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Abstract A collection of different scripts is employed in writing languages throughout the
world. Character and numeral recognition of a particular script is a key area in the field of
pattern recognition. In this paper, we have presented a comprehensive survey on character
and numeral recognition of non-Indic and Indic scripts. Many researchers have done work
on character and numeral recognition from the most recent couple of years. In perspec-
tive of this, few strategies for character/numeral have been developed so far. There are an
immense number of frameworks available for printed and handwritten character recognition
for non-Indic scripts. But, only a limited number of systems are offered for character/numeral
recognition of Indic scripts. However, few endeavors have been made on the recognition of
Bangla, Devanagari, Gurmukhi, Kannada, Oriya and Tamil scripts. In this paper, we have
additionally examinedmajor challenges/issues for character/numeral recognition. The efforts
in two directions (non-Indic and Indic scripts) are reflected in this paper. When compared
with non-Indic scripts, the research on character recognition of Indic scripts has not achieved
that perfection yet. The techniques used for recognition of non-Indic scripts may be used for
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recognition of Indic scripts (printed/handwritten text) and vice versa to improve the recogni-
tion rates. It is also noticed that the research in this field is quietly thin and still more research
is to be done, particularly in the case of handwritten Indic scripts documents.

Keywords OCR · Character recognition · Non-Indic scripts · Indic scripts

1 Introduction

Character and numeral recognition frameworks have been a point of research for as far
back as a couple of decades. Still, it remains an exceptionally difficult task to implement
a character and numeral recognition framework that works under each possible condition
and gives very precise outcomes. In Optical Character Recognition (OCR), the patterns are
alphabets and numbers and so forth, while the diverse classes corresponding to the distinc-
tive characters. The instructing of the machine is performed by demonstrating the machine
cases of characters of all the diverse classes. In light of these cases the machine constructs
a model of each class of characters. At that point, unknown pattern (character or number)
is compared with the beforehand acquired depictions, and relegated the class that gives the
best match. Optical recognition is performed after the writing of text or printing on paper
has been finished, rather than on-line recognition where the computer system recognition
recognizes the characters as they are drawn. Both handwritten and printed characters may
be recognized accurately, but the quality is straightforwardly needy upon the superiority of
the documents. The research in the area of character recognition began in the nineteenth
century and first optical character recognition was on hand in 1929. Modern version of
OCR was produced in 1951 by David Shepard (Schantz 1982). Character recognition has
played and currently playing an important role in pattern recognition research. In general,
research on optical character recognition for Indic scripts is in progress. But till now, no
solution has been offered that solves the problem correctly and efficiently for Indic scripts.
There are various applications of character/numeral recognition research like handwritten
notes reading, banking cheque reading, post code recognition, form processing, etc. Char-
acter recognition system can be used for reading handwritten notes. Notes are, normally,
used to record facts, topics, or thoughts, written down as an assist to memory. Cheque read-
ing is a very important commercial application of character recognition system. Character
recognition system plays a very important role in banks for signature verification and for
recognition of amount filled by the user. Character and numeral recognition system can be
used for reading handwritten postal address on letters and handwritten digits of postcodes.
Character recognition system can also be used for form processing. Forms are normally
used to collect information from the public. This information can be processed by using
a handwritten character recognition system. Signature identification is the specific field of
handwriting OCR in which the writer is verified by some specific handwritten text. Offline
handwritten character recognition system can be used to identify a person by handwriting, as
handwriting varies from person to person. This paper consists of five sections. In Sect. 2, we
have presented various issues and challenges for character recognition. Section 3 presents
the various motivations related to this work. In Sect. 4, the recognition of different non-
Indic scripts has been reviewed and in Sect. 5, literature review has been conducted for
Indic scripts. Section 6 presents recognition accuracies achieved for typical non-Indic and
Indic scripts and in Sect. 7, we have discussed about a few suggestions on future direc-
tions of character recognition of different scripts. Finally, in Sect. 8, we have concluded this
paper.
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2 Challenges and issues

Various challenges are identified which may provide more lively interest to the researchers
for character/numeral recognition. These challenges are difficult to identify the various styles
of human writing, different shapes and size of letter, pure input quality, low accuracy rate in
recognition etc. Hence, a lot of researchwork is to be done to solve these problems. Quality of
the input document and varying font styles is a challenging task for various scripts. As com-
pared to non-Indic scripts, Indic scripts have many additional challenges like larger character
set due to modifiers, lack of standard test databases etc. Segmentation is a major challenge
in text recognition due to existence of different skew angles between lines on the page or
even along the same text line, i.e., presence of multiple skew in a document complicates the
line segmentation process. Curvilinear lines and fluctuating lines also create problems while
identifying the exact line boundaries, difference in skew angle of words and characters within
the same line also hinders the process of line segmentation, overlapping adjacent text lines,
i.e., lower or upper portion of one line extended to neighboring text line makes line segmen-
tation difficult. Poor quality document consisting of holes, noise, spots, broken strokes etc.
makes the process of line segmentation extremely difficult. Character segmentation poses
additional problems due to touching, broken and overlapping characters. Non-uniform back-
ground is one of the quite challenging tasks for text recognition. Recognition of historical
manuscript documents is also a challenging problem due to low quality of manuscripts,
absence of standard alphabets, presence of unknown fonts, etc. Various challenges are iden-
tified for Arabic text recognition as Arabic is cursive in nature because individual characters
join together to form a complete word, thus identifying the segmentation points in the words
to separate isolated character becomes difficult. One of the major challenges for Arab is that
Arabic characters are enriched with dots and diacritics, relative position of dots and diacritics
changes frequently with respect to the character which it is associated. Sometimes, Japanese
text recognition is also a challenging task to determine whether two radicals are in fact two
separate characters or two component parts of the same character. Still, the largest challenge
is recognizing the large number of characters and themajority of research has been devoted to
overcoming this difficulty. Fewmajor challenges and issues for Japanese text recognition are
cursive characters, word spotting, and a document imagemay consist of printed and handwrit-
ten text. Bangla character recognition is a great challenge for researchers because of the large
number of characters, change of shape in word and in conjunctive characters. Recognition of
the printedDevanagari script is the challenging problem since there is a difference in the same
character due to diverse font family, font size, font orientation etc. Sometime same font and
size may also have bold face character as well as normal ones. Thus, the width of the stroke
is also an issue that interrupts recognition. There are few major challenges in Gurmukhi text
recognition. In online Gurmukhi handwriting recognition challenges like confusing strokes,
reverse handwriting, new classes in handwritten words etc. are exiting. In offline handwriting
recognition, sometimes headlines of the words are not straight, many touching or overlapping
characters may be found in a word, and shape variation in different occurrences of a single
character are the major challenges for Gurmukhi text recognition. There are few major chal-
lenges for Kannada text recognition are existing like, Kannada character set is very vast, few
characters are similar with each other, size of characters andwords inKannada is not uniform.

