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Abstract Non-intrusive load monitoring (NILM) is the prevailing method used to monitor
the energy profile of a domestic building and disaggregate the total power consumption into
consumption signals by appliance. Whilst the most popular disaggregation algorithms are
based on Hidden Markov Model solutions based on deep neural networks have attracted
interest from researchers. The objective of this paper is to provide a comprehensive overview
of the NILM method and present a comparative review of modern approaches. In this effort,
many obstacles are identified. The plethora ofmetrics, the variety of datasets and the diversity
of methodologies make an objective comparison almost impossible. An extensive analysis
is made in order to scrutinize these problems. Possible solutions and improvements are
suggested, while future research directions are discussed.

Keywords Non-intrusive load monitoring (NILM) · Power disaggregation algorithms ·
Hidden Markov Model · Deep learning

1 Introduction

Some of the biggest world challenges such as global warming, acid rains, air and water
pollution, depletion, disruption of our natural environment are undoubtedly related to energy.
Global energy demand has increased by 16 times in the twentieth century, whereas the
population has increased fourfold (Kamat 2007). The governments of many countries have
realized the importance of climate change and have made provisions to limit the annual
carbon emissions and urban waste by 2050 (“Climate Change Act 2008”). In this direction,
traditional fossil fuels expected to be replaced by non-conventional energy sources, whereas
current electricity infrastructure will be transformed to a smart grid.
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According to estimates, 40% of the carbon dioxide emissions in the USA relates to energy
consumption that comes from electric power (Eia 2017). Residential and commercial build-
ings account for about 40% of total energy consumption, 20% of which can be saved by
applying efficiency improvements (Armel et al. 2013). The significance of these savings is
highlighted by the fact that approximately 10–15% of the electricity consumed by US homes
requires 200billionkWh per annum. The equivalent energy production of 16 nuclear power
plants or 81.3 million tons of coal (Froehlich et al. 2011).

It is therefore obvious that reducing electricity consumption in buildings can significantly
decrease energy wastage. Studies have shown that energy monitoring and direct feedback,
such as personalized recommendations or real-time consumption on appliance level, are
extremely valuable. They could reduce electricity bills and make residents aware of their
house energy profile (Darby 2006).

Power disaggregation is the key to an efficient and accurate energymonitoring in a domes-
tic building.However, the benefits of power disaggregation are not restricted only to residents.
Valuable appliance data can empower research and development, help redesigning house-
hold appliances and improve building operational efficiency. Utilities and policies will be
improved by providing more accurate energy consumption forecasting, more efficient eco-
nomic models, reformed funding allocations, better energy building evaluation, smart grid
optimization etc. (Armel et al. 2013).

The problem of breaking down the total power signal to several appliance level signals,
using non-intrusive methods, was firstly introduced by Hart (1992) as non-intrusive load
monitoring (NILM). Since then, NILM has been the preferred method for power disaggre-
gation in contrast to other pervasive methods, where appliance level data has to be collected.
The reasons that researchers and engineers prefer the NILM method are both economic and
practical. This means that NILM research is not only focused on theoretical models, but also
on the deployment of these systems in the real world. A large-scale deployment favors NILM
over ILM, because it offers lower costs, there is no need for multiple sensor configuration and
installation is much simpler. The only advantage of intrusive methods is the high accuracy
in measuring energy consumption of specific appliances.

This paper reviews the current status of the NILM research. The Sect. 1 describes the
problem of power disaggregation, presenting some formal definitions of the theoretical prob-
lem and its complexity. It subsequently describes the NILM framework, referring to relative
literature and previous work of researchers. The same section also describes the requirements
for a NILM system. The Sect. 3 describes the current state of research in NILM, presenting
and evaluating the most recent algorithms. Thereafter, a quantitative analysis of the proposed
solutions is presented. In the end, conclusions are drawn.

2 Power disaggregation

The purpose of power disaggregation is to break the total power drawn down into its compo-
nents. In a domestic building, the resultant power is the outcome of the power consumption
of each electrical device. Thus, the problem is to identify how much power each appliance
consumes. The superimposition of the power of N devices in a time period T, can be defined
as:

P (t) = Pnoise (t) +
N∑

i=1

pi (t) , tε {1, T } (1)
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Fig. 1 NILM framework
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where pi is the power of each appliance and Pnoise is the power of unwanted signal, defined
as noise.

Many different approaches have been formulated for solving the problem of power dis-
aggregation. The most common one is to estimate the pi for i = 1, 2, . . . , N , given only
the P (t). From a different perspective, a scenario oriented approach would be: “estimate the
cost of electricity, consumed by the oven in the timeframe of a month” (Dong et al. 2013).
The former approach can be characterized as the principal goal. Thus, the solution of the
latter can be extrapolated from the solution of the first one.

According to the above, a formal definition of power disaggregation is described as follows
(Batra et al. 2014b; Parson et al. 2011, 2012):

Given a discrete sequence of observed aggregate power readings x = x1, . . . , xT deter-
mine the sequence of appliance power demands w(n) = w

(n)
1 , . . . , w

(n)
T where n is one

of N appliances. Alternatively, this problem can be represented as the determination of
appliance states z(n) = z(n)

1 , . . . , z(n)
T , if a mapping between states and power demands

is known. Each appliance state corresponds to an operation of approximately con-
stant power draw (e.g. ‘on’, ‘off’ or ‘standby’) and t represents one of T discrete time
measurements.

Another similar definition is (Batra et al. 2014a):

The aim of energy disaggregation is to provide estimates, ŷ(n)
t , of the actual power

demand, y(n)
t , of each appliance n at time t, from household aggregate power readings,

ȳt . Most NILM algorithms model appliances using a set of discrete states such as off,
on, intermediate, etc. We use x (n)

t εZ > 0 to represent the ground truth state, and x̂ (n)
t

to represent the appliance state estimated by a disaggregation algorithm.

2.1 NILM framework

A nonintrusive load monitoring (NILM) system collects energy consumption data from the
central meter reading of a residence. It subsequently can infer the consumption of each
appliance, present in the residence. The NILM framework as described by Carrie Armel
et al. (2013) and later by Burbano (2015), is made of three basic steps (Fig. 1).

The data acquisition step refers to the way the energy data is collected and is mainly based
on hardware solutions. Smart meters are playing a significant role, because of the growing
adoption rate, the low cost and the minimum effort to install them. Considering the way data
is collected, there are three characteristics affecting the performance of the NILM system.
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Fig. 2 Hierarchical taxonomy of appliance features

The first one is the type of power, which can be real or reactive. The second characteristic
is the power level resolution, which is basically the smallest quantity of power that can be
detected by the system. The final characteristic is the data sampling frequency, which is split
into two categories: low and high frequency. A typical low frequency is considered up to
1kHz and high frequencies range from 10 to 100MHz (Armel et al. 2013).

From a different perspective, the data acquisition step will also define the limitations of
a NILM system with major impact on privacy of users. The fundamental limits of a NILM
system are explored in depth by Dong et al. (2013). In this paper, an upper bound on the
probability of distinguishing scenarios, for an arbitrary NILM system, is derived and depends
on the data characteristics. This is the first theoretical proof that NILM system requirements
can be predefined, in order to protect user’s privacy.

The appliance feature extraction step, can be divided into the hierarchical taxonomy (Zoha
et al. 2012) depicted in (Fig. 2).

There is an extensive analysis of the appliance features by Zoha et al. (2012). In a nutshell,
this analysis states that the group of steady state features require low sampling frequency,
while being a lower cost solution. On the other hand, a solution using transient state features
is more expensive, because of the need for sophisticated hardware. Performance can be
improved, when appliances with overlapping steady-state features are involved. In practice,
a solution using steady state features is more feasible, considering the existing hardware in
the market.

