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Abstract
In the case of vector data, Gretton et al. (Algorithmic learning theory. Springer, Berlin, pp 63–
77, 2005) defined Hilbert–Schmidt independence criterion, and next Cortes et al. (J Mach
Learn Res 13:795–828, 2012) introduced concept of the centered kernel target alignment
(KTA). In this paper we generalize these measures of dependence to the case of multivariate
functional data. In addition, based on these measures between two kernel matrices (we use
the Gaussian kernel), we constructed independence test and nonlinear canonical variables
for multivariate functional data. We show that it is enough to work only on the coefficients
of a series expansion of the underlying processes. In order to provide a comprehensive
comparison, we conducted a set of experiments, testing effectiveness on two real examples
and artificial data. Our experiments show that using functional variants of the proposed
measures, we obtain much better results in recognizing nonlinear dependence.

Keywords Multivariate functional data · Functional data analysis · Correlation analysis ·
Canonical correlation analysis

1 Introduction

The theory and practice of statistical methods in situations where the available data are
functions (instead of real numbers or vectors) is often referred to as Functional Data Analysis
(FDA). The term Functional Data Analysis was already used by Ramsay and Dalzell (1991)
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two decades ago. This subject has become increasingly popular from the end of the 1990s and
is now a major research field in statistics (Cuevas 2014). Good access to the large literature
in this field comes from the books by Ramsay and Silverman (2002, 2005), Ferraty and
Vieu (2006), and Horváth and Kokoszka (2012). Special issues devoted to FDA topics have
been published by different journals, including Statistica Sinica 14(3) (2004), Computational
Statistics 22(3) (2007), Computational Statistics and Data Analysis 51(10) (2007), Journal
of Multivariate Analysis 101(2) (2010), Advances in Data Analysis and Classification 8(3)
(2014).

The range of real world applications, where the objects can be thought of as functions, is as
diverse as speech recognition, spectrometry, meteorology, medicine or clients segmentation,
to cite just a few (Ferraty and Vieu 2003; James et al. 2009; Martin-Baragan et al. 2014;
Devijver 2017).

The uncentered kernel alignment originally was introduced by Cristianini et al. (2001).
Gretton et al. (2005) defined Hilbert–Schmidt Independence Criterion (HSIC) and the empir-
ical HSIC. Centered kernel target alignment (KTA) was introduced by Cortes et al. (2012).
This measure is a normalized version of HSIC. Zhang et al. (2011) gave an interesting kernel-
based independence test. This independence testingmethod is closely related to the one based
on the Hilbert–Schmidt independence criterion (HSIC) proposed by Gretton et al. (2008).
Gretton et al. (2005) described a permutation-based kernel independence test. There is a lot
of work in the literature for kernel alignment and its applications (good overview can be
found in Wang et al. 2015).

This work is devoted to a generalization of these measures of dependence to the case of
multivariate functional data. In addition, based on these measures we constructed indepen-
dence test andnonlinear canonical correlationvariables formultivariate functional data.These
results are based on the assumption that the applied kernel function is Gaussian. Functional
HSIC andKTA canonical correlation analysis can be viewed as natural nonlinear extension of
functional canonical correlation analysis (FCCA). So, we propose two nonlinear functional
CCA extensions that capture nonlinear relationship. Moreover, both algorithms are capable
of extracting also linear dependency. Additionally, we show that functional KTA approach
is only a normalized variant of HSIC coefficient also for functional data. Finally, we propose
some interpretation of module weighting functions for functional canonical correlations.

Section 2 provides an overview of centered measures alignment for random vectors. They
are defined by such concepts as: kernel function alignment, kernel matrix alignment, and
Hilbert–Schmidt Independence Criterion (HSIC) and associations between them have been
shown. Functional data can be seen as values of randomprocesses. In our paper, themultivari-
ate random function XXX and YYY have special representation (8) in finite dimensional subspaces
of the spaces of square integrable functions on the given intervals. In Sect. 3 we present
kernel-based independence test. Section 4 discusses the concept of alignment for multivari-
ate functional data. The kernel function, the alignment between two kernels functions, the
centered kernel alignment (KTA) between two kernel matrices and the empirical Hilbert–
Schmidt Independence Criterion (HSIC) are defined. The HSIC was used as the basis for
an independence test. In Sect. 5 we present kernel-based independence test for multivari-
ate functional data. In Sect. 5, based on the concept of alignment between kernel matrices,
nonlinear canonical variables were constructed. It is a generalization of the results of Chang
et al. (2013) for random vectors. In Sect. 5 we present an one artificial and two real examples
which confirm the usefulness of proposed coefficients in detection of nonlinear dependency
for group of variables.
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2 An overview of kernel alignment and its applications

We introduce the following notational convention. Throughout this section, XXX and YYY are
random vectors, with domains R

p and R
q , respectively. Let PXXX ,YYY be a joint probability

measure on (Rp × R
q , � × �) (here � and � are the Borel σ -algebras on R

p and R
q ,

respectively), with associated marginal probability measures PXXX and PYYY .

Definition 1 (Kernel functions, Shawe-Taylor and Cristianini 2004) A kernel is a function k
that for all xxx, xxx ′ ∈ R

p satisfies

k(xxx, xxx ′) = 〈ϕϕϕ(xxx),ϕϕϕ(xxx ′)〉H,

where ϕ is a mapping from R
p to an inner product feature space H

ϕ : xxx → ϕ(xxx) ∈ H.

We call ϕϕϕ a feature map.

A kernel function can be interpreted as a kind of similarity measure between the vectors xxx
and xxx ′.

Definition 2 (Grammatrix, Mercer 1909; Riesz 1909; Aronszajn 1950) Given a kernel k and
inputs xxx1, . . . , xxxn ∈ R

p , the n × n matrix KKK with entries Ki j = k(xxxi , xxx j ) is called the Gram
matrix (kernel matrix) of k with respect to xxx1, . . . , xxxn .

Definition 3 (Positive semi-definite matrix, Hofmann et al. 2008) A real n × n symmetric
matrix KKK with entries Ki j satisfying

n∑

i=1

n∑

j=1

ci c j Ki j ≥ 0

for all ci ∈ R is called positive semi-definite.

Definition 4 (Positive semi-definite kernel, Mercer 1909; Hofmann et al. 2008) A function
k : Rp × R

p → R which for all n ∈ N, xxxi ∈ R
p, i = 1, . . . , n gives rise to a positive

semi-definite Gram matrix is called a positive semi-definite kernel.

This raises an interesting question: given a function of two variables k(xxx, xxx ′), does there
exist a function ϕϕϕ(xxx) such that k(xxx, xxx ′) = 〈ϕϕϕ(xxx),ϕϕϕ(xxx ′)〉H? The answer is provided by
Mercer’s theorem (1909) which says, roughly, that if k is positive semi-definite then such a
ϕ exists.

Often, we will not known φφφ, but a kernel function k : Rp × R
p → R that encodes the

inner product in H, instead.
Popular positive semi-definite kernel functions on R

p include the polynomial kernel of
degree d > 0, k(xxx, xxx ′) = (1 + xxx�xxx ′)d , the Gaussian kernel k(xxx, xxx ′) = exp(−λ‖xxx − xxx ′‖2),
λ > 0, and the Laplace kernel k(xxx, xxx ′) = exp(−λ‖xxx − xxx ′‖), λ > 0. In this paper we use, the
Gaussian kernel.