3 Motivation

The advancement in optical character recognition framework is divided into two categories
according to the technique for data acquisition: online character recognition and offline char-
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acter recognition. The online character recognition framework utilizes the digitizer which
particularly captures writing with the order of the strokes, speed, pen up and pen down data.
Offline character recognition captures the information from paper through an optical scanner
or cameras. Offline character recognition is otherwise called optical character recognition
in light of the fact that the image of text is changed over into a bit design by optically dig-
itizing devices. Recognition is carried out on this bit design information for both printed
and handwritten text. Offline handwritten character recognition is difficult rather than online
handwritten character recognition because stroke information is not available in offline hand-
writing. The major difficulties, as on account of any handwritten character recognition issue,
are the huge variety in the composition styles of an individual at various circumstances and
among various people, for example, shape, speed of composing and thickness of characters
and so on. The issue of printed character recognition is generally solved and comprehended
with few limitations and accessible framework yield approximately 99% recognition accu-
racy. But, handwritten character recognition has still constrained capacities. Other challenges
incorporate the similarities of a few characters with each other, vast assortment of character
shape and so forth. Offline handwritten character recognition is a standout amongst the most
famous zones of research in document analysis and recognition of its enormous application
potential. Offline handwritten character recognition is generally developed in scripts like
Arabic, Chinese, Korea, and Roman. Some encouraging research findings are recorded in
Indic scripts like Bangla, Devanagari and so on. In Indic scripts, thoughmany research papers
are published around there, the outcomes detailed are deficient for the outline of efficient
handwritten character recognition frameworks. This is the inspiration driving this paper.

4 Recognition of non-Indic scripts

Borovikov (2004) have presented a survey of modern optical character recognition tech-
niques. In this article, they discussed about the latest advances and major developments for
optical character recognition techniques. Hussain et al. (2015) have presented a comprehen-
sive survey of handwritten document benchmarks. They have also presented a comparison
of these databases on a number of dimensions. The ground truth information of the database
along with the supported tasks is also discussed by them. Sonkusare and Sahu (2016) have
presented a survey on handwritten character recognition techniques for English alphabets.
They have presented an outline of current research work conducted for recognition of hand-
written English alphabets. A variety of recognition methodologies with their performance for
handwritten English alphabets are conferred by them in this paper. Modi and Parikh (2017)
have presented a detailed review in the field of optical character recognition. They have sur-
veyed various techniques for pre-processing and segmentation phases on optical character
recognition.We have noticed that most of the existing efforts on optical character recognition
deal with non-Indic scripts. In the following sub-sections, we have presented literature of
different non-Indic scripts.

4.1 Arabic

The Arabic script is used for writing Arabian and Persian languages. Almuallim and Yam-
aguchi (1987) have presented a recognition system for Arabic script. They have used
geometrical and topological features for recognition. Impedovo and Dimauro (1990) have
proposed a recognition system for handwritten Arabic numerals based on Fourier descrip-
tors. Roy et al. (2004) have presented an Arabic postal automation system for sorting of
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postal documents. Multi-Layer Perceptron (MLP) classifier has been reflected in their work
for recognition of Bangla and Arabic numerals. They have obtained maximum recognition
accuracy of about 92.1% for handwritten numerals. Lorigo and Govindaraju (2006) have
presented a critical review on offline Arabic handwriting recognition systems. They have
presented various techniques employed at different stages of the offline handwritten Arabic
character recognition system. Izadi et al. (2006) addressed the issues in the Arabic alphabet,
adopted and evolved, for writing Persian language. Abd and Paschos (2007) have obtained
a recognition accuracy of 99.0% with Support Vector Machine (SVM) for the Arabic script.
Alaei et al. (2009) have presented fivefold cross validation technique based recognition sys-
tem for Arabic numerals. They have achieved a recognition accuracy of 99.4% on a 10-class
problem with 20,000 samples in testing data set. Alaei et al. (2010a) have proposed a tech-
nique for segmentation of handwritten Persian script text lines into characters. The proposed
algorithm finds the baseline of the text image and straightens it. They have extracted fea-
tures using histogram analysis and removed segmentation points, using baseline dependent
as well as language dependent rules. They have achieved maximum segmentation accuracy
of 92.5%. Alaei et al. (2010b) have proposed a Persian isolated handwritten character recog-
nition system. They employed SVM for classification and achieved a recognition accuracy of
98.1% with modified chain code features. Kacem et al. (2012) have used structural features
for recognition of Arabic names. Shahin (2017) has introduced a system for printed Arabic
text recognition using linear and nonlinear regression. He has tested his proposed methodol-
ogy with 14,000 different words of Arabic script and accomplished a recognition accuracy
of 86.0%. Althobaiti and Lu (2017) have presented a review on Arabic optical character
recognition and they have proposed a technique for isolated handwritten Arabic character
recognition based on encoded freeman chain code.

