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Abstract
This paper presents a new weighted local outlier factor method for anomaly detection, which
is underpinned with three novel components: (1) a piecewise linear representation defined
on the basis of the important points that consist of extreme points and additional points; (2)
a set of new features which are used to identify anomalies given the new piecewise linear
representation; (3) a weighting schema, assigning different weights to different features by
accounting for the discriminant power of the features. The underlying idea of the proposed
method is to characterize a time series with a set of four features and then discover abnormal
changes by taking account of the closeness of any data points augmented with the new fea-
tures. The comparative experiments demonstrate that the proposed piecewise representation
method has performed well in sequential time series data, and the weighted local outlier
factor method has achieved better accuracy and RankPower in detecting anomalies from the
same data sets in comparison with the conventional local outlier factor, normalized local
outlier factor and HOT symbolic aggregate approximation methods.

Keywords Anomaly detection · Sequential data · Feature extraction · Weighted local outlier
factor

1 Introduction

Anomaly detection techniques aim to find patterns that do not conform to expected behavior
in the data set (Chandola et al. 2009; Huang 2013). These patterns are often called anomalies,
outliers, abnormal changes, surprises or discords in different contexts, frequently arising in
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real-world applications such as bioinformatics and finance (Huang 2013; Chandola et al.
2008a, b; Keogh et al. 2005). In this paper we present a new anomaly detection method
called weighted local outlier factor (WLOF), which is able to extract and weight features in
time series.

In the past decades, many anomaly detection methods have been developed in specific
application domains, which can be broadly divided into two categories (Beigi et al. 2011):
modeling approaches (including rule-based, pattern-matching andmodel-based approaches),
which require the prior knowledge of application domains, and data mining approaches
(including similarity-based and statistical approaches), which do not require any prior knowl-
edge of application domains. Hadi used a modeling approach based on statistical estimation
of the distribution parameters to identify anomalies inmultivariate samples (Hadi 1994). Tan-
don and Chan (2007) used a parametric statistical modeling approach based on association
rule mining-based techniques for network intrusion detection. Keogh et al. (2005) used dis-
tance based approaches to identify the anomalies in time series. Sun et al. (2005) proposed an
algorithm to compute the neighbourhood for each node in bipartite graphs using randomwalk
with restarts and graph partitioning and then used the neighbourhood information to identify
abnormal nodes. Some researchers have combined modeling approaches and data-mining
approaches to identify the anomalies in data streams. For example, Chandola et al. (2008a,
b) proposed a framework for modeling categorical data with a desired set of characteristics
and a set of separability statistics, which are helpful for understanding the performance of
similarity measures for outlier detection. In addition, Aydin et al. (2015) proposed a modified
kernel-based tracking methods for detecting the anomalies of railway traffic, and Jin et al.
(2016) proposed a method for detecting bearing anomalies and fault prognosis using the
Kalman filter approach. Moreover several surveys have also been reported in the literature on
outlier detection for different application areas (Hodge and Austin 2004; Zhang et al. 2008;
Gupta et al. 2014).

Thenature of anomalies determineswhich anomalydetection techniqueswouldbe applied.
According to the suggestions of Chandola et al. (2009), anomalies can be grouped into three
categories as follows. (1) Point anomalies: a data instance is considered as anomalous with
the rest of the data, such as in the case of credit card fraud. (2) Contextual anomalies: a data
instance is anomalous in a specific context, but not otherwise. Contextual anomalies have
been investigated in time series data (Weigend et al. 1995) and spatial data (Kou et al. 2006).
(3) Collective anomalies: a collection of data instances is anomalous with respect to the entire
data set. Collective anomalies can be found, for example, in electrocardiogram data (Keogh
et al. 2005).

In this paper we focus on collective anomalies in different types of sequential data. In order
to find the collective anomalies, we need to segment a time series into a set of sub-series of
data, i.e. subsequences. Piecewise linear representation (PLR) (Keogh et al. 2001; Yankov
et al. 2007; Keogh et al. 2008) is a common feature representation method which has been
used to obtain the main features of time series data or data streams. The main idea of the PLR
is using the K connective straight lines to represent a time series with length n(K�n). The
advantages of PLR are summarized as follows: (1) a low-dimensional index structure and (2)
high computational efficiency (Keogh et al. 2001; Yan et al. 2013). In fact, PLR can obtain
higher precision with a larger number of segments, but that would require more computation
time. Keogh et al. (2001, 2008) also proposed a piecewise aggregate approximation (PAA)
method for dimensionality reduction in time series data (Palpanas et al. 2004),which segments
a time series using a fixed size window and uses the average value of each sub-segment to
collectively represent a time series. Park et al. (2001a, b) used themonotonic sliding windows
segmentation algorithm to represent a time series, and demonstrated good results for a smooth
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time series data.However, realworld data often include a great deal of noise and the number of
segments required is often very large. Peng et al. (2000) used the landmarkmodel to segment a
time series through selecting segment points according to their minimumdistance/percentage
principle which is a smoothing process and is implemented as a linear time algorithm. Pratt
and Fink (2002) proposed an important point segmentation method that compresses a time
series by selecting some of its minima and maxima. In this paper we adopt a piecewise linear
representation method based on important points (PLR_IP).

Given a new representation of time series data, we also need a method for measuring
the difference between data objects (instances) embedded in subsequences in order to detect
collective anomalies. Therefore, a PLR method can be used to segment a time series into
an alternative representation, and distances of the objects within their neighbourhood can be
used to find the anomaly. For instance, Ramaswamy et al. (2000) used the distance in the
k-nearest neighbourhood to rank the outliers. Their approach can be used to compute the
top n outliers. Breunig et al. (2000) used a local outlier factor (LOF), whose value depends
on how isolated objects are with respect to the surrounding neighbourhood, as a measure
for determining outliers. Although that approach can find meaningful outliers, there are two
issues with the LOFmethod. One is that it does not work well for those features with different
orders of magnitude as the features with large magnitude will determine the results, whereas
the features with smaller magnitude will have little effect. Another is that the LOF method
can recognize the anomalies in time series data based on their original values (Breunig et al.
2000), but when anomalies are interleaved in regular frequency spectrums or other complex
anomalies, the LOF is not able to do so.

In order to address these two issues above, we propose the WLOF, in which all selected
features will be taken into account in detecting anomalies. Importantly, we propose to con-
struct four features to represent time series data, three of which are defined on the basis of the
PLR_IP, representing three different aspects of a time series. First of all, we average the data
points in a subsequence that corresponds to a sliding window. The second and third features
are defined as the number of important points and the maximum angle of the subsequence,
respectively, which are designed mainly for finding anomalies in regular spectrums. Finally,
Lin et al. (2003) used the symbolic aggregate approximation (SAX) method to map a time
series into a character string like “cbccbaab”, every character in the alphabet representing the
feature of one segment (Keogh et al. 2006). Similarly, to represent a segment with a feature,
we propose a new feature which is the difference between the values of important points
in a subsequence and then compute the maximum difference between important points in
a sliding window which may cover several segments. This feature represents the maximum
change in all the segments involved in a sliding window. Therefore these features constitute
a core for the WLOF method to find anomalies in time series data.

