing tech-
niques for which there are only a limited support for experimental analysis and applications.

Therefore, we found that there is a need of survey article which has to cover detail of appli-
cations, datasets, performance analysis, evaluation challenges and non-hash based indexing
techniques as well. In this regard, we analyze and compare a comprehensive list of index-
ing techniques. Here, we are focusing on overview of hash and non-hash based indexing
techniques of the recent years. We provide more categorical detail of indexing techniques
in Sect. 4. In comparison to earlier surveys (Gani et al. 2016; Wang et al. 2016, 2018), the
contributions of our article are as follows:

1. It provides splendid image retrieval application areas.

2. Itprovides an immense description and categorization of hash and non-hash based index-

ing techniques.

It extensively discussed and listed 36 different datasets in detail.

4. Ttpresents a separate evaluation section to examine the performance of different hashing
techniques for different datasets.

5. It presents details of multimedia evaluation programs covering top conferences related
to indexing techniques.

e

1.3 Organization of the article

The rest of the article has been organized as follows: Sect. 2 describes the significant chal-
lenges in VIR system; Sect. 3, presents promising application areas followed by Sect. 4,
which categorizes the indexing techniques. Section 5 provides an evaluation framework for
different hash based indexing techniques followed by Sect. 6, that presents some evaluation
campaign organized for multimedia indexing. Section 7 addresses the future work, and in
the last section, we draw a conclusion.
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2 Major challenges in VIR systems
2.1 Similarity search

Content-based search extends our capability to explore/search the visual data in different
domains. This operation relies on the notion of similarity for search e.g. to search for images
with content similar to a query image (Kurasawa et al. 2010). Translating the similarity search
into the nearest neighbor (NN) (Uysal et al. 2015), search problem finds many applications
for information retrieval, machine learning, and data mining. The context of large-scale
unstructured data envisages finding approximate solutions. Approximate similarity (Pedreira
and Brisaboa 2007; Hjaltason and Samet 2003) search relaxes the search constraints to get
acceptable results at a lower cost (e.g. computation, memory, time).

2.2 Curse of dimensionality

All the research works have a common concern of scaling up indexing from low dimen-
sional feature space to high dimensional feature space in getting good results, and it is a
significant problem due to the phenomenon so called “the curse of dimensionality” (Wang
et al. 1998). Recent studies show that most of the indexing schemes even become less
efficient than sequential indexing for high dimensions. Such degradations and shortcom-
ings prevent a widespread usage of such indexing structures, especially on multimedia
collections.

2.3 Semantic gap

The field of semantic based image retrieval first received active research interest in the
late 2000s (Zhang and Rui 2013). Both the single feature and the combination of multiple
features are lacking in capturing the high-level concept of images. It is essential to understand
the discrepancy between low-level image features and high-level concept to design good
applications for VIR. The disparity leads to the so-called semantic gap (Sharif et al. 2018) in
the VIR context. Describing images in semantic terms is the highest level of visual information
retrieval, and it is a challenging task (Wang et al. 2016).

3 Applications

Indexing is widely used in visual information retrieval systems to make fast offline and
online comparisons among data items. With the increase of storage devices as well as
progress on the internet, image retrieval is growing with diverse application domains. In
the literature a very few fully operational VIR systems are available but the importance
of image retrieval has been highlighted in many fields. Though these certainly represent
only the tip of the mountain, some potentially productive areas at the end of 2017 are as
follows:

a. Medical applications A rapid evolution in diagnostic techniques results in a large
archives of medical images. At present this area is largely publicized as the prime users
of VIR systems. This area has great potentials to be developed as huge markets for
VIR system as it has unique ingredients (feature set viz. shape, texture etc.) for feature
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selection and indexing. The use of VIR can result in valuable services that can benefit
biomedical information systems. The retrieval, monitoring, and decision-making should
be integrated seamlessly to design an efficient medical information system for radiologist,
cardiologist, and others.

b. Biodiversity information systems Researchers in the life sciences are becoming increas-
ingly concerned about to detect various diseases related to agricultural plants and to
understand habitats of species. The in-time gathering and monitoring of visual data con-
sistently achieve objectives as well as minimize the effect of diseases in plants/animals
and monitors the lack of nutrients in plants.

c. Remote sensing applications VIR system can be used to retrieve images related to fire
detection, flood detection, land sliding, rainfall observation in agriculture, etc. For the
query “show all forest area having less rainfall in last ten years” system replies with
images having a region of interest. From military applications point of view probably
this area is well developed and less publicized.

d. Trademarks and copyrights This is one of the mature areas and on the advanced stage
of development. In recent years, illegal use of logos and trademarks of noted brands has
been emerged for business benefits. VIR is used as a counter mechanism in the identi-
fication of duplicate/similar trademark symbols which further helps in law enforcement
and copyright violation investigation.

e. Criminal investigation As an application this is not a truly VIR system as it purely
supports identity matching rather than similarity matching. The VIR systems have a big
significance in the criminal investigation. The identification of mugshot images, tattoos,
fingerprint and shoeprint can be supported by these systems. Practically a large number
of systems are used throughout the world for criminal investigation.

f. Architectural and interior design Images that visually model the inner and outer struc-
ture of a building are containing more diagrammatic information. The use of VIR can
result in important services that can benefit interior design or decorating and floor plan
of a building.

g. Fashion and fabric design The fashion and fabric industry have a predominant position
among other industries all over world. For the product development purpose, designer
of cloths has to refer previous designs. For the online shopping purpose, the user has to
retrieve similar product options. As an application the aim of VIR system is to search the
similar fabrics and products for designers and buyers respectively.

h. Cultural heritage In comparison to other areas, image retrieval in art galleries and
museum highly depends upon the creativity of user as images have heterogeneous
specifics. In digitized art gallery and museum, the feature set is of high dimensional-
ity which in turn requires advanced VIR systems.

i. Education and manufacturing The main paradigm for performing 3D model retrieval
has been using query-by example and query-by-sketch approach. The 3D image retrieval
can be seen, as a toolbox for computer aided design, video game industry, teaching
material and different manufacturing industries.

Other examples of database applications where visual information retrieval and indexing
is useful: Personal Archives, Scientific Databases, Journalism and advertising, Storage of
fragile documents, Biometric identification and Sketch-based Information Retrieval.

@ Springer



A survey of image data indexing techniques 1195

4 Categorization of indexing techniques

This section provides a background on indexing techniques and how they facilitate visual
information retrieval and visual query by example. Many of the existing indexing tech-
niques may range from the simple tree based (Robinson 1981; Lazaridis and Mehrotra 2001;
Uhlmann 1991; Baeza-Yates et al. 1994) approaches to complex approaches that include deep
learning (Babenko et al. 2014; Donahue et al. 2014; Dosovitskiy et al. 2014; Fischer et al.
2014) and hashing based (Andoni and Indyk 2008; Baluja and Covell 2008; He et al. 2011;
Zhuang et al. 2011; Mu and Yan 2010; Liu et al. 2012). By approximate nearest neighbor
search there exist hash and non-hash based indexing techniques and methodology of both
turns around various concepts in the literature. But our finding says it is limited to some quality
concepts. The hash based techniques are basically turnaround these concepts: Graph based,
Matrix Factorization, Column Sampling, Weight Ranking, Rank Preserving, List-wise Rank-
ing, Quantization, Semantic similarity (Text/image), Bit Scalability, Variable bit etc. whereas
the non hash based techniques contains concepts namely Pivot Selection, Ball Partitioning,
Pruning Rules, Semantic Similarity, Queue based Clustering, Manifold Ranking, Hybrid Seg-
mentation, Approximation etc. Out of these significant concepts related methods have been
detailed in this section. The categorization of these indexing techniques is presented in Fig. 3.

4.1 Hash based indexing

The Hashing has its origins in different fields including computer vision, graphics, and
computational geometry. It was first introduced as locality sensitive hashing (Datar et al.
2004) in an approximate nearest neighbor (ANN) (Muja and Lowe 2009) search context.
Any hash based ANN search works in three basic steps: figuring out the hash function,
indexing the database objects and querying with hashing. Most ordinary hash functions are
of the form

Indexing Techniques

Hash Based Non Hash Based

Legend:
Code Balance
Bit Balance ¢ Bit Uncorrelation
Hash Function
¥ Kemelized Hash function Linear Hash function « Kemel Logistic Regression Hashing » DCNN
Code Similarity
©  Hamming Distance ® Weighted Hamming Distance
Sign Function

& Drop the Sign B Keep the Sign ® Two-Step relaxation @ Sigmoid Relaxation

Fig. 3 Categorization of Indexing Techniques
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hy = sgn(f(wka + bk>)

here f() is nonlinear function. The projection vector w and the corresponding bias b are
estimated during the training procedure. sgn() is the element wise function which returns
1 if element is positive number and return — 1 otherwise. In addition, the choice of f()
varies with type of hashing under consideration. Further, the choice of Hashing technique
is highly dependent and mostly effected by the following factors: type of hash function,
hash code balancing, similarity measurement and code optimization. The hash functions
are of following forms: Linear, Non-linear, Kernelized, Deep CNN. The concept of code
balancing is transfigured to bit balance and bit uncorrelation. Bit b; is balanced iff it is
set to 1 in one half of all hash codes. Bit uncorrelation means that all pair of bits of hash
code B is uncorrelated. Hash codes similarity is measured by hamming distance and its
variants. Further, in optimization process sign function keeping, dropping and other relaxation
methods are available. All these factors are denoted by legend in Fig. 3. To improve the search
performance by fast hash function learning, researchers come up with new hashing methods
of different flavors:

4.1.1 Data-dependent hashing (unsupervised)

The design of hash functions subject to analysis of available data and to integrate different
properties of data. The main aim is to learn features from the particular dataset and to preserve
similarity among the various spaces viz. data space and Hamming space. The unsupervised
data dependent method uses unlabeled data to learn hash codes and committed to maintaining
Euclidean similarity between the samples of training data. A representative method includes
Kernelized LSH (Kulis and Grauman 2012), Spectral Hashing (Weiss et al. 2008), Spherical
Hashing (Heo et al. 2012) and much more. Some of these techniques are discussed below.