4.2 Chinese

Some Chinese character recognition systems based on the orthogonal moment descriptors
have been reported (Liu andMa1996; Zhang et al. 1990;Yap andParamesran 2003). Zhu et al.
have recognizedChinese characters based on stroke and structural features. Liaowt al. (2002)
have presented a method based on Gegenbauer moment for Chinese character recognition.
Their method can provide a modest improvement in terms of recognition for those Chinese
characters that are very similar in shapes. They have used a set of 6763 Chinese characters
is used as the testing images. Das and Banerjee (2015) have presented an algorithm based
on geometry topology for Japanese Hiragana character recognition. They have achieved an
average recognition rate of 94.1%. Bluche andMessina (2016) have presented a technique for
recognition of segmentation-free methods for handwritten Chinese text. He and Hu (2016)
have presented a system for Chinese character recognition from natural scenes. They have
presented a novel method based on the integrated channel feature and pooling technology to
extract informative features from scenes images.

4.3 French

Tran et al. (2010) have considered the problem of French handwriting recognition using
24,800 samples. They have worked on both online and offline handwritten character recog-
nition. Grosicki and Abed (2009) proposed a French handwriting recognition system in a
competition held in ICDAR-2011. In this competition, they have presented comparisons
between different classification and recognition systems for French handwriting recogni-
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tion. Swaileh et al. (2016) introduced a new unified syllabic model for French handwriting
recognition based on hidden Markov models (HMM).

4.4 Japanese

Nakagawa et al. (2005) have presented a model for online handwritten Japanese text recog-
nition which is free from line direction constrains and writing format constraints. Zhu et al.
(2010) have described a robust model for online handwritten Japanese text recognition. They
received a recognition accuracy of 92.8% using 35,686 samples. Tsai (2016) has achieved a
recognition accuracy of 96.1% for Handwritten Japanese Characters which consist of three
different types of scripts: hiragana, katakana, and kanji. They have used deep Convolutional
Neural Networks for classification. For experimentation work, they have considered Elec-
trotechnical Laboratory (ETL) Character Database from the National Institute of Advanced
Industrial Science and Technology (AIST). Liang et al. (2016) have presented an on-line
handwritten Japanese text recognition system. They introduced a new unified syllabic model
for French and English handwriting recognition, based on hidden Markov models (HMM).
Their proposed method sets each off-stroke between real strokes as undecided and evaluates
the segmentation probability by SVM model.

4.5 Roman

Schomaker and Segers (1999) have proposed a technique for cursive Roman handwriting
recognition using geometrical features. Park et al. (2000) have presented a hierarchical char-
acter recognition system for achieving high speed and accuracy by using a multi-resolution
and hierarchical feature space. They obtained a recognition rate of about 96.0%. Wang et al.
(2000) have presented a technique for recognition of Roman alphabets and numeric charac-
ters. They had a recognition rate of about 86.0%. Bunke and Varga (2007) have reviewed the
state of the art in offline Roman cursive handwriting recognition. They identified the chal-
lenges in Roman cursive handwriting recognition. Liwicki and Bunke (2007) have combined
online and offline Roman handwriting recognition systems using a new multiple classifier
system. They obtained a maximum recognition accuracy of 66.8% for the combination of
online and offline handwriting recognition. Schomaker (2007) has presented a method for
retrieval of handwritten lines of text in historical administrative documents. Chanda et al.
(2007a) have proposed a SVM based method for identification of printed Roman script doc-
uments. They have extracted structural features for script identification and achieved 99.4%
recognition accuracy. Pal et al. (2010) have proposed a bi-lingual city name recognition sys-
tem for Bangla and English. They have considered 11,875 samples for testing and obtained
92.2% recognition accuracy. Jayadevan et al. (2010) have evolved a scheme for recognition
of words used to write the amount of bank cheques. They collected a database of 5400 words
from fifty writers for testing. Recognition accuracy of 97.0% has been achieved by them.
Afroge et al. (2016) have proposed an optical character recognition system for Roman script
using a back propagation neural network. They trained their network with more than 10
samples per class and give accuracy of 99.0, 97.0, 96.0 and 93.0% for numeric digits, capital
letters, small letters and alphanumeric characters, respectively.

4.6 Thai

Chanda et al. (2007b) have evolved a method based on SVM for identification of printed Thai
script documents. They have obtained 99.4%script identification accuracy.Karnchanapusakij
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et al. (2009) have used linear interpolation approach for online handwritten Thai character
recognition. They have obtained 90.9% recognition accuracy using this system.Kobchaisawat
and Chalidabhongse (2015) have proposed a method for multi-oriented Thai text localization
in natural scene images. Theyhave considered convolutional neural network for classification.
Asavareongchai andGiarta (2016) have presented an image processing system for recognition
of Thai characters and text from documents. Sopon et al. (2017) have proposed a framework
for Thai text retrieval using speech. They have achieved average word accuracy of 74.50%.