After presenting the WLOF method in detail, we then present experimental results to
evaluate it. The experiments have been carried out over 17 benchmark datasets and the com-
parative analysis against other approaches to demonstrate the effectiveness of the proposed
WLOF method in discovering more anomalies within the time series data.

The paper is organized as follows. In Sect. 2, we introduce the concept of PLR_IP and
WLOF. In Sect. 3 we present the experimental results over 17 data sets which show that
the proposed method can find local outliers. In Sect. 4 we discuss the effect of different
parameters. Finally, Sect. 5 presents conclusions and future work.
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2 Methodology

2.1 Notation

2.1.1 Time series and subsequences

Time series or sequential data exist in many real world domains such as commercial, eco-
nomic, medical, and gene expression data. These domains typically involve large amounts
of data and are updated regularly which make it very difficult to detect anomalies directly in
the original time series data. Thus, we separate a time series sequence into a set of relatively
short subsequences using a sliding window. Firstly, we give some definitions of a time series
sequence and subsequences as follows:

Definition 1 (Time series) A sequence of pairs, T � [(Z1, t1), (Z2, t2), …, (Zn, tn)], (t1 < t2
< ··· < tn) where Zi is a data point in a d-dimensional data space, and ti is the time stamp
corresponding to the time at which Zi occurs (1≤ i ≤n).

Definition 2 (Subsequence Keogh et al. 2005) Given a time series T �
[(Z1, t1), (Z2, t2), …, (Zn, tn)], a subsequence C of T is a sampling of length m ≤n
of contiguous position from p, that is, Cp,m � [(

Z p , tp
)
, . . . ,

(
Z p+m−1, tp+m−1

)]
for 1≤p

≤n −m +1. To get a set of subsequences Cm � {C1, C2, . . . , Cn−m+1}, sliding windows
can be defined and used, where each subsequence corresponds to a sliding window, where
overlap between two adjacent sliding windows can be adjusted on the basis of different
applications.

2.1.2 Anomalous features of a subsequence

A subsequence could be anomalous compared with subsequences or contain an anomaly,
which can be characterized with various features of the subsequence, such as average value
and the maximum difference between values of important points, etc. In this study, four
features have been identified. Prior to defining them, we define the extreme points, important
points, piecewise linear representation and fitting error.

Definition 3 [Extreme points (Yan et al. 2013)] Given a 1-dimensional time series, T �
[(Z1, t1), (Z2, t2), …, (Zn, tn)], if (Zi >Zi−1 and Zi >Zi+1) or if (Zi <Zi−1 and Zi <Zi+1),
the point (Zi, ti) is an extreme point.

Definition 4 (Important points) Extreme points are important features of time series, but
sometimes the distance between two neighbouring extreme points is too large, making it
difficult to find an anomaly. For this reason, we introduce a concept of important points
that consist of extreme points plus additional points identified by the following two step
procedure. The first step identifies several extreme points that represent largest distances
between extreme points in the data, and the second step ensures that the distance between
the neighbouring points is not too large. The set of important points is obtained by a two step
procedure below.

Step 1 Select extreme points as important points. The first and last data points of subse-
quences are selected as important points. Then suppose that there are L extreme points
in T � [(Z1, t1), (Z2, t2), …, (Zn, tn)], where L <n. For a specified number of important
points required g and parameter β ε (0, 1), if L ≥ �β(g − 2)�, �β(g − 2)� extreme points
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Fig. 1 Illustration of important
points

are selected as important points iteratively as follows. At each iteration, the data point (Zr ,
tr ) is selected where r satisfies:

r � argmax
j∈F I

D[Z j , Zi j ] (1)

where FI is the set of subscripts of extreme points that have not yet been selected as
important points,D is a distance measure, and (Zi j , ti j ) is the currently selected important
point that is the nearest to (Zj, tj). If L < �β(g − 2)�, all the extremes are selected as
important points. Note that since we aim to find the abnormal change of time series and
because the change in time t is uniform, this means that the distance between two adjacent
data points at t is the same, we only select the important points based on the Z value.
Step 2 Select some additional points as important points if necessary. The remaining
g − 2 − �β(g − 2)� important points are also selected iteratively as follows. Suppose,
P � [(

Zi1 , ti1
)
,
(
Zi2 , ti2

)
, . . .

(
Zil , til

)]
, where ti1 , ti2 , . . . , til is the set of important

points which have been selected. At each iteration the data point (Zh , th) is selected,

where th �
⌊
tia +tia+1

2

⌋
, Zh � Zth , a is obtained as follows:

a � arg max
1≤ j≤l−1

D
[
Zi j , Zi j+1

]
(2)

i.e. we identify the largest distance between the currently selected important points. If
L < �β(g − 2)�, all the extremes are selected as important points and the remaining g −
2−L important points are obtained using Formula (2).

Here we give an illustration of important points. Suppose that Fig. 1 shows a sequence
of a time series and six important points are required, and β � 1

2 . First of all, the beginning
point b1 and end point b2 are selected as indicated by the yellow circles, and then we need to
select two extreme points as important points according to step 1 of Definition 4. Firstly, e1
is selected and then e2 is selected according to Formula (1) as indicated by the red circles.
Now we have selected all extreme points with the number given by �β(g − 2)� � 2, where ,
g � 6, β � 1

2 , thus the rest of the extreme points m1, m2 and m3 cannot be selected
as important points. With this situation, we need then to select two additional points as
important points according to the step 2 of Definition 4 to ensure none of the differences are
too large. The largest difference in Z values between neighbouring points is between b1–e1.
So a1 is selected as an important point, and then a2 is selected according to Formula (2) since
after a1 has been added the largest difference in Z values is between a1–e1. Points a1 and a2
are indicated by the green circles. Since large differences between points will affect feature
extraction, the six important points identified should be more suitable for this purpose.

Definition 5 Piecewise linear representation (PLR) of time series based on important points
(Yan et al. 2013)
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Fig. 2 The angle or degree of
anomaly of the important point,
where I1, I2 and I3 are important
points according to Definition 4 2

I1
I3

I2

Given a time series, T � [(Z1, t1), (Z2, t2), …, (Zn, tn)], where the set of important points
is, T ′ � [(Z1

′, t1′), (Z2
′, t2′), …, (Zm

′, tm ′)], where Z
′
1 � Z1, Z

′
m � Zn andm < n, then

a PLR of T can be obtained by first defining a set of functions: Tl � ( f1, f2, . . . , fm−1),
where f j represents a linear fitting function between the points (Zj

′, tj ′) and (Zj+1
′, tj+1′).