We start with the definition of centering and the analysis of its relevant properties.
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2.1 Centered kernel functions

A feature mapping φφφ : Rp → H is centered by subtracting from it its expectation, that
is transforming φφφ(xxx) to φ̃φφ(xxx) = φφφ(xxx) − EXXX [φφφ(XXX)], where EXXX denotes the expected value
of φφφ(XXX) when XXX is distributed according to PXXX . Centering a positive semi-definite kernel
function k : Rp ×R

p → R consists centering in the feature mappingφφφ associated to k. Thus,
the the centered kernel k̃ associated to k is defined by

k̃(xxx, xxx ′) = 〈φφφ(xxx) − EXXX [φφφ(XXX)],φφφ(xxx ′) − EXXX ′ [φφφ(XXX ′)]〉
= k(xxx, xxx ′) − EXXX [k(XXX , xxx ′)] − EXXX ′ [k(xxx, XXX ′)] + EXXX ,XXX ′ [k(XXX , XXX ′)],

assuming the expectations exist. Here, the expectation is taken over independent copies XXX ,
XXX ′ distributed according to PXXX . We see that, k̃ is also a positive semi-definite kernel. Note
also that for a centered kernel k̃, EXXX ,XXX ′ [k̃(XXX , XXX ′)] = 0, that is, centering the feature mapping
implies centering the kernel function.

2.2 Centered kernel matrices

Let {xxx1, . . . , xxxn} be a finite subset ofRp . A feature mappingφφφ(xxxi ), i = 1, . . . , n, is centered
by subtracting from it its empirical expectation, i.e., leading to φ̄φφ(xxxi ) = φφφ(xxxi ) − φφφ, where
φφφ = 1

n

∑n
i=1 φφφ(xxxi ). The kernel matrix KKK = (Ki j ) associated to the kernel function k and the

set {xxx1, . . . , xxxn} is centered by replacing it with K̃KK = (K̃i j ) defined for all i, j = 1, 2, . . . , n
by

K̃i j = Ki j − 1

n

n∑

i=1

Ki j − 1

n

n∑

j=1

Ki j + 1

n2

n∑

i, j=1

Ki j , (1)

where Ki j = k(xxxi , xxx j ), i, j = 1, . . . , n.
The centered kernel matrix K̃KK is a positive semi-definite matrix. Also, as with the kernel

function 1
n2

∑n
i, j K̃i j = 0.

Let 〈·, ·〉F denote the Frobenius product and ‖ · ‖F the Frobenius norm defined for all
AAA, BBB ∈ R

n×n by

〈AAA, BBB〉F = tr(AAA�BBB),

‖AAA‖F = (〈AAA, AAA〉F )1/2.

Then, for any kernel matrix KKK ∈ R
n×n , the centered kernel matrix K̃KK can be expressed as

follows (Schölkopf et al. 1998):

K̃KK = HHHKKKHHH , (2)

where HHH = III n − 1
n111n111

�
n , 111n ∈ R

n×1 denote the vector with all entries equal to one, and III n
the identity matrix of order n. The matrix HHH is called “centering matrix”.

Since HHH is the idempotent matrix (HHH2 = HHH ), then we get for any two kernel matrices KKK
and LLL based on the subset {xxx1, . . . , xxxn} ofRp and the subset {yyy1, . . . , yyyn} ofRq , respectively,

〈K̃KK , L̃LL〉F = 〈KKK , L̃LL〉F = 〈K̃KK , LLL〉F . (3)
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2.3 Centered kernel alignment

Definition 5 (Kernel function alignment, Cristianini et al. 2001; Cortes et al. 2012) Let k
and l be two kernel functions defined over Rp × R

p and R
q × R

q , respectively, such that
0 < EXXX ,XXX ′ [k̃2(XXX , XXX ′)] < ∞ and 0 < EYYY ,YYY ′ [l̃2(YYY ,YYY ′)] < ∞, where XXX , XXX ′ and YYY ,YYY ′ are
independent copies distributed according to PXXX and PYYY , respectively. Then the alignment
between k and l is defined by

ρ(k, l) = EXXX ,X ′X ′X ′,YYY ,Y ′Y ′Y ′ [k̃(XXX , XXX ′)l̃(YYY ,YYY ′)]
√
EXXX ,XXX ′ [k̃2(XXX , XXX ′)]EYYY ,Y ′Y ′Y ′ [l̃2(YYY ,YYY ′)]

.

We can define similarly the alignment between two kernel matrices KKK and LLL based on the
finite subset {xxx1, . . . , xxxn} and {yyy1, . . . , yyyn}, respectively.
Definition 6 (Kernel matrix alignment, Cortes et al. 2012) Let KKK ∈ R

n×n and LLL ∈ R
n×n be

two kernel matrices such that ‖K̃KK‖F �= 0 and ‖L̃LL‖F �= 0. Then, the centered kernel target
alignment (KTA) between KKK and LLL is defined by

ρ̂(KKK , LLL) = 〈K̃KK , L̃LL〉F
‖K̃KK‖F‖L̃LL‖F

. (4)

Here, by the Cauchy–Schwarz inequality, ρ̂(KKK , LLL) ∈ [−1, 1] and in fact ρ̂(KKK , LLL) ∈ [0, 1]
when KKK and LLL are the kernel matrices of the positive semi-definite kernel k̃ and l̃.

Gretton et al. (2005) defined Hilbert–Schmidt Independence Criterion (HSIC) as a test
statistic to distinguish between null hypothesis H0 : PXXX ,YYY = PXXX PYYY (equivalently we may
write XXX⊥⊥YYY ) and alternative hypothesis H1 : PXXX ,YYY �= PXXX PYYY .

Definition 7 (Reproducing kernel Hilbert space, Riesz 1909; Mercer 1909; Aronszajn 1950)
Consider a Hilbert space H of functions from R

p to R. Then H is a reproducing kernel
Hilbert space (RKHS) if for each xxx ∈ R

p , the Dirac evaluation operator δxxx : H → R, which
maps f ∈ H to f (xxx) ∈ R, is a bounded linear functional.

Let ϕ : Rp → H be amap such that for all xxx, xxx ′ ∈ R
p we have 〈φφφ(xxx),φφφ(xxx ′)〉H = k(xxx, xxx ′),

where k : Rp×R
p → R is a unique positive semi-definite kernel.Wewill require in particular

that H be separable (it must have a complete, countable orthonormal system). We likewise
define a second separable RKHS G, with kernel l(·, ·) and feature map ψψψ , on the separable
space Rq .

We may now define the mean elements μXXX and μYYY with respect to the measures PXXX and
PYYY as those members of H and G, respectively, for which

〈μXXX , f 〉H = EXXX [〈φφφ(XXX), f 〉H] = EXXX [ f (XXX)],
〈μYYY , g〉G = EYYY [〈ψψψ(YYY ), g〉G] = EYYY [g(YYY )],

for all functions f ∈ H, g ∈ G, where φφφ is the feature map from R
p to the RKHS H, andψψψ

maps from R
q to G and assuming the expectations exist.

