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Abstract Attribute reduction plays a vital role in many areas of data mining and knowledge
discovery. In the real world, several data sets may vary dynamically and many incremental
reduction algorithms have been proposed to update reduct. Further improvement of the per-
formance of the incremental reduction approach is an important task that can help to increase
the efficiency of knowledge discovery in dynamic data systems. This paper researches incre-
mental reduction algorithms via an acceleration strategy to compute new reduct based on
conflict region. We firstly introduce the concepts and propositions of the conflict region and
give a static reduction algorithm based on the conflict region. Consequently, incremental
mechanisms based on the conflict region and an acceleration strategy for reduction are dis-
cussed. Then, two incremental reduction algorithms for updating new reduct when one single
object andmulti-objects are added to decision systems are developed. Finally, experiments on
different data sets fromUCI show the effectiveness and efficiency of the proposed algorithms
in decision systems with the addition of objects.

Keywords Rough set · Incremental reduction · Dynamic data set · Conflict region

1 Introduction

Feature selection (also called attribute reduction) is one of the important research contents in
data mining, machine learning, intelligent data analysis and pattern recognition. In the real
world, information expands quickly and plenty of features are stored in datasets. Some of the
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features in high-dimensional datasets are irrelevant or redundant, which typically deteriorates
the performance of knowledge discovery algorithms.

Rough set theory is a powerful mathematical tool introduced by Pawlak (1982) to address
imprecise, incomplete or vague information. Many researchers have contributed to its devel-
opment and applications. Attribute reduction is one of the fundamental aspects of rough set
theory, which can find a subset of attributes (denoted as the reduct) that provides the same
descriptive, discernibility or classification ability as the original condition attribute set. In
the last two decades, many attribute reduction techniques have been developed. These tech-
niques mainly include the discernibility matrix-based reduction approaches (Skowron and
Rauszer 1992; Wei et al. 2013; Yao and Zhao 2009; Zhang et al. 2003), the discernibility and
indiscernibility-based reduction approaches (Li and Yao 2010; Qian et al. 2011; Susmaga
and Słowiński 2015; Teng et al. 2010; Zhao et al. 2007), the positive region-based reduction
approaches (Liu et al. 2009; Qian et al. 2010; Shen and Jensen 2004; Xu et al. 2006), the
information entropy and its variation entropy-based reduction approaches (Hu et al. 2007;
Liang and Xu 2002; Miao and Hu 1999; Qian et al. 2009), etc. These studies have offered
interesting insights into attribute reduction and have been successfully applied to decision
systems. However, most of the above reduction approaches can only be suitable for static
data sets. When data sets vary with time, these algorithms must be re-implemented to obtain
new reduct, which consumes a huge amount of computational time and space. It is very
time-consuming or even infeasible to run repeatedly the static reduction algorithms. Hence,
these static reduction algorithms are very inefficient when dealing with dynamic data tables.

Many scholars have noticed the shortcoming of the static reduction methods for dynamic
data sets. Thereupon, based on rough set theory, some incremental learning approaches,
instead of static reduction approaches, have been applied to obtain new reduct for dynamic
systems. The incremental attribute reduction from dynamic decision systems can be broadly
classified into three classes. The first class is the study on updating attribute reduction caused
by variation of the object set (Chen et al. 2013; Fan et al. 2009; Huang et al. 2013; Jing et al.
2016a), the second class is the study on updating attribute reduction caused by variation of
the attribute set (Jing et al. 2016b; Li et al. 2007, 2013; Zhang et al. 2012), and the third class
is the study on updating attribute reduction caused by variation of the attribute values (Chen
et al. 2010, 2012; Huang et al. 2016; Li and Li 2015).