The PLR of T is obtained by replacing each point in T with the point from the function f j
corresponding to the same time point. The fitting sequence can be expressed as follows: T ′′ �
[(Z1

′′, t1), (Z2
′′, t2), ···, (Zn

′′, tn)]. In this paper set T ′ represents the set of important points,
and T ′′ represents the set of fitting sequences.

Definition 6 (Fitting error of PLR) Having defined the fitting sequence T ′′ which has the
same size with original sequence T , the fitting error between the fitting sequence and original
sequence T is defined as follows:

Err �
√∑n

i�1

(
Zi − Z

′′
i

)2
(3)

where n is the length of original sequence, Zi and Zi
′′ respectively express the original

sequence value and fitting sequence value at the same time ti. A smaller fitting error shows
that the fitting sequence better reflects the original sequence.

According to Definition 5, we develop a segmentation method called PLR_IP, using the
important points to segment the time series. Now we further define four features that will
be used to characterize subsequences, each of which corresponds to a sliding window, for
anomaly detection as follows.

Definition 7 The maximum angle of a subsequence

Let, T ′ � [(Z1
′, t1′), (Z2

′, t2′), …, (Zlen
′, tlen′)] be the important points in a given subse-

quence, where len is the number of important points; for simplicity we express this as, T ′ �
[I1, I2, …Ilen)]. Define θ i to be the angle between the vectors Vi−1,i and Vi,i+1, where Vi−1,i

represents the vector from I (i−1) to Ii and Vi,i+1 represents the vector from Ii to Ii+1, for i
�2, 3, ···, len −1. θ i is called the degree of anomaly of the ith important point as shown
in Fig. 2. The maximum angle of the subsequences corresponding to a sliding window is
denoted Spθ and is given by

S p
θ � max{|θ2|, |θ3|, . . . , |θlen−1|} θi ∈ (−π ,π) (4)

Note that there is no degree of anomaly defined for the first and last important points of
a subsequence. The angles are decided by important points; and the fitting data points don’t
affect the angles.
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Definition 8 Number of important points in a subsequence

The number of the important points in a subsequence, denoted as SpN , is defined as

S p
N �

∣
∣
∣
{(

Z
′
α , t

′
α

)
∈ T ′

∣
∣
∣tp ≤ t

′
α ≤ tp+m−1

}∣
∣
∣ (5)

where T ′ � [(Z1
′, t1′), (Z2

′, t2′), …, (Zlen
′, tlen′)] where t ′1 < t

′
2 < · · · < t

′
len . T

′ is a set of
important points of the time series T . SpN represents the number of important points in Cp

computed by Definition 4.

Definition 9 Average value of a subsequence

The average value of Z , denoted as Spμ, is defined as

S p
μ � 1

m

p+m−1∑

i�p

Zi (6)

where p is the beginning position index of the sliding window and p +m −1 is the end
position index of the sliding window. Zi represents the value of the data points in the sliding
window Cp.

Definition 10 Themaximum difference between values of important points in a subsequence

S p
σ � max{h2, h3, . . . , hlen} (7)

where hi �
∣∣∣Z

′
i − Z

′
i−1

∣∣∣ is the difference between (Zi
′, ti ′) and (Zi−1

′, ti−1
′) with respect to

Z, where T ′ � [(Z1
′, t1′), (Z2

′, t2′), …, (Zlen
′, tlen′)] are the important points in the sliding

window.

2.1.3 A weighted local outlier factor method

According to the features of the time series that have been defined above, we propose a new
anomaly detection method called the “weighted local outlier factor”, which assigns different
features with different weights, and then uses these weighted features for anomaly detection.
The relevant definitions are given below.

Definition 11 The distance between two subsequences P and Q in the new feature space.

We have defined four features in Definitions 7–10, which give us a four dimensional
feature space. We can then compute the distance between two different subsequences in this
space. Supposing subsequence P is represented by the point (xp, yp, lp,mp) and subsequence
Q by the point (xq, yq, lq,mq) in the four dimensional feature space, where x, y, l,m represent
the four features respectively and the number of subsequences n is determined by the size of
the sliding window. The weighted Euclidean distance is defined as follows:

wdist (P , Q) ≡
√

w1
(
xp − xq

)2 + w2
(
yp − yq

)2 + w3
(
l p − lq

)2 + w4
(
mp − mq

)2 (8)

where wi are weights, which are assigned to these four features and
∑4

i=1wi �1. In order
to determine appropriate weights, we use the sum of the values of each feature and want to
ensure that for a given feature, the larger its sum, the smaller its weight. This approach can
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Fig. 3 The k-distance of
subsequence object P:
kwdist(p)for k=4

wdist(P,R)
P
wdist (P,S)

R

S

O

wdist(P,T)

T

wdist (P,O)

avoid a feature with a large sum determining the result with other features being irrelevant.
One way of achieving this is as follows:

wi �

4∑

j�1
Sum j − Sumi

3

(
4∑

j�1
Sum j

) (9)

where Sum1 �∑n
k=1|xk | for feature x and similarly for the other features y, l and m. The idea

is that instead of using the normalized sum, i.e. wi � Sumi∑4
j�1 Sum j

, we use the mean of the

normalized sum of the other three features to ensure that the larger sums have the smaller
weights. An empirical comparison between the weighted local outlier factor and the local
outlier factor is presented in Sect. 3.

Definition 12 The k-distance of subsequence object P: kwdist(P) (Breunig et al. 2000)

Here each of the subsequences is viewed as one object which is represented by the four
features x, y, l,m. For any positive number k, the k-distance of objectP, denoted as kwdist(P),
is defined as the wdist(P, O) (see Definition 11) between P and an object O ε D, where D is
the set of subsequence objects such that:

1. For at least k objects O ′ ∈ D\{P} it holds that wdist(P, O′)≤wdist(P, O), and
2. For at most k −1 objects O ′ ∈ D\{P} it holds that wdist(P, O′)<wdist(P, O)

These constraints are defined for the k-distance of object P which represents the distance
between P and the kth nearest objectO. Figure 3 shows the k-distance of subsequence object
P. The definition of the reachability distance of an object is given as follows:

Definition 13 The k-weighted local reachability densities of subsequence object P (Breunig
et al. 2000):

wlrdk(P) � k
∑

Q∈kw(P)
reach−wdistk(P , Q)

(10)

where kw(P) � {Q ∈ D\{P} : wdist(P , Q) ≤ kwdist(P)},reach−wdistk(P , Q) �
max{kwdist(Q), wdist(P , Q)}.We can then give the definition of theweighted local outlier
factor of an object P based on the reachability distance of an object as follows:
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Definition 14 k-weighted local outlier factor of an object P (Breunig et al. 2000)

WLOFk(P) �
1
k

∑

Q∈kw(P)
wlrdk(Q)

wlrdk(P)
(11)

According to Definition 14, we can get the k-weighted local outlier factor of each of the
subsequence objects P, and the larger the value of the k-weighted outlier factor, the larger the
anomaly. From here on this will simply be referred to as the weighted outlier factor, where
it is dependent on a constant k.