Discrete graph hashing Liu et al. (2014) proposed a mechanism for nearest neighbor
search. To introduce a graph- based hashing approach, the author uses anchor graph to
capture neighborhood structure in a dataset. The anchor graph provides nonlinear data-to-
anchor mapping, and they are easy to build in linear time which is directly proportional to
a number of data points. The proposed discrete graph hashing is an asymmetric hashing
approach as it has different ways to deal with queries and in and out of sample data points
(Table 1). The objective function written in matrix form is:
' - 2 T
min > 3 Ibi = b’ = ir(BE B)
i,j=1

Define graph Laplacian L as anchor graph Laplacian L = I,, — S, then the objective function
is rewritten as:

mglx tr (BTSB)

By softening the constraints and ignoring error prone relaxation the objective function can
be transformed as

max Q(B. E) = tr(BTSB) +ptr (BTE)

st. Ee R 1TE=0,ETE =nl.,
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Table 1 Summary of Notations

Notation Meaning

N Number of data points

D Dimensionality of data points

C Number of hash bits or code length
M Number of kernel bases

W e R™" Weight matrix

Wi Weight vector

wij € R4 The i jth element of weight matrix
Xi, Xj € R4 The ith and jth data point
X=[x1,..., Xn] € RN and Y = [y1,---»¥nl € Rdxn Two set of data points as column
S e ™ Similarity matrix of data points

§ e R Sampled sub-matrix of similarity

Sij =sim (i, Xj)
b, bj € {1,— 1}¢ or {0,1}€

Similarity between data points x; and x;

Binary hash codes of data points x; and x;

B=[by,...,bn]T € {1, — 1}"XC Hash codes of data X
q; € R4 A query point
Q={qj }iAil A query set

H=[hy,...,he]: RY — {— 1,1}¢
H=[hy,....,he]: RY - {1,2,3,...}¢
he i RY > {— 1,1}

rirf e {1.23,...n)

Hash function for binary values
Hash function for real values
kth hash function

Ranking list elements

II-1g, 11l Matrix Frobenius and £7-norm

tr(+) Matrix trace norm

Asymmetric inner product hashing  Fumin Shen et al. (Shen et al. 2017) address the asym-
metric inner product hashing to learn binary code efficiently. In another context, it maintains
inner product similarity of feature vectors. With the help of asymmetric hash function the
Maximum Inner Product Search (MIPS) problem is formulated as

h)T2(X) — SHZF

min
h,z

Here A (-) and z(-) are the hash functions, - is the Frobenius norm and S is the similarity matrix
computedas S = AT X. Further with linear form of hash functions the proposed Asymmetric
Inner-product Binary Coding problem is formulated as (in matrix form):

T 2
sgn(WTY) sgn(RTX> -5
F

s.t.h(x) = sgn(WTX>, 7(x) = sgn(RTX) and W, R € RI*¢

min
W.R

B

The author incorporates the discrete variable as a substitute for sign function to optimize the
bit generation approach.

Scalable graph hashing Jiang and Li (2015) get inspiration from asymmetric LSH (Datar
et al. 2004) to propose an unsupervised graph hashing. The proposed scheme formulates the
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approximation of the whole graph through feature transformation. Here approximation of
graph is made without computing pair-wise similarity graph matrix. It learns hash functions
bit by bit. The objective function is:

n _ 1 2
min <S,"/' — 7b[Tb,'>
iy S\ 27
S.t. Si,j = 2Si,j —1and Swi,j e (—1, 1]

In particular, it uses concept of kernel bases to learn hash function and the objective function
is defined as (in matrix form):

c§— sgn(K(X)WT)sgn<K(X)WT>T ’

min
w F

Subject to: K (X) € R"™ is the kernel feature matrix.

Locally linear hashing to capture non-linear manifolds Irie et al. (2014) suggest a locally
linear hashing to obtain the manifolds structure concealed in visual data. To identify the
nearest neighbor in the same manifold related to the query, a local structure preserving
scheme is proposed. In particular, it uses Locally Linear Sparse Reconstruction to capture
locally linear structure:

+f Xi — E w;jX;

JENE () P

s.t. Ng(x) be a set of nearest neighbours of x

The proposed model maintains the linear structure in a Hamming space by simultaneously
minimizing the errors and losses due to reconstruction weights and quantization respectively.
Therefore, the optimization problem is defined as:

min Zr<ZTMZ)+nHB—ZRH2F
B,ReRe*¢ZeRnx¢
s.t. RTR = I., Z is continuous embedding and R isan orthogonal transformation that rotates Z.
Non-linear manifold hashing to learn compact binary embeddings Shen et al. (2015)
address the embedding to learn Nonlinear Manoifolds efficiently. The proposed method is
entirely unsupervised which is used to uncover the multiple structures obscured in image
data via Linear embedding and t-SNE (t-distributed stochastic neighbor embedding). For the

construction of embedding a prototype algorithm has been proposed. For a given data point
X4, the embedding y, can be generated as

€0 = 3 w5l

2
s.t.w(xq,x,-) = eXp(—qu_;lH), if xj € Nk(xq)otherwise itisO.
o

Here Ny (xq) be a set of nearest neighbours of xg.
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4.1.2 Data-dependent hashing (supervised)

Another category of learning to hash technique is supervised hashing. The supervised data
dependent method uses labeled data to learn hash codes and committed to maintaining
semantic similarity constructed from semantic labels of training samples. In comparison
to unsupervised methods, supervised methods are slower during learning of large hash codes
and labeled data. Further, it is limited to applications as it is not possible to get semantic
labels always. The level of supervision further categorizes supervised methods in point-wise,
triplets and list-wise approaches. Representative method includes Supervised Discrete hash-
ing (Shen 2015), Minimal loss hashing (Norouzi and Fleet 2011) and many more (Lin et al.
2013; Ding et al. 2015; Ge et al. 2014; Neyshabur et al. 2013). Some of these techniques are
listed and discussed below.

Discrete hashing  Shen et al. (2015) proposed a new learning-based data dependent hashing
framework. The main aim is to optimize the binary codes for linear classification. This method
jointly learns bit embedding and linear classifier under the optimization. For the optimization
of hash bits, the discrete cyclic coordinate descent (DCC) algorithm is proposed. The objective
function is defined as (in matrix form):

min | Y = WTB|> + MW 12 + vl| B — H(X)|3

B,W,F
here A and v are the regularization parameter and penalty term respectively. They use hinge
loss and [/, loss for linear classifier. The proposed method showed improvement in results
when it is compared with state-of-the-art supervised hashing methods (Zhang et al. 2014;
Lin et al. 2014; Deng et al. 2015; Wang et al. 2013) and addressed their limitations. Further,
in (Shen et al. 2016) they presented fast optimization of binary codes for linear classification
and retrieval. Supervised and Unsupervised losses are considered for the development of
scalable and computationally efficient method.

Discrete hashing by applying column sampling approach  Kang et al. (2016) presented
discrete supervised hashing method based on column sampling for learning hash codes gen-
erated from semantic data. The proposed scheme is an iterative scheme where sampling of
similarity matrix columns has been done through a column sampling technique (Li et al.
2013) i.e. the technique sample current available training data point into a single iteration.
A randomized approach is used to sample data points i.e. few of the possible data points are
selected for random sampling. Further, it partitions the sample space into two unequal halves
and objective function is formulated as:

. 2
min

nin [c§™ — B7[82] |+ |57 - B2[52]'|
B*B

F

sit. S e {—1, I}FX“Q, §2 and I" are two halves of sample space, I' = N — £2 with N={1,
2,...n}.

It is a multi-iterative approach where the sample spaces updated with each iteration on an
alternate basis.

Adaptive relevance based multi-task visual labeling Deng et al. (2015) developed an image
classification approach to overcome issues like data scarcity and scalability of learning tech-
nique. A use of hashing based feature dimension reduction reported much better image
classification and stepped down required storage. The proposed method is a two-pronged
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multi-task hashing learning. Firstly, in learning step, each task suggests learning the defined
model for a particular label. Further, this learning step executed in two levels viz. tasks and
features simultaneously. The idea suggests that the complicated structure of processed fea-
tures efficiently handle by task relevance scheme. Secondly, in the prediction step test datasets
and trained model simultaneously classify and predicts the multiple labels. Outcomes reveal
the algorithm potential of enhancing the quality of classification across multiple modalities.

4.1.3 Ranking-based hashing

With the advent of supervised, unsupervised and semi-supervised learning algorithms it is
easy to generate optimized compact hash codes. Nearest neighbor search in large dataset
under data-dependent methods produces suboptimal results. By exploring the ranking order
and accuracy, it is easy to evaluate the quality of hash codes. Associated relevant values of
hash codes help to maintain the ranking order of search results. A representative method
includes Ranking-based Supervised Hashing, Column Generation Hashing and Rank Pre-
serving Hashing and much more. Some of these methods are listed and discussed below.

Weighting scheme for hash code ranking Ji et al. (2014) presented a ranking method
involving weighting system. They aim to make an improved hamming distance ranking.
However hamming distance ranking loses some valuable information during quantization of
hash functions. To get highly efficient hamming distance measurement the proposed scheme
learns weights [Qsrank (Zhang et al. 2012) and Whrank (Zhang et al. 2013)] during similarity
search. To cope with expensive computing of higher order independence among hash function,
this method uses mutual information of hash bit to propose mutual independence among hash
bits. The neighbour preservation weighting scheme is defined as:

wy=exply Y s(q, pha(@hi(p)
PENN(q)

Here p and q are two weight vectors to capture the shared structure among task parameters,
and variations specific to each task respectively. The objective function is maximized as
follows:

max w} w;’fai |
st.1Tm =1,7 >0, y > 0, a;; is mutual independence between bit variables and wl* =
WETTk.

The anchor graph is used to represent sample to make similarity measurement useful for
various datasets.

Ranking preserving hashing Wang et al. (2015) proposed ranking preserving hashing
to improve the ranking accuracy named Normalized Discounted Cumulative Gain (NDCG)
which is the quality measure for hashing codes. The main aim is to learn new devised hashing
codes that can maintain the ranking order and relevance values both for data examples. The
ranking accuracy is calculated as follows:

1< P
NDCG = — Z S
Z log(1 + 7 (x;))

i=1
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here ranking position is defined as , 7 (x;) = 1+ Z 1 (bT (by — b;) > 0), Z is the normaliza-

k=
tion factor and r is the relevance value of data item x It’s hard to optimize NDCG directly due
to its dependency on the ranking of data standards. Optimization of NDCG is done through
linear hashing function which evaluates the expectation of NDCG.

Use of list-wise supervision for hash codes learning Wang et al. (2013) presented an
interesting variant for learning hash function. To this end, ranking order is used for learning
procedure. The proposed approach implemented in three steps: (a) Firstly, transforms Ranking
lists of queries into triplet matrix. (b) Secondly, the inner product has been used to compute
the hash codes similarity which further derives the rank triplet matrix in Hamming space. (c)
Finally, triplets are set to minimize inconsistency. The formulation of Listwise supervision
is based on ranking triplet defines as:

1 riq<r;.’

. _ ) 4.4 q
S(qm,xi,xj)_ L >7;
.4 _ 9

0 :r =r;

The objective is to measure the quality of ranking list, which is formally calculated through
loss function written in matrix form:

_ZZQZCCT[M _xj]Smij
moij
=Y ghccTpy = —zr(ccTG)

s.t. C € R¥K js the coefficient matrix, p,, = Z[xl — x| Smij and G=" puq,..
i,j m
The measurement of Loss function differentiates two ranking lists. They used Augmented

Lagrange Multipliers (ALM) for optimization to reduce the computation time.

4.1.4 Multi-modal hashing

Developing a new retrieval model that is focusing on different types of multimedia data is a
challenging task. Cross view or multimodal hashing techniques map different high dimen-
sional data modalities into a small dimensional Hamming space. The main issue in performing
joint modality hashing is preserving of similarity among inter and intra modalities. Utiliza-
tion of information further categorize these methods in real-valued (Rasiwasia et al. 2010)
and binary representation learning (Song et al. 2013) approaches. Some of the representative
techniques are listed and discussed below.