Many papers concentrate on attribute reduction for dynamic variation of the object set in
decision systems. Liu (1999) proposed an incremental reduction algorithm for the minimal
reduct. This algorithm can only be applied to information systems without decision systems.
Hu et al. (2005) presented a positive region-based attribute reduction algorithm to update the
reduct via an incremental technique. Yang (2007) provided an incremental updating reduc-
tion algorithm based on an improved discernibility matrix in decision systems. However, it
only considers the situation in which only a single object is entered into the systems. Xu et al.
(2011) provided a dynamic attribute reduction algorithm based on integer programming in
the decision systems. They considered multiple objects being entered into the system, but
the entering of multiple objects is just seen as the cumulative change of a single object,
which is inefficient when an object set is added into the decision systems. Regarding multi-
ple objects being added into the decision systems, Liang et al. (2014) introduced incremental
mechanisms for three representative information entropies and presented a group incremental
approach to feature selection based on three information entropies.Wang et al. (2013a) devel-
oped incremental feature selection algorithms for decision systems that dynamically increase
the attribute set based on three representative entropies. Moreover, Wang et al. (2013b) pro-
posed attribute reduction algorithms for data sets with dynamically varying data values based
on three representative entropies. Lang et al. (2014) presented an incremental approach to
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attribute reduction of dynamic set-valued information systems with respect to three aspects:
variations of the attribute set, immigration and emigration of objects, and alterations of the
attribute value. Shu and Shen (2014a) proposed incremental reduction algorithms for when
an attribute set is added into and deleted from incomplete decision systems. In addition,
Shu and Shen (2014b) presented efficient incremental feature selection algorithms for a sin-
gle object and multiple objects with varying feature values, respectively. Zeng et al. (2015)
presented a new hybrid distance for many types of data in hybrid information systems and
researched updatingmechanisms for reductionwith variation of the attribute set and proposed
two incremental feature selection algorithms with fuzzy rough set approaches.

From the above, the incremental technique improves the efficiency of reduction algorithms
with dynamic systems. Can we further improve the performance of incremental reduction
algorithms? This motivates us to develop efficient incremental reduction algorithms. In our
previous work, we introduced the conflict region and proposed bidirectional heuristic reduc-
tion based on the conflict region (Ge et al. 2015). Moreover, it has been observed in many
fields that the case of adding objects into decision systems is common. In this paper, we con-
tinue with this work and improve the approach to research incremental reduction algorithms
with an acceleration strategy based on the conflict region for adding a single object and mul-
tiple objects. We firstly introduce the concept of the conflict region and the corresponding
properties and give a static attribute reduction algorithm based on the conflict region. Then,
we discuss the incremental mechanisms for adding a single object and multiple objects into
decision systems based on the conflict region. Two incremental feature selection algorithms
with an acceleration strategy for adding a single object and multiple objects are put forward.
Finally, the performances of the incremental reduction algorithms are evaluated using several
UCI datasets.

The contributions of this paper are as follows: (1) two incremental attribute reduction algo-
rithms (IRACR-M and IRACR-S), used for adding multiple objects into decision systems
rather than performing the static reduction algorithm repeatedly, are presented; (2) an accel-
eration strategy is presented by reducing the sort times to further increase the efficiency of
the incremental reduction algorithms; and (3) the efficiency and effectiveness of the proposed
algorithms are demonstrated on different UCI data sets.

The structure of the remainder of this paper is as follows. Section 2 briefly reviews pre-
liminary notions in the rough set theory. Section 3 introduces the concept of the conflict
region and gives a reduction algorithm based on the conflict region. Based on the conflict
region, Sect. 4 designs the incremental reduction algorithm for adding a single object with
the acceleration strategy and the incremental reduction algorithms for adding an object set
with the acceleration strategy. Section 5 constructs a series of comparative experiments to
evaluate the effectiveness and efficiency of our proposed incremental reduction algorithms.
Finally, Sect. 6 gives conclusions that are drawn from this study.

2 Preliminaries of rough sets

In this section, we will review several basic concepts in rough set theory and the reduct of
the positive region in the decision table.