2.2 Anomaly detection algorithm based on weighted local outlier factor

2.2.1 Selection of important points

Based on Definition 4, we present pseudo-code for selecting important points, as shown in
Algorithm 1. Therefore, we segment the time series into g−1 segments using the g important
points. The description of this method is as follows.

Algorithm: Select important points
Input: The number of important points g and parameter (0,1)β ∈

time series 1 1 2 2[( , ), ( , ), , ( , )]n nT Z t Z t Z t=
Output: Important points set 'T

0: Ini�alise: g; β ; T ; 'T ; FI
1: FI ←Compu�ng the extreme points, L FI= L=|FI|( FI is the 

set of subscripts of extreme points, L is the number of extreme 
points)

2: 'T ← and 
If ( 2)L gβ≥ −⎢ ⎥⎣ ⎦

( 2)numberEP gβ= −⎢ ⎥⎣ ⎦ ; 2 ( 2)numberAP g gβ= − − −⎢ ⎥⎣ ⎦
( numberEP represents the number of extreme points that need 
to be selected, numberAP represents the number of addi�onal 
points that need to be selected)
else 
numberEP L= ;

end
3: 1:for i numberEP=

'T ← ( , )r rZ t ,  if arg max [ , ]
jj i

j FI
r D Z Z

∈
=

FI ←delete the selected extreme point in FI
i=i+1;

4: end for
1:for i numberAP=

Compute a according to formula 2 
'T ← ( ,  )h hZ t ,the middle of largest segment

i=i+1;
end for

5: Output important points set 'T
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2.2.2 A newmethod based on weighted local outlier factor

The proposed anomaly detection algorithm is based on the weighted local outlier factor as
shown in Algorithm 2. It involves the following main steps:

Step 1 Uniform scaling. This operation can enlarge or shrink data points by scaling them
into the range of 0 and 1.
Step 2 Smooth the data using the locally weighted scatter plot smoothing. In order to find
the extreme points, wemust smooth the original data set to avoid finding toomany extreme
points.
Step 3 Selection of important points.We select the important points according to Formula 1
and Formula 2 in Definition 4. The selection of important points is shown in Algorithm 1.
Step 4Compute the features of subsequences. (1) Themaximumangle of the subsequences,
(2) the number of important points in the subsequences, (3) the average of the subsequences,
and (4) the maximum difference between values of important points of the subsequences.
Step 5Compute theweighted local outlier factors. Herewe compute theweighted local out-
lier factors of each subsequence based on Definition 14. And then we rank these weighted
local outlier factors and the larger the value of the k-weighted outlier factor, the larger the
anomaly.

At the endof the process, theweighted local outlier factor of each subsequence is outputted;
the larger values of the weighted outlier factors represent larger anomalies. We will show the
sample largest values of the weighted outlier factor of subsequences over different data sets
in Sect. 3.

2.2.3 Metrics for measurement

Huang (2013) introduced two metrics, which will be used in this study to measure the
performance of the anomaly detection algorithms. Suppose the datasetD of n objects contains
dk true anomalies.We use our proposedmethod to find anomalies that would be rankedwithin
the top 10. Letmk be the number of true anomalieswhich are detected by our proposedmethod
in D. Then, we define the accuracy measure of anomaly detection as follows:

Accuracy � mk

dk
(12)

The second measure is called “RankPower” also introduced in Huang (2013). Suppose Ri

denotes the rank of the ith true anomaly. Then,

RankPower � mk(mk + 1)

2
mk∑

i�1
Ri

(13)

Larger values of the two metrics imply better performance.

3 Experimental results

Since we are using the sliding window method to obtain the subsequences, we need to
set several parameters before conducting an evaluation. We obtain the maximum anomaly
values by searching from a minimum value of k=5 to maximum k=20 with a step�1 for the
proposed k-weighted local outlier factor method. We use the important points to segment the
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time series for piecewise linear representation. In Sect. 3.1 we vary the number of important
points to evaluate the effect of the piecewise linear representation, and set it to 10% of the
length of the time series in Sect. 3.2. The sliding window method needs to specify the size
of window. Here we set the window sizes to be larger than the time period of the system in
time series data in order to find anomalies. We also did the comparison experiments for 50%
smaller and 50% larger than our selected window sizes in Sect. 4. In terms of selecting the
extreme points and additional points, we set the parameter β with a value of 1/2.

The experiments start by obtaining the subsequences and selecting important points with
the parameter β, by sliding a window of length w across the time series T and then obtaining
the features for each of the subsequences, and finally computing the weighted local outlier
factor for each subsequence. Note that the index of subsequences goes from 1 to (n −w)+
1. The experiments using the piecewise linear representation is based on important points on
the 17 data sets as shown in Table 1, which were downloaded from the website (www.cs.ucr.
edu/~eamonn/).

Algorithm: weighted local outlier factor Algorithm

Input: Window size w; required number of important points g ; smooth-
ing parameter s; Times series set D

Output: Weighted local outlier factor of data points 
0: Initialise: w,g, m, s, set of feature values: FV
1: Perform uniform scaling of the times series D
2: Smooth the times series D
3: Select gimportant points 'T according to algorithm1
4: Subdivide the times series D into subsequences according to the 

sliding window size w;
5: for each subsequence

FV←compute feature values of each subsequence
according to the definitions (7)-(10) based on im-
portant points 'T

end for
6: Compute the weighted local outlier factor for each subsequence

based on FV of each subsequence
7: Output weighted local outlier factor of each subsequence

3.1 Experimental results of piecewise linear representation based on important
points (PLR_IP)

This section reports the evaluation results on the important points (PLR_IP) to obtain the
subsequences. Table 1 presents a summary of some statistics about the 17 data sets used in this
work for the comparison between PLR_IP and piecewise linear representation based on the
piecewise aggregate approximation (PLR_PAA). In the evaluation, the number of segments
over these data sets is determined by the number of important points, from 40 to 100 which is
8–20% of the data points for a data set containing 500 points. In the rest of the experiments,
we set the number of important points as 10% of the data points. If the length of a data set
is larger than 500, we separate the data set into several segments, each of them consisting of
500 data points. If there are less than 500 data points in the last segment, it will be combined
with the preceding one as illustrated in Column 3 of Table 1. For example, 500*6+750 in the
first row of Table 1, the last segment is 250, which is combined with the previous segment
with 500 data points. We then compute the average fitting error. These data sets will then be
used to detect anomalies in the following sections. We compute the average fitting error of
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Table 1 Compared results of fitting error