5 Recognition of Indic scripts

Pal et al. (2012) have presented a state-of-the-art survey about the techniques available in the
area of offline handwriting recognition (OHR) in Indian regional scripts. They have presented
survey of nine regional scripts and then categorized these nine scripts into four subgroups
based on their similarity and evolutionary information. Various feature extraction and classi-
fication techniques associated with the offline handwriting recognition of the regional scripts
are discussed in this survey. They have also discussed about the details of the datasets avail-
able in different Indian regional scripts. Singh et al. (2012) have presented a survey based
on various applications of optical character recognition in different fields. Prasad (2014)
has presented an in-depth literature survey of Indic script recognition systems for Bangla,
Devnagari, Gurumukhi, Kannada, Malayalam, Tamil, and Urdu. They focused on a multi-
tude of feature and classification techniques for recognition of various scripts. Koundal et al.
(2017) have presented a survey for Punjabi character recognition. They have discussed about
various feature extraction techniques and classification techniques explored for printed and
handwritten Punjab character recognition. As compared to non-Indic scripts, the research on
character recognition of Indic scripts has not achieved that perfection yet. So, research in
the field of character recognition of Indic scripts is ongoing. In Indic scripts, there is mainly
resolute character recognition of machine printed text. Limited attempts have been made for
recognition of degraded printed text and handwritten text as well.

5.1 Bangla

A good number of researchers have worked for recognition of handwritten characters in
Bangla script. Bangla script is used for writing Bengali and Assamese languages. Dutta
and Chaudhury (1993) have presented a system for isolated Bangla alphabets and numerals
recognition using curvature features. Pal and Chaudhuri (1994) have proposed a character
recognition system using tree classifier. Their system was quite fast because pre-processing
like thinning is not required in their scheme. They have achieved a recognition accuracy
of 96.0% using 5000 characters data set. Bishnu and Chaudhuri (1999) have used a recur-
sive shape based technique for segmentation of handwritten Bangla script documents. Pal
and Dutta (2003) have proposed a system for segmentation of unconstrained Bangla hand-
written connected numerals. They achieved segmentation accuracy of 94.8%. Roy et al.
(2004) have presented a handwritten numeral recognition system for Indian postal automa-
tion and achieved a recognition accuracy of 92.1%. Bhattacharya et al. (2006) have presented
Bangla character recognition system and they have obtained maximum recognition accuracy
of 94.7%. Pal et al. (2006) have proposed a technique for slant correction of Bangla char-
acters based on Modified Quadratic Discriminant Function (MQDF). They have achieved
a recognition accuracy of 87.2% for Bangla city name images dataset. Bhattacharya et al.
(2007) have presented an approach for onlineBangla handwritten character recognition. They
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developed a 50-class recognition problem and achieved an accuracy of 92.9 and 82.6% for
training and testing, respectively. Pal et al. (2007a) dealt with recognition of offline hand-
written Bangla compound characters using MQDF. They have obtained 85.9% recognition
accuracy by using fivefold cross validation technique. Pal et al. (2008) have proposed a
technique for Bangla handwritten pin code recognition system. Reddy et al. (2012a, b) have
presented a handwritten numeral recognition system that can be employed to both online and
offline situations for Assamese language. For online handwritten numeral recognition, they
have used x and y coordinates for feature extraction and HMM classifier for recognition. For
offline numeral recognition, they have considered projection profile features, zonal discrete
cosine transforms, chain code histograms and pixel level features and Vector Quantization
(VQ) classifier for recognition. They have achieved a recognition accuracy of 96.6 and 97.6%
for online and offline handwritten numerals, respectively. Reddy et al. (2012a, b) have also
presented a HMM based online handwritten digit recognition system using first and second
order derivatives at each point as features. They obtained a recognition accuracy of 97.1% on
18,000 samples testing data set. Sarma et al. (2013) have presented handwritten Assamese
numeral recognition system using HMM and SVM classifiers. They have attained a recogni-
tion accuracy of 96.5 and 96.8% with HMM and SVM classifier, respectively. Afroge et al.
(2016) have presented an offline printed optical character recognition system based on multi-
layer perceptron model for Bangla script. They have proposed a feature extraction technique
based on “Discrete Frechet Distance” and “Dynamic Time wrapping”. They have achieved
a recognition accuracy of 95% all basic characters of Bangla script.