Furthermore, there is a third category of features, called Non-Traditional. This group
includes all the features, which do not belong to any of the two traditional categories. They
can be several traditional features combined, contextual based, behavioral or indicators of
the electric devices. Kim et al. (2011) proposed a conditional factorial hidden semi-Markov
model, which integrates non-traditional features. The model is based on the observation that
usage of appliance should have temporal patterns, while considering the time of day and
day of week. A contextual supervised source separation was proposed byWytock and Kolter
(2013), in which paper the contextual features are radial basis functions over temperature and
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hour of day. It proves that these features enhance the final performance of disaggregation.
In a similar way Aiad and Lee (2016) proposed an unsupervised approach with devices
interactions. Low power quality issues can lead to disturbance of harmonics and interference
currents, due to the operation of other devices. Embedding these interactions in a factorial
Hidden Markov Model, shows improved disaggregation accuracy for the devices involved
in mutual interactions. Finally, Lange and Bergés (2016) used binary subcomponents as
features. A neural decoder is used to extract the subcomponents which are then combined to
disaggregate the power consumption of the appliances.

The final step of NILM algorithm, called inference and learning, is the mathematical
model that disaggregates the total power signal into appliance level signals. There are two
main approaches to solve the problem of inference in a NILM system: optimization and
machine learning. Researchers have proposedmany solutions based on optimizationmethods
(Baranski and Voss 2003; Liang et al. 2010; Inagaki et al. 2011). This approach proved to be
inefficient in terms of computational complexity. The ability to distinguish similar signature
profiles is limited, especially when tested in a very complicated environment with a large
number of devices.

Given the difficulties to improve optimization based algorithms, modern approaches focus
on machine learning methods, including both supervised and unsupervised learning. For the
former type, researchers have worked using techniques such as neural networks (Ruzzelli
et al. 2010; Srinivasan et al. 2006), support vector machine SVM (Kato et al. 2009; Lin
et al. 2010), Hidden Markov Model (Zia et al. 2011), Bayesian approaches (Marchiori et al.
2011; Zhong et al. 2015), clustering (Hart 1992; Laughman et al. 2003) and combinations of
different techniques (Chang et al. 2011; Lai et al. 2013; Liang et al. 2010). The unsupervised
type of machine learning methods outperforms supervised ones in the sense that training
of the NILM system can be avoided and therefore require minimum effort from the user.
Zeifman and Roth (2011) reviewed these methods in detail.

Mostmodern approaches are based onhiddenMarkovmodels. Scientists focus onunsuper-
vised solutions, which require minimum effort from the user. Since 2012, the unprecedented
performance of deep neural networks in the field of visual recognition (Krizhevsky et al.
2012) and other domains, caught NILM researchers’ attention as well. Despite the difficult
process of training, deep neural networks perform efficiently, when compared to state of the
art versions of HMM. In this paper, the latest HMM based algorithms are compared against
recent approaches, which are based on neural networks.

2.2 Complexity

When power disaggregation was firstly introduced by G. W. Hart, it was described as a com-
binatorial optimization problem, based on the assumption that the number of the devices is
known a priori. Consequently, it is an NP-complete problem, which means that it is com-
putationally intractable for large number of devices. Additionally, the complete set of pi is
never known, because the number of devices in a residence can change from time to time.
Restricting the problem to a specific number of devices in order to make it solvable, is not a
viable solution (Hart 1992).

The abovementioned approach is based on the theory of computational complexitymaking
a fundamental assumption, that the complexity depends on the number of appliances. On the
other hand, it has been practically proved that the complexity is increasing when (Egarter
et al. 2015):

• The number of appliances increases.
• The switching frequency of device states is higher.
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• The devices have many operation states.
• There are several devices with similar power consumption.
• There is additional noise above the average or devices that are not considered.

It is evident that a different complexitymeasure is necessary, so that a comparison amongst
different power disaggregation systems is practicable. Shannon’s Entropy has been consid-
ered, but fails in the sense that it doesn’t solve the problem of the similarity of multiple states.
Furthermore, Kolmogorov’s complexity is a promising theoretical concept, but lacks in prac-
ticability, because there is no typical method to estimate it. Egarter et al. (2015a) introduced
a novel complexity measure, fulfilling the following requirements:

• Quantifies the complexity of the load disaggregation problem without depending on the
disaggregation approach.

• Takes into consideration the number of appliances, the number of states and the similar-
ities between states and appliances.

• Considers the appliance usage in time and is applicable to time series.
• Is simple and comprehensive.
• Its scope is limited to power disaggregation problems and makes such systems compa-

rable, without considering the disaggregation approach.

The introduced complexity measure uses the similarity factor of power states amongst
the devices of an appliance set. It is called defined by using the overlapping coefficient as
follows (Egarter et al. 2015a):

Ck =
M∑

j=1

OV L
(
fPk , fPj

)
, k ∈ [1, M] (2)

or

Ck =
M∑

j=1

∫ PM

0
min

(
fPk (p) , fPj (p)

)
dp, k ∈ [1, M] (3)

whereCk is the disaggregation complexity for power state k, Pk is the reference power value,
k is the reference power state and M is the number of combinations of power states.

Equation 3 gives the complexity of a specific power value k against a set of M power state
combinations. Accordingly, the disaggregation complexity in a time series will be the average
complexity in a specific time frame. Given a time series set of T power samples, we calculate
the complexity Ct for each sample t against all the M different appliance state combinations.
Then we calculate the average complexity for all Ct . The formula of the disaggregation
complexity in a time series is:

Ctotal = 1

T

T∑

t=1

Ct = 1

T

T∑

t=1

M∑

k=1

OV L
(
fPt , fPk

)
, k ∈ [1, M] (4)

where T is the observation timeframe,Ct is the disaggregation complexity for the power state
in time t.

2.3 System requirements

NILM framework describes the three basic parts, that are necessary to solve the problem
of power disaggregation. However, it is not adequate to set the criteria that will make a
solution robust and applicable in the real world. For this reason, Zeifman (2012) proposed
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six requirements for NILM systems to be applicable, according to the already established
technology of smart meters:

• Feature selection. The majority of smart meters and the lower cost solution demand
a sampling rate of 1 Hz. This requirement refers to the data acquisition and feature
extraction parts of NILM framework, because the frequency of data collection affects the
features that can be extracted.

• Accuracy. There are indications that an acceptable user experience would require a min-
imum accuracy of 80–90%.

• No training. For a seamless user experience, the user should put minimum effort con-
figuring and training the system. Then, the system should be able to detect new devices,
unseen devices and discard unused devices.

• Near real-time capabilities. The system should work online and should give immediate
and accurate feedback regarding the current energy status of the house.

• Scalability. The system should be robust and efficient even for more complex environ-
ments e.g. more than 20 devices.

• Various appliance types. The system should be able to recognize four different types of
electrical devices: a) on/off, b) finite-state, c) variable power and d) permanent consumer.

Zeifman’s requirements are widely accepted by researchers and are extensively used to eval-
uate NILM systems. In this paper the original naming convention is used, although there
might be some confusion. For example, the term “feature selection” usually refers to the
process of extracting and selecting features from the collected data. In NILM, it also refers
to the features of the hardware which collects the data. These two cases are related, because
the sample rate of the data affects which features can be extracted or not. However, sampling
rate is equally important for methodologies that do not require a manual process of feature
extraction (e.g. neural networks). As far as “accuracy” is concerned, no metric is specified.
The term “accuracy” is quite abstract and the 80–90% is an indication. Finding the right
metric of accuracy for NILM systems is a subject of research and researchers haven’t agreed
on which one is the most suitable. “No training” should not be confused with the meaning
of “training” in machine learning, although it could be related to that. According to Zeifman
it refers to the configuration of the system and how the user is involved in this configuration
e.g. select which appliances will be used in the house or configure each appliance separately
by switching it on and off.