Finally, ‖μXXX‖2H can be computed by applying the expectation twice via

‖μXXX‖2H = EXXX ,XXX ′ [〈φφφ(XXX),φφφ(XXX ′)〉H] = EXXX ,XXX ′ [k(XXX , XXX ′)],
assuming the expectations exist. The expectation is taken over independent copies XXX , XXX ′
distributed according to PXXX . The means μXXX , μYYY exist when positive semi-definite kernels k
and l are bounded. We are now in a position to define the cross-covariance operator.
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Definition 8 (Cross-covariance operator, Gretton et al. 2005) The cross-covariance operator
CCCXXX ,YYY : G → H associated with the joint probability measure PXXX ,YYY on (Rp × R

q , � × �) is
a linear operator CCCXXX ,YYY : G → H defined as

CCCXXX ,YYY = EXXX ,YYY [φ(XXX) ⊗ ψ(YYY )] − μXXX ⊗ μYYY ,

for all f ∈ H and g ∈ G, where the tensor product operator f ⊗ g : G → H, f ∈ H, g ∈ G,
is defined as

( f ⊗ g)h = f 〈g, h〉G, for all h ∈ G.

This is a generalization of the cross-covariancematrix between randomvectors.Moreover,
by the definition of the Hilbert–Schmidt (HS) norm, we can compute the HS norm of f ⊗ g
via

‖ f ⊗ g‖2HS = ‖ f ‖2H‖g‖2G .

Definition 9 (Hilbert–Schmidt IndependenceCriterion, Gretton et al. 2005)Hilbert–Schmidt
Independence Criterion (HSIC) is the squared Hilbert–Schmidt norm (or Frobenius norm)
of the cross-covariance operator associated with the probability measure PXXX ,YYY on (Rp ×R

q ,
� × �):

HSIC(PXXX ,YYY ) = ‖CCCXXX ,YYY ‖2F .

To compute it we need to express HSIC in terms of kernel functions (Gretton et al. 2005):

HSIC(PXXX ,YYY ) = EXXX ,X ′X ′X ′,YYY ,Y ′Y ′Y ′ [k(XXX , XXX ′)l(YYY ,YYY ′)]
+ EXXX ,X ′X ′X ′ [k(XXX , XXX ′)]EYYY ,Y ′Y ′Y ′ [l(YYY ,YYY ′)]
− 2 EXXX ,YYY [EX ′X ′X ′ [k(XXX , XXX ′)]EY ′Y ′Y ′ [l(YYY ,YYY ′)]]. (5)

Here EXXX ,X ′X ′X ′,YYY ,Y ′Y ′Y ′ denotes the expectation over independent pairs (XXX ,YYY ) and (XXX ′,YYY ′) dis-
tributed according to PXXX ,YYY .

It follows from (5) that the Frobenius norm ofCCCXXX ,YYY exists when the various expectations
over the kernels are bounded, which is true as long as the kernels k and l are bounded.

Definition 10 (Empirical HSIC, Gretton et al. 2005) Let S = {(xxx1, yyy1), . . . , (xxxn, yyyn)} ⊆
R

p ×R
q be a series of n independent observations drawn from PXXX ,YYY . An estimator of HSIC,

written HSIC(S), is given by

HSIC(S) = 1

n2
〈KKK , L̃LL〉F , (6)

where KKK = (k(xxxi , xxx j )), LLL = (l(yyyi , yyy j )) ∈ R
n×n .

Comparing (4) and (6) and using (3), we see that the centered kernel target alignment
(KTA) is simply a normalized version of HSIC(S).

In two seminar papers on Székely et al. (2007) and Székely and Rizzo (2009) introduced
the distance covariance (dCov) and distance correlation (dCor) as powerful measures of
dependence.

For column vectors sss ∈ R
p and ttt ∈ R

q , denote by ‖sss‖p and ‖ttt‖q the standard Euclidean
norms on the corresponding spaces. For jointly distributed random vectors XXX ∈ R

p and
YYY ∈ R

q , let

fXXX ,YYY (sss, ttt) = EXXX ,YYY {exp[i〈sss, XXX〉p + i〈ttt,YYY 〉q ]},
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Independence test and CCA for multivariate functional data 481

be the joint characteristic function of (XXX ,YYY ), and let fXXX (sss) = fXXX ,YYY (sss,000) and fYYY (ttt) =
ϕXXX ,YYY (000, ttt) be the marginal characteristic functions of XXX and YYY , where sss ∈ R

p and ttt ∈ R
q .

The distance covariance between XXX and YYY is the nonnegative number ν(XXX ,YYY ) defined by

ν2(XXX ,YYY ) = 1

CpCq

∫

Rp+q

| fXXX ,YYY (sss, ttt) − fXXX (sss) fYYY (ttt)|2
‖sss‖p+1

p ‖ttt‖q+1
q

dsssdttt,

and |z| denotes the modulus of z ∈ C and

Cp = π
1
2 (p+1)

�( 12 (p + 1))
.

The distance correlation between XXX and YYY is the nonnegative number defined by

R(XXX ,YYY ) = ν(XXX ,YYY )√
ν(XXX , XXX)ν(YYY ,YYY )

if both ν(XXX , XXX) and ν(YYY ,YYY ) are strictly positive, and defined to be zero otherwise. For
distributions with finite first moments, the distance correlation characterizes independence
in that 0 ≤ R(XXX ,YYY ) ≤ 1 with R(XXX ,YYY ) = 0 if and only if XXX and YYY are independent.

Sejdinovic et al. (2013) demonstrated that distance covariance is an instance of theHilbert–
Schmidt Independence Criterion. Górecki et al. (2016, 2017) showed an extension of the
distance covariance and distance correlation coefficients to the functional case.

2.4 Kernel-based independence test

Statistical tests of independence have been associated with a broad variety of dependence
measures. Classical tests such as Spearman’s ρ and Kendall’s τ are widely applied, however
they are not guaranteed to detect all modes of dependence between the random variables.
Contingency table-based methods, and in particular the power-divergence family of test
statistics (Read and Cressie 1988) are the best known general purpose tests of independence,
but are limited to relatively low dimensions, since they require a partitioning of the space
in which random variable resides. Characteristic function-based tests (Feuerverger 1993;
Kankainen 1995) have also been proposed. They are more general than kernel-based tests,
although to our knowledge they have been used only to compare univariate random vari-
ables.

Now, we describe how HSIC can be used as an independence measure, and as the basis
for an independence test. We begin by demonstrating that the Hilbert–Schmidt norm can be
used as a measure of independence, as long as the associated RKHSs are universal.

A continuous kernel k on a compact metric space is called universal if the corresponding
RKHS H is dense in the class of continuous functions of the space.

Denote by H, G RKHSs with universal kernels k, l on the compact domains X and Y
respectively. We assume without loss of generality that ‖ f ‖∞ ≤ 1 and ‖g‖∞ ≤ 1 for all
f ∈ H and g ∈ G. Then Gretton et al. (2005) proved that ‖CCCXXX ,YYY ‖HS = 0 if and only if
XXX and YYY are independent. Examples of universal kernels are Gaussian kernel and Laplacian
kernel, while the linear kernel k(xxx, xxx ′) = xxx�xxx ′ is not universal—the corresponding HSIC
tests only linear relationships, and a zero cross-covariancematrix characterizes independence
only for multivariate Gaussian distributions. Working with the infinite dimensional operator
with universal kernels, allows us to identify any general nonlinear dependence (in the limit)
between any pair of vectors, not just Gaussians.
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We recall that in this paper we use the Gaussian kernel. We now consider the asymptotic
distribution of statistics (6).