5.2 Devanagari

The Devanagari script is used for writing four languages, namely, Hindi, Marathi, Nepali and
Sanskrit. Sethi and Chatterjee (1976) have done a good amount of work on Devanagari script
recognition. They have used binary decision tree classifier for recognition. Pal and Chaud-
huri (2001) have proposed amethodology formachine recognition of printed and handwritten
texts of Devanagari script. Recognition accuracy of 98.3% has been achieved by them using
this system. Bansal and Sinha (2000) have also presented two phases based recognition sys-
tem for Devanagari script. In the first phase, they recognized the unknown stroke and in the
second phase, they identified the character based on strokes recognized in the first step. Roy
et al. (2004) have evolved a scheme for handwritten script identification system and they
have generated a tree classifier for word by word script identification of Bangla, Devana-
gari, and English. They have achieved a recognition accuracy of 98.4% with the proposed
technique for printed text. Joshi et al. (2005) have presented an online handwritten Devana-
gari character recognition system. They have proposed structural feature based algorithm for
recognition. Hanmandlu et al. (2007) have usedmembership functions of fuzzy sets for hand-
written Devanagari script recognition. Pal et al. (2007b) have developed a modified classifier
based scheme for offline handwritten numerals recognition of six widely used Indian scripts.
They have extracted directional features for numeral recognition. They have obtained 99.6%
recognition accuracy with fivefold cross validation technique. Pal et al. (2007d) have set
into motion, a system for offline handwritten Devanagari character recognition. They have
achieved a recognition accuracy of 94.2% with fivefold cross validation test. Kumar (2008)
has brought in an artificial intelligence based technique for machine recognition of hand-
written Devanagari script. He has used three levels of abstraction to describe this technique.
Pal et al. (2009) have assimilated a comparative study of handwritten Devanagari character
recognition. Garg et al. (2010) have developed a line segmentation technique for handwritten
Hindi text. Lajish and Kopparapu (2010) have described a technique for online handwrit-
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ten Devanagari script recognition. They have extracted fuzzy directional features for writer
independent Devanagari character recognition. Marathi is an Indo-Aryan language spoken in
the Indian state of Maharashtra and neighbouring states. Ajmire and Warkhede (2010) have
presented a technique based on invariant moments of isolated handwritten Marathi charac-
ter recognition. The proposed technique is size independent. Shelke and Apte (2011) have
presented a multi-stage handwritten character recognition system for Marathi script. They
have achieved the recognition accuracy of 96.1 and 94.2% respectively, for training and test-
ing data sets with wavelet approximation features. They have also achieved 98.7 and 96.2%
recognition accuracy, respectively, for training and testing samples with modified wavelet
features. Belhe et al. (2012) have presented a Hindi handwritten word recognition system.
They have used HMM and tree classifier for recognition and obtained a recognition accuracy
of 89.0% using 10,000 Hindi words.

5.3 Gujarati

Antani and Agnihotri (1999) are pioneers in attempting Gujarati printed text recognition. For
experimental results, they have used dataset of scanned images of printed Gujarati texts col-
lected from various internet sites. Dholakia et al. (2007) attempted to use wavelet features and
k-NN classifier on the printed Gujarati text recognition system. They have achieved a recog-
nition accuracy of 96.7% with k-NN classifier. Prasad et al. (2009) have furnished a unique
technique called pattern matching for Gujarati script recognition. In this technique, they have
identified a character by its shape. Gohell et al. (2015) have presented a low level stroke fea-
ture based method for recognition of online handwritten Gujarati characters and numerals.
They have accomplished a recognition accuracy of 95, 93 and 90% for numerals dataset,
characters dataset and combine dataset of numerals and characters, respectively. Ardeshana
et al. (2016) have extracted DCT features for handwritten Gujarati character recognition.
They have achieved a recognition accuracy of 78.05% for 22,000 samples using Naïve Bayes
classifier. Patel and Kayasth (2017) have presented a recognition system for offline hand-
written Gujarati numerals. They have extracted various features namely, hole, straight-line,
number of open/end edge and open edge present in different zone for recognition.

5.4 Gurmukhi

Gurmukhi script is used for writing the Punjabi language. Lehal and Singh (1999) have
presented a hybrid classification scheme for printed Gurmukhi script recognition. Using this
scheme, they have achieved a recognition accuracy of 91.6%. A post processor for Gurmukhi
script has beenproposedbyLehal et al. (2001). Jindal et al. (2005) haveproposed a solution for
touching character segmentation of printed Gurmukhi script. Also, they have provided a very
useful solution for overlapping lines segmentation in various Indian scripts (2007). They have
proposed a technique for segmentation of degraded Gurmukhi script word into upper, middle
and lower zones. They have provided a degraded printedGurmukhi script recognition system.
Sharma et al. (2008) have used elastic matching technique for online handwritten Gurmukhi
script recognition. Sharma et al. (2009) have expounded a method to rectify the recognition
results of handwritten and machine printed Gurmukhi OCR systems. Sharma and Lehal
(2009) have set in an algorithm for removal of the field frameboundary of the handfilled forms
in Gurmukhi script. Sharma and Jhajj (2010) have extracted zoning features for handwritten
Gurmukhi character recognition. They have employed two classifiers, namely, k-NN and
SVM. They have achieved maximum recognition accuracy of 72.5 and 72.0%, respectively
with k-NN and SVM.Kumar et al. (2013) have presented a novel feature extraction technique
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for offline handwritten Gurmukhi character recognition. They have also presented efficient
feature extraction techniques based on curvature features for offline handwritten Gurmukhi
character recognition (2014a).Kumar et al. (2013) have also presented a character recognition
using principal component analysis. They have explored k-NN and SVMclassifiers for offline
handwritten character recognition (Kumar et al. 2011a, b, c, d, 2012).