According to Kelly and Knottenbelt (2015a), another equally important requirement of
a NILM system is the ability to generalize to unseen houses. In the real world it is very
unlikely that ground truth appliance data will be available for each house. Generalization is
a property very popular in machine learning but older approaches haven’t taken this aspect
into account. In this paper NILM approaches will be compared considering “generalization”
as well. Consequently, a metric and an acceptance threshold should be proposed to add
“generalization” as an additional requirement. Generalization should not be confused by “no
training”. The fact that an algorithmworkswell on an unseen environment doesn’t necessarily
affect the user’s effort to configure the system.

Additionally, a NILM system should respect user’s privacy. The limitations of a NILM
system are analyzed by Dong et al. (2013), emphasizing the importance to know what infor-
mation can be disclosed through power disaggregation. Indeed Greveler et al. (2012) prove
that power signal from a house can provide useful information about the residents e.g. audio-
visual content showed on TV. The risk of information leakage, without user’s permission, is
conclusive to add privacy as a requirement for a NILM system in real life. Privacy should
not be confused with security. Data transmission can be secured, in the same way any data
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is secured in a network. However, in the past no user thought that the energy data of the
house they live could reveal aspects of their private life. This can be prevented by limiting
the capabilities of power disaggregation, which most of the time is against the first require-
ment of high accuracy. To set an example, a user would accept a NILM system that reveals
if the TV is on or off, but not one that also reveals which program he or she watches on
TV.

The above criteria constitute a qualitative way to evaluate a NILM system. There are also
many quantitative metrics, but they are not mapped to all qualitative requirements. There is
an inconsistency between quality and quantity criteria.

2.4 Performance evaluation criteria

A disputable challenge in NILM is the existence of a solid benchmarking tool. Researchers
have been evaluating their solutions on different datasets, with different criteria and using
different metrics. Therefore, a direct comparison between different methods is ambiguous.

Liang et al. (2010) inquire into this challenge. Firstly, accuracy measures, such as detec-
tion, disaggregation and overall accuracy, are defined. Secondly, appliance-based accuracy
is deduced. Similarity and complementary ratio are also defined, in order to quantify the
divergence between two electrical signatures and the correlation between two solutions,
respectively.

The aforementioned assessment tools are inefficacious, when a NILM solution doesn’t
include the step of event detection and doesn’t take into account the complexity of the
environment. Kim et al. (2011) address the problems of using accuracy as a metric for
evaluating NILM systems, based on the fact that the event of a specific appliance is negligible
in a reasonable period of evaluation. In this case, a model predicting that an appliance is never
working, will have high accuracy. To counteract this problem, they propose F-measure as a
more suitable metric. The F-measure is the harmonic mean of precision and recall. These two
measures are redefined in Kim et al. (2011), considering accurate true positive and inaccurate
true positive results, depending on whether the predictions exceed a threshold of distance
from ground truth.

Another detection and classification metric, which is popular among pattern recognition
researchers, is the receiver operating characteristic (ROC) curve. ROC curve has been pro-
posed as an evaluation method for NILM systems by Zeifman and Roth (2011), but there is
no experiment verifying the suitability of the method, when applied on power disaggregation.

Themost common performance evaluation criteria amongNILM researchers, as described
by Bonfigli et al. (2015), are split into two categories. The first category is based on the
comparison between the observed aggregate power signal and the reconstructed signal after
disaggregation. These metrics include: root-mean-square error (RMSE), mean average error
(MAE) and disaggregation percentage (D). The respective equations are:

RMSE =
√√√√ 1

T

T∑

t=1

∣∣∣ȳt − ˆ̄yt
∣∣∣
2

(5)

MAE = 1

T

T∑

t=1

∣∣∣ȳt − ˆ̄yt
∣∣∣ (6)

D =
∑k

i=1 Ei

Etot
(7)
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where ȳt is the observed aggregate signal, ˆ̄yt is the reconstructed signal after disaggregation,
Etot is the total energy of the observed aggregate signal, K is the number of appliances signals
and T is the number of samples.

The second category describes how effectively the disaggregated signal signatures are
assigned to appliance signatures and include: total energy correctly assigned (TECA), dis-
aggregation error (DE), precision (P), recall (R), accuracy (Acc) and F-measure (f1). They
are defined as follows:

TECA = 1 −
∑T

t=1
∑K

i=1 |ŷ(i)
t − y(i)

t |
2

∑T
t=1 ȳt

(8)

DE = 1

2

T∑

t=1

K∑

i=1

|ŷ(i)
t − y(i)

t |2 (9)

where ŷ(i)
t is the separated appliance signal, y(i)

t is the original appliance signal, ȳt is the
observed aggregate signal, K is the number of appliances signals and T is the number of
samples.

Acc = T P + T N

T P + FP + T N + FN
(10)

P = T P

T P + FP
(11)

R = T P

T P + FN
(12)

f 1 = 2 ∗ P ∗ R

P + R
(13)

where TP is the true positive that the appliances was working, FP is the false positive that
the appliance was working, TN is the true negative and FN is the false negative.

Bonfigli et al. (2015) focus on unsupervised methods. The same metrics are used for
supervised methods as well. Despite the plethora of evaluation metrics, they are not adequate
to perform a fair comparison of the most promising solutions. It is very important though to
keep a consistency and new experimental results should include the same metrics with older
ones. Otherwise researchers should replicate older experiments and use the most suitable
metric.

In order to facilitate an objective and reproducible way of comparison between energy
disaggregation algorithms, Batra et al. (2014a) designed an open source toolkit called Non-
intrusive Load Monitoring Toolkit (NILMTK). The main features of NILMTK are: easy
dataset parsing, efficient loading of data to RAM, preprocessing methods, statistical charac-
teristics of the datasets, plotting, a couple of disaggregation algorithms and common accuracy
metrics.

Beckel et al. (2014) tackled the performance evaluation challenge, by introducing a new
dataset called ECO as well as an evaluation framework, called NILM-Eval. ECO dataset
provides quality and quantity of both aggregate and appliance specific power data, including
real and reactive power. NILM-Eval framework helps running benchmarking experiments
and compare different NILM algorithms by tuning multiple parameters. These include a
variety of datasets, diversified houses or time periods, particular data features and distinctive
algorithm configurations. The metrics, that are used by NILM-Eval, are RMSE, F1 score,
precision and recall.
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Finally, a new version of F1 score was proposed by (Makonin and Popowich 2015), called
finite-state-f-score (FS-fscore). FS-fscore is calculated using precision and recall, which are
redefined including a partial penalization measure. This is called inaccurate portion of true-
positives (inacc). The inacc is given by the following equation:

inacc =
T∑

t=1

∣∣∣x̂ (m)
t − x (m)

t

∣∣∣
K (m)

(14)

where x̂ (m)
t is the estimated state from appliance m at time t , x (m)

t is the ground truth state
and K (m) is the number of states for appliance m. Precision, recall and FS-fscore are given
by:

precision = tp − inacc

tp + f p
(15)

recall = tp − inacc

tp + f n
(16)

FS − f score = 2 ∗ precision ∗ recall

precision + recall
(17)

where tp is true-positives, fp is false-positives and fn false-negatives.

3 Modern approaches in NILM

The problem of power disaggregation is time dependent by nature. NILM researchers have
always thought models of sequential data and time as possible solutions. Hidden Markov
Models have been gaining much attention, not only in the domain of NILM systems, but also
in speech recognition and other sequential models. Several approaches are using different
versions of HMMs and have demonstrated impressive results. However, the main limitations
of traditional Markov models haven’t been overcome. They are restricted in relatively small
discrete state space, the algorithmic complexity for inference is intractable and the state space
can easily grow exponentially. This exponential space complexity is worse, when extending
the model in context window (Zachary 2015). In this survey, the most recent HMMmodels in
NILMwill be reviewed, showing the aforementioned problems.On the other side, deep neural
networks have shown remarkable results in sequential models, such as speech recognition
and translation. Some NILM researchers have shown strong interest in these models and
the results justify this approach. The state of the art of traditional NILM solutions will be
compared to deep learning solutions, in order to find out if deep learning solutions can be
considered as state of the art.