Number Data set Time series
length

Type Error of
PLR_IP

Error of
PLR_PAA

1 chfdb_chf13_45590 500*6+750 Real 1.3 1.46

2 Lighting2 637 Real 0.72 1.27

3 OliveOil 570 Real 0.67 1.06

4 chfdb_chf01_275 500*6+750 Real 1.30 1.13

5 stdb_308_0 (ECG) 500*9+900 Real 0.92 1.03

6 Respiration 500*8 Real 3.39 2.15

7 Space shuttle Marotta
valve series 1

500*10 Real 1.31 1.04

8 Space shuttle Marotta
valve series 2

500*10 Real 1.31 1.02

9 Aerospace L-1q 500*2 Real 1.41 1.8

10 Aerospace L-1b 500*2 Real 6.18 4.95

11 Aerospace L-1j 500*2 Real 6.09 4.89

12 Aerospace L-1p 500*2 Real 1.13 1.8

13 Aerospace L-1t 500*2 Real 1.1 1.33

14 ltstdb_20321_240 (ECG) 500*6+750 Real 0.67 1.57

15 xmitdb_x108_0 500*6+750 Real 1.25 0.83

16 respirationppt20 500*3+701 Real 2.44 1.68

17 ltstdb_20321_43 (ECG) 500*6+750 Real 1.17 1.79

P value of t test (all row) 0.22

Fig. 4 Comparison results for
ECG stdb_308_0(1:500)

PLR_IP and average fitting error of PLR_PAA for the different segment numbers (40–100)
which is the number of segments of PLR_IP and the number of intervals of PLR_PAA.
Figure 4 shows the experimental results for the ECG stdb_308_0 dataset, while the results
for all the datasets, which are averaged over the number of segments, are shown in the last
two columns in Table 1. We used the t test to examine the differences between the fitting
errors of PLR_IP and PLR_PAA over all the data sets. The single side paired t test value
is 0.22, which indicates that the difference between the PLR_IP and PLR_PAA errors over
these data sets is not statistically significant. However, as Table 1 shows, the PLR_IP method
indeed gets less fitting error on 9 data sets.
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Fig. 5 The time series anomaly found in electrocardiogram chfdb_chf01_275 (marked in yellow circle)

Fig. 6 The time series anomaly found in chfdb_chf13_45590 (marked in yellow circle)

Examining all the data sets, we find that PLR_IP has larger fitting errors for the data sets
that have too many peaks such as Space Shuttle Marotta Valve Series and Respiration data
set. On the other hand, PLR_IP has smaller fitting errors for data sets with fewer peaks such
as Aerospace L-1t and stdb_308_0. Overall, the PLR_IP method can effectively fit these
sequential datasets.

3.2 Anomaly detection in electrocardiograms

Electrocardiograms (ECGs) are time series data recording the activities of the heart, which
are detected by electrodes attached to the surface of the skin and recorded or displayed by a
device external to the body. Given their importance, many annotated data sets have been col-
lected. This experiment has conducted evaluation on three ECG datasets, chfdb_chf01_275,
chfdb_chf13_45590 and stdb_308_0 as shown in Figs. 5, 6 and 7, respectively. Figures 5
and 6 are very simple and it is easy to find the anomaly but Fig. 7 shows very complicated
ECG data where it is difficult to find the anomaly. Figures 5, 6 and 7 show the original time
series (blue line) and the esult using PLR_IP (red line). Table 2 shows the experimental results
of the ECG chfdb_chf01_275 using theWLOF and LOF (vector) method which uses the vec-
tor of all values of the original subsequence as the input to the LOF method (Breunig et al.
2000), in which the window size is set to w=400 and the number of important points is set to
m=375. In this study, we only present the results detected in the top 10 subsequences at most
and rank them based on the WLOF values. As seen from Table 2 the strongest outlier is in
subsequence 1991. Because the window size is 400, the strongest outlier data point sequence
is thus in between 1991 and 2390, and the second strongest outlier data point sequence is
2163–2560. The rank 1 and rank 2 overlap with the anomaly area as shown by the yellow
circle in Fig. 5. The anomaly is also detected by the LOF (vector) method in rank 1.
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Fig. 7 The time series anomaly found in electrocardiogram stdb_308_0 (marked in yellow circle)

Table 2 Results of the ECG chfdb_chf01_275 for window size�400

Rank 1 2 3 4 5 6

WLOF
method

Subsequence
number

1991 2163 1992 2669 2670 2672

LOF
(vector)
method

Subsequence
number

2388 2663 2389 146 522 315

Table 3 Results of the ECG chfdb_chf13_45590 for window size�250

Rank 1 2 3 4 5 6

WLOF
method

Subsequence
number

2728 2010 865 148 864 2154

LOF
(vector)
method

Subsequence
number

1151 578 3 2728 3444 2585

Table 3 shows the results of the ECG chfdb_chf13_45590 using the WLOF and the LOF
(vector) method, in which the window size is set to w=250 and important point number is
set to m=375. The strongest outlier is subsequence 2728. Because the window size is 250,
the strongest outlier data point sequence is in between 2728 and 2977, in which a possible
anomaly area is presented with the yellow circle in Fig. 6. The anomaly is not detected by
LOF (vector) method until rank 4. Table 4 shows the results of the ECG stdb_308_0 using
the proposed WLOF and LOF (vector) method, with the window size w=400 and important
point number m=550. The strongest outlier is in subsequence 1939. Because the window
size is 400, the strongest outlier data point sequence is thus in between 1939 and 2388, and
the rank 3 also includes the anomaly area indicated with the yellow circle as shown in Fig. 7.
The anomaly is detected by the LOF (vector) method in rank 6.

3.3 Anomaly detection in space telemetry

Figures 8 and 9 show two Space ShuttleMarotta Valve series that were annotated by a NASA
engineer (Keogh et al. 2005). In Fig. 8, the expert annotated the anomaly as “Poppet pulled
out of the solenoid before energizing”. In Fig. 9, the expert annotated the anomaly as “Poppet
pulled significantly out of the solenoid before energizing”. Tables 5 and 6 show the results
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Table 4 Results of the ECG stdb_308_0 with the window size�400

Rank 1 2 3 4 5 6

WLOF
method

Subsequence
number

1939 3411 2242 3750 3412 4194

LOF
(vector)
method

Subsequence
number

1505 1418 1386 1393 4485 2544

Fig. 8 The time series anomaly found in space shuttle Marotta valve series 1 (marked in yellow circle)

Fig. 9 The time series anomaly found in space shuttle Marotta valve series 2 (marked in yellow circle)