5.5 Kannada

Kannada is part of the most widely used scripts of Southern India and is spoken by more than
fifty million people in India. A little work has been conducted for handwritten Kannada script
recognition. Ashwin and Sastry (2002) have presented a font and size independent OCR
system for printed Kannada documents. They extracted features based on the foreground
pixels in the radial and angular directions. They achieved maximum recognition accuracy
of 94.9% using SVM classifier. Sharma et al. (2006) have employed a quadratic classifier
for offline handwritten Kannada numerals recognition. They have achieved maximum recog-
nition accuracy of 98.5% using a fivefold cross validation technique. Kunte and Samuel
(2007) have presented efficient printed Kannada text recognition system. They considered
invariant moments and Zernike moments as features and Neural Network (NN) as classifier.
They obtained a recognition accuracy of 96.8% using 2500 characters. Acharya et al. (2008)
have come up with a handwritten Kannada numerals recognition system. They have used
structural features and multilevel classifiers for recognition. Rajashekararadhya and Ranjan
(2008a) have evolved a technique based on zoning and distance metric features. They have
utilized feed forward back propagation neural network and obtained recognition accuracy
of about 98.0% for Kannada numerals. They have also achieved a recognition accuracy of
97.8% for Kannada numerals with zoning and distance metric features and SVM classifier
(2008b). They have utilized Nearest Neighbour classifier for recognition and obtained 97.8%
recognition rate for Kannada numerals (2009a). Rajashekararadhya and Ranjan (2009b) have
extracted zoning features for offline handwritten numerals of four widely used Indian scripts.
For Kannada numerals, they have obtained a recognition accuracy of 98.7% with SVM clas-
sifier. Rampalli and Ramakrishnan (2011) have presented an online handwritten Kannada
character recognition system which works in combination with an offline handwriting recog-
nition system. They improved the accuracy of online handwriting recognizer by 11% when
its combination with offline handwriting recognition system is used. Venkatesh and Ramakr-
ishnan (2011) have presented a technique for fast recognition of online handwritten Kannada
characters. Using this technique, they obtained an average accuracy of 92.6% for Kannada
characters. Ramakrishnan and Shashidhar (2013) have addressed the challenges in segmen-
tation of online handwritten isolated Kannada words. They achieved 94.3% segmentation
accuracy using attention feed-based segmentation technique. Pasha and Padma (2015) have
discussed about wavelet transforms and structural features for handwritten Kannada charac-
ter recognition. They have achieved a recognition accuracy of 91.0 and 97.6% for characters
and numerals, respectively. Karthik and Srikanta (2016) have presented a novel approach for
handwritten Kannada text recognition using a combination of histogram of gradient features
and SVM classifier.

5.6 Malayalam

Malayalam is one of the popular scripts of Southern India. It is the eighth most widely used
script in India. Lajish (2007) has presented a system based on fuzzy zoning and normal-
ized vector distance measures for recognition of offline handwritten Malayalam characters.
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He has also presented a method for offline handwritten segmented Malayalam character
recognition (2008). John et al. (2007) have presented a method based on wavelet transform
for offline handwritten Malayalam character recognition. Rajashekararadhya and Ranjan
(2008b) have developed a technique of feature extraction for Malayalam script recognition.
They have also obtained a recognition accuracy of 96.5% with SVM for Malayalam numer-
als recognition (2009a). Arora and Namboodiri (2010) have proposed a system for online
handwritten Malayalam character recognition. The system achieves stroke level accuracy of
97.9%. Rahiman et al. (2010) have evolved an algorithm which accepts the scanned image of
handwritten characters as input and produces editable Malayalam characters in a predefined
format as output. Sreeraj and Idicula (2010) have presented a technique for online handwrit-
ten Malayalam character recognition. They have employed the k-NN classifier and achieved
a recognition accuracy of 98.1%. Sunija et al. (2016) have presented a comparative study
of various classifiers for Malayalam dialect recognition system. They have analyzed that a
recognition accuracy of 90.2, 88.2 and 84.1% has been accomplished using ANN, SVM, and
Naïve Bayes classifier, respectively. Baiju and Sabeerath (2016) have compared K-NN,MLP,
and SVM classifiers for online handwritten Malayalam text recognition. They have achieved
maximum recognition accuracy of 95.12% for Malayalam character recognition using SVM
classifier with RBF kernel.

5.7 Oriya

The Oriya OCR system has been developed at the Indian Statistical Institute, Kolkata by Pal
and Chaudhuri (1997). They have utilized the Hough transform based technique for skew
angle detection for Oriya alphabets recognition. Tripathy and Pal (2004) have segmented
Oriya handwritten text using water reservoir based technique. Roy et al. (2005) dealt with
offline unconstrained handwritten Oriya numerals recognition. They have achieved a recog-
nition accuracy of 90.4% using NN classifier with a rejection rate of about 1.84%. Bhowmik
et al. (2006) have presented HMM based Oriya numerals recognition system and they have
achieved a recognition accuracy of 95.9 and 90.6% for training and testing sets, respectively.
Pal et al. (2007d) have used curvature features for Oriya numerals recognition. They have
obtained a recognition accuracy of 94.6% using this system. Raj (2015) has presented an
optical character recognition for Oriya script. They have considered structural features and
a novel combination of a binary tree and Naïve Bayes classifier for recognition purpose.
Chaudhary et al. (2015) have used histogram of gradient features and ANN classifier for
recognition of printed Oriya characters. Bhoi et al. (2015) have presented Oriya handwritten
text recognition system using HiddenMarkovModel (HMM). They have extracted concavity
features for recognition.