We introduce the null hypothesis H0 : XXX⊥⊥YYY (XXX is independent ofYYY , i.e., PXXX ,YYY = PXXX PYYY ).
Suppose that we are given the i.i.d. samples Sxxx = {xxx1, . . . , xxxn} and Syyy = {yyy1, . . . , yyyn}
for XXX and YYY , respectively. Let K̃KK and L̃LL be the centered kernel matrices associated to the
kernel function k and the sets Sxxx and Syyy , respectively. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be
the eigenvalues of the matrix K̃KK and let vvv1, . . . , vvvn be a set of orthonormal eigenvectors
corresponding to these eigenvalues. Let λ′

1 ≥ λ′
2 ≥ · · · ≥ λ′

n ≥ 0 be the eigenvalues of
the matrix L̃LL and let vvv′

1, . . . , vvv
′
n be a set of orthonormal eigenvectors corresponding to these

eigenvalues. Let � = diag(λ1, . . . , λn), �′ = diag(λ′
1, . . . , λ

′
n), VVV = (vvv1, . . . , vvvn) and

VVV ′ = (vvv′
1, . . . , vvv

′
n). Suppose further that we have the eigenvalue decomposition (EVD) of

the centered kernel matrices K̃KK and L̃LL , i.e., K̃KK = VVV���VVV� and L̃LL = VVV ′���′(VVV ′)�.
Let ��� = (���1, . . . ,���n) = VVV���1/2 and ��� ′ = (��� ′

1, . . . ,���
′
n) = VVV ′(���′)1/2, i.e., ��� i =√

λivvvi ,��� ′
i =

√
λ′
ivvv

′
i , i = 1, . . . , n.

The following result is true (Zhang et al. 2011): under the null hypothesis that XXX and YYY
are independent, the statistic (6) has the same asymptotic distribution as

Zn = 1

n2

n∑

i, j=1

λi,nλ
′
j,n Z

2
i j , (7)

where Z2
i j are i.i.d. χ

2
1 -distributed variables, n → ∞.

Note that the data-based test statistic HSIC (or its probabilistic counterpart) is sensible
to dependence/independence and therefore can be used as a test statistic. Also important
is the knowledge of its asymptotic distribution. These facts inspire the following depen-
dence/independence testing procedure. Given the sample Sxxx and Syyy , one first calculates
the centered kernel matrices K̃KK and L̃LL and their eigenvalues λi and λ′

i , and then evalu-
ates the statistic HSIC(S) according to (6). Next, the empirical null distribution of Z under
the null hypothesis can be simulated in the following way: one draws i.i.d. random sam-
ples from the χ2

1 -distributed variables Z2
i j , and then generates samples for Z according to

(7). Finally the p value can be found by locating HSIC(S) in the simulated null distribu-
tion.

A permutation-based test is described in Gretton et al. (2005). In the first step they propose
to calculate the test statistic T (HSIC orKTA) for the given data. Next, keeping the order of the
first sample we randomly permute the second sample a large number of times, and recompute
the selected statistic each time. This destroy any dependence between samples simulating
a draw from the product of marginals, making the empirical distribution of the permuted
statistics behave like the null distribution of the test statistic. For a specified significance
level α, we calculate threshold tα in the right tail of the null distribution. We reject H0 if
T > tα . This test was proved to be consistent against any fixed alternative. It means that for
any fixed significance level α, the power goes to 1 as the sample size tends to infinity.

2.5 Functional data

In recent years methods for representing data by functions or curves have received much
attention. Such data are known in the literature as the functional data (Ramsay and Silverman
2005; Horváth and Kokoszka 2012; Hsing and Eubank 2015). Examples of functional data
can be found in various application domains, such as medicine, economics, meteorology and
many others. Functional data can be seen as the values of randomprocess X(t). In practice, the
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Independence test and CCA for multivariate functional data 483

values of the observed random process X(t) are always recorded at discrete times t1, . . . , tJ ,
less frequently or more densely spaced in the range of variability of the argument t . So we
have a time series {x(t1), . . . , y(tJ )}. However, there are many reasons to model these series
as elements of functional space., because the functional data has many advantages over other
ways of representing the time series.

1. They easily cope with the problem of missing observations, an inevitable problem in
many areas of research. Unfortunately, most data analysis methods require complete
time series. One solution is to delete a time series that has missing values from the data,
but this can lead to , and generally leads to, loss of information. Another option is to use
one of many statistical methods to predict the missing values, but then the results will
depend on the interpolation method. In contrast to this type of solutions, in the case of
functional data, the problem of missing observations is solved by expressing time series
in the form of a set of continuous functions.

2. The functional data naturally preserve the structure of observations, i.e. they maintain the
time dependence of the observations and take into account the information about each
measurement.

3. The moments of observations do not have to be evenly spaced in individual time series.
4. Functional data avoids the curse of dimensionality. When the number of time points

is greater than the number of time series considered, most statistical methods will not
give satisfactory results due to overparametrization. In the case of functional data, this
problem can be avoided because the time series are replaced with a set of continuous
functions independent of the number of time points in which observations are measured.

In most of the papers on functional data analysis, objects are characterized by only one
feature observed at many time points. In several applications there is a need to use statistical
methods for objects characterized by many features observed at many time points (double
multivariate data). In this case, such data are transformed into multivariate functional data.

Let us assume that XXX = (X1, . . . , X p)
� = {XXX(s), s ∈ I1} ∈ L p

2 (I1) and YYY =
(Y1, . . . , Yq)� = {YYY (t), t ∈ I2} ∈ Lq

2(I2) are random processes, where L2(I ) is a space
of square integrable functions on the interval I . We also assume that

E(XXX(s)) = 000, s ∈ I1, E(YYY (t)) = 000, t ∈ I2.

We will further assume that each component Xg of the random process XXX and Yh of the
random process YYY can be represented by a finite number of orthonormal basis functions {ϕe}
and {ϕ f } of space L2(I1) and L2(I2), respectively:

Xg(s) =
Eg∑

e=0

αgeϕe(s), s ∈ I1, g = 1, 2, . . . , p,

Yh(t) =
Fh∑

f =0

βh f ϕ f (t), t ∈ I2, h = 1, 2, . . . , q,

where αge and βh f are the random coefficients. The degree of smoothness of processes Xg

and Yh depends on the values Eg and Fh respectively (small values imply more smoothing).
The optimum values for Eg and Fh are selected using Bayesian Information Criterion (BIC)
(see Górecki et al. 2018). As basis functions we can use e.g. the Fourier basis system or
spline functions.

We introduce the following notation:

ααα = (α10, ..., α1E1 , ..., αp0, ..., αpEp )
�,
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βββ = (β10, ..., β1F1 , ..., βq0, ..., βqFq )
�,

ϕϕϕEg (s) = (ϕ0(s), . . . , ϕEg (s))
�, s ∈ I1, g = 1, 2, ..., p,

ϕϕϕFh (t) = (ϕ0(t), . . . , ϕFh (t))
�,

t ∈ I2, h = 1, 2, ..., q,���1(s) =

⎡

⎢⎢⎣

ϕϕϕ�
E1

(s) 000 . . . 000
000 ϕϕϕ�

E2
(s) . . . 000

. . . . . . . . . . . .

000 000 . . . ϕϕϕ�
Ep

(s)

⎤

⎥⎥⎦ ,

���2(t) =

⎡

⎢⎢⎣

ϕϕϕ�
F1

(t) 000 . . . 000
000 ϕϕϕ�

F2
(t) . . . 000

. . . . . . . . . . . .