Table 5 Results of the space shuttle Marotta valve series 1 for window size�500

Rank 1 2 3 4 5 6

WLOF
method

Subsequence
number

2098 2594 4234 4233 2595 99

LOF
(vector)
method

Subsequence
number

515 493 477 479 481 483

of the Space Shuttle Marotta Valve Series 1 and Space Shuttle Marotta Valve Series 2 using
theWLOF and LOF (vector) methods, where the window size is set to w=500 and important
point number m=500. The strongest outlier subsequence for series 1 according to WLOF
starts at 2098 and because the window size is 500 it is therefore the subsequence from 2098
to 2597, which overlaps with the anomaly area as shown by the yellow circle in Fig. 8.
The strongest outlier subsequence for series 2 according to WLOF is 369–868 which does
not overlap with the anomaly area as shown by the yellow circle in Fig. 9. However, the 8th
strongest outlier subsequence for series 2 is 4030–4529 which does overlap with the anomaly
area. Note that none of the subsequences identified by the LOF method in Tables 5 and 6
overlap with the corresponding anomaly areas in Figs. 8 and 9.
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Table 6 Results of the space shuttle Marotta valve series 2 for window size�500

Rank 1 2 3 4 5 6 7 8

WLOF
method

Subsequence
num-
ber

369 1091 99 7 596 146 889 4030

LOF
(vec-
tor)
method

Subsequence
num-
ber

683 1905 1995 9 13 17 25 35

Fig. 10 The original time series of
patients’ respiration (blue line)
and the segmented result (red
line)

3.4 Anomaly detection in patients’ respiration

The Respiration dataset is a time series showing a patient’s respiration (measured by thorax
extension). The dataset consists of manually segmented data labeled with ‘awake’ and ‘sleep’
(Keogh et al. 2005). Figure 10 shows the original time series of patients’ respiration (blue line)
and the segmented result (red line). As Fig. 10 shows, there are three different stages (0–2950,
2951–3300, and 3301–4000). Table 7 shows the detected results on the Respiration dataset
using the WLOF, with the settings of the window size w�150 and important point number
m�400. The strongest outliers are subsequences 2908 and 2909, so given the window offset
150, the strongest outlier data subsequence is thus 2908–3057, which includes the change
from the first stage to the second stage, and the rank 7 subsequence is 3390–3539 which is
just above the change from the second stage to the third stage. The LOF (vector) method
finds relevant subsequences in all ranks from 1 to 7, but they all correspond to the same
anomaly from the second stage to the third stage, with the subsequences all being just below
the boundary between these stages.

3.5 Anomaly detection in aerospace data

This section presents the experimental results of the anomaly detection on theAerospace time
series data set (Keogh et al. 2004) as shown in Figs. 11, 12, 13, 14 and 15. Figure 11 shows the
data set L-1j which is Impulse with one impulse negated inversion. Table 8 shows the results
of the Aerospace L-1j, with the window size setting of w=30 and important point number
m=100. The strongest outlier is subsequence 480, thus the segment 480–509 overlaps with
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Table 7 Results of the patients’ respiration for window size�150

Rank 1 2 3 4 5 6 7

WLOF
method

Subsequence
number

2908 2909 2946 702 1262 2947 3390

LOF
(vector)
method

Subsequence
number

3073 3074 3075 3072 3076 3038 3077

Fig. 11 The time series anomaly found in Aerospace L-1j data (marked in yellow circle)

Fig. 12 The time series anomaly found in Aerospace L-1b data (marked in yellow circle)

Fig. 13 The time series anomaly found in Aerospace L-1p data (marked in yellow circle)

the anomaly of Aerospace L-1j with one negative impulse as shown in Fig. 11. The anomaly
also is detected in rank 1 using the LOF (vector) method. The same parameters for Aerospace
L-1b sequence with one impulse amplitude doubled as shown in Fig. 12 and Table 9. The
strongest outlier is subsequence 471, thus the segment 471–500 overlaps with the anomaly
with one impulse amplitude doubled as shown in Fig. 12. The anomaly is also detected in
rank 1 using the LOF (vector) method.

Figure 13 shows Aerospace L-1p sequence which is the sine with phase advance. Table 10
shows the results of theAerospace L-1p sequence using theWLOF and LOF (vector) method,
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Fig. 14 The time series anomaly found in Aerospace L-1q data (marked in yellow circle)

Fig. 15 The time series anomaly found in Aerospace L-1t data

Table 8 Results of Aerospace L-1j data set for window size�30

Rank 1 2 3 4 5 6

WLOF method Subsequence
number

480 959 960 961 962 963

LOF (vector) method Subsequence
number

500 498 499 497 9 19

Table 9 Results of Aerospace L-1b data set for window size�30

Rank 1 2 3 4 5 6

WLOF method Subsequence
number

471 959 960 961 962 963

LOF (vector) method Subsequence
number

497 7 17 27 37 47

where the window size is set to w=30 and important point number m=100. The strongest
outlier is subsequence 481, the segment 481–510 overlaps the anomaly of Aerospace L-1p
as shown in Fig. 13. The LOF (vector) method cannot detect the anomaly in ranks 1–10.
Figure 14 shows the Aerospace L-1q sequence which is the sine with phase delay. Table 11
shows the results of theAerospaceL-1q sequenceusing theWLOFandLOF (vector)methods,
with the window size setting of w=30 and segment number m=100. The strongest outlier
subsequence according to WLOF is 503–532 which does not overlap with the anomaly area
as shown by the yellow circle in Fig. 12. However, the 2nd strongest outlier subsequence is
439–468 which does overlap with the anomaly area. This anomaly is in rank 1 for the LOF
(vector) method.

Figure 15 shows the Aerospace L-1q sequence which is the sine with shot noise. The data
set has three anomalies with one cycle with a few large magnitude values. Table 12 shows the
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Table 10 Results of Aerospace L-1p data set for window size�30

Rank 1 2 3 4 5 6

WLOF method Subsequence
number

481 708 645 472 480 648

LOF (vector) method Subsequence
number

413 916 36 539 350 853

Table 11 Results of Aerospace L-1q data set for window size�30

Rank 1 2 3 4 5 6

WLOF method Subsequence
number

503 439 444 438 502 440

LOF (vector) method Subsequence
number

440 439 172 675 109 612

Table 12 Results of Aerospace L-1t data set for window size�30

Rank 1 2 3 4 5 6

WLOF method Subsequence
number

471 482 481 480 421 451

LOF (vector) method Subsequence
number

480 481 482 500 450 449

results of the Aerospace L-1t sequence with the window size setting of w=30 and important
point number m=100. The strongest outlier is subsequence 471, the segment is 471–500
which contains one of the anomalies in Aerospace L-1t as shown in Fig. 14. Ranks 2, 3 and 4
correspond to the second anomaly and ranks 5 and 6 to the third anomaly. The LOF (vector)
method obtains similar results for this data set.

The experimental results for the other data sets given in Table 1 are shown in Table 13.
There are two anomalies in the Lighting2_TEST data set, which are detected in rank 1 and
rank 2. There is only one anomaly for each of the other data sets and the anomalies have
been detected in rank 1 in four of the data sets and rank 3 in the other one. The results are
compared with method LOF (vector) in Table 14.