5.8 Tamil

Aparna et al. (2004) have presented a system for online handwritten Tamil character recogni-
tion. They have used shape based features including dot, line terminal, bumps and cusp in their
work. Deepu et al. (2004) have presented an online handwritten Tamil character recognition
using PCA. Prasanth et al. (2007) have described a character based elasticmatching technique
for online handwritten Tamil character recognition. Bharath and Madhvanath (2011) have
used HMM for Tamil word recognition system. They have achieved maximum recognition
accuracy of 98.0%. Sundaram and Ramakrishnan (2013) have proposed script-dependent
approach to segment online handwritten isolated Tamil words into its constituent symbols.
They tested their proposed scheme on a set of 10,000 isolated handwritten words. Sundaram
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and Ramakrishnan (2014) reduced the error rate of the Tamil symbol recognition system by
reevaluating certain decisions of the SVM classifier. Rajashekararadhya and Ranjan (2008b)
have come up with a zoning based feature extraction technique for recognition of offline
handwritten numerals of four widely used Indian scripts. They have utilized nearest neigh-
bour, feed forward back propagation neural network and SVM classifiers for recognition.
They have obtained a recognition accuracy of 96.1% for Tamil character recognition. Janani
et al. (2016) have recognized and analyzed of Tamil inscriptions and mapping of image pro-
cessing techniques. Elakkiya et al. (2017) have presented Tamil text recognition using K-NN
classifier. They have achieved a recognition accuracy of 91.0%.

5.9 Telugu

Prasanth et al. (2007) have used elastic matching technique for online handwritten Telugu
character recognition. They have obtained a recognition accuracy of 90.6%. Pal et al. (2007b)
have used direction information for Telugu character recognition. They have used a fivefold
cross validation technique and obtained a recognition accuracy of 99.4% for Telugu charac-
ter recognition. Rajashekararadhya and Ranjan (2008a) have recognized handwritten Telugu
numeralswith zoning and distancemetric based features. For recognition, they have used feed
forward back propagation neural network classifier and obtained a recognition accuracy of
96.0%. Rajashekararadhya and Ranjan (2008b) have proposed an algorithm based on zoning
features for offline handwritten numerals recognition of four widely used Indian scripts. They
have obtained a recognition accuracy of 98.6% for handwritten Telugu numerals recognition
with an SVM classifier. Arora and Namboodiri (2010) have proposed a system for online
handwritten Telugu character recognition. They have achieved a stroke level accuracy of
95.1% for Telugu character recognition. Sastry et al. (2014) have extracted zoning based
features for Telugu handwritten character recognition. They have achieved a recognition
accuracy of 78.0% using zoning based features. Jyothi et al. (2015) have presented innova-
tive feature sets for Telugu character recognition. They have considered Discrete Wavelet
Transformation (DWT), Projection Profile (PP) and Singular Value Decomposition (SVD)
features and for classification they have explored k-NN and SVM classifiers. Kinjarapu et al.
(2016) have presented an online handwriting recognition system for Telugu script. They
have accomplished a recognition accuracy of 90% using a combination of strokes. Prasad
and Kanduri (2016) have used zoning based features and Genetic Algorithm for Telugu hand-
written character recognition. They have considered k-NN classifier for recognition purpose
and achieved a recognition accuracy of 88.8%.

6 Recognition results of non-Indic and Indic scripts

This section presents a brief report on the recognition accuracies achieved by researchers
for character and numeral recognition. We have presented their results in Tables 1 and 2
for numerals, Tables 3 and 4 for non-Indic scripts and Tables 5 and 6 for Indic scripts. As
illustrated in Table 1, one may note that a recognition accuracy of 99.6% has been achieved
for handwritten numerals by Pal et al. (2007b). Feature wise comparative study of numeral
recognition is depicted in Table 2. In Table 3, the results of non-Indian scripts are presented.
As shown in this table, one may note that a recognition accuracy of 99.4, 99.9, 92.8 and
99.2%, has been achieved for Arabic, French, Japanese and Roman scripts, respectively.
Srihari and Leedham (2003) have also presented a good survey on computer methods in
forensic handwritten document examination. They have presented various software systems
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Table 1 Recognition results of numerals

Authors Test data size Feature extraction technique Classifier Accuracy (%)

Bhattacharya and Chaudhuri (2003) 5000 Wavelet MLP 97.2

Bhattacharya et al. (2004) 5000 Wavelet MLP 98.0

Roy et al. (2004) 12,410 Structural, topological NN 94.2

Roy et al. (2005) 3850 Directional Quadratic 94.8

Kunte and Samuel (2007) 11,500 Wavelet MLP 92.3

Pal and Dutta (2003) 12,000 Water reservoir Binary tree 92.8

Rajput and Hangarge (2007) 1250 Image fusion NN 91.0

Pal et al. (2007b) 5638 Directional MQC 99.6

Lu et al. (2008) 16,000 Directional and density SOM 97.3

Desai (2010) 3260 Profiles FFNN 81.7

Purkait and Chanda (2010) 23,392 Morphological MLP 97.8

Table 2 Feature wise recognition results of numerals

Features Authors Test data size Classifier Accuracy (%)