3.1 Particle filter-based load disaggregation (PALDi)

Egarter et al. (2015) proposed a method, named Particle Filter-Based Load Disaggrega-
tion (PALDi). The devices that were used belong to Type-I (On/Off), Type-II (Finite State
Machines) and combinations of them. Appliances’ load signatures and superimposition of
them were modeled with HMM and factorial HMM, respectively. Inference was estimated
by Particle Filtering (PF). For the evaluation, both synthetic and real data were used and
the preferred metrics were: normalized root-mean-square error (RMSE) and accuracy of
classification, as presented in Eq. (10).
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Five different scenarios were implemented on synthetic data and three on real data from
REDD dataset (Kolter and Johnson 2011). The three scenarios on real data were three vari-
ations of PALDi: with noise adaptation, without noise adaptation and resetting posterior
estimation. The number of particles was the same for all three cases, Np = 100. The variety
of scenarios enhance the impressive results of total accuracy of 90%. However, the fact that
the proposed algorithm was not compared directly with other approaches and was not tested
on different databases, might indicate a case of overfitting.

3.2 FHMM exploiting context-based features.

Paradiso et al. (2016) proposed a new power disaggregation method, which uses Factorial
Hidden Markov Models (FHMM) and exploits context-based features. The context informa-
tion consists of the user presence and the power consumption patterns of appliances. The
experiments used real home data from Tracebase dataset, sampled at low frequency. The
proposed solution is cost effective and easily applicable, because sampling requirements are
already met from existing smart meters. Any extra sensors, to gather the contextual features,
are widely available and can have low cost.

Data from Tracebase was preprocessed and the devices that were tested are: coffee maker,
LCD TV, microwave oven, pc, refrigerator and washing machine. Each appliance behavior
was approximated by a few states and power states were extracted by using clustering anal-
ysis. The adopted clustering method was Gaussian Mixture Model (GMM). Next, extensive
experiments were run, testing each context-based scenario and comparing the results against
the Additive Factorial Approximate MAP (AFAMAP) (Kolter and Jaakkola 2012). Finally,
both types of contextual information were combined and evaluated.

AFAMAP is based on FHMM, has the same scalability issues and is susceptible to local
optima.Themain advantageof themodel is that the result fits verywellwith the total aggregate
signal. Kolter and Jaakkola (2012) combined this algorithm with a model called difference
FHMM. The final model is computationally tractable, is robust to noise and overcomes
problems of local optima. Paradiso et al. compared their model against the basic additive
model and the results are very encouraging. It would be interesting to see a comparison
against the combined model as well.

The basic scenarios of the experiments were: user presence single interval conditioning,
user presence double interval conditioning, usage statistics conditioning and a combination
of the last two. the metrics that were used for the evaluation are precision and F-Measure.
On average the scenario with combined context data showed the best results, whereas each
scenario performed better than the basic AFAMAP algorithm. The suggested approach is not
directly compared with other solutions different from AFAMAP, but the results prove that
context information can be very valuable in a NILM system.

3.3 FHMM with device interactions

Aiad andLee (2016) suggested an unsupervised disaggregationmodel, taking into account the
interactions between devices. The device interactions were modeled using Factorial Hidden
Markov Model and inference was performed by the Viterbi algorithm. The model was tested
on the well-known REDD dataset (Kolter and Johnson 2011) and was compared to the
standard FHMM. The results were significantly improved in the case of device interactions,
whereas no substantial improvement was observed in the absence of interactions.

According to this methodology, a state of an appliance was described by three values: the
initial, average and final power consumption. In order to simulate any pulsations, a state was
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also represented as a random variable with normal distribution. Only a small fraction of the
power consumption was used tomodel the states and estimate anymutual device interactions.
Then, power disaggregation took place using the Viterbi algorithm. Finally, the results were
compared to real data. The total energy, which is correctly assigned, was estimated by the
metric of accuracy. The data of the experiments come from house 2 in REDD dataset.

A direct comparison was shown against the standard FHMM where device interactions
were ignored. The results are encouraging as the proposed solution showed the same or better
performance for all devices. However, still the average accuracy, over 7 devices, was less
than 70%. These devices include: microwave, outlet 1, outlet 2, refrigerator, washer dryer,
lights and stove.

3.4 Sparse Viterbi algorithm

Stephen Makonin et al. (2015) proposed a new algorithm, tackling the efficiency problem
of Viterbi algorithm. This approach was based on super-state Hidden Markov Model and a
different version of Viterbi algorithm. A super-state was defined as an HMM that describes
the overall power state of a set of appliances. Each appliance could be ON or OFF and during
operation could have an operation state. Each combination of the devices’ states represented
a unique state of the house.

The main advantage was that exact inference was feasible in computationally efficient
time, by calculating sparse matrices with large number of super-states. Disaggregation could
also run in real time, even on an embedded processor with limited capabilities.

The methodology started with separation of data in two categories, priors and testing. For
the priors, it was necessary to know the sub-meter readings of the devices that would be
disaggregated. Then a Model Builder was used to create a super state HMM. Firstly, each
load was mapped to a probability mass function (PMF) by using the priors. Secondly, each
PMF was quantized finding each load’s states and the peak value of the state. Thirdly, the
load’s states were combined and constituted the super-state HMM. The super-state and the
smart meter data were introduced to the Sparse Viterbi Algorithm, finding the state with the
maximum probability. The key of the algorithm was that it ignored zero-probability terms.
Finally load consumption was estimated by decoding the quantized state and finding the peak
of the respective PMF.

Regarding the data during the experiments, REDD andAMPds (Makonin et al. 2013) were
selected, because they support low frequency data. The evaluation criteria were accuracy,
FS-fscore and consumption estimation accuracy (Kolter and Johnson 2011). For more robust
results, tenfold cross-validation process was applied.

It is worth mentioning that this algorithm was directly compared to related work, Kolter
and Johnson (2011) and Johnson andWillsky (2013), where factorial Hidden Markov Model
(FHMM) and Hierarchical Dirichlet Process Hidden semiMarkov Model (HDP-HSMM)
were used respectively. The former one is the standard FHMM and it has been the basis when
comparing NILM systems. The latter one is a method which overcomes two restrictions of
Hidden Markov Models. The first restriction is that HMMs operate using discrete states and
the distributions of state duration consist a graph that doesn’t describe adequately real-world
data. The second one is that hidden states are set a priori definingmodel’s complexity in a non-
Bayesian way. HDP-HSMM is based on Hierarchical Dirichlet Process HMM (HDP-HMM)
and takes advantage of semi-Markovian properties.

Johnson and Willsky claim that their method is unsupervised. HDP-HSMM is a Bayesian
approach and the graphical model encodes prior appliance information. Therefore, there is
no need for manual labelling. On the other hand, other researchers (Makonin et al. 2015;
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Parson et al. 2014) argue that the method cannot be considered unsupervised in the real
world because it requires prior knowledge for each appliance. The model must know the
number and the type of the appliances in the house. Finally, this Bayesian approach has not
been tested in complex environments with more than 15 appliances.

To conclude, both the basic FHMM and the HDP-HSMM are more complex models than
the proposed sparse Viterbi algorithm. The comparison showed that HMM sparsity not only
reduced complexity, but also presentedmajor improvement in terms of accuracy, 13.3%better
than HDP-HMM and 48.3% better than FHMM on average.

3.5 The neural energy decoder

Lange and Bergés (2016) examined a method using a neural decoder, in order to extract
features from high frequency data. In summary, the aggregated power signal was broken
into sub-components in an unsupervised way. Then, they were combined to shape appliance
profiles. This was the first attempt of unsupervised feature extraction, by using a deep neural
decoder.