Semantic-preserving hashing Lin et al. (2015) proposed semantic preserving hashing
named SPH for multimodal retrieval. The proposed scheme formulate the procedure in two
steps: Firstly, it transforms semantic labels of data into a probability distribution. Secondly,
it approximates data in Hamming space by minimizing its Kullback-Leiber divergence. The
objective function is written as follow:

¥ = min Zp,,10g7+*U ’H‘_IHZ
HERUX(‘Z#J qi,j
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s.t. o is the parameter for balancing the KL divergence and No is the normalizing factor
-1
1 o~ ~ 2
(1+ 41, -, ) A

—and p; j = =——
Zkaém(l + | He. — Hp. ||2) l iz Aij

s.t.qi,j =

here the probabilities p; ; and g; ; are the probability of observing the similarity among
training data and similarity among data items in hamming space respectively. I is the matrix
having all entries 1. Quantization loss is measured as |H | — I?. They used kernel logistic
regression boosted by sampling technique to introduce projection, the regression is done
through k-mean and random sampling similarly.

Semantic topic hashing via latent semantic information Wang et al. (2015) addresses
the issues with graph-based and matrix decomposition based multimodal hashing methods.
The long training time, decrease in mapping quality, and large quantization errors are the
generic drawbacks of above-mentioned techniques. In the proposed work, the discrete nature
of hash code has been considered. The overall objective function for text and image concept
(LT, Ly, L¢)is defined as:

i L=\NLy+(1—-MNL;+uLc+yREFE,U,V,P
ppin T +( YL;+uLc+yR( )

c
st hij €40,1}, ) hij = const
i=1
Here, F is a set of latent semantic topic, P is the correlation matrix between text and image,
U and V are the set of semantic concepts, A, i, y are the tradeoff parameters and R(-) is the
regularization term to avoid over fitting.

Multiple complementary hash tables learning  Liu et al. (2015) switches research direction
from compact hash codes to multiple additional hash tables. The author claims that this is the
first approach which takes into account the multi-view complementary hash tables. In this
method, additional hash tables are considered as clusters that use exemplars-based feature
fusion. They extend exemplar based approximation techniques by adopting a new feature

representation [z;]; = M here 6; € {0, 1}, ux are exemplar points € {Rd},’:’i 1
Zk’zlakK(xf’“k/) -
and « (-, -) is kernel function. The overall objective is to minimize:

1 N N
. 2
min = > 0 S| bi = bj
wB 2 =4
i=1j=1
Here  is the weight vector. The strength of presented scheme is that they assume a few

cluster centers to measure the similarity in between entire data points. They defend linear
weighting and bundling of multiple features in one vector using nonlinear transformation.

Alternating co-quantization based hashing Irie et al. (2015) proposed an improved multi-
modal retrieval which is based on the binary hash codes. The primary goal is to minimize the
binary quantization error. To reduce the errors, the proposed model learns hash functions that
provide a uniform mapping to one standard hash space with minimum distance among pro-
jected data points. The overall objective function (similarity preserving + quantization error)
is formulated as:

max 1r(ATC A+ DTCyD+2a0ATCoyD) +tr(2UXTA+2pvVYTD
AB.UV 7y J
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Here ), n are the balancing parameter, A and D are parameters of the binary quantizer, C is
used to define inter and intra modal correlation matrix between X and Y and U, V € {£1} are
binary codes for X and Y. Later in quantization phase, two different quantizers are generated
for two separate modalities viz. image and data which leads to end-to-end binary optimizers.

4.1.5 Deep hashing

In all hashing methods, the quality of extracted image features will affect the quality of gen-
erated hash codes. To ensure good quality and error free compact hash codes a joint learning
model is needed to incorporate feature learning and hash value learning simultaneously.
The model consists of different stages of learning and training deep neural networks. Deep
hashing model has three simple steps to generate individual hash codes: (a) Image input (b)
generation of intermediate features using convolution layer (c¢) a divide and encode module
to distribute intermediate features into different channels further each channel is encoded
into the hash bit. Representative methods (Abbas et al. 2018) are based on Recurrent Neural
Networks (RNN) and Convolutional Networks (CNN). Some of these methods are listed and
discussed below.

Point-wise deep learning Lin et al. (2015) suggested a deep learning framework for fast
ANN search. The main aim is to generate compact binary codes driven by CNN. Instead of
applying learning separately on image representation and binary codes, simultaneous learning
has been adopted with the assumption of labeled data. The proposed approach implemented
in three steps: (a) supervised pre-training on the dataset (b) fine tuning the network (c) image
retrieval. For computationally cheap large scale learning with compact binary codes, multiple
visual signatures are converted to binary codes. Following the data independence approach,
the proposed approach is highly scalable which lead to very efficient and practical large scale
learning algorithms.

Pair-wise labels based supervised hashing Li et al. (2016) addresses the issue of optimal
compatibility among handcrafted features and hashing function used in various hashing
methods. Simultaneous learning has been adopted, instead of applying learning separately
on feature and hash code. The proposed end-to-end learning framework contains three main
elements: (a) deep neural network for learning (b) hash function, which takes care of mapping
between two spaces (c) loss function that is used to grade the hash code led by the pairwise
label. The overall problem (feature learning + objective function) is formulated as:

n
min T=— Y (50 — log(1+e%) ) +n by — (WTH(xi:0) +v) |
i=1

B,W,v,6
A‘,’jES

1
5.0 = EuiTu,', U = (WT@(xi;G) +V)

Here 0 represents the all parameters of the 7 layers, #(x;; 0) denotes the output of the last
Full layer, v is the bias vector and 7 is the hyper-parameter. Following the principles, deep
architecture integrates all three components which further permit the cyclic chain of feedback
among different parts.

Regularized learning based bit scalable hashing Zhangetal. (2015) incorporate the concept
of bit scalability to compute similarity among the images. For rapid and efficient image
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retrieval the author group training images into a pack of triplet sample. The author assumes
that each sample consists of two images with a similar label and one with the dissimilar
label. In particular, the learning algorithm has been implemented in a batch-process fashion
that makes use of stochastic gradient descent (SGD) for minimizing the objective function
in large-scale learning. The objective function is formally written as follows:

N
1&/115)1 Z max{Dw(ri, i, ri_), C} +) tr(RLRT)
=1

i—
Here Dw(ri,r+ r ) = M(r,-,ri+ ) — M(ri,r;) with r;,rf,r” are the approximated

i i
hash codes,M is weighted Euclidean distance, C = —% for q bit hashing code, R =
[rl'v?/% , rzfv\% e, rTW%] for T number of images and w and \ are the parameter of hashing
function and hyper-parameter for balancing respectively.

Similarity-adaptive deep hashing For learning similarity-preserving binary codes Shen
et al. (2018) proposed an unsupervised deep hashing method. To introduce similarity pre-
serving binary codes, the author uses anchor graph to propose pair-wise similarity graph.
The anchor graph provides nonlinear data-to-anchor mapping, and they are easy to build in
linear time which is directly proportional to a total number of data points. The proposed
approach implemented in three steps: (a) Firstly, Euclidean loss layer has been introduced to
train the deep model for error control (b) Secondly, the pair-wise similarity graph has been
updated to make deep hash model and binary codes more compatible. (c) Finally, alternating
direction method of multipliers (Boyd et al. 2010) is used for optimization. The updating of
similarity graph is highly dependent on the output representations of deep hash model which
subsequently improves the code optimization.

4.1.6 Online hashing

Existing data dependent and independent hashing schemes follows batch mode learning
algorithms. That is learning based hashing methods demands massive labeled data set in
advance for training and learning. Providing gigantic data in advance is infeasible. A new
hashing technique that is focusing on updating of a hash function with a continuous stream
of data has been developed known as online hashing. Some of the representative methods
are listed and discussed below.

Kernel-based hashing Huang et al. (2013) proposed a real-time online kernel based hashing
which has its origins in the problem of large data handling in existing batch-based learning
schemes. In other contexts, the online learning is known as the passive aggressive learning. It
is first introduced by Crammer et al. (2006). The objective function for updating projection
matrix is inspired by structured prediction and given as below:

witl = argmin1HW— WTH2 +CE&
w2 F

Here C is the aggressiveness parameter and € > 0.

Adaptive hashing Cakir and Sclaroff (2015) presented adaptive hashing, a new hashing
approach that makes use of SGD for minimizing the objective function in large-scale learning.
The objective function is defined as:
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H(F @), £(x)); W) = (f(xi)Tf(xj) - BSij)2 + %HWTW - IH?

An update strategy is utilized for deciding in what amount any hash function need to update
and which of the hash function need to be corrected. W is updated as follows: W*! = W’ —
n'Vwl(f(xi), f(xj); W'). Here ' is the constant value, Vyy is obtained approximating the
sgn() function with sigmoid. During online learning orthogonality regularization is required
to break the correlation among decision boundaries. Adaptive hashing is highly flexible and
iterative as it updated the hash function with the speed of streaming data.

4.1.7 Quantization for hashing

Every approximate nearest neighbor searching techniques comprise two stages: projection
and quantization. Initially, the data points are mapped into low dimensional space. Next, each
assigned value quantized into binary code. During quantization information loss is instinctive,
but in any bit selection approach for quantization, similarity preservation of Hamming and
Euclidean distance and independence between bits are other major issues. A representative
method includes single bit quantization (Indyk and Motwani 1998), double bit quantization
(Kong and Li 2012), multiple bit quantizations (Moran et al. 2013) and much more. Some of
these methods are listed and discussed below.

Variable bit quantization Moran et al. (2013) proposed a data driven variable bit allocation
per locality sensitive hyperplane hashing for quantization stage of hashing based ANN search.
In previous widely popular approaches SBQ (Indyk and Motwani 1998), DBQ (Kong and Li
2012), NPQ (Moran et al. 2013) and MQ (Kong et al. 2012) it is taken for granted that each
hyperplane has been assigned with 1 or 2 bit respectively and in case of any method violate
the defined assignment principle then either bits are discarded or other hyperplanes serves
with lesser bits accordingly. Initially, in order to allocate a variable number of bits to each
hyperplane, the F-measure has been computed for each hyperplane. The principle idea behind
F-measure calculation is that large informative hyper-planes results in higher F-measure.

Most informative hash bit selection Liu et al. (2013) proposed a bit selection method
named NDomSet which unify different selection problem into a single framework. The author
presents a new family of hash bit selection from a pool of hashed bits which further grows
into the discovery of standard dominant set in the bit graph. In this approach, firstly an edge-
weighted graph is made, representing the bit pool. The proposed approach consisted of bit
selection as quadratic programming to deal with similarity preservation and non-redundancy
properties of bits. The experimental results show that the proposed non-uniform bit selection
strategy perform well while using hash bits generated by different hashing methods viz. ITQ
(Gong et al. 2013), SPH (Weiss et al. 2008), RMMH (Joly and Buisson 2011).