Statistical features Bhattacharya and Chaudhuri (2003) 5000 MLP 97.2

Bhattacharya et al. (2004) 5000 MLP 98.0

Roy et al. (2005) 3850 Quadratic 94.8

Pal et al. (2007b) 5638 MQC 99.6

Kunte and Samuel (2007) 11,500 MLP 92.3

Desai (2010) 3260 FFNN 81.7

Structural features Pal and Dutta (2003) 12,000 Binary tree 92.8

Roy et al. (2004) 12,410 NN 94.2

Rajput and Hangarge (2007) 1250 NN 91.0

Purkait and Chanda (2010) 23,392 MLP 97.8

that automate some of the examination processes and have included verification methods
to provide the degree of match between a questioned and known document. Feature wise
comparative study for non-Indic scripts recognition is presented in Table 4. In Table 5, the
results on Indic scripts have been presented. It can be seen that a lot of work has been done
on Bangla, Devanagari and Kannada scripts. Some work has also been done to recognize
the Gurmukhi, Malayalam, Oriya and Tamil scripts as given in this table. As depicted in
Table 5, for the Bangla script, maximum recognition accuracy of 97.6% has been achieved
by Roy et al. (2005). In Devanagari script, maximum recognition accuracy of 99.0% has been
achieved by Pal et al. (2007b). They have used directional features and MQDF classifier for
recognition. Kunte and Samuel (2007) have achieved a maximum recognition accuracy of
96.8%forKannada characters. Theyhave tested their techniquewith 1000 samples of 50-class
problem. For all classes ofKannada script, maximum recognition accuracy of 92.6%has been
achieved by Venkatesh and Ramakrishnan (2011). They have considered 26,926 samples for
testing data set. Arora andNamboodiri (2010) have achieved a recognition accuracy of 95.8%
for Malayalam character recognition. They have tested their technique with 7348 samples of
Malayalam characters. Joshi et al. (2004) have achieved a maximum recognition accuracy of
91.5% for Tamil character recognition. They have considered 4860 samples of 156 classes for
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Table 3 Recognition results of non-Indic scripts

Authors Script
(Language)

Data set Text mode Feature
extraction
technique

Classifier Accuracy (%)

Alaei et al. (2009) Arabic
(Arabian)

20,000 Handwritten Chain code
direction

SVM 99.4

Tran et al. (2010) French
(French)

400 Handwritten Statistical and
structural

SVM 99.9

Chanda et al. (2007a) Japanese
(Japanese)

11,304 Printed Structural,
topological

Tree 98.8

Zhu et al. (2010) Japanese
(Japanese)

35,686 Handwritten Geometric
features

SVM 92.8

Alaei et al. (2010b) Arabic
(Persian)

20,000 Handwritten Modified
chain code
direction

SVM 98.1

Chanda et al. (2007a) Roman
(English)

11,304 Printed Structural,
topological

SVM 99.4

Pal and Chaudhuri
(1997)

Roman
(English)

11,875 Handwritten Chain code MQDF 99.0

Roy et al. (2005) Roman
(English)

5000 Handwritten Fractal
dimension,
topological

MLP, SVM,
k-NN,
MQDF

99.2

Jayadevan et al.
(2010)

Roman
(English)

5400 Handwritten Directional MQDF 97.0

Chanda et al. (2007b) Thai (Thai) 11,304 Handwritten Structural,
topological,
water
reservoir
concept

SVM 99.4

testing data set. For offline handwrittenGurmukhi script, a recognition accuracy of 91.8% has
been achieved by Kumar et al. (2014b). They have tested their technique with 5600 samples
of 56-class problem. Nonetheless till now, there is no complete recognition system available
for recognition of Indic script. In Table 6, we have presented comparisons of recognition
results using the same feature types with different dataset and classifiers.

7 Suggestions on future directions

In optical character recognition field, a lot of directions are possible for future research as
proposed algorithms used for segmentation task can be extended further for improving the
recognition accuracy because segmentation is essential part of document recognition process.
The following are some suggestions on future research directions in character and numeral
recognition:

a. There must be multiple standard handwritten character databases for non-Indic scripts
and database should be adequately large in size.

b. New features can be proposed to improve the recognition accuracy of different scripts.
There is a need to develop the standard database for Devanagari, Gurmukhi scripts etc.
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Table 4 Feature wise comparative study of recognition results for non-Indic scripts

Features Authors Script Test data size Classifier Accuracy (%)

Structural
features

Chanda et al. (2007a) Japanese
(Japanese)

11,304 Tree 98.8

Chanda et al. (2007a) Roman
(English)

11,304 SVM 99.4

Chanda et al. (2007b) Thai (Thai) 11,304 SVM 99.4

Tran et al. (2010) French
(French)

400 SVM 99.9

Statistical
features

Alaei et al. (2009) Arabic
(Arabian)

20,000 SVM 99.4

Alaei et al. (2010b) Arabic
(Persian)

20,000 SVM 98.1

Zhu et al. (2010) Japanese
(Japanese)

35,686 MLP 97.8

Pal and Chaudhuri (1997) Roman
(English)

11,875 MQDF 99.0

Roy et al. (2005) Roman
(English)

5000 MLP, SVM,
k-NN,
MQDF

99.2

c. A combination of statistical and structural features should be considered for extracting
the relevant information about characters.

d. More research should focus on the image transformation based representations
e. More research can be carried out on the feature selection techniques and classification

techniques for different scripts recognition.Anoptical character recognition systemcould
be developed for multi-font style characters.

f. Most of the work reported on fair quality documents. Sophisticated studies on degraded
documents are not undertaken by the scientists in the development character recognition
system.

g. Experiments should be made to observe the effect of degraded quality paper as well as
noise of various types, and take corrective measures.

8 Conclusions

In this paper, we have surveyed the character and numeral recognition work that has been
done on non-Indic and Indic scripts. We have assessed the work done for various Indic
scripts, i.e., Bangla, Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Oriya, Tamil
and Telugu. Also, we have presented the work done for recognition of various non-Indic
scripts, i.e., Arabic, French, Japanese, Roman, and Thai. We have presented recognition
accuracies achieved for character and numeral recognition of different non-Indic and Indic
scripts. We have seen that the efficient techniques used for non-Indic scripts may be used
for Indic scripts (printed text and handwritten text) so that accuracy of recognition may be
increased as non-Indic scripts. One of the key inspirations of early development of character
and numeral recognition systemwas a reading help for the visually handicapped.One possible
way of achieving this goal is to convert the character and numeral output into speech format.
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