2.1 Basic concepts of rough sets

Let I = (U, A, V, f ) be an information system, whereU = {x1, x2, . . ., xn} is a non-empty
finite set of objects called the universe; A = {a1, a2, . . ., am} is a non-empty and finite set
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of attributes; V = {Va | ∀ a ∈ A} is a set of a value domain of attributes, where Va is a value
set of the attribute a; f : U × A → V is called an information function ( f (x, a) ∈ Va for
each a ∈ A).

For any R ⊆ C , the indiscernibility relation is defined as:

IND(R) = {(x, y) ∈ U ×U | f (x, a) = f (y, a), ∀ a ∈ R}
That is, x and y are indiscernible with respect to R if and only if they have the same values

for all attributes in R. The relation IND(R) is reflexive, symmetric and transitive and hence
is an equivalence relation. U/IND(R) = {[x]R |x ∈ U }(just as U/R) indicates the partitions
of U induced by R, which denotes the equivalence class determined by x with respect to R,
i.e., [x]R = {y|y ∈ U, (x, y) ∈ IND(R)}.

For Pawlak’s rough set model, given an equivalence relation R on the universe U and a
subset X ⊆ U , we have the lower approximation and upper approximation of X as follows

R−(X) =
⋃

{x |[x]R ⊆ X},
R−(X) =

⋃
{x |[x]R ∩ X �= Φ}.

The pair(R−(X), R−(X)) is referred to as the rough set approximation of X , where R−(X)

is the smallest definable set containing X and R−(X)is the largest definable set contained in
X .

From the rough set approximation, the positive region, negative region and boundary
region of X can be defined:

POSR(X) = R−(X),

BNDR(X) = R−(X) − R−(X),

NEGR(X) = U − R−(X).

The positive region and negative region consist of objects whose descriptions allow for
deterministic decisions regarding their membership in X . The boundary region consists of
objects whose descriptions allow for non-deterministic decisions regarding their membership
in X .

2.2 The positive region reduct of the decision table

A decision table can be denoted by S = (U,C
⋃

D, V, f ), whereC
⋂

D = Φ;C and D are
called the condition attribute set and decision attribute set, respectively. Assume the objects
are partitioned into r mutually exclusive crisp subsets {D1, D2, . . . , Dr } by the decision
attributes set D. Regarding R ⊆ C , denoted by POSR(D,U ) = ⋃r

i=1 R−Di , it is called the
positive region of D with respect to the condition attribute set R .

Given a decision table S = (U,C
⋃

D, V, f ), if ∃xi , x j ∈ U (i �= j) and f (xi ,C) =
f (x j ,C) ∧ f (xi , D) �= f (x j , D), then the decision table S is an inconsistent decision table
and xi , x j are called inconsistent objects; otherwise, the decision table S is a consistent
decision table.

The attributea is relatively indispensable in condition attribute setC if POSC−{a}(D,U ) �=
POSC (D,U ); otherwise, a is said to be relatively dispensable in C . The set of relatively
indispensable attributes is called core attribute set CORE(C).

Definition 1 Let S = (U,C
⋃

D, V, f ) be a decision table and R ⊂ C . For each a ∈ C−R,
the joined significance measures of the attribute a based on the positive region in S can also
be defined as
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SIGPOS
+(a, R, D,U ) = γR∪{a}(D,U ) − γR(D,U ), or

SIGPOS
+(a, R, D,U ) = |POSR∪{a}(D,U )| − |POSR(D,U )|

where γR(D,U ) = |POSR(D,U )|/|U |.
Definition 2 Let S = (U,C

⋃
D, V, f ) be a decision table and R ⊆ C . For each a ∈ R,

the weeded significance measures of the attribute a based on the positive region in S can also
be defined as

SIGPOS
−(a, R, D,U ) = |POSR(D,U )| − |POSR−{a}(D,U )|

Proposition 1 Given a decision table S = (U,C
⋃

D, V, f ), for a ∈ C, if SIGPOS
−

(a,C, D,U ) >0, then a ∈ CORE(C).
Attribute reduction is one of the applications for the rough set theory; it is a condition

attributes sub-set that can provide the same information for classification purposes as the
entire set of original condition attributes. Hu and Cercone (1995) proposed a heuristic fea-
ture selection algorithm, called positive-region reduct, that keeps the positive region of the
target decision unchanged. The classic positive region reduct of D with respect to C can be
illustrated as follows.