Exploring code space through multi bit quantization ~Wang et al. (2015) address the issue
of quantization error and neighborhood structure of raw data. The author introduced an inno-
vative multi-bit quantization scheme to use available code space at its maximum. To depict the
similarity preservation among Hamming and Euclidean distance space, a distance error func-
tion has been introduced. They also proposed an O(n?) algorithm for optimization to reduce
the computation time. Results obtained by experiments demonstrate a possible improvement
in search accuracy due to proposed quantization method. They also demonstrate the effec-
tiveness of Hamming, Quadra and Manhattan distance on multi-bit quantization approach.
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Table 2 compares various hash based indexing techniques regarding their pros, cons,
dataset, feature used, evaluation measure and experimental results. Table 3 lists a brief intro-
duction to different datasets used in hash based indexing techniques.

4.2 Non-hash based indexing

Non-hash based methods are classified in various categories viz. tree, bitmap, machine learn-
ing, deep learning and soft computing based. To maximize the scope of non-hash based
methods here, we consider every technique one by one in order.

4.2.1 Tree based techniques

Earlier nearest neighbor searching methods are tree-based, and there is a need for indexing
structure to partition the data space. Further different similarity measurement metrics, space
partitioning, and pivot selection techniques are adopted to compute the nearest neighbor
among image features. Due to these joint efforts, a large class of tree-based indexing tech-
niques is available in literature such as R-Tree (Guttman 1984), KD-Tree (Friedman et al.
1977), VP-Tree (Markov 2004) and M-tree (Ciaccia et al. 1997). Studies below stressed on
some essential techniques in large image datasets.

Pivot selectionbased Indexing schemes based on reference (pivot) objects results in minor
distance computation and disk accesses. The different pivot selection algorithms compete
for selection of right pivots, the number of pivots, pre-computed distances, and distribution
of pivots. Pivot selection techniques are classified into two categories: Pivot partitioning and
Pivot filtering. Further partitioning can be done in two different ways ball partitioning and
hyperplane partitioning. Some of these techniques are listed and discussed below.

(i) Use of Spacing-Correlation Objects Selection for Vantage Indexing

Van Leuken et al. (2011) propose an algorithm to select a set of pivots carefully. The proposed
vantage indexing makes use of a randomized incremental algorithm for the selection of a set
of pivots. The two-pronged scheme firstly proposes criteria to measure the quality of pivots
and secondly provides a pivot selection scheme with the condition of no random pre-selection.
They have proposed two new quality criteria for variance of spacing and correlation, defined
as:

1 n—1 X
m%; == ;((d(AHl, V;) —d(A;, V;)) — r)” and
C(Vy, Vo) = Soildi —do) =Y ;dliy " d2i

\/n i) = (X dli)z\/’l Y din)? = (X dui)’?

Here p is the average spacing o be the variance of spacing, A and V are objects and vantage
objects respectively, d(-, -) be the distance function and C be the linear correlation coefficient.

(ii)) Cost-Based Approach for Optimizing Query Evaluation

Erik and Hetland (2012) proposed a cost-based approach to evaluating pivot selection dynam-
ically. The main aim is to find selective pivots and an exact number of pivots required to assess
a query. Initially, to perform a sequential search by skipping the searching in indexes, the cost
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model has been used. Quadratic Form Distance is used to compare histograms, and Euclidean
distance has been used for experimental measurements. This approach believes in the static
use of pivots (Traina et al. 2007) and the principle of maximizing the distance between pivots
strengthen the approach.

(iii) Improving Node Split Strategy for Ball-Partitioning

De Souza et al. (2013) described ball-partitioning-based metric access methods that able
to reduce the number of distance calculation and fast execution of distance-based queries.
Node split strategies of M-tree and slim tree are too complex. The main aim is to propose the
modified node split strategies. For better pivot selection, to avoid unbalanced splits and to
categorize the nodes in different sets, three different algorithms viz. maximum dissimilarity,
path distance sum based on prim’s algorithm and reference element have been proposed. The
proposed methods are shown to be efficient in the number of distance calculations and the
time spent to build the structures.

(iv) Efficient k-closest pair queries by considering Effective Pruning Rules

Gao et al. (2015) proposed several algorithms for closest pair query processing by developing
more effective pruning rule. The contribution of this paper is twofold: minimizes the number
of distance computations as well as the number of node accesses. The proposed approach con-
sisted of depth-first and best-first traversals to deal with duplicate accesses. Query efficiency
is achieved by the employment of new pruning rules based on metric space. Experimental
results on different data sets proved that the proposed scheme reached minimum distance
computation and minimized I/O overhead.

(v) Metric all-kNN search by Considering Grouping, Reuse and Progressive Pruning Tech-
niques

Chen et al. (2016) proposed a novel method for All-k-Nearest-Neighbor Search named Count
M-tree (COM). The contribution of this paper is twofold: minimizes the number of dis-
tance computations as well as some node accesses. The indexing method relies on dynamic
disk-based metric indexes which use different pruning rules, grouping, recycle and pruning
methods. The strength of presented scheme is that the query set and the object set share the
same dataset as no different dataset required to train them separately.

(vi) Radius-Sensitive Objective Function for Pivot Selection

Mao et al. (2016) proposed an improved metric space indexing which is based on the selection
of several pivots. The system performs following functions: Firstly, they present importance
of pivot selection. Their criterion for pivot selection is based on relevance and distance among
pivot objects. An extended pruning mechanism has been presented with a framework to fix
and select some relevant pivots. Radius-sensitive objective function for pivot selection is to
maximize:

P = argmax|(x, y)|x,y € S, Loo(Fr.a(x), Fra(y)) > r|, |T|
T

Here S is the dataset in metric space, L is the distance.

Clustering based The grouping of semantically similar images into clusters suggests a
novel framework for nearest neighbor search in image retrieval. Instead of matching large
part of image data set with query image it is meaningful to match a representative image(s)
from a cluster. Following the principles, clustering based techniques work for a particular
dataset. Varieties of clustering methods are available in the literature. Some of these methods
are listed and discussed below.
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(i) Priority Queues and Binary Feature based Scalable Nearest Neighbor Search

Muja and Lowe (2014) proposed a priority queue based algorithms for approximate nearest
neighbor matching and proposed an algorithm for matching binary features also. The focus
of this algorithm is to extend in finding a large number of closest neighbors. They have
developed an extended version using a well-known best-bin-first strategy. A small number
of iterations considerably cut down the tree build time which further maintains the search
performance. The author also comes up with an open source library called the fast library for
approximate nearest neighbors (FLANN) for the use of research community.

(ii) Indexing and Packaging of Semantically Similar Images into Super-Images

Luo et al. (2014) work on the packaging of semantically similar images into super-images.
The fact behind this proposal is the strong relevance of the images into a dataset. The concept
of super-image effectively bundle the multiple images into a single unit of same relevance
and significantly decreases the size of the index. Semantic attribute extraction is the main
issue in index construction. The attributes are extracted during packaging of one super-image
i.e. during off-line indexing to make fast index structure. Visual compactness of a superimage
candidate is calculated as:

Ve(Si) = 1 - ZeieStizs G (TFL TF)
0.5 x [SI| x (|SI]| — 1)

Here TF is the normalized term frequency vector and dist() is the cosine distance.
(iii) Image Discovery through Clustering Similar Images

Zhang and Qiu (2015) proposed a scheme to discover landmark images in large image
datasets. For rapid and efficient image retrieval the author group semantically similar images
into clusters. One landmark image with different viewpoints adequately packed into a sub-
cluster. Clusters can be partially overlapped. Each sub-cluster contains a center called as
bundling center. Further, the bundling center of sub-cluster acts as a representative of the
sub-cluster, to avoid exact image matching the scheme performs image matching by placing
the bundling center.

Other techniques This half contains the approximation, relevance feedback and some other
techniques for VIR. Retrieval of images by approximation, relevance feedback or by some
other means viz. online techniques and query as video demands extra efforts but results in
fine-grained results. Some of the representative methods are listed and discussed below.

(i) Indexing via Sparse Approximation

Borgesetal. (2015) propose a high-dimensional indexing scheme based on sparse approxima-
tion techniques. The focus of this scheme is to improve the retrieval efficiency and to reduce
the data dimensionality by designing a dictionary for mapping the feature vectors onto sparse
feature vectors. The proposed scheme switches its direction to compute the high-dimensional
sparse representations based on regression with the condition of preserved maximum locality.
They showed that traversal of the data structure would be independent of metric function,
low storage space required for efficient encoding of sparse representation and search space
pruned efficiently.

(i) Use of Hybrid Segmentation and Relevance Feedback for Colored Image Retrieval

Boseetal. (2015) proposed a new Relevance Feedback (RF) based VIR. The first advantage of
the proposed scheme is feature-reweighting for relevance feedback i.e. to compute relevance
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score and weights of features the combination of feature-reweighting and instance based
cluster density approach are used. The second advantage is a good utilization of image and
shape contents. This scheme extracts the color and shape information through the color co-
occurrence matrix (CCM) and segmentation of the image respectively. Here, unrestricted
segmentation (k-mean) is used to segment the images. The relevance feedback scheme is
initialized with three different approaches: intersection approach, union approach, and a
combination approach. They have proposed two new measures retrieval efficiency, false
discovery respectively to address the accuracy of retrieval.

(iii) Parallelism based Online Image Classification

Xie et al. (2015) propose a united algorithm for classification and retrieval named ONE
(Online Nearest-neighbor Estimation). They observed that image classification and retrieval
fundamentals are same and similarity measurement function could launch both of them. Its
overall aim is to utilize the GPU parallelization to make the fast computation fully. The
dimension reduction scheme is initiated with the help of both PCA and PQ. The scheme
relies on feature extraction, training, quantization and an inverted index structure.

(iv) Query by Video Search

Yang et al. (2013) proposed a priority queue based algorithms for feature description and
proposed a cache based bi-quantization algorithm also for information retrieval concept
implementation. This method considers a short video clip as a query. Further, to find stable and
representative good points among SIFT features, scheme perform feature tracking (Ramezani
and Yaghmaee 2016) within video frames. The calculation of good point is formulated as:

()
G( S = +(1—
pi ) o Frame Count (

ZpeS
Len($(p!)) x d©, )

x) X Cent(p{)

(pl_j) d(p,c)

s.t. Cent(pij) =—

Here S ( pij denotes stableness of the point, Len() represents number of frames being tracked,

and Framecount denotes the total number of frames in video query. Query representation is
initiated by combining good points into a histogram.

Table 4 compares various tree-based indexing techniques regarding their pros, cons,
dataset, feature used, evaluation measure and experimental results. Table 5 lists a brief intro-
duction to different datasets used in tree-based indexing techniques.

4.2.2 Ranking based

Another category of tree-based indexing technique exists in literature to rectify the distance
computation cost and index building cost by the use of different ranking strategies. In com-
parison to other methods, most of the ranking based methods are independent of distance
measures. By exploring the ranking order and post processing, it is easy to the accurate
and fast construction of index. The ranking scheme can be further extended to graph based,
manifold ranking, supervised and unsupervised techniques.

4.2.3 Deep learning based

The need for full utilization of feature extraction, processing, and indexing in VIR shifted
the research direction towards deep learning. The recently proposed models map low-level
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features into a high level with the help of nonlinear mapping techniques. Different feature
extraction networks are available in literature viz. Alexnet (Krizhevsky et al. 2012), Goognet
(Szegedy et al. 2015) and VGG (Simonyan and Zisserman 2014). Issues like number of layers
in a network, distance metric, indexing techniques and much more are still unanswered and
need to be benchmarked. Representative methods are based on RNN and CNN.