The architecture of the deep neural network had a linear output layer and a binary activation
function in last layer. The total number of layers was six and the framework that was used
is the python package Keras. The inputs of the network were the real and imaginary parts
of the Discrete Fourier Transform of the current signal and the target outputs were active
and reactive power. The selected optimizer was stochastic gradient descent. The data came
from Phase B of the BLUED (Anderson et al. 2012) dataset and the network was trained on
all data. After training, the last layer of the decoder was removed, and the network could
infer the binary subcomponents. Then, the subcomponents were used as features to predict
which devices were on or off. For this purpose, two different algorithms were tested: greedy
search and logistic regression. A naïve energy estimation was also examined. According to
the results, logistic regression performed better F1 score than greedy search, with values
more than 0.90 for the majority of the devices.

The main goal was to face three basic drawbacks of existing disaggregation solutions:
computational efficiency, data transmission limitations and prior knowledge of electrical
devices. The proposed algorithmovercomes these pitfalls, but also a direct comparison against
other algorithms is needed.

3.6 Deep neural networks applied to energy disaggregation

Kelly and Knottenbelt (2015a) focused on solving the problem of power disaggregation by
means of deep neural networks. In this scope, the authors proposed three different approaches:
a) a solution using a specific type of recurrent neural network, named “long short-term mem-
ory” (LSTM), b) a solution reducing noise with denoising autoencoders and c) a regression
algorithm forecasting the start time, end time and average power demand for each device.

The source of the data was UK-DALE dataset (Kelly and Knottenbelt 2015b). Both real
and synthetic energy datawere used for training. This approach of training on amixture of real
and synthetic data showed better generalization, when neural nets were tested against unseen
data. The step of validation and testing included only real energy data, for more realistic
results. NILMTK was used to preprocess data. The algorithms were written in Python using
Pandas, Numpy and Lasagne. The target devices included washing machine, kettle, fridge,
dish washer and microwave. The metrics that were used are seven: F1 score, precision, recall,
accuracy, relative error in total energy, proportion of total energy correctly assigned andmean
absolute error.
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Regarding training, the first step was to find all the activations of the target device. Then,
the algorithm decided randomly to include one of the activations in the timeframe that will
be the target of the net during training. Below, the three architectures that were tested, are
presented.

The first, of the three neural networks, had six layers in total. An input layer with length
which depended on the duration of the device. The second layer was a 1D convolution layer
that played the role of extracting features from the signal. The third and fourth layers were
bidirectional LSTM. The last two were fully connected with the last being the output of
the network. The recurrent neural network was trained with the method of backpropagation
through time.

The second neural network was a denoising autoencoder and was used to reduce noise.
The network was trained having a noisy signal as input and the clean signal as target, learning
in that way to remove noise. The input was the total aggregate power signal and the target
was the appliance’s load. The architecture of this network consisted of an input layer, a 1D
convolutional layer, three fully connected and one convolutional as the output.

The third architecture aimed to predict the start time, the end time andmean power demand
of a target device. The network consisted of the input with length depending on the duration
of the appliance, two 1D convolutional layers and five fully connected layers. The last one
had three outputs, one for each of the target values.

The proposed algorithms were compared with combinatorial optimization and factorial
Hidden Markov Model, using implementations of the tool NILMTK (Batra et al. 2014a).
In general, denoising autoencoder and regression neural network showed better results than
the two algorithms from the benchmark, except for some specific cases. For seen houses,
CO and FHMM outperformed Denoising Autoencoder on the metric of relative error in
total energy. Regression neural network was outperformed by CO and FHMM only when
disaggregating microwave. It is worth mentioning that the two neural networks performed
strong generalization capabilities, when data came from a new unseen house. The LSTM
network outperformed CO and FHMMonly on two-state devices. On more complex devices,
such as dish washer and washing machine, LSTM was worse than the other two algorithms.

Further research is recommended with emphasis on optimization of neural networks,
understanding LSTMs inferior performance and direct comparison against state of the art
algorithms.

3.7 Deep recurrent LSTM network

Mauch and Yang (2015) presented another architecture of deep recurrent LSTM network,
in order to test if this type of network is possible to overcome the known problems of pre-
vious NILM approaches. Such problems include disaggregation of various appliance types,
automatic feature extraction from low frequency data, generalization of a solution to other
buildings and unseen devices, extensibility of the approach to continuous time and compu-
tational tractability.

According to the suggested methodology, the experiments used synthetic power signals,
by summing up sub metered data. The data source was the well-known REDD open dataset.
The house, that was used both for training and testing, was house 1, whereas house 2 was
used to test the generalization of the algorithm. The target devices included fridge, microwave
and dishwasher. The first two appliances were considered as ON/OFF and the third one as
multistate. The authors also had the intention to test this algorithmonvariable loaddevices, but
unfortunately the selected database doesn’t include such devices. Another worth mentioning
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characteristic of the group of the chosen devices is that the fridge had a periodicity, in contrast
to the other two.

The proposed solution needed one network for each device in a house. As a result, in
these experiments three networks were used, one for each of the three target appliances.
Each network had the following architecture: one input layer with ten units, two bidirectional
recurrent layers with 140 units each and one output layer. Each network was trained until
the validation error didn’t decrease any more or for a maximum number of 100 epochs. The
evaluation metrics that were used were estimated energy, consumed energy, NRMS for active
periods, precision, recall and F1 score.

The proposed algorithm was not compared directly with other solutions, used only syn-
thetic data and depended on sub metered signals. Nevertheless, the experiments showed
encouraging results and lead to the following conclusions: supervised disaggregation was
feasible with the proposed architecture, the LSTM architecture worked well for appliances
showing some periodicity, the system worked with low frequency data, there was no need for
event detection and feature extraction and the trained networks of the fridge and dishwasher
could generalize efficiently when tested on house 2.

3.8 Sequence-to-point learning with neural networks

Zhang et al. (2017) proposed a deep learning solution for the problem of single-channel
blind source separation with application in NILM. The method is called sequence-to-point
(seq2point) learning, because it uses a window as input and a single point as target. The
proposed solution is a deep convolutional neural network (CNN), which also learns the
signature of the appliances in a house.

The seq2point solution differs from a sequence-to-sequence (seq2seq) solution regarding
the target output. Instead of predicting a window of appliance power consumption, it predicts
the midpoint of that window. The intuition behind the midpoint prediction is that this point
is related not only to past values but also to future ones.

The data sources of the experiments come from UK-DALE and REDD. The devices that
were tested are: kettle, microwave, fridge, dish washer and washing machine. Kettle wasn’t
tested on REDD database because it is not included. Regarding UK-DALE, houses 1, 3, 4,
and 5 were used for training and house 2 was used for testing. In the case of REDD, houses
2 to 6 were used for training, and house 1 for testing.

The implementation of the model was done in Python, using Tensorflow framework. The
architecture of the neural network has an input layer with length 599. Then there are 5
convolution layers with activation function ReLU. Next is a dense layer with 1024 units
and activation function ReLU. The final layer is the output of the neural network. There are
two versions of this layer, one representing the seq2seq solution and one representing the
seq2point solution. For the former case, the layer has 599 units, whereas for the latter one it
has only one unit. The activation is Linear for both cases.

Both seq2seq and seq2point versions of the proposed architecture are compared to
AFHMM (Kolter and Jaakkola 2012) and the seq2seq autoencoder architecture (Kelly and
Knottenbelt 2015a). The autoencoder is referred as seq2seq(Kelly), to differentiate it from the
proposed seq2seq solution. The evaluation metrics that were used are: mean absolute error
(MAE) and normalized signal aggregator error (SAE). MAE is more suitable for the error
in power at each time step, whereas SAE is more suitable for the total error in a timeframe.
The four models were tested using UK-DALE dataset. Overall the seq2point model gave the
best results. It is very impressive that, compared to seq2seq(Kelly), it reduces MAE by 84%
and SAE by 92%. Both versions of the CNN achieved much better results than the other two
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models. Next, only the two versions of the CNN were compared, by using REDD dataset.
The results show that the seq2point is superior to seq2seq in most devices with substantial
difference. It is worth noting that the tests, where seq2seq had lower error, the difference was
negligible (less than 1 watt).