000 000 . . . ϕϕϕ�
Fq

(t)

⎤

⎥⎥⎦ ,

where ααα ∈ R
K1+p , βββ ∈ R

K2+q ,���1 ∈ R
p+(K1+p), ���2 ∈ R

q+(K2+q), K1 = E1 + · · · + Ep,

K2 = F1 + · · · + Fp.

Using the above matrix notation the random processes XXX and YYY can be represented as:

XXX(s) = ���1(s)ααα, s ∈ I1, YYY (t) = ���2(t)βββ, t ∈ I2, (8)

where E(ααα) = 000, E(βββ) = 000.
Thismeans that the values of randomprocessesXXX andYYY are infinite dimensional subspaces

of L p
2 (I1) and Lq

2(I2), respectively. We will denote these subspaces by Lp
2 (I1) and Lq

2(I2).
Typically data are recorded at discrete moments in time. The process of transformation of

discrete data to functional data is performed for each realization and each variable separately.
Let xgj denote an observed value of the feature Xg , g = 1, 2, . . . p at the j th time point s j ,
where j = 1, 2, ..., J . Similarly, let yhj denote an observedvalue of featureYh , h = 1, 2, . . . q
at the j th time point t j , where j = 1, 2, ..., J . Then our data consist of pJ pairs of (s j , xgj )
and of q J pairs of (t j , yhj ). Let XXX1, . . . , XXXn and YYY 1, . . . ,YYYn be independent trajectories of
random processes XXX and YYY having the representation (8).

The coefficients αααi and βββ i are estimated by the least squares method. Let us denote these
estimates by aaai and bbbi , i = 1, 2, . . . , n.

As a result, we obtain functional data of the form:

XXXi (s) = ���1(s)aaai , YYY i (t) = ���2(t)bbbi , (9)

where s ∈ I1, t ∈ I2, aaai ∈ R
K1+p , bbbi ∈ R

K2+q , K1 = E1 + · · · + Ep , K2 = F1 + · · · + Fq ,
and i = 1, 2, . . . , n.

Górecki and Smaga (2017) described a multivariate analysis of variance (MANOVA) for
functional data. In the paper byGórecki et al. (2018), three basicmethods of dimension reduc-
tion for multidimensional functional data are given: principal component analysis, canonical
correlation analysis, and discriminant coordinates.

3 Alignment for multivariate functional data

3.1 The alignment between two kernel functions and two kernel matrices for
multivariate functional data

Let xxx(s) ∈ Lp
2 (I1), s ∈ I1, where Lp

2 (I1) is a finite-dimensional space of continuous square-
integrable vector functions over interval I1.
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Let

k� : Lp
2 (I1) × Lp

2 (I1) → R

be a kernel function on Lp
2 (I1). As already mentioned, in this paper we use the Gaussian

kernel. For the multivariate functional data this kernel has the form:

k�(xxx(s), xxx ′(s)) = exp(−λ1‖xxx(s) − xxx ′(s)‖2), λ1 > 0.

But from (9), and by the orthonormality of the basis functions, we have:

‖xxx(s) − xxx ′(s)‖2 =
∫

I1
(xxx(s) − xxx ′(s))�(xxx(s) − xxx ′(s))ds

= ‖aaa − aaa′‖2.
Hence

k�(xxx(s), xxx ′(s)) = k(aaa,aaa′)

and

k�(yyy(t), yyy′(t)) = k(bbb,bbb′),

where aaa and bbb are vectors occurring in the representation (9) of vector functions xxx(s), s ∈ I1,
yyy(t), t ∈ I2.

For a given subset {xxx1(s), . . . , xxxn(s)} of Lp
2 (I1) and the given kernel function k� on

Lp
2 (I1) × Lp

2 (I1), the matrix KKK � of size n × n, which has its (i, j)th element K �
i j (s), given

by K �
i j (s) = k�(xxxi (s), xxx j (s)), s ∈ I1, is called the kernel matrix of the kernel function k�

with respect to the set {xxx1(s), . . . , xxxn(s)}, s ∈ I1.

Definition 11 (Kernel function alignment for functional data) Let k̃� and l̃� be two kernel
functions defined over Lp

2 (I1) × Lp
2 (I1) and Lq

2(I2) × Lq
2(I2), respectively, such that 0 <

EXXX ,XXX ′ [k̃�2(XXX , XXX ′)] < ∞ and 0 < EYYY ,YYY ′ [l̃�2(YYY ,YYY ′)] < ∞, where XXX , XXX ′ and YYY ,YYY ′ are
independent copies distributed according to PXXX and PYYY , respectively. Then the alignment
between k̃� and l̃� is defined by

ρ(k̃�, l̃�) = EXXX ,YYY [k̃�(XXX , XXX ′)l̃�(YYY ,YYY ′)]√
EXXX [k̃�2(XXX , XXX ′)]EYYY [l̃�2(YYY ,YYY ′)]

. (10)

We can define similarly the alignment between two kernel matrices K̃KK
�
and L̃LL

�
based on

the subset {xxx1(s), . . . , xxxn(s)}, s ∈ I1, and {yyy1(t), . . . , yyyn(t)}, t ∈ I2, of Lp
2 (I1) and Lq

2(I2),
respectively.

Definition 12 (Kernel matrix alignment for functional data) Let K̃KK
� ∈ R

n×n and L̃LL
� ∈ R

n×n

be two kernel matrices such that ‖K̃KK �‖F �= 0 and ‖L̃LL�‖F �= 0. Then, the centered kernel
target alignment (KTA) between K̃KK

�
and L̃LL

�
is defined:

ρ̂(KKK �, LLL�) = 〈K̃KK �
, L̃LL

�〉F
‖K̃KK �‖F‖L̃LL�‖F

. (11)

If K̃KK
�
and L̃LL

�
are positive semi-definite matrices, then ρ̂(KKK �, LLL�) ∈ [0, 1]. We have

ρ̂(KKK �, LLL�) = ρ̂(KKK , LLL),

where KKK is the matrix of size n × n, which has its (i, j)th element Ki j , given by Ki j =
k(aaai ,aaa j ).
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3.2 Kernel-based independence test for multivariate functional data

Definition 13 (Empirical HSIC for functional data) The empirical HSIC for functional data
is defined as

HSIC(S�) = 1

n2
〈KKK �, LLL�〉F ,

where S� = {(xxx1(s), yyy1(t)), . . . , (xxxn(s), yyyn(t))}, s ∈ I1, t ∈ I2, KKK � and LLL� are kernel
matrices based on the subsets {xxx1(s), . . . , xxxn(s)}, s ∈ I1, and {yyy1(t), . . . , yyyn(t)}, t ∈ I2 of
Lp
2 (I1) and Lq

2(I2), respectively.

But KKK � = KKK , where KKK is the kernel matrix of size n × n, which has its (i, j)th element Ki j

given by Ki j = k(aaai ,aaa j ), where aaa1, . . . ,aaan are vectors occurring in the representation (9)
vector functions XXX(s), s ∈ I1. Analogously, LLL� = LLL , where LLL is the kernel matrix of size
n × n, which has its (i, j)th element Li j given by Li j = l(bbbi ,bbb j ), where bbb1, . . . ,bbbn are
vectors occurring in the representation (9) vector functions YYY (t), t ∈ I2. Hence

HSIC(S�) = HSIC(Sv),

where Sv = {(aaa1,bbb1), . . . , (aaan,bbbn)}.
Note also that the null hypothesis H0 : XXX⊥YYY of independence of the random processes XXX

and YYY is equivalent to the null hypothesis H0 : ααα⊥βββ of independence of random vectors ααα

and βββ occurring in the representation (8) random processes XXX and YYY . We can therefore use
the tests described in Section 2.4, replacing xxx and yyy by aaa and bbb.