4 Discussion

Many rank based anomaly detection algorithms have been proposed such as LOF,
Connectivity-based outlier method (COF), and INFLuential measure of outlier by symmet-
ric relationship method (INFLO) (Huang 2013). They have been used to detect anomalies in
several public benchmark data sets. Some anomalies can be detected in rank 1, but they failed
to detect some anomalies (Huang 2013). The empirical results demonstrate that our WLOF
method outperforms the LOF method over the seventeen datasets in the different settings of
the window and important points. Here we look at the effect of different parameters. The
important point number was set at 10% of the number of data points. We set the parameter
window size according to the features of time series data, which should be larger than the
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Table 13 The experimental results for 5 data sets

No. Data set Window size Number of
segment

Optimal rank Beginning point

1 OliveOil_TEST 60 60 Rank 1 451

2 Lighting2_TEST 20 100 Rank 1, rank 2 457,473

3 Respirationppt20 250 200 Rank 1 1530

4 xmitdb_x108_0
(ECG)

250 400 Rank 1 4372

5 ltstdb_20321_240
(ECG)

100 400 Rank 1 719

6 ltstdb_20321_43
(ECG)

100 400 Rank 3 775

length from one peak to next peak in time series data. In order to examine the effect of our
feature extraction method, we also obtained results with the LOF method using the features
from out method so it could be compared with the LOFmethod using the vector of all original
data points, which was used in Sect. 3. The experimental results are shown in Table 14.

We also examine different window sizes for the WLOF, NLOF, LOF and LOF (vector)
methods. The difference between WLOF and NLOF is that instead of constructing four
features with different weights, NLOF normalizes the time series data by just mapping each
data point into the range [0, 1]. The difference between LOF and LOF (vector) is that the
input values of the LOFmethod are the four features of subsequences obtained by our feature
extractionmethod, whereas the input values of LOF (vector) is the vector of all original values
of the subsequences. As Table 14 shows, all the anomalies can be detected by the WLOF
method using the different window sizes in Sect. 3, and only one anomaly cannot be detected
by the LOF method using our feature extraction method in rank 1–10 as shown in Table 14,
however by contrast, 7 anomalies cannot be detected by the LOF (vector) method using the
original data point values as the features. Therefore, this result illustrates that our feature
extraction method and weighting method have achieved better performance than the LOF
methods. For thesewindow sizes, theWLOFcanfind 100%of the anomalies, theLOFmethod
can find 95% of the anomalies and the LOF (vector) can only find 65% of the anomalies.
The WLOF also obtains better rankings for most of these data sets such as data sets 1, 12
and 15, obtaining the best RankPower with a value of (5.12) compared to (3.39) for LOF and
(2.76) for LOF (vector). To examine the effect of other window sizes, as Table 14 shows,
reducing the window sizes by a half compared to Sect. 3, 11 anomalies cannot be detected
by the LOF (vector) method (just 45% detection rate of the anomalies), 9 anomalies cannot
be detected by the LOF and 9 anomalies cannot be detected by the WLOF (55% detection
rate), but there are two ranked at 10 by the LOF method. RankPower also can reflect the
performance of algorithms; the WLOF obtains a better RankPower (1.83) than the LOF and
LOF (vector) methods, which have RankPower of 1.32 and 0.96 respectively. For one and
half times the window size in Sect. 3, 7 anomalies cannot be detected by the LOF (vector)
method and LOF method (they find 65% of the anomalies) but 2 anomalies are detected in
rank 10 by LOF (vector), and 5 anomalies cannot be detected by WLOF (it finds 75% of the
anomalies). And the WLOF also obtains a better RankPower (2.35) than the LOF and LOF
(vector) methods, which have RankPower of 2.07 and 2.22 respectively.

We also carried out experiments with NLOF over these datasets. Unlike NLOF, which
normalizes the time series, our newweightedmethodWLOF takes account of the relationship
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Table 15 Experimental results for WLOF with different values of the parameter β

WLOF β =1/2 WLOF β =2/3 WLOF β =3/4

1. stdb_308_0 1 9 NO

2. chfdb_chf01_275 1 1 1

3. chfdb_chf13_45590 1 1 1

4. xmitdb_x108_0 (ECG) 1 4 3

5. ltstdb_20321_43 (ECG) 3 3 3

6. ltstdb_20321_240 (ECG) 1 1 1

7. Space Shuttle Marotta Valve
Series2

8 10 NO

8. Space Shuttle Marotta Valve
Series1

1 NO 5

9. Aerospace L-1t 1, 5 1, 2 1, 2

10. Aerospace L-1q 2 2 2

11. Aerospace L-1p 1 1 1

12. Aerospace L-1b 1 NO 1

13. Aerospace L-1j 1 NO NO

14. Respirationppt20 1 1 1

15. Respiration 1, 7 4, NO 4, NO

16. OliveOil_TEST 1 1 1

17. Lighting2_TEST 1, 2 1, 2 1, NO

Accuracy (%) 100 80 75

between features by using weights when aggregating all feature together. Table 14 also shows
the experimental results obtained using the NLOF, which achieves accuracies of 95%, 55%,
and85%andaRankPower of 2.32, 1.47, and2.15 for the differentwindows sizes, respectively.
As Table 14 also shows, the WLOF method can obtain accuracies of 100%, 55%, and 75%
and RankPower of 5.12, 1.83, and 2.35 for the different windows sizes, respectively. In other
words, WLOF can obtain better RankPower than NLOF. As Table 15 shows, the accuracy
of finding the anomalies is 100% for β =1/2, 80% for β =2/3 and 75% for β =3/4. These
accuracies are better than the results for LOF (vector). Overall, the experimental results
demonstrate that our method can improve the performance of anomaly detection over the 17
data sets with the suitable window sizes in comparison with the LOF methods.

Now we compare our WLOF with the HOT SAX method which was proposed by Keogh
et al. (2005). The authors used their method to represent time series data and then find
the discords based on the distance between subsequences. This method also needs to set
several parameters. Window size for subsequences is needed and the parameter nseg, which
is the number of symbols, is used to represent the subsequence. The element number of the
alphabet which is set to 10 in this paper, represents that the HOT SAX method using the
alphabet “a, b, c, …, j” to represent the subsequence, more details can be found in reference
(Keogh et al. 2005). Table 16 shows the experimental results. The accuracy of all different
window sizes is 75% and the RankPower is 2.61 for the window sizes in Sect. 3 and 2.93 and
4.62 for window sizes 50% smaller and larger respectively. Therefore, the WLOF obtained
greater accuracy for the window sizes set in Sect. 3 and the same results for window sizes
50% larger, but a lower accuracy for window sizes 50% smaller.While the HOT SAXmethod
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Fig. 16 The selected important points of time series ECG chfdb_chf13_45590

has better RankPower results for the smaller and larger window sizes, WLOF obtains the
best RankPower (5.12) compared to the other methods for the window sizes set in Sect. 3
and this is better than any of the results for other methods at any of the window sizes
considered.