The deep convolution neural network did not only show state of the art performance,
but also seems to understand the data. It extracts meaningful features, regardless of the
version (seq2seqor seq2point). The authors showsystematically that themodel learns features
that previously were being extracted manually. Such features are: change points, typical
usage durations and power levels of appliances. They can be illustrated by plotting the last
convolution layer of the proposed neural network.

4 Comparative analysis

Comparing disaggregation algorithms is an obscured process and in most cases unfeasible.
This is probably the obstacle to find a practical solution, whichwould be ready for production.
In this chapter both, a qualitative and a quantitative analysis, are presented. The challenges
of each analysis are highlighted, while solutions are suggested. Finally, there is an effort to
explain the relation between the two different methods and how NILM systems could be
easier evaluated in future.

4.1 Qualitative analysis

Ten different approaches are compared, taking into consideration the NILM system require-
ments. These include not only Zeifman’s requirements, but also “generalization” and
“privacy”. The former one, a known and of major importance aspect of artificial intelli-
gence, is also identified as an indispensable property of a NILM. So far there is no indication
for an acceptable value of a specific metric. For this qualitative evaluation, a system that
meets the requirement of “accuracy” in both the seen and unseen environments, will be con-
sidered that it meets the requirement of “generalization”. A more accurate metric will be
defined in chapter 5. The “privacy”, concerns sensitive data and private information that can
be extracted by a NILM system. Table 1 presents which criteria each algorithm meets.

It is obvious that no conclusion can be made for the requirement of “privacy”, which
means that further research has to be made to integrate this feature into a NILM system.
Also, regarding “generalization”, deep learning techniques seem to bemore suitable, although
sometimes, no conclusion can bemade for HMMbased solutions, due to lack of experimental
results. Another feature, where deep learning seems to be superior to HMM, is “scalability”.
This is one of the most difficult problems in HMM and only FHMM exploiting context-
based features overcomes it, because it is based on (Kolter and Jaakkola 2012). “Feature
selection” and “real-time” capabilities are the requirements the majority of the suggested
systems meet successfully. As far as “accuracy” is concerned, the outcomes are: it is not
met by all algorithms, context based features have a positive impact and yet sometimes it is
difficult to conclude, because of the large variety of metrics. Finally, “no training” as well as
“appliance types” are very challenging. Researchers have proposed unsupervised methods to
meet the requirement of “no training”, but this is not an easy task. Also, it is difficult to make
a conclusion for the “appliance types”, since there aren’t enough data for variable power
appliances. In fact, this requirement is partially met, e.g. for on/off and multistate appliances.

Particle Filter-Based Load Disaggregation (PALDi) Given the fact that a direct numerical
comparison against other NILM systems is very complicated, the authors have evaluated

123



Machine learning approaches for non-intrusive load monitoring… 233

Ta
bl
e
1

(�
)
M
et
,(

×)
no

tm
et
,(
–)

no
co
nc
lu
si
on

Fe
at
ur
e
se
le
ct
io
n

A
cc
ur
ac
y

N
o
tr
ai
ni
ng

R
ea
l-
tim

e
ca
pa
bi
lit
ie
s

Sc
al
ab
ili
ty

A
pp
lia
nc
e
ty
pe
s

G
en
er
al
iz
at
io
n

Pr
iv
ac
y

PA
L
D
i

�
�

×
�

×
–

–
–

FH
M
M

ex
pl
oi
tin

g
co
nt
ex
t-
ba
se
d
fe
at
ur
es

�
–

�
�

�
–

–
–

FH
M
M

w
ith

de
vi
ce

in
te
ra
ct
io
ns

�
×

�
�

×
×

–
–

Sp
ar
se

V
ite
rb
ia
lg
or
ith

m
�

�
×

�
×

–
–

–

T
he

ne
ur
al
en
er
gy

de
co
de
r

×
–

×
–

�
–

–
–

D
en
oi
si
ng

au
to
en
co
de
rs

�
�

×
�

�
–

�
–

D
ee
p
co
nv
ol
ut
io
na
ln

eu
ra
ln

et
w
or
k
fo
r
re
gr
es
si
on

�
�

×
�

�
–

�
–

R
N
N
L
ST

M
w
ith

co
nv
ol
ut
io
n
in
pu

tl
ay
er

�
×

×
�

�
–

×
–

R
N
N
L
ST

M
�

–
×

�
�

–
�

–

Se
q2

po
in
tC

N
N

�
�

×
–

�
–

�
–

123



234 C. Nalmpantis, D. Vrakas

PALDi algorithm against Zeifman’s requirements. Three of them are fully met. The active
power is collected with 1 sec, resolution reported accuracy is around 90% and operational
running time is computationally efficient. On the other hand, “no training” requirement is
partially met. Although there is no need for training during operation, the algorithm requires
to know the used devices in the house and cannot recognize new or unseen devices. The
other two requirements, “scalability” and “various appliance types”, are not met. Regarding
the former, the algorithm’s complexity depends on two parameters, the number of particles
and the number of appliances. HMMmodels are, in general, computationally impractical for
more than 18 devices and according to the tests, particle filtering shows proportionally better
results in the case of more particles. Consequently, PALDi is not scalable. For the appliance
types, there is no evidence that the algorithm will present equal results for types such as
variable power and permanent consumer devices. Finally, no conclusion can be made for
“generalization” and “privacy”.

FHMM exploiting context-based features This NILM system fulfills four requirements.
“Feature selection”, because active power is the basic feature sampled with low frequency.
“No training”, because it identifies the power profile states of a specific appliance in an
unsupervised way, using Gaussian Mixture Model. “Real-time capabilities”, because infer-
ence can be done in real-time. “Scalability”, because it is based on the work of Kolter and
Jaakkola (2012), where the proposed method scales almost linearly in the space of HMM
states. On the contrary, there is no reported accuracy, thus no conclusion can be made. Only
precision and F-Measure results are compared against a basic AFAMAP algorithm with 13
and 14% improvement respectively. Additionally, the proposed method was mainly tested
using finite state machines such as coffee maker, LCD TV, microwave oven, refrigerator and
washing machine. Therefore, the variety of devices used in the test is not sufficient to meet
this requirement and further experiments need to be run. Concerning “generalization” and
“privacy” no conclusion can be drawn.

FHMM with device interactions The proposed approach meets successfully three of the
qualitative criteria. First of all, it uses low frequency data. Secondly, it is unsupervised,
although manual labeling is required at the end of the process. Thirdly, inference can be done
in real-time. The requirements that are not met are “accuracy”, “scalability” and “appliance
types”. Regarding “generalization” and “privacy”, unfortunately no conclusion can be made.

Sparse Viterbi algorithm The authors of this paper state that the proposed algorithm fulfils
four requirements. The algorithm was successfully tested on low frequency data, average
accuracy exceeds theminimum threshold of 80%and inference can be completed in under one
millisecond. The fourth requirement is “various appliances types”. According to the authors,
it is met considering a more relaxed version of the requirement. In this case and for the
purpose of approximate estimation, continuously variable devices can be represented by one
more general state. However, someone could argue that mainly finite state machine devices
were used during evaluation and eventually the algorithm doesn’t fulfill this requirement.
Additionally, there is no proof that all variable state devices can be represented by one
general state. More experiments with more appliances could possibly solve this ambiguity.
For the criteria of “no training” and “scalability”, they are not met. The requirement of “no
training” is not met because of the process of selecting priors. Regarding “scalability”, the
system demonstrated the ability to disaggregate efficiently up to 18 loads. This is a notable
improvement, because previous methods were restricted to 6–9 loads. However, the problem
of exponential time and space complexity remains unsolvable, when the target devices are
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more than 18. As far as “generalization” and “privacy” are concerned, the system cannot be
evaluated, because of lack of further information and experiments.