3.3 Canonical correlation analysis based on the alignment between kernel matrices
for multivariate functional data

In classical canonical correlation analysis (Hotelling 1936), we are interested in the relation-
ship between two random vectors XXX and YYY . In the functional case we are interested in the
relationship between two random functions XXX and YYY . Functional canonical variables U and
V for random processes XXX and YYY are defined as follows

U = 〈uuu, XXX〉 =
∫

I1
uuu�(s)XXX(s)ds, (12)

V = 〈vvv,YYY 〉 =
∫

I2
vvv�(t)YYY (t)dt, (13)

where the vector functions uuu and vvv are called the vector weight functions and are of the form

uuu(s) = ���1(s)uuu, vvv(t) = ���2(t)vvv where uuu ∈ R
K1+p,vvv ∈ R

K2+q . (14)

Classically the weight functions uuu and vvv are chosen to maximize the sample correlation
coefficient (Górecki et al. 2018):

ρ = Cov(U , V )√
Var(U )Var(V )

. (15)

The sample correlation coefficient between the variables U and V is now replaced by a
centered kernel target alignment (KTA) between kernel matrices KKK and LLL based on the
projected data 〈uuu(s), xxxi (s)〉H and 〈vvv(t), yyyi (t)〉H, i.e. their (i, j)th entry are
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Ki, j = k(〈uuu(s), xxxi (s)〉H, 〈uuu(s), xxx j (s)〉H), s ∈ I1,

and

Li, j = l(〈vvv(t), yyyi (t)〉H, 〈vvv(t), yyy j (t)〉H), t ∈ I2,

respectively, i, j = 1, . . . , n:

ρ̂(uuu(s),vvv(t)) = tr(K̃KK
�
L̃LL)√

tr(K̃KK
�
K̃KK ) tr(L̃LL

�
L̃LL)

(16)

subject to

‖uuu(s)‖ = ‖vvv(t)‖ = 1. (17)

But

KKKi, j = k

(∫

I1
uuu�(s)xxxi (s)ds,

∫

I1
uuu�(s)xxx j (s)ds

)

= k(uuu�aaai ,uuu�aaa j ) = KKK (uuu)
i, j

and

LLLi, j = l

(∫

I2
vvv�(t)yyyi (t)dt,

∫

I2
vvv�(t)yyy j (t)dt

)

= l(vvv�bbbi ,vvv�bbb j ) = LLL(vvv)
i, j ,

where aaai and bbbi are vectors occuring in the representation (9) vectors functions xxx(s), s ∈ I1,
yyy(t), t ∈ I2, i = 1, . . . , n, uuu ∈ R

K1+p , vvv ∈ R
K2+q .

Thus, the choice of weighting functions uuu(s) and vvv(t) so that the coefficient (16) has
a maximum value subject to (17) is equivalent to the choice of vectors uuu ∈ R

K1+p and
vvv ∈ R

K2+q such that the coefficient

ρ̂(uuu,vvv) = tr(K̃KK
�
uuu L̃LLvvv)√

tr(K̃KK
�
uuu K̃KKuuu) tr(L̃LL

�
vvv L̃LLvvv)

(18)

has a maximum value subject to

‖uuu‖ = ‖vvv‖ = 1, (19)

where KKKuuu = (K (uuu)
i, j ), LLLvvv = (L(vvv)

i, j ), i, j = 1, . . . , n.
In order to maximize the coefficient of (18) we can use the result of Chang et al. (2013).

Authors used a gradient descent algorithm, with modified gradient to ensure the unit length
constraint is satisfied at each step (Edelman et al. 1998). Optimal step-sizes were found
numerically using the Nelder-Mead method. This article employs the Gaussian kernel exclu-
sively while other kernels are available. The bandwidth parameter λ of the Gaussian kernel
was chosen using the “median trick” (Song et al. 2010), i.e. the median Euclidean distance
between all pairs of points.

The coefficients of the projection of the i th value xxxi (t) of random process XXX on the kth
functional canonical variable are equal to

Ûik = 〈uuuk, xxxi 〉 =
∫

I1
uuu�
k (s)xxxi (s)ds = aaa�

i uuuk,
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analogously the coefficients of the projection of the i th value yyyi (t) of random process YYY t on
the kth functional canonical variable are equal to

V̂ik = bbb�
i vvvk,

where i = 1, . . . , n, k = 1, . . . ,min(rank(AAA), rank(BBB)), where AAA ∈ R
n×p and BBB ∈ R

n×q ,
where the i th rows are aaai and bbbi , respectively, which have column means of zero.

As we mentioned earlier KTA is a normalized variant of HSIC. Hence, we can repeat the
above reasoning for HSIC criterion. However, we should remember that both approaches are
not equivalent and we can obtain different results.

4 Experiments

Let us recall some and introduce another symbols:

– KTA—centered kernel target alignment,
– HSIC—Hilbert–Schmidt Independence Criterion,
– FCCA—classical functional canonical correlation analysis (Ramsay andSilverman2005;

Horváth and Kokoszka 2012),
– HSIC.FCCA—functional canonical correlation analysis based on HSIC,
– HSIC.KTA—functional canonical correlation analysis based on KTA.

4.1 Simulation

We generated random processes along with some noises to test the performance of the intro-
duced measures. Random processes are specified by

Xt = εt ,

Yt = 3Xt + ηt ,

Zt = X2
t + ξt ,

where εt , ηt and ξt are jointly independent random variables from Gaussian distribution
with 0 mean and 0.25 variance. We generated processes of length 100. N = 10000 samples
are generated for all processes. The objective is to examine how well functional variants
(Fourier basis with 15 basis functions) of KTA and HSIC measures perform compared to
measures used on raw data (artificially generated at discrete time stamps). Here, raw data
are represented as vector data of generated trajectories, so raw data are three 10000 by 100
dimensionalmatrices(one for Xt , second forYt and third for Zt ). On the other hand, functional
data are three 10000 by 15 dimensional matrices (coefficients of Fourier basis). Here, Xt and
Yt are linearly dependent, whereas Xt , Zt and Yt , Zt are nonlinearly dependent (Fig. 1).

From Fig. 2 and Table 1, we see that the proposed extension of HSIC and KTA coefficients
to functional data gives larger values of coefficients than the variants for raw time series.
Unfortunately, it is not possible to perform inference based only on the values of coefficients.
We have to apply tests. In Fig. 3 and in Table 2, we observe that when we use functional
variants of the proposed measures, we obtain much better results in recognizing nonlinear
dependence. Linear dependence between Xt and Yt was easily recognized by each method
(100% of correct decisions—p values below 5%). Results of functional KTA and HSIC are
very similar. Non-functional measures HSIC and KTA give only 7.2% and 6.7% correct
decisions (p values below 5%) for relationship Xt , Zt and Yt , Zt , respectively. On the
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Fig. 1 Sample trajectories of Xt , Yt and Zt time series for raw (left plot) and functional (right plot) represen-
tation
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Fig. 2 Raw and functional HSIC and KTA coefficients for artificial time series

other hand, functional variants recognize dependency (p values below 5%) in 63.3% (both
measures) for Xt , Yt and in 47.8% (HSIC), 63.3% (KTA) for Yt , Zt .