4.2.4 Machine learning based

It is essential to understand the discrepancy between low-level image features and high-level
concept to design good applications for VIR. This leads to the so-called semantic gap in the
VIR context. To reduce the semantic gap different classification and clustering techniques
under machine learning are available. The support vector machine (SVM) and manifold
learning are used to identify the category of the images in the dataset. Relevance feedback
is also a good alternative. The level of learning and feedback further categorize learning
methods in ‘active’ and ‘passive’ learning and ‘long’ and ‘short’ term learning approaches.

4.2.5 Soft computing based

Soft computing is combined effort of reasoning and deduction that employ development of
membership and classification. The key to any productive soft computing based CBIR tech-
nique is to choose the best feature extraction scheme. Some of the soft computing techniques
are Artificial Neural Network, Fuzzy Logic, and Evolutionary Computation. Above listed
methods are discussed in Table 6.

In the previous half we present a detailed review of hash and non-hash based indexing
techniques and we found that hash and non hash (tree) based techniques are totally different in
nature. Generally speaking, in comparison to hash based techniques, the tree based techniques
have following serious issues:

(1) Tree based methods are in need of large storage requirement in comparison to hashing
based methods (sometimes more than the size of dataset itself) and the situation becomes
worse when managing high dimensional datasets.

(2) For high dimensional datasets, in comparison to hashing based methods the retrieval
accuracy of tree based methods approaches to linear search as backtracking takes long
search time.

(3) The use of branch and bound criteria in tree based method makes them computationally
more expensive as they are unable to stop after finding the optimal point and continuing
in search of other points whereas in hashing based methods the criteria is to stop the
search once they find a good enough points.

(4) On behalf of partitioning the entire dataset the hashing based methods repeatedly par-
tition the dataset to generate a one ‘bit’ hash from each partitioning whereas tree based
methods uses the recursive one.

On the application side tree based methods are applicable and useful when we have low
dimensional datasets and user wanting exact nearest neighbor search. In the era of big data
and deep learning, hashing based techniques are more suitable for high dimensional datasets
and nearest neighbor search with low online computational overheads. Further, different
intents and needs of users bring up unheard challenges as discussed in Sect. 7 later, all these
challenges are in the scope of hash based methods. So we surely handle all of these issues by
employing advanced hashing techniques. Therefore, to ensure fair comparisons a summary
of their potential is presented in Table 7.

@ Springer



S.Sharma et al.

1240

pasodoid udaq sey SAINSLIW UOTIE[OII0D JUBT MOU OM],
UOIJBULIOJUT QOUB)SIP
woxj Juapuadopur JT SOYBW YIIYM SIST[ PIYURI UIIMISq
Ayreruats oy sondwiod 03 uonewLIOjuT JUIyUERI SAsN J]
Q0UR)SIP [BNIUT Y} SUYIPAI 0} Pasn
SI yoIym pastatednsun A[oInua st poyiow pasodoid oy,
sotd

[easinai ordwes-jo-no
)M PIAISSqO ST asuodsal Juedyrugis y
uoneIndwod JUSTOYJ ur s)nsax

uoneindwos aoue)sIp Jsey Jojy sanbruyo)

1899 Y} JO JUO ST SIY} Jey) MOYS S)[NSI [ejudwradxy ‘samseawr
UOTJB[O1I0D YUBI JUSIJJIP XIS SOALIOP JOYINE Y} ‘O[O1IIE SIY) U] "UOTIOdS
yoea jo Surssaooad renprarpur ay) ur sdjay saypang Aorjod Surpiarp ayJ,
*JSI] paYueI 3y} JO 1red QWOS SAUTULISIOP UOT)OS PIPIAIP YOBF "SUOIOAS
JUDIQYJIP 921y} Ojul IPIAIP 0} sesoddns Isi[-payjuer ay) ‘eSewr A1onb

10,] ‘uoTjEWLIOUT Sunuer [UO SIsN SAWAYDS SUTXIPUT Paseq IS T-Suryuey Surures]
UOTBULIOJUT 9JURISIP oY) Suisn Jo peajsu] "saSew oy) Suowre Ajurerurs Qoue)sIp pastaradnsun
Andwod 0y Sunjuel jo 1doouod ayy arerodiodur (G1(07) ‘Te 12 BpeO Paseq UOTIB[a1I0D ury

swyjiod[e paseq-ydeIs 1oyjo 10J [[om

JIoM 0} J9S U22q Sey XIiew Aoudoe(pe mou JIoy) Jey) SwWIe[d Joyine Y],
-ooeds a3e101s pue own [euoneINdWOd PIINPAI YPIM AJBINOIL [BAILIAI
jsej paadryoe dwayds pasodoid oy ey paroid s)as eyep JUAIIIP

uo sy[nsaI [eyuewzadxy “sioyoue oy} ojepdn 03 90103 Jou soop sojduwres
mau jo uonippe ay) se Surjpedwos st ydesd toyoue jo 3doouod oy,
‘wyjose ueaw-y 3do royine oy sioyoue 33 0F, ‘sjurod eiep Jo Ioquunu
12101 ® 03 Teuontodord A[JoauIp SI YoIyM QwIT) JEQUI| Ul p[Ing 0} ASed aIe
Aoy pue ‘Surddew royoue-oj-eyep Jeaurjuou sapraoid ydeid zoyoue ayJ,
‘ugisop xuyew Aouadelpe [oaou e asodoid 03 ydeid Joyoue sasn Joyine
oy ‘Sunjues pojiuew paseq-ydeis e aonponur of, ‘serronb spdwres jo no

K1onb opdwres-jo-1no pue ydei3 9qe[ess jo uonippe ayJ, pue uonenoed Sunjuel ‘uononnsuod ydeis ur 3500 uoneindwod y3ry a1y Sunjuex
sotd SANSST AWO219A0 01 yoroldde Suryuer pjojrueut & pado[aadp ([107) T 12 X plojiuew paseq ydein
paspq Suryuny
Suo)) pue soid uonduosaqg anbruyoap

(eam uey 10U)0) sayoeoidde paseq-yseH uoN 9 ajqel

pringer

Ns



1241

A survey of image data indexing techniques

sa3e}s Juarayip ye uonezrundo annbar
saInjeay [eqo[S jo suonejuasaidar spdnnur 1ay)ing
10113 uonyezuenb ur synsaI A[snosue)nuirs
SO[qe) PAYIGAUI PUE SAINJEdJ [2QO[S JO SN A,
s
9[qE) XOpuI PLIQAUT 0} UMOP MOIIEU ST JWAYDS
) Sk SPoYJaW 90105 )nIq 0) UoSLIedwod Ul I)Se,]
[eASINRI STk I9})aq yonw pajyiodar saInjeay
NND Xaput 03 sa15ajens Sunjur ajdnnuw jo asn ay [,
soud

oM
se sonbruyo9) Surxapurt Joyjo YIm qIXaY 1 SAyew
yorym s3s1] payuel Jo 1ed e sasn yoeoidde pesodoid oy,
$)s1] Sunjuel jo
9ZIS JUSIJJIP I0] POAISSqO Ik 11030 uoneindurod Mo
Apigeress pue ‘Aoudtoyje
SSOUIATIOYI AYI] SANSSI AY) SIAUNOOUD Apjurof I
soiq

uorstoard

ur doap o[ Y Aouaroyye euoneindwod Yy saaoxdwr awayds

9} Jey) MOYS S)[NSAI pue saseqejep AFewr JUSISHIP 1oy uo paurioyrad

u9aq SBY AWAYDS Y], “Juswusisse pue “yury ojdnnu ‘Surppequio Areurq

“ZIA $31391e1s AP Aq pajesuadwod usaq sey Surddew Surmp ssof

UOTJEWLIOJUT JO JJoopeT) oy, "adeds [200] 0] 9oeds [eqO[3 WOIJ SoInjedy

dew 0) poyussaid are (paseq uoneznuenb jonpoid) spoyIoW UOHONNSUOD

KTeuonoIp JUIOIP oM} d0eds soImjedy NND 9[qe[IeAe JO ejep

onuewas uo Surpuada(] "samyea (1eo0]) ensIA 03 saIed) (1eqo[s) NND

Surddew £q 1500 a8e10)s BIRp QYY) 20NPal 0) puE AOUAIOYJS [euoneIndwod

a3 aaoxdwir 0] ST poyIou SIY) JO SNO0J YT, "SeINJedJ [qO[S [RUOTISUSWIP

Y31y JIIm [B9P 0) 9[qe) PALIDAUI PUB [9POW A\ O JO SN SAYBW WASKS
AL, "saryeay NN 0} awoyos Surxepur ue pasodoid (G1(g) 'Te 10 nry

SONI[EPOW JUIIJIP Pue sI0)d1IOSIP JUAIAJJIP ISPISUOD JOU S0P 1 ey SI

Apmys o) JO SUMWOD}IOYS Y], “'WOTIONISUOD XSPUT UT JUSIOYJO PUE QATIOIJO

Quayos Surxeput pasodoid sydwope uoneindwiod oI YIm Jey) Moys

$3[NSAI [RuWLIAdXQ 9], ‘A[SUIPIOIIL SOSBAIOOP SITRWI UIIMIQ 0UR)SIP

oy se Is1] paxyued oy ur dn oIS A9y} 9SNBOAq 1Y ISI| PaUL paje[el

' Ul paxy jou st saSewr jo uonisod [enprarpur ay [, ‘uoneindwod JySrom

10 90UR)SIp UT 901 TeyiA & sKefd is1] pesjuer e ur aSewr ue Jo uonisod

AL, *s1s1] payuel jo suonisod doy Jo o3ejueApE s9ye) QWAYDS SUIXIPUI

pasodoid oy, “poylowr Surures] aouesIp pasiazadnsun [aaou e juasaid
K9 [, "UOTIEPUSUILIOdAI JST[-payuer oy premIo] nd (G1(7) ‘T8 10 WA

SaInjed)

NND 10J owayods Surxopur uy

Sunwwa] daaq

ISI[-payuel BIA Surure9|
Qoue)sIp pasiatadnsun)

suo)) pue soig

uondrsaq

anbruyogg,

panunuod 9 3|qe]

pringer

Qs



S.Sharma et al.