Theneural energydecoderThis systemmeets only one requirement, “scalability”. There are
two reasons explaining why the system is scalable. Firstly, after the neural decoder is trained,
inference is computationally very cheap. Secondly, high frequency datawill be transformed in
binary subcomponents, which requiremuch less space. This transformation of high frequency
data makes it possible to exploit more information, but at the same time fails the requirement
of “feature selection”. The other requirement that is not met is “no training”. Although
the binary subcomponents can be extracted in an unsupervised way, the inference process
is supervised. The system will need extra training to identify unseen devices. Regarding
“accuracy” no conclusion can be made, because the metric of disaggregation performance
is F1 score. In the same way, there is no evaluation outcome concerning “near real-time
capabilities”. The characteristics of the system are promising, because once the decoder is
trained, both feature extraction and inference can be done very efficiently. Nevertheless, the
system is tested off line and the need for temporal randomization of the dataset can be an
obstacle during online testing. Finally, there are not enough experiments or information to
evaluate the algorithm against “various appliance types”, “generalization” and “privacy”.

Deep neural networks applied to energy disaggregation In this paper, there are three
different architectures of deep neural networks: denoising autoencoder, deep convolutional
neural network for regression and RNN LSTM with convolution input layer. The first two
architectures, according to the experimental results, show similar behavior. They fulfill five
of the eight qualitative system requirements. On the other hand, the third architecture doesn’t
perform equally andmeets only three requirements. Inmore details, the “feature requirement”
is met by all three architectures, due to the low frequency data. According to the results,
all but LSTM based architectures show average accuracy above 80%, outperforming the
basic algorithms of CO and FHMM. Training is supervised for all the suggested networks
and requires knowledge of the device signature profile. Therefore, they all fail to meet the
requirement of “no training”. In contrast, they are all considered capable of performing
in real time, because after training, inference is computationally efficient. For the same
reason, neural networks are suitable for scalability. Regarding “generalization” the denoising
autoencoder and the deep convolutional network have shown impressive results. Finally, there
is no conclusion about “privacy” and “appliance types”. The devices were considered to have
only two states ON or OFF. Consequently, further research is needed to examine if the
proposed methods are suitable for other appliance types.

Deep recurrent LSTM network The proposed recurrent neural network meets four
requirements: “feature selection”, “real-time capabilities”, “scalability” and “generaliza-
tion”. Indeed, the experiments used low frequency data, neural networks, theoretically, can
perform inference computationally efficient and the results showed satisfactory generaliza-
tion. Regarding “no training”, it is supervised and requires knowledge of the devices in the
house. Unfortunately, no conclusion can be made for “accuracy”. It is not used as a metric,
but the other metrics showed encouraging results. Similarly, there is no conclusion for “vari-
ous appliance types” and “privacy”. Only two device types are tested and more complicated
experiments are required.

Deep convolution neural network (seq2point) Two versions of this architecture are pre-
sented in the paper. The seq2point version will be analyzed here because the results are
by far the best. Also since the basic architecture is the same, equivalent results should be
expected for the seq2seq version. The requirements that are clearly met are: “feature selec-
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tion”, “scalability” and “generalization”. The reasons are that the selected databases have
low frequency data, inference is computationally efficient and the model was successfully
tested on unseen houses. “Accuracy” is not clear if it is met because of the different metrics
that are used. This is also a deficit of the system requirements, where minimum acceptance
values of other metrics should also be considered. However, the authors directly compare
their proposed solution to Kelly’s autoencoder. The results are impressive with a reduction
of 84% in MAE and 92% in SAE. The model achieved better results than the other sys-
tems, for all devices. Considering the impressive results and their consistency, leads to the
outcome that accuracy criterion should be met. Regarding the “real-time capabilities”, there
is an argument of how much of the future data is used as input, when there is seq2point
learning. Considering that there are 599 inputs, the future data are 299. Also, the readings are
recorded every 1–6 seconds. As a result, inference takes place with a lag of 299–1794s or
5–30min. A real-time system should respond to any changes in a few seconds. On the other
hand, for the case of seq2seq the predictions are clearly real-time. Consequently, deciding if
the seq2point can give real-time results, depends on the sampling rate and how much of the
future data is needed. To answer such questions more experiments must be done with exact
specification of real-time requirements e.g. how many seconds of lag is accepted for a NILM
system. The requirement of “no training” is not met, as the proposed solution is supervised.
Finally regarding “privacy” and “appliance types” no direct conclusion can be made.

4.2 Quantitative analysis

Table 2 shows the results from the suggested algorithms, the databases that were used and the
number of target devices. For comparison reasons, the table presents the three most common
performance metrics. These are: Acc (Eq. 10), F1 score (Eq. 13) and TECA (Eq. 8). To avoid
any confusion it is worth mentioning that in bibliography TECA is also called Acc (Aiad
and Lee 2016; Kolter and Johnson 2011) or Est Acc (Estimated Accuracy) (Makonin et al.
2015). For each metric the mean and the standard deviation are calculated. The calculations
are based on results taken from the respective papers. For PALDi system the Table VII was
used from the respective paper of Egarter et al. (2015), for FHMM with device interactions
Table 5 was taken from the paper of Aiad and Lee (2016), for Sparse Viterbi algorithm Table
V of Makonin’s et al. work (2015), for The Neural Energy Decoder Table I from Lange’s
and Bergés’ paper (2016), for the systems described by Kelly et al. (2015a) Figure 3 and
Figure 4, and finally for RNN LSTM the source of the data were Table 1 and Table 2 from the
paper of Mauch and Yang (2015). The results from the seq2point CNN are not presented in
Table 2 because different metrics are used. Moreover, Zhang et al. (2017) presented a direct
comparison to other models as discussed in chapter 3.8.

At the same table, appliance set complexity is also presented, to make comparison more
objective. The calculation of complexity is based on Eq. (3) and is implemented in Python,
using the NILMTK for parsing the databases1. The complexity of the appliance set, that
Neural Energy Decoder used, is not calculated, because BLUED dataset is not integrated
with NILMTK toolkit.

As it is noticed, the complexity of each NILM environment differs a lot and makes a direct
comparison very difficult. For example, the RNN LSTM system described by Mauch and
Yang, has been tested on an environment with maximum complexity 1.84 and mean com-
plexity 1.2 for house 1. The mean f1 score is 0.78. On the other hand, the Deep Convolutional

1 The authors would like to thank Odyssefs Krystalakos for his contribution in developing the software and
running the experiments for the appliance set complexity. The source code is available at: https://github.com/
christofernal/power-disaggregation-complexity.
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Neural Network is tested on environments with mean and maximum complexities around
4.7 and 10, whereas the mean f1 score is around 0.55. Based on these numbers, it is obvious
that a direct comparison is unfair. Even if two systems are compared by using results from
the same house e.g. Redd House 1, the complexity can be different, because each experiment
might use different appliance sets. The more the appliances and the states of each appliance,
the higher the disaggregation complexity.

The appliance set complexity doesn’t depend on the disaggregation algorithm. It charac-
terizes how difficult it is, to solve the problem of disaggregation for a given appliance set.
This means that if the results were based on datasets with similar complexity, a comparison
among all the approaches would be easier. As an example, let’s compare the results of the
PALDi system and the Deep Convolution Neural Network. According to the metric of Acc
the latter one seems to outperform the former. Both have similar mean complexity, which is
not a surprise, because they both recognize the activity of the same number of devices.