4.2 Univariate example

As a first real example we used average daily temperature (in Celsius degrees) for each day
of the year and average daily rainfall (in mm) for each day of the year rounded to 0.1 mm at
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Table 1 Average raw and
functional HSIC and KTA
coefficients for artificial time
series (number in brackets means
standard deviation)

(Xt , Yt ) (Xt , Zt ) (Yt , Zt )

Raw

HSIC 0.795 (0.015) 0.672 (0.027) 0.825 (0.014)

KTA 0.758 (0.019) 0.601 (0.028) 0.789 (0.019)

Functional

HSIC 0.986 (0.000) 0.984 (0.001) 0.988 (0.000)

KTA 0.999 (0.000) 0.999 (0.000) 0.999 (0.000)
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Fig. 3 p Values from permutation-based tests for raw and functional variants of HSIC and KTA coefficients

Table 2 Average p values from
permutation-based tests for raw
and functional variants of HSIC
and KTA coefficients (number in
brackets means standard
deviation)

(Xt , Yt ) (Xt , Zt ) (Yt , Zt )

Raw

HSIC 0.000 (0.000) 0.445 (0.290) 0.458 (0.282)

KTA 0.000 (0.000) 0.445 (0.290) 0.458 (0.282)

Functional

HSIC 0.000 (0.000) 0.077 (0.129) 0.125 (0.169)

KTA 0.000 (0.000) 0.077 (0.129) 0.077 (0.129)

35 different weather stations in Canada from 1960 to 1994. Each station belongs to one of
four climate zone: Arctic (3 stations—blue color on plots), Atlantic (15—red color on plots),
Continental (12— black color on plots) or Pacific (5—green color on plots) zone (Fig. 4).
This data set comes from Ramsay and Silverman (2005).

In the first step, we smoothed data. We used the Fourier basis with various values of the
smoothing parameter (number of basis functions) from 3 to 15. We can observe the effect
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Fig. 5 Raw and functional temperature for Canadian weather stations

of smoothing in Figs. 5 and 6 (for Fourier basis with 15 basis functions). We decided to
use the Fourier basis for two reasons: it has excellent computational properties, especially
if the observations are equally spaced, and it is natural for describing periodic data, such as
the annual weather cycles. Here, raw data are two 35 by 100 dimensional matrices (one for
temperature and second for precipitation). On the other hand, functional data are two 35 by
15 dimensional matrices (coefficients of Fourier basis).

From the plots we can observe that the level of smoothness seems big enough. Addi-
tionally, we can observe some relationship between average temperature and precipitation.
Namely, for weather stations with large average temperature, we observe relatively bigger
average precipitation while for Arctic stations with lowest average temperatures we observe
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Fig. 7 Absolute Spearman
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variables
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the smallest average precipitation. So we can expect some relationship between average
temperature and average precipitation for Canadian weather stations.

In the next step, we calculated the values of described earlier coefficients, the values
of which are presented in Fig. 8. We observe quite big values of HSIC and KTA, but it is
impossible to infer dependency from these values. We see that the values of HSIC and KTA
coefficients are stable (both do not depend on basis size).

To statistically confirm the association between temperature and precipitation we per-
formed some simulation study. This study based on Chang et al. (2013) simulation. Finding
a good nonlinear dependency measure is not trivial. KTA and HSIC are not on the same
scale. As Chang et al. (2013) we used Spearman correlation coefficient. We performed 50
random splits with the inclusion of 25 samples to identify models. The Spearman correlation
coefficient was then calculated using the remaining 10 samples for each of 50 splits. As we
know the strongest signal between the temperature and precipitation for Canadian weather
stations is nonlinear (Chang et al. 2013). From Fig. 7 we can observe that HSIC.FCCA and
KTA.FCCA have produced larger absolute Spearman coefficients than FCCA. Such results
suggest that HSIC.FCCA & KTA.FCCA can be viewed as natural nonlinear extensions of
CCA also in the case of multivariate functional data.

Finally, we performed permutation-based tests for HSIC andKTA coefficients. The results
are presented in Fig. 8. All tests rejected H0 (p values close to 0) for all basis sizes, so we can
infer that we have some relationship between average temperature and average precipitation
for Canadian weather stations. Unfortunately, we know nothing about the strength and direc-
tion of the dependency. Only a visual inspection of the plots suggests that there is a strong
and positive relationship.
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Fig. 8 HSIC and KTA coefficients and p values of permutation-based tests for Canadian weather data
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Fig. 9 Projection of the 35 Canadian weather stations on the plane (Û1, V̂1)

The relative positions of the 35 Canadian weather stations in the system (Û1, V̂1) of
functional canonical variables are shown in Fig. 9. It seems that for both coefficients the
weather stations group reasonably.

4.3 Multivariate example

The describedmethodwas employed here to cluster the twelve groups (pillars) of variables of
38 European countries in the period 2008-2015. The list of countries used in the dependency
analysis is contained in Table 3. Table 4 describes the pillars used in the analysis. For this
purpose, use was made of data published by the World Economic Forum (WEF) in its annual
reports (http://www.weforum.org). Those are comprehensive data, describing exhaustively
various socio-economic conditions or spheres of individual states (Górecki et al. 2016). The
data were transformed into functional data. Calculations were performed using the Fourier
basis. In view of a small number of time periods (J = 7), for each variable the maximum
number of basis components was taken to be equal to five. Here, raw data are twelve matrices
(one for each pillar). Dimensions of matrices are different and depend on the number of
variables in the pillar. Eg. for the first pillar we have 16 (number of variables) * 7 (number of
time points) = 112 columns, hence dimensionality of the matrix for this pillar is 38 by 112.
Similarly for the others. On the other hand, functional data are twelve matrices with 38 rows
and appropriate number of columns (coefficients of Fourier basis). Number of columns for
functional data eg. for the first pillar we calculate as 16 (number of variables) * 5 (number
of basis elements) = 80.
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Table 3 Countries used in analysis, 2008–2015

1 Albania (AL) 14 Greece (GR) 27 Poland (PL)

2 Austria (AT) 15 Hungary (HU) 28 Portugal (PT)

3 Belgium (BE) 16 Iceland (IS) 29 Romania (RO)

4 Bosnia and Herzegovina (BA) 17 Ireland (IE) 30 Russian Federation (RU)

5 Bulgaria (BG) 18 Italy (IT) 31 Serbia (XS)

6 Croatia (HR) 19 Latvia (LV) 32 Slovak Republic (SK)

7 Cyprus (CY) 20 Lithuania(LT) 33 Slovenia (SI)

8 Czech Republic (CZ) 21 Luxembourg (LU) 34 Spain (ES)

9 Denmark (DK) 22 Macedonia FYR (MK) 35 Sweden (SE)

10 Estonia (EE) 23 Malta (MT) 36 Switzerland (CH)

11 Finland (FI) 24 Montenegro (ME) 37 Ukraine (UA)

12 France (FR) 25 Netherlands (NL) 38 United Kingdom (GB)

13 Germany (DE) 26 Norway (NO)

Table 4 Pillars used in analysis,
2008–2015

Pillar Number of variables

G1 Institutions 16

G2 Infrastructure 6

G3 Macroeconomic environment 2

G4 Health and primary education 7

G5 Higher education and training 6

G6 Goods market efficiency 10

G7 Labor market efficiency 6

G8 Financial market development 5

G9 Technological readiness 4

G10 Market size 4

G11 Business sophistication 9

G12 Innovation 5

Tables 5 and 6 contain the values of functional HSIC and KTA coefficients. As expected,
they are all close to one. But high values of these coefficients do not necessarily mean
that there is a significant relationship between the two groups of variables. We can expect
association between groups of pillars. However, it is really hard to guess what groups are
associated.