1242

paromsurUn
SI Pasn WSIUBYIAUI YOBQPAQJ d0UBAJ[I Jo 9dA) oy,
)

Qoeds uonejuasaidar eyep pesodoid ur sanbruyoe)
Sun)snyo 10 uoneoyIsse[d prepue)s ay) Ajdde 03 Asea s13|
soiq

s[opour 9[eos a3re Sururen ur sdjoy
sny) pue Surddew Jo [9A9] Y} Je SuruIed[ SIZI[IR]S I]
suo)

BJEp RIPOWI[NW JUSISHIP UT PAINISQO SAINJONIS

ordnnur oY) 19A00uN 0) pasn Furured] pasiatadns
pue pasiaradnsun sjuowerdur Apurof poyjowt ayJ,
soiq

[NJSS00NS PAWAP ST POYIAW A} Jey) Pamoys djel uorsioard oy, ‘way)
100UU09 0] pasn st ydeid sse[o uoamiaq s[oqe] JE[IWIS-uol J0J SeaIoym
s[oqe[ sy} 109uu0d ydeid sse[o urylim s[aqey Je[ruis om) Joj ‘sydeid
SSB[O U99M]Qq PUE UTYIIM J) UTLJUTEW 0} PIsn U2q Sey UONeuLIoJul
Surpoqer oy ‘Toyian ‘sydess sse[do usamioq pue sse[o oy UM
:so110391e0 om) ojur J1ds are sydeis JoquSrou 1saIeIU AY) ‘UOTIBULIOJUT
pooyloqu3rou pue sse[o uo Surpuada(g "2In3onys dLIAWOAT [BO0]
) [opowt 03 payonnsuod e sydeid JoquIrou 3sareau ‘yoroidde siy) ug
*(ATRUIWILIOSIP PUE [EOLIAWO0IT YJ0q) 2INJonIns [eqo[S IA0ISIP 0} prey
s 31 ‘so[dures juarorgnsur 0} an( (9661 SUSp Pue s10MS) VAT PUe (000T
‘Te 19 epn() VD UI St 21nonns [eqo[3 9y Jo peaisur AI9A0ISIP 2InonIs
plojiuew [e20] S15933ns JoyIne Ay, -ooedsqng UISIBIA WNWIXBIA

pawreu yoroldde uononpar Ayeuorsuswiip e padoaaap (8007) Te 10 °H

K19A00s1p 236w JUAIOYJS sutorad
QWIAYDS Y] By} AJeXsuowp syuswadxd £q paurelqo synsay ‘yoeordde
Surures] pasiaradnsun pue pasiaradns 11oddns 01 YONIS powreu
uopye[d Sururen paynqrusIp e p[ing Aoy} ‘Ioyin, “"BIep Y} Xopur 0} pasn
AIe (8661 I8 12 13G9M0) SI[Y VA QIoH “19sejep a51e[ Joj ssaooid Sururen
jJuatoyye Arowew e pue jndur Sururen 10§ parmbol UOEWLIOJUT I9SSA]
‘urddewr 10§ uonouny Jeauruou € :projaaay) st raded sy jo uonnqLyuod
9y, ‘yoeoidde pasiaradnsun o) paredwod yoeoidde pasiazadns jo
35N Y SAJBIOAPE S[oqe] ONULWAS Jo dduasaid oy *o°T anbruyoe) Sururesy
JO UONOI[As Ay} dZI[euy BIep AFeWI YIIM UONBWLIOJUT [9qe] ONULBIAS
pajeroosse Y], ‘A[oanoadsar NND doop pue s1opoous-ojne Aq paiidsur
yoeroidde pasiaradns pue pasiazadnsun pajuasald zoyne oy ‘9And9[qo
Surures] [erouss 9onponul o, -eoueuriofrod [eAdLIRI 9FeW [EpoW-Nnw
a3 aaoxdwr 03 sanbruyoe) Surures| (oaou om] pasodold (91(7) ‘Te 10 Suem

Surured|

Qoedsqns urSIew WNWIXBA

Sunwa) auryovp

[BASLIIOY [ePOWI[NIA
paseq Sururea| deaq

suo)) pue soig

uondrsaq

anbruyogg,

panunuod 9 3|qe]



1243

A survey of image data indexing techniques

SQINJB9J JO IdQUINU [B10}
B UT 9SBAIOUT 9] 1M Pajod)je aduewiiofiod [eAdLnar oy,
suo)
IOYISSBO
2130] Azzny dojoAap 01 papraoid aIe SUONOAIIP [NJas)
saIn)eay
amyxa} uo uonerado uone)oI pue Aeds xa[dwod
) JsureSe 9AN09YJQ 2q 03 umoys st yoeoidde sy,
soid

y1oq sojdures pa[foqe[un pue pa[oqe| WOLy 2Injonns
plojiuew 1A09s1p 03 d[ay suonouny [ouray pasodoid ay,

A[oAnIRIoN SIned) ojdnnw

Sunoo[as Aq pajoaIp s JuruIea] oy} se [qe[eds
PUB 9A1I3JJ2 2q 0) umoys st yoeordde pasodoad ayg,
soiq

'SaSeWI JO JqUINU MoJ U0 pawrofiod useq sey poylow Y jeys st Apnis
) JO UOTIBIIWI] AY) JNq ‘9JeI [BAILIJAI POOT SIASIYIE POYIAU A} SIWAYOS
JUBLIBAUT JUSIQJIP YIIM Jey) Sjerjsuowap syuswiiadxa Aq paureiqo
SISy “1oyIsse[d ay) 03 sojdwes Funsay Juissed a10joq sordwes Jururen
JO S2INJEaJ PIJII[AS I0J PIULIOJ U] JARY SIASN[)) IAYISSe[d J130]
Kzzny dofeaap 0y pasn st uonouny dIysIOqUISW URISSNED) Y[, "UOTIRIOI
pue ‘a[eds Y10q ‘uone)ol A[Uo ‘9[eds A[uo ‘a[eds ou uone)or ou ‘zia sdnoid
INOJ UT JUBLIBAUT UOTIBIOI pue 3[eds dnoid swayds pasodoid oy [easLar
JuaroyFe A[y31y 103 0F, SISATeue [eAALIRI 10J (Y107 T& 10 NOSaUO])
JUBLIBAUT UOTJRJOI PUE 9[edS paroiduur ue ayew 0} wie L3y [, IoyISSe[d
o130] AZznj SUIAJOAUT POYIOUI [BAJLI)AI B Pajuasaid (+1()g) ‘T8 10 dueynA

uoneIOUUR PUE ‘UOTIBOYISSE[O oSew!
‘uonIuS0991 9J.J ‘TeAdlnal oewl Zia uonedrjdde Jo younq e 10 [[om
SIoM 0] 39S ST POYIoul JIay) Jey) SWIe[d Joyne oy, ‘3ur)so) JoJ pasn aIe
so[dwres pejoo[osun pue JOYISSL[d € Urel) 0} pasn aIe sojdures asay) IoyIng
so[dwes 9AIBULIOJUT JSOW UIBJ] 03 Josejep d3ewl [l PUL JNOYIUAS
U0 PaJeN[eAd Ud2q Sey poyjaut sIy], ‘A[eaneran sajdwes oidnnu 109[9s
0 9[qrssod St 31 SUTUIB] JATIOR 10 Jey) pamoys Ady], ‘wojqoid AJAnIsuas
ay aye1a9[e 03 sdjay eyep pajoqe| woiy sojdwes Jururen jo souapuadopur
oy, 'so[dures ejep pajeqerun pue pajeqe] Aq PeIso0q UonouUNy [oUISY
juopuadap-ejep pasn Aoy} ‘Suruied] sonponut of, ‘Ajsnoauejnuis sojdures
QATJEWLIOJUT PUE 9AT)EIUASIdAI JSOW JO9[9S 0) POYIoW SUTUIEI] PIUWLIOJIP
projiuew mou & pasodold A9y, “paIapIsuod udaq sey so[dwes pa[joqe[un
JO p[OJIUBUL OISULNUL 9Y) {IOM SIY) U] "9A0qE pauonuaw sanbruyoa)
JO syoeqMmeIp OLIoUaS oY) oIe sojdures 9oy} JO UOTIOI[S PAIIUI]
& pue sojdues aseqeiep pa[[oqe[un Jo ddUBIOUSI Y], ‘SPOYIAW SUTUIRI|
QAnOR paseq (QH.L) udisop [eyuswiadxyg eAnonpsuel], pue (q40)

uStsop reyuowzodxe wnwndo yrm sansst oY) sassaIppe (£107) ‘Te 10 Sueyyz

JUBLIEAU] UOTIRJOY PUE 9[BIS
paaoxduwiy paseq o130 Azzng

Suynduwiod 1fog

Jurureo[ aAnoe
10J UOTJRZLIB[NSAI P[OJIUBIA

suo)) pue soig

uondrsaq

anbruyogg,

panunuod 9 3|qe]

pringer

Qs



S.Sharma et al.

1244

suonouny diysrequiewt £zznj Jo pury [[e JOJ [[oM JIom

01 138 ST POy I3y} Jey) SWIR[D IoyINe Y], "}Ie-3y)-j0-3)e)s 03 paredwod
owr Surse) pue Jurures ur juswasoidur a[qissod v e suowrap
sjuawiLiadxa AQ paure}qo SNSaY "W)SAS ay) ojur A[oIIp so[nt Azzny
Surppe £Q SUOp U93Q JABY SISSE[O MIU JO UOTIPPE ) JBy) S1Sa33ns Bapr
ay [, "s1ejowrered [enIUT WOIJ 9217 ST T IYLINJ PUB ‘UOTIEOYISSE[O dFewl 10§

uonippe s9[nI Azznj paseq 21njed) [8d0] spring A[fednewolne anbruyod) pasodoid
9[n1 AzznJ Y3noIy) SUOP UIQ SBY SISSB[O MU JO 9y [, "‘unyirios[e 1s00qepy Ay Suisn pandwod St IYSIoM §,21nJed)
uonippe ay) se puedxa 03 Asea st yoeoirdde pasodoid sy, P91O9[3S PUB SSB[D 2FBUWII UB WOIJ PI)II[AS A[WIOPURI U SeY 2INJed)
SuruIes] pue UOTIBOYISSE[O JSBJ POAISSqO POYIW Y], ® ‘A[Tentur ‘Surp[ing I0GIsse[o yeam Jo ssoooid oy uy ‘peads Suryoress dn
Surured] Sunsooq pue 9130] Azznj SuTUIqUIOD paddass pue uoneoyIsse[d ofewl 10339q yonw payrodar Surures] Sunsooq Surure|
£q uoneoyIssed 95ewl 19)32q B SAYSI[QRIS [opowl Y[, pue 2130] £zznJ Jo 9sn PAUIqUIOD Y "SUIYOIEIS pueL UONEeoynuapI 309[qo 1500g pue s1ayisse) Azzng
soid 10J yorordde uoneoyisse[o o3euwr ue pado[arap (91(7) T 10 ISMOYIAIOY] BIA soSew] JO UONBIYISSB[D) 5
o0
=)
Suo)) pue soid uondrsaq anbruyogg, mP
w
panunuod 9 3jqel 4l



A survey of image data indexing techniques 1245

Table 7 Comparison of Indexing Techniques

Dimensionality Nearest Storage Retrieval Computational Dataset
Neighbor Requirement Performance Complexity Compression
Non Hashing Low Exact High Low High No
Hashing High Exact/ Low High Low Yes
Approximate

5 Evaluation framework

In this section, we evaluate hashing techniques by careful analysis of results in the literature
and approaches surveyed in this paper. By focusing on experimental works, we make an
analysis of large number of notable hash based indexing techniques whose codes are available
online. The experiments are run on an Intel Core i7 (4.20 GHz) with 32 GB of RAM, and
Windows 10 OS. All the strategies are implemented in Matlab R2017b using the same
framework to allow a fair comparison (Table 8).