Another difficulty that can emerge from comparing these NILM systems is that they are
using different metrics. To set an example, regarding the three common metrics Acc, TECA
and f1 score, PALDi uses onlyAcc,whereas TheNeural EnergyDecoder uses only f1 score.A
different metric could also be the result of how each solution is solving the problem of power
disaggregation. TECA, for example, is used when a system predicts the power consumption
of a device, whereas Acc and f1 score are used to decide if an appliance is ON or OFF
or to classify its state. In addition, researchers do not always disclose all the details of the
experimental results. As it can be noticed from Table 2, some useful information is missed.
The standard deviation, for example, could give an overview of the performance of a system
for the various devices.

To conclude, a quantitative analysis of variousNILMsystems is not feasible. The variety of
methodologies, datasets, metrics andways of presenting results make this procedure difficult.

5 Mapping quality requirements to quantity metrics

Power disaggregation is an old and yet unsolved problem. Comparing different NILM sys-
tems is essential to solve it, but still not possible. Each of the qualitative and quantitative
evaluations, has proved to be inadequate to distinguish the best system. This means that
maybe there should be a connection between the two methodologies.

Table 3 shows that researchers’ efforts focused on measuring the performance of algo-
rithms in terms of disaggregation accuracy. Now, there are several metrics, making a
comparison evenmore confusing. On the other hand, there is plenty of room for improvement
on how to quantify the rest of the qualitative requirements. On these grounds, some simple
evaluationmeasurements are proposed,while further studies and experiments are encouraged.

A new metric called NTR (no training) is proposed for the requirement of “no training”,
which ensures theminimumuser involvement. Ideally, the algorithmshould be able to identify
any new deviceswith no further user interaction. In practice, there are three distinct categories
regarding user interaction, thus NTR values can be the following: a) no user interaction (NUI)
where the system can recognize unseen devices, b) light user interaction (LUI), in which case
the system doesn’t need training, but knowing the used devices in the house is necessary,
c) heavy user interaction (HUI), when the system requires training for each new device and
consequently the user has to reconfigure the system. From another perspective, the three states
also represent how much the algorithm knows about its environment: unknown environment
for NUI, partial known environment for LUI and known environment for HUI.
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Table 3 Mapping of qualitative requirements and quantitative metrics

Qualitative requirements Quantitative metrics

Feature selection Sampling rate

Accuracy Root-mean-square error (RMSE), mean average error (MAE), disaggrega-
tion percentage (D), total energy correctly assigned (TECA), disaggregation
error (DE), precision (P), recall (R), accuracy (Acc), F-measure (f1), finite-
state-f-score (FS-fscore)

No training Three-state variable for no training (NTR)

Real-time capabilities Algorithm computational complexity

Scalability Algorithm computational complexity

Appliance types Four appliance types standard deviation (FATσ)

Generalization Generalization over unseen houses (GoUHσ)

Privacy Upper bound on the probability of distinguishing scenarios (UBPDS)

NT R =
⎧
⎨

⎩

NUI, no user interaction
LUI, light user interaction
HUI, high user interaction

(18)

The second metric which is proposed, measures the performance of power disaggregation
on four different appliance types: on/off, finite-state, variable power and permanent consumer.
A naïve approach, to quantify this requirement, is to count how many of the four types can
be recognized e.g. 1/4, 3/4 etc. A more sophisticated approach is to calculate the standard
deviation of the accuracies of each of the four appliance types. The newmetric is called FATσ

(four appliance types standard deviation) and is described by the following formula:

FATσ =
√√√√1

4

4∑

i=1

(Acci − FATμ)2 (19)

where FATμ = 1
4

4∑
i=1

Acci and Acci the accuracy (Eq. 10) of each appliance type. Instead of

Acc other metrics of “accuracy” can be used such as F1 score.
As far as the requirement of generalization is concerned, a metric similar to FATσ is

proposed, representing how well the algorithm generalizes on unseen houses. It is defined as
the standard deviation of the total disaggregation accuracy of the system for various houses.
The smaller the value, the better the algorithm can generalize. The following formula defines
the metric of GoUH (generalization over unseen houses):

GoUH =
√√√√ 1

H

H∑

h=1

(Acch − μ)2 (20)

where H is the number of different houses, Acch is the average disaggregation accuracy on
house h, andμ is the mean accuracy over all houses. Instead of Acc as defined in Eq. 10, other
metrics such as F1 score are also accepted. Based on Ziefman’s requirement for a minimum
accuracy of 80%, a maximum threshold could also be defined regarding GoUH with value
GoUHmax = Acc − 0.8.

Finally, it is equally important to quantify privacy. Ignoring the limitations of power
disaggregation, could lead to leakage of private information without user’s agreement. In
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order to protect privacy of occupants, Sankar et al. (2013) propose a theoretical framework.
Another approachwould be to use a distancemetric (Katos et al. 2011) finding the correlation
of scenarios, given the features and power data that will be used by the algorithm. A deep
analysis of private prediction problems, mainly based on hiddenMarkovmodels, is presented
in related work by Polat et al. (2010). Privacy is a multilateral problem, requiring knowledge
of laws and definition of policies. Theoretical models, will only be useful after setting clear
rules and policies on what violates an individual’s privacy. Next an example of a metric which
probably best fitsNILMprivacy is presented and is based on an upper bound on the probability
of distinguishing private scenarios (Dong et al. 2013). Assume a NILM system which can
identify N scenarios. Also assume that m out of N of these scenarios are considered private
information. According to Dong et al, there is an upper bound probability of distinguishing
successfully m private scenarios. The lower this upper bound is, the better privacy this NILM
system provides. This metric can be calculated as follows (Dong et al. (2013)):

UBPDS =
m∑

i=1

P(ûM AP (y) = vi |u = vi )p (u = vi ) (21)

where MAP is given by:

ûM AP (y) = arg maxv∈V P (G (u, ·) = y|u = v) p (u = v) (22)

and V is a finite set of inputs representing scenarios, û is an estimator, G is the distribution
of the power consumption, u is the input representing the scenario that will be distinguished,
y is the observed signal.

6 Conclusions

In this review, the problem of power disaggregation was discussed extensively. Ten different
algorithms were presented followed by a comparative analysis. Through this analysis many
challenges have been discovered, leading to valuable conclusions and suggestions for future
research.

The comparison of various NILM systems is still cumbersome. However, there has been a
lot of improvement and there are novel approaches and mathematical tools that haven’t been
used extensively yet. A strong example is Zeifman’s requirements. They consist a qualitative
evaluation method, which has been adopted by many NILM researchers. These requirements
can be complemented by two new ones. One regarding “generalization” and one concerning
“privacy”. Another example is disaggregation complexity. It measures the complexity of a
NILM environment and sets a common basis of comparison. It would be unfair to compare
two solutions on two environments with different complexity.

Another conclusion is that there is lack of metrics for the majority of the requirements. For
this reason, some simple metrics are suggested for the following requirements: “no training”,
“appliance types”, “generalization” and “privacy”. Further research is encouraged for the
discovery of more suitable metrics.

Furthermore, it is worth noting that, although there are several metrics for the require-
ment of disaggregation accuracy, only accuracy (Acc) has been specified with a minimum
acceptable value of 80–90%. For a fair and objective evaluation, other metrics should also be
assigned a threshold, in order to justify if the requirement is fulfilled or not. An accurate way
to calculate these values would be to find mathematical correlations between metrics. Unfor-
tunately, this is not possible because they are not directly related. An estimation approach
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would be to setup a series of tests of a known NILM system and get feedback from users.
Another proposal would be to create a large dataset with results including all the metrics from
different NILM systems and use computational methods to find out if there is any correlation
among these metrics.

Finally, neural networks show evidence that they canmeet the requirement of “generaliza-
tion” quite confidently. Only two requirements are not met along all deep learning solutions:
‘appliance types” and “no training”. The first one is because of lack of data from variable
power appliances, thus there are not enough tests. The second one is due to the supervised
nature of these solutions. For the future work, it is suggested to run various experiments using
different deep learning architectures and unsupervised training.
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