Similarly to theCanadianweather exampleweperformed small simulation study for pillars
G5 and G6. From Fig. 10 we can observe that HSIC.FCCA and KTA.FCCA have produced
larger absolute Spearman coefficients than FCCA. This result suggest that proposedmeasures
have better characteristic in discovering nonlinear relationship for this example.

Weperformedpermutation-based tests for theHSICandKTAcoefficients discussed above.
Formost of tests, p values were close to zero, on the basis of which it can be inferred that there
is some significant relationship between the groups (pillars) of variables. Table 7 contains the
p values obtained for each test. We have exactly the same p values for both methods. Now,
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Table 5 Functional HSIC coefficients

1 2 3 4 5 6 7 8 9 10 11

2 0.9736

3 0.9736 0.9737

4 0.9736 0.9737 0.9737

5 0.9708 0.9706 0.9706 0.9706

6 0.9728 0.9727 0.9727 0.9727 0.9753

7 0.9687 0.9683 0.9683 0.9683 0.9799 0.9780

8 0.9730 0.9730 0.9730 0.9730 0.9725 0.9740 0.9721

9 0.9736 0.9737 0.9737 0.9737 0.9706 0.9727 0.9683 0.9730

10 0.9736 0.9737 0.9737 0.9737 0.9706 0.9727 0.9683 0.9730 0.9737

11 0.9714 0.9711 0.9711 0.9711 0.9785 0.9755 0.9828 0.9726 0.9711 0.9711

12 0.9688 0.9683 0.9683 0.9683 0.9778 0.9741 0.9897 0.9715 0.9783 0.9683 0.9830

Table 6 Functional KTA coefficients

1 2 3 4 5 6 7 8 9 10 11

2 1.0000

3 1.0000 1.0000

4 1.0000 1.0000 1.0000

5 0.9918 0.9916 0.9916 0.9916

6 0.9980 0.9978 0.9978 0.9978 0.9951

7 0.9741 0.9736 0.9736 0.9936 0.9801 0.9821

8 0.9991 0.9990 0.9990 0.9990 0.9933 0.9989 0.9772

9 1.0000 1.0000 1.0000 1.0000 0.9916 0.9978 0.9736 0.9990

10 1.0000 1.0000 1.0000 1.0000 0.9916 0.9978 0.9736 0.9990 1.0000

11 0.9927 0.9924 0.9924 0.9924 0.9947 0.9957 0.9833 0.9936 0.9924 0.9924

12 0.9793 0.9788 0.9788 0.9788 0.9831 0.9834 0.9794 0.9917 0.9788 0.9788 0.9887

Fig. 10 Absolute Spearman
correlation coefficient for the first
set of functional canonical
variables for pillars G5 & G6
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we can observe that some groups are independent (α = 0.05): G1 & G3, G3 & G6, G3 &
G8, G3 & G11, G3 & G12, G4 & G9.

The graphs of the components of the vector weight function for the first functional canon-
ical variables of the processes are shown in Fig. 11. From Fig. 11 (left) it can be seen that the
greatest contribution in the structure of the first functional canonical correlation (U1) comes
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Table 7 Functional HSIC & KTA p values permutation-based tests (only non-zero)

1 2 3 4 5 6 7 8 9 10 11

2 0.0142

3 0.0714 0.0332

4 0.0042 0.0343

5 0.0001 0.0268

6 0.0157 0.0772

7 0.0009 0.0061

8 0.0294 0.0636

9 0.0030 0.0055 0.0198 0.0640 0.0002 0.0003 0.0009 0.0040

10 0.0059 0.0294 0.0021 0.0055

11 0.0039 0.1034 0.0008

12 0.0008 0.0563 0.0044

p-values greater than usual level of significance 5% are given in bold
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Fig. 11 Weight functions for first functional canonical variable U1 (left) and V1 (right)

from “black” process, and this holds for all of the observation years considered. Figure 11
(right) shows that, on specified time intervals, the greatest contribution in the structure of
the first second functional canonical correlation (V1 comes alternately from the processes
“black” and “red dotted”. The total contribution of a particular original process in the structure
of a given functional canonical correlation is equal to the area under the module weighting
function corresponding to this process. These contributions for the components are given in
Table 8.

Figure 12 contains the relative positions of the 38 European countries in the system
(Û1, V̂1) of functional canonical variables for selected groups of variables. The high corre-
lation of the first two functional canonical variables can be seen in Fig. 12 for two pillars
G5 and G6. For KTA criterion, the countries with the highest value of functional canonical
variables U1 and V1 are: Finland (FI), France (FR), Hungary (HU), Greece (GR), Estonia
(EE), Germany (DE), Iceland (IS), Czech Republic (CZ) and Denmark (DK). The countries
with the lowest value of functional canonical variablesU1 and V1 are: Romania (RO), Poland
(PL), Norway (NO), Portugal (PT), Netherlands (NL) and Russian Federation (RU). Other
countries belong to the intermediate group.

During the numerical calculation process we used R software (R Core Team 2018) and
packages fda (Ramsay et al. 2018) and hsicCCA (Chang 2013).
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Table 8 Sorted areas under
module weighting functions

No. Area Proportion (in %)

First functional canonical variable (G5)

1 5.008 51.74

2 1.724 17.81

3 1.567 16.19

4 0.713 7.36

5 0.351 3.63

6 0.317 3.27

First functional canonical variable (G6)

1 5.187 44.77

2 3.194 27.56

3 1.287 11.11

4 0.580 5.00

5 0.511 4.41

6 0.323 2.79

7 0.206 1.77

8 0.152 1.31

9 0.091 0.78

10 0.057 0.49
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Fig. 12 Selected projections of the 38 European countries on the plane (Û1, V̂1). Regions used for statistical
processing purposes by the United Nations Statistics Division: blue square—Northern Europe, cyan square—
Western Europe, red square—Eastern Europe, green square—Southern Europe. (Color figure online)

5 Conclusions

Weproposed an extension of two dependencymeasures for two sets of variables formultivari-
ate functional data. We proposed to use tests to examine the significance of results because
the values of proposed coefficients are rather hard to interpret. Additionally, we presented the
methods of constructing nonlinear canonical variables for multivariate functional data using
HSIC and KTA coefficients. Tested on two real examples, the proposed method has proven
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useful in investigating the dependency between two sets of variables. Examples confirm use-
fulness of our approach in revealing the hidden structure of co-dependence between groups
of variables.

During the study of proposed coefficients we discovered that the size of basis (smoothing
parameter) is rather unimportant, the values (and p values for tests) do not depend on the
basis size.

Of course, the performance of the methods needs to be further evaluated on additional
real and artificial data sets. Moreover, we can examine the behavior of coefficients (and tests)
for different bases like B-splines or wavelets (when data are not periodic, the Fourier basis
could fail). This constitutes the direction of our future research.
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