In respect of computational complexity, we compare the WLOF and HOT SAX methods.
Suppose n is the size of data sets. Keogh et al. (2005) have pointed out that the complexity of
their method is O(n2), although they also proposed heuristics to reduce complexity (Keogh
et al. 2005), and they later showed an algorithm that can exactly find discords in just O(n)
time, with “two linear scans through the database and a limited amount of memory based
computation” (Yankov et al. 2007). The WLOF and the LOF have the same complexity, but
differ from that of HOT SAX. Breunig et al. (2000) have analyzed the complexity in. The
complexity of WLOF and LOF is as follow:

T (n) � O(n ∗ tk) (14)

where tk is the time for a k-nearest neighbour search
For low-dimensional data, the complexity is O(n). For medium to medium high-

dimensional data the complexity is O(n * log n). For extremely high-dimensional data, the
complexity is O(n2).

With respect to the effect of the weighted local outlier factor, Fig. 16 shows the results of
important points selection for ECG data set chfdb_chf13_45590 whose parameters are given
in Sect. 3.2. The symbol‘*’ represents the extreme points and ‘o’ represents the additional
important points computed by Formula 2. As Fig. 16 shows, the selected important points
can segment the time series data and this can help to obtain the four features defined. Table 17
shows the four feature values for the first seven subsequences of chfdb_chf13_45590 and we
also find Sum1 �647, Sum2 �77,224, Sum3 �3915 and Sum4 �2569, which are obtained
as noted after Formula (9). Notice that the feature ‘the number of important points in the
subsequence’, Sum2 is much larger than the other features, which would then dominate
the experimental results of the LOF method that uses the four features as input, and so it is
unable to find the anomaly in chfdb_chf13_45590 near the data point 2700 as shown in Fig. 6.
Therefore, we used our WLOF method to allocate different features with different weights.
We use the sum of the values of each feature to ensure that for a given feature, appropriate
weights are used as given in Formula 9. Table 14 shows, for chfdb_chf13_45590, the WLOF
method can find the anomaly in rank 1. In summary, the WLOF can make use of all the
features in anomaly detection.

To investigate the discriminability of the four features, we have carried out more experi-
ments on the combinations of these four features, analyzing the effect of combinations of any
three features. Table 18 shows the results of any three features. Features 2, 3, 4 can obtain
best results with accuracy 100% and RankPower (3.28). However, as shown in Table 14, the
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Table 17 4 Feature values for the first 7 subsequences of chfdb_chf13_45590

Subsequence number 1 2 3 4 5 6 7

Maximum angle 0.28 0.29 0.29 0.28 0.28 0.26 0.27

The number of
important points

26 25 24 24 23 23 23

Average value −1.19 −1.18 −1.17 −1.17 −1.17 −1.17 −1.17

Maximum difference
between values of
important points

0.78 0.78 0.78 0.78 0.78 0.51 0.47

Table 18 How any tree features affect the results

Features 1, 2, 3 Features 2, 3, 4 Features 1, 3, 4 Features 1, 2, 4

1. stdb_308_0 1 5 NO NO

2. chfdb_chf01_275 2 1 3 NO

3. chfdb_chf13_45590 NO 3 NO NO

4. xmitdb_x108_0 (ECG) NO 1 2 NO

5. ltstdb_20321_43
(ECG)

3 6 10 NO

6. ltstdb_20321_240
(ECG)

6 8 NO NO

7. Space Shuttle Marotta
Valve Series2

3 7 3 NO

8. Space Shuttle Marotta
Valve Series1

10 1 2 NO

9. Aerospace L-1t 1, 2 1, 6 1, 7 NO

10. Aerospace L-1q 1 4 1 NO

11. Aerospace L-1p 3 1 6 NO

12. Aerospace L-1b 6 1 2 NO

13. Aerospace L-1j NO 1 NO NO

14. Respirationppt20 2 1 3 NO

15. Respiration 1, 3 2, 8 1, 2 NO

16. OliveOil_TEST 1 1 NO NO

17. Lighting2_TEST 1, 2 2, 4 1, 4 NO

Accuracy (%) 85 100 75 0

RankPower 3.19 3.28 2.5 0

addition of feature 1 results in a higher value of RankPower (5.12). The experimental result
of combining feature 1, 2, 4 is 0% of accuracy, which indicates that feature 3 “average of the
subsequence” is playing a very important role in anomaly detection. Therefore, the use of
the four features together can effectively identify the anomalies, but including more features
does not necessarily improve the results. For example, in the case of the LOF (vector), where
the vector of all values of the original subsequence are used as the input features for the LOF
method, the accuracy is low as shown in Table 14.
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This section has discussed the experimental results using our WLOF method comparing
with LOF, NLOF, LOF (vector) and HOT SAX methods. The experiments show the new
features can work better than LOF (vector), and our weighting method can work better than
the Normalization method as shown in Tables 14 and 16. The effect of the proposed new
features is presented in Table 18. The assessment of different parameter values of β is given
in Table 15, with the experimental results demonstrating that the WLOF method can obtain
better accuracies than the LOF (vector) for different β values. From all the experiments,
it can be found that our important points, features and weighting method can obtain better
accuracy and RankPower.

5 Conclusion and future work

In this paper, we have proposed a newWLOFmethod alongwith three novel components. The
component PLR_IP, which consists of extreme points and additional points, can effectively fit
the original time serieswith the appropriate values of the parameterβ. The four features, three
of which are defined on the basis of the PLR_IP method, represent different aspects of time
series data as the input for the WLOF method. Finally, the weighting schema, which gives
the four features with different weights, has made effective use of the discriminant power
of all the features together. These novel components effectively characterize the time series
data and underpin the WLOF, with the experiments over the seventeen datasets illustrating
their effectiveness in anomaly detection.

The comparison between our weighting method and the normalization method demon-
strates that the PLR_IP method can effectively extract the features of time series and assist
the WLOF method in detecting the anomalies of the time series data. The experimental
results also show that the WLOF method can obtain better results over the 17 data sets than
the LOF method, NLOF method, LOF (vector) method and comparable with HOT SAX
method. These results indicate that using our feature extraction method can improve the per-
formance of anomaly detection of the LOF method, and our weighting method is better than
the normalization method.

One particular issue with the proposed approach is that a number of parameters need to be
set prior to the application to anomaly detection. To overcome this shortcoming in practice,
we plan to conduct a further study in line with the current research results, including (1)
investigating other features for anomaly detection analysis, for example considering the
geometrical information of data points; (2) considering a new weighting method which can
capture the relationship of all features, and (3) revising the WLOF model to reduce the
number of parameters required.
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