5.1 Description of data

For the experiments regarding large scale similarity search and image retrieval we resorted
to the five data sets: NUS-WIDE, CIFAR, SUN397, LabelMe, Wiki. The five datasets are
chosen for their qualities viz. diverse, accessible, large size, and a rich set of descriptor
considering different properties of the image. A large number of datasets are available in the
literature as listed in Table 3 with their license, content, and accessibility issues. We have
only opted general image datasets as they are largely opted by state-of the-art.

5.2 Evaluation metrices

The majority of datasets and techniques use Mean Average Precision (MAP) as the central
evaluation metric for experiments. Along with MAP, they consider Mean Precision, Mean
Classification Accuracy (MCA), Precision and Recall of Hamming distance 2. They also use
two different metrics for evaluating retrieval: (i) Normalized Discounted Cumulative Gain
(NDCG) using Hamming Ranking (ii) Average Cumulative Gain (ACG) using Hamming
Ranking.

5.3 Evaluation mechanisms

The evaluation of system decides how far the system accomplish user’s needs and technically
which methodology is best for feature selection feature weighting, and hash function genera-
tion to make efficient and accurate retrieval process. Accordingly, researchers have explored
a variety of ways to assessing user satisfaction and general evaluation of Image Retrieval
system. It has always been a challenging and difficult matter for image retrieval importantly
due to semantic gap (Wang et al. 2016) and further it is more problematic to pick out relevant
set in the image database. There exist different ways of evaluating Image Retrieval systems
in the literature are described below.
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Table 8 Description of Hashing Techniques and abbreviations used in analysis

Abbreviation

Meaning

Abbreviation

Meaning

LsH®

SHS
ITQ%

InnerKSH®

AIBCS
SpH®

SPLH®

KSH®

LFH®

ssH®

CMFH®

LSSH®

KLSH®

scm?
ACQ¥
RPH*

CMSSH*

Locality Sensitive Hashing
(Datar et al. 2004)

Spectral Hashing (Weiss et al.

2008)

Iterative Quantization (Gong
et al. 2013)

Inner Product + Kernel Based
Supervised Hashing (Liu
etal. 2012)

Asymmetric Binary Coding
(Shen et al. 2017)

Supervised Discrete Hashing
(Shen 2015)

Sequential Projection
Learning Hashing (Wang
etal. 2010)

Kernel Based Supervised
Hashing (Liu et al. 2012)

Latent Factor Model Hashing
(Zhang et al. 2014)

Semi-Supervised Hashing
(Wang et al. 2012)

Collective Matrix
Factorization Hashing
(Ding et al. 2014)

Latent semantic sparse
hashing (Zhou et al. 2014)

Kernelized Locality sensitive
Hashing (Kulis and
Grauman 2012)

Linear cross-modal hashing
(Zhang and Li 2014)

Alternating Co-Quantization
(Irie et al. 2015)

Ranking Preserving Hashing
(Wang et al. 2015)
Cross Modality Similarity

Sensitive Hashing
(Bronstein et al. 2010)

ALSH?

IsoHash®
AGH?

BRES

TSHS
MLH®

FastHash®

COSDISH?®

DBQ®

DPSH®

ADH?

sp’®

STMH*

OKH*
RSH*
CVH*

PDH*

Asymmetric Locality
Sensitive Hashing
(Shrivastava and Li 2014)

Isotropic Hashing (Kong and
Li2012)

Anchor Graph Hashing (Liu
etal. 2011)

Binary Reconstructive
Embedding (Kulis and
Darrell 2009)

Two step Hashing (Lin et al.
2013)

Minimal Loss Hashing
(Norouzi and Fleet 2011)

Fast Hash (Lin et al. 2014)

Column sampling based
discrete supervised hashing
(Kang et al. 2016)

Double bit Quantization for
Hashing (Kong and Li
2012)

Deep Supervised Hashing (Li
et al. 2016)

Adaptive Hashing for Fast
Similarity Search (Cakir
and Sclaroff 2015)

Semantics-preserving
hashing (Lin et al. 2015)

Semantic topic multimodal
hashing (Wang et al. 2015)

Online kernel-based Hashing
(Huang et al. 2013)

Ranking-based Supervised
Hashing (Wang et al. 2013)

Cross view Hashing (Kumar
and Udupa 2011)

Predictable Dual View
Hashing (Rastegari et al.
2013)

$ Implemented by using the online open source code

# Results are directly cited from papers
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(1) Precision It is a measure of exactness which pertains to the fraction of the retrieved
images that is relevant to the query.

(2) Recall It is the measure of completeness which refers to the fraction of relevant images
that is responded to the query.

(3) Average precision This is the ratio of relevant images to irrelevant images in a specific
number of retrieved images.

(4) Mean average precision This is the average of the average precision value for a set of
queries.

(5) Normalized discounted cumulative gain (NDCG): It is the measure of uniformity
between ground-truth relevance list to a query and estimated ranking positions.

(6) F-measure It is combined measure that assesses precision/recall tradeoff.

Besides these evaluation measures there exist some measures which can strengthen the
evaluation procedure despite semantic gap type of challenges.

(1) The size of index It determines the storage utilization of generated Index. Practically
the size of the index must be a fraction of dataset size.

(2) Index compression Some indexing techniques generate short hash codes or other similar
codes for image data thereby reducing the storage requirement of Index.

(3) Multimodal indexing This refers to the ability of the index to support cross-media
retrieval. As per current scenario the user intent to search via query by keywords, query
by image or combination of both. Practically being multimodal, a system must support
text to text, text to image and image to image search.

The metrics and measures mentioned above do not quantify user requirements. Other than
image semantic, the different user intent may contain image clarity, quality, and associated
meta-data. The satisfaction of user highly depends on the following factors:

(1) User effort This factor decides the role of the user and their efforts in devising queries,
conducting the search, and viewing the output.

(2) Visualization This refers to the different ways to display the results to the users either
in linear list format or 2-D grid format. Further, it influences the user’s ability to employ
the retrieved results.

(3) Outcome coverage This factor decides to which level the relevant images (by agreed
relevant score) are included in the output.

5.4 Evaluated techniques and results

To evaluate the large-scale similarity search accuracy and effectiveness, we compare some
hashing methods. To allow the comparison the most important aspects to evaluate is the
algorithm performance metric as discussed in Sect. 5.2. Figure 4 below shows the comparison
of various unsupervised data dependent techniques on CIFAR (GIST features) and SUN397
(CNN features) datasets.

It is evident from the Fig. 4a that AIBC (Shen et al. 2017) performed better than other
unsupervised techniques. The AIBC improved Mean Average Precision nearly 2%, 4% and
9% for code length 32, 64 and 128 bits. The MAP results for various unsupervised data
dependent are examined on the SUN397 dataset. Best score of MAP are obtained by AIBC
because the correlation among inner products in this approach is maximum, the key to
generating high-quality codes. Figure 4b displays the comparison of various techniques with
AIBC regarding MAP values. The AIBC improved the MAP nearly 8% for code length 64
and 128 bits.
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MAP@32bits MAP@64bits MAP@128 bits
BLSH ®mALSH ®mSH #mIsoHash ®ITQ ®InnerKSH = AGH m=AIBC
(a) On CIFAR

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

MAP@32bits MAP@64bits MAP@128 bits
mLSH WALSH ®wSH mIsoHash ®ITQ mInnerKSH ®AGH = AIBC
(b) On SUN397

Fig. 4 Comparison of Data-Dependent Hashing (Unsupervised) methods

In Fig. 5 we compare the performance of Column Sampling based Discrete Supervised
Hashing (Kang et al. 2016) with state-of-the-art. Figure Sa presents the MAP obtained with
values of code length ranging from 32, 64 and 128 bits. It can be seen that the column
sampling based discrete hashing improved the MAP nearly 16%, 12% and 12% for code
length 32, 64 and 128 bits respectively on CIFAR (GIST features) dataset. Figure 5b displays
the comparison regarding MAP value for NUSWIDE (GIST features) dataset. The COSDISH
improved MAP nearly 6% for code length 32, 64 and 128 bits with the use of column sampling
technique to sample similarity matrix columns iteratively.

The ranking quality of retrieved results for Ranking based Hashing on the NUS-WIDE
(GIST features) dataset is displayed in Fig. 6. NDCG@XK is used to evaluate the ranking
quality. Here K represents the value of retrieved instance. The figure presents the value of
NDCG obtained with values of K ranging from 5 to 20 for 64 hashing bits. The Ranking
preserving hashing improved NDCG nearly 1% under NDCG@5, 10 and 20 measures.

Next, the comparison of various Multi-Modal techniques on WiKi (CNN features for
image data and skipgrams for text data) and NUS-WIDE (SIFT features for image data and
binary tagging vector for text data) datasets has been represented. Figure 7a depicts the MAP
values results on Wiki dataset for the image to image search. The MAP value results are
observed for 32, 48 and 64-bit code length. The ACQ (Irie et al. 2015) improved the values
approximately 1.5%, for three different code lengths respectively. Figure 7b also displays the
comparison regarding MAP values among various techniques on Wiki dataset for the text to
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0.8
0.7
0.6
0.5
0.4
0.3 -
0.2 1
0.1 -

0 4

MAP@32bits MAP@64bits MAP@]128bits
mBRE mSDH = TSH mSPLH mMLH ®mKSH ®=ITQ ®=FastHASH = LFH = COSDISH

(a) on CIFAR

MAP@32bits MAP@64bits MAP@128bits
®BRE ®mSDH =TSH mSPLH mMLH =KSH =ITQ =FastHASH =LFH = COSDISH
(b) on NUSWIDE

Fig. 5 Comparison of Data-Dependent Hashing (Supervised) methods

0.3
0.25
0.2 -
0.15 -
0.1 -
0.05 -

0 -

NDCG@5 NDCG@10 NDCG@20
mSH mSSH uKSH ERSH uRPH

Fig. 6 Comparison of Ranking Based Hashing methods on NUS-WIDE

image search. Here we show the comparison of ACQ (Irie et al. 2015) with state-of-the-art
multi-modal techniques. The ACQ improved the values nearly 4, 3 and 2% for 32, 48 and
64-bit code length respectively. Figure 7c depicts the MAP values results on NUS-WIDE
dataset for the text to image search. Here we show the comparison of Semantics-Preserving
Hashing (Lin et al. 2015) with state-of-the-art multi-modal techniques. The probability based
SPH showed an average maximum improvement of 19% for 32, 48 and 64-bit code length
respectively.
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0.25

0.2

0.15

0.1

0.05

MAP@ 32 MAP@ 48 MAP@ 64
ECVH ®mCMSSH ®mPDH ®ECMFH ®mDBQ ®ITQ ®=ACQ

(a) On Wiki for Image to Image Search

0.35
0.3
0.25
0.2
0.15
0.1
0.05

MAP@ 32 MAP@ 48 MAP@ 64
ECVH ®mCMSSH ®PDH ®mCMFH ®mDBQ ®=ITQ =ACQ

(b) On Wiki for Text to Image Search

MAP@ 32 MAP@ 64 MAP@ 128

mCVH mCMSSH ®=LSSH mCMFH mSCM = SPH
(¢) On NUS-WIDE for Text to Image Search

Fig. 7 Comparison of MultiModal Hashing methods

The image retrieval results for Deep Hashing on CIFAR and NUSWIDE dataset are
displayed in Fig. 8. The figure presents the value of MAP obtained for different values of
hash code length viz. 32, 48 and 64 bits. Figure 8a depicts the MAP values results on CIFAR
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0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

MAP@32 MAP@48 MAP@64

m SH+CNN m [TQ+CNN = SPLH+CNN u LFH+CNN
m KSH+CNN = SDH+CNN = FastHash+CNN u DPSH

(a) On CIFAR

0.9
0.8 -
0.7 A
0.6 -
0.5 1
0.4 -
0.3 -
0.2 -
0.1 -

MAP@32 MAP@48 MAP@G4
m SH+CNN B ITQ+CNN u SPLH+CNN ® LFH+CNN
u KSH+CNN # SDH+CNN u FastHash+CNN u DPSH

(b) On NUS-WIDE

Fig. 8 Comparison of Deep Hashing methods

dataset. The Pair-wise Labels based Supervised Hashing (Li et al. 2016) improved MAP by
13, 12 and 12% respectively. Figure 8b also displays the comparison regarding MAP values
among various techniques on NUS-WIDE dataset. The DPSH (Li et al. 2016) improved the
values nearly 2, 3 and 3% respectively.

Figure 9 list the retrieval results of Adaptive Hashing, Online hashing and other Batch
Hashing techniques are examined on LabelMe (GIST features) dataset. The MAP values for
different hash code length generated by Adaptive hashing are not very promising. BRE (Kulis
and Darrell 2009) showed an average maximum improvement of 6% in MAP on other batch
techniques and 4% as compared to online methods. Further, it is observed that the concept
of adaptive hashing (Cakir and Sclaroff 2015) does not put much impact on MAP values of
kernel-based online hashing (Huang et al. 2013).

From the above evaluations, we draw the following conclusions:

(1) Supervised learning methods mostly attain good performance in comparison to unsuper-
vised learning methods. As, the supervised method uses labeled data to learn hash codes
and committed to maintaining semantic similarity constructed from semantic labels. In

@ Springer



1252 S.Sharma et al.

0.8
0.7
0.6
0.5 -
0.4 -
0.3 1
0.2 -
0.1 -

MAP@48 MAP@96 MAP@128
EBRE ®MLH ®KSH ®FastHash ®KLSH ®OKH =ADH

Fig. 9 Comparison of Adaptive Hashing, Online hashing, and other Batch Hashing techniques on LabelMe

comparison to unsupervised methods, supervised methods are slower during learning of
large hash codes due to labeled data. This slowness can be overcome by incorporating
deep learning concept.

(2) The performance of multimodal retrieval methods is totally guided by the quality of
feature set. The results of text to image search are better than image to image search
for multimodal datasets. The direct extension of two- modality algorithm into three or
more modality is not possible.

(3) The methods like adaptive hashing and online hashing does not provide promising
results. Even, the concept of adaptive hashing does not put much impact on performance
of kernel-based online hashing.

(4) Nearest neighbor search on optimized compact hash codes of large dataset induces
suboptimal results. By exploring the ranking order and accuracy, it is easy to evaluate
the quality of hash codes. Associated relevant values of hash codes help to maintain the
ranking order of search results.

6 Multimedia indexing evaluation programs

There are several well-instituted evaluation campaigns and meetings which provide test-
bed and metric based environment to compare different proposed solutions in image retrieval
domain. In this section, we describe various evaluation campaigns in image retrieval organized
by the University of Sheffield, Stanford University, Princeton University and various research
groups.

6.1 MediaEval

MediaEval! Benchmarking Initiative is a benchmarking activity organized by various
research groups devoted to evaluating a new algorithm for multilingual multimedia con-
tent access and retrieval. It set out initially to benchmark some tasks related to the image,
video, and music viz. Tagging Task for videos including Social Event Detection, Subject
Classification, affect task, later from 2013 it sets to benchmark Diverse Images task.

1 http://www.multimediaeval.org.
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Table 9 Evolution of Mediaeval tasks

Task/Year 2010 2011 2012 2013 2014 2015 2016

Image related task

Visual privacy task v 4
Search and hyperlinking v v

Crowd-sourcing v

NSNS

Synchronization of multi-user
event media

Placing Task v v v v v v v

Automatic detection of v v
manipulation (verification
task)

Diverse images 4 v v v

Audio/video related task

AN

Tagging task v
Affect task v

Rich speech retrieval task

<
<
<
<

Spoken web search

NN NSNS

Social event detection

User account matching

NN NN
NN NN

MusiClef: multimodal music
tagging

QA task for spoken web

Emotion in music/video*

NN
<\
N

Ve
Social speech v

QA on classical music scores v v v
task

Person discovery in TV v v
Context of experience task v v

Mini-drone video privacy v

*Video dataset

The goal of Diverse Images task is to retrieve images from tourist images dataset that is
participants has to refine (reorder) provided a ranked list of photos by maintaining diversity
and representativeness. As a novelty in 2015, the diverse image task has been extended
to multi-concept, ad-hoc, queries scenario. The dataset used for campaign is of small size
having general-purpose visual/textual descriptors. It contains 95,000 images, splits into 50%
for designing/training and 50% for evaluating. Different metric are considered to evaluate
the system: Cluster Recall, Precision and F-measure. The evaluation of ranking (F-measure
score) has been done by visiting the first page of the displayed outcome only. Other popular
evaluation metrics are intent-aware expected reciprocal rank and the Normalized discounted
cumulative gain (NDCG). Table 9 shows the evolution of MediaEval tasks over the year.
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6.2 ImageCLEF

This evaluation forum? was initiated by University of Sheffield in 2003 nowadays it is run by
individual different research groups. Initially, it is launched as a part of CLEE.®> As mentioned
on the website: Itis a series of challenges to promote concept based annotation of images and
multimodal and multilingual retrieval both. The first image retrieval track was included in
2003, where the objective was to perform similarity search and to find relevant images related
to a topic in the cross-language environment. In 2004, Visual features were included the first
time in any image CLEF track. The task was to perform image (tagged by English captions)
search with text queries and visual features based medical image retrieval and classification.
Over the year, it considers a broad range of topics related to multimedia retrieval and analysis.
Different tracks under imageCLEF challenge are listed in Table 10.

6.3 ILSVRC

ILSVRC is in its 8th year in 2017 and is governed by a research team from Stanford and
Princeton University respectively. The ImageNet* large scale task organized (since 2010)
some object category classification and category detection task to promote the evaluation
of proposed retrieval and annotation methods. Over the year ILSVRC consists of following
tasks: Image classification (2010-2014), Single-object localization (2011-2014) and Object
detection (2013-2014) and different dataset for testing and training and evolution tasks are
listed in Tables 11 and 12 respectively.

7 Open issues and future challenges

Over the years, image retrieval has come a long way from simple linear scan techniques to
more traditional learning and hashing techniques such as rank-based, deep learning, mul-
timodal and online hashing techniques. Interest in topics such as quantization, supervised
and unsupervised hashing is also increasing. The field of multimedia retrieval has witnessed
different indexing techniques for data analysis. Further, different intents and needs of users
bring up unheard challenges. We discuss some open and unresolved issues as follows:

7.1 A collection of big multimodal dataset

Instead of the uni-modal retrieval system, multiple unimodal systems can be combined to
obtain multimodal retrieval system. To study and retrieve information across various modal-
ities have been widely adopted by different research communities. There is an urgent need
of large, annotated, easily available, and benchmarked multimodal dataset to train, test and
evaluate multimodal algorithms.

2 http://www.imageclef.org/.
3 http://www.clef-campaign.org/.

4 http://www.image-net.org/.
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Table 12 Evolution of ILSVRC tasks

Task/year 2010 2011 2012 2013 2014 2015 2016

Image classification v v v 4

Image classification with v v v v v v
localization

Fine-grained classification 4

Object detection v v v v

Object detection from Video v v

Video scene classification v v

Scene parsing v

7.2 Utilization of labeled and unlabeled data samples to learn

Earlier VIR systems were simple, and were answerable to small datasets only i.e. they were
independent or partially dependent on side (extra/labeled information. Simultaneous learning
of labeled and unlabeled data samples put more complications in modern labeled information
based systems. The ignorance of unlabelled database samples and a limited selection of these
samples are the generic drawbacks of current approaches. Hence, need to utilize labeled and
unlabeled data samples jointly for a better active learning.

7.3 Unsupervised deep learning

The need for full utilization of feature extraction, processing and indexing in VIR shifted
the research direction towards deep learning. The recently proposed models map low-level
features into a high level with the help of nonlinear mapping techniques. Researchers adopt
the idea of supervised deep learning because it is a mature field and is in its middle stages of
development. Human and animal learning is largely unsupervised which opens the door for
researchers to develop future VIR system.

7.4 Multi feature fusion

To fulfil diverse user needs it becomes more challenging to develop fast and efficient mul-
timodal VIR system as the traditional single feature or uni-modal based VIR system are
lopsided. Better mechanism for fusing the multiple features for hash generation and learning
are to be determined as assimilation of feature fusion concept can lessen the effect of well
known Semantic gap.

7.5 Open evaluation program

Differences in technical capacities and data availability enlarge the VIR research gap between
academics and industry based real application. A large number of researchers in academics
bound to available resources and it is difficult to achieve industry based real application
solution for them. It is necessary to organize open evaluation program to bridge this gap. The
most felicitous part of organizing the open program is that they provide a common platform
to industry and academic researchers to exchange more practical solutions. Further they
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jointly look into the key difficulties in different real time scenarios to develop application-
independent methods.

The complete report of datasets, evaluation results, and the list of participants can be
reviewed from the annual evaluation reports and websites of the challenges discussed above.

8 Conclusion

In this paper, we restrict ourselves to images and leave text and video indexing as a distinct
topic. We propose to review two categories of indexing techniques developed for nearest
neighbor search: (1) Hash based Indexing, and (2) Non-Hash based Indexing. These two
categories contribute in many nearest neighbor search and similarity search techniques to
provide efficient search capabilities. Further, the different methods of hash based and non-
hash based indexing are categorized with brief details of the methodology employed including
their pros and cons. Evaluation results are presented on various datasets for Hash-based
techniques. A large number of potentially productive application areas and some relevant
research domains, such as soft computing, clustering, ranking and deep learning have also
been overviewed. We have summarized the open issues and future challenges. Our survey
paper offers a number of practical guidelines to the readers:

1. It demonstrates the way to handle and process different types of queries.

2. The paper examines factors viz. query formation, image descriptors, type of hash func-
tion, code balancing, similarity measurement and code optimization can demonstrate the
performance of hash based indexing techniques. The affect of above mentioned factors
has been measured among standard 34 hash based approaches to derive the MAP and
NDCG value.

3. Different types of low-level image representation and feature extraction criteria can coex-
ist and be compared. (Multimodal hashing/Deep hashing methods).

4. Thereis anurgent need of large, annotated, easily available, and benchmarked multimodal
dataset to train, test and evaluate multimodal algorithms.

5. There is a need.

i. to utilize labeled and unlabeled data samples jointly for a better active learning.
ii. of better mechanism for fusing the multiple features for hash generation and learning
as assimilation of feature fusion concept can lessen the effect of well known Semantic

gap.
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