Definition 3 Let S = (U,C
⋃

D, V, f ) be a decision table and R ⊆ C . R is a positive
region reduct of D with respect to C , which is satisfied with

(1) POSC (D,U ) = POSR(D,U );
(2) ∀ a ∈ R, POSR(D,U ) �= POSR−{a}(D,U ).

The first condition ensures that the reduct has the same positive region information as the
whole set of condition attributes. The second condition ensures that the reduct is minimal and
there are no redundant attributes in the reduct. Namely, condition (1) states that the attributes
in R are sufficient, while condition (2) implies that every attribute in R is necessary.

3 Attribute reduction algorithm based on the conflict region

In this section, we will introduce the concepts and propositions of the conflict region and give
attribute significance measures based on the conflict region. Then, a static attribute reduction
algorithm based on the conflict region will be proposed.

3.1 The concepts and propositions of the conflict region

The expression of the approximations, positive region, negative region and boundary region
is a subset ofU ; however, we can use the granular structure information to express the above
notions and redefine the lower approximation and upper approximation by using the equiva-
lence classes of the universe, which are referred to as the quotient of the lower approximation
and upper approximation of X .

Definition 4 Let I = (U, A, V, f ) be an information system, X ⊆ U and R ⊆ A. The
quotients of the lower approximation and upper approximation of X are defined as follows,
respectively.

R̃−(X) = {[x]R |[x]R ∈ U/R, [x]R ⊆ X},
R̃−(X) = {[x]R |[x]R ∈ U/R, [x]R ∩ X �= Φ}.
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where R̃−(X) is the set of the equivalence classes defined by U/R, which are the subsets
of X . R̃−(X) is the set of the equivalence classes defined by U/R, which have a non-empty
intersection with X . According to Definition 4, we give an expression of the lower and upper
approximations as subsets of U/R rather than subsets of U .

Definition 5 Let I = (U, A, V, f ) be an information system, X ⊆ U and R ⊆ A. The
quotient of the positive region, boundary region and negative region of X are defined as
follows, respectively.

QPOSR(X) = R̃−(X),

QBNDR(X) = R̃−(X) − R̃−(X),

QNEGR(X) = U/R − R̃−(X)

where U/R = {X1, X2, . . ., Xr } denotes the quotient set of U by R.

Definition 6 Let S = (U,C
⋃

D, V, f ) be a decision table and R ⊆ C . We define the
conflict region of D with respect to the condition attribute set R as follows (Ge et al. 2012).

CONR(D,U ) = U −
⋃r

i=1
R−Di = U − POSR(D,U )

POSR(D,U ) indicates all objects defined byU/R that for sure can induce a certain decision
class. CONR(D,U ) indicates objects defined by U/R that can induce different decision
class.

Definition 7 Let S = (U,C
⋃

D, V, f ) be a decision table and R ⊆ C .We give the quotient
set of positive region and conflict region of D with respect to R as follows, respectively.

QPOSR(D,U ) =
⋃r

i=1
R̃−Di ,

QCONR(D,U ) = U/R −
⋃r

i=1
R̃−Di = U/R − QPOSR(D,U ).

QPOSR(D,U ) indicates the set of all equivalence classes defined by U/R that can for sure
induce a certain decision. QCONR(D,U ) indicates the set of all equivalence classes defined
by U/R that can induce a partial decision.

Proposition 2 Let S = (U,C
⋃

D, V, f ) be a decision table. If S is consistent, then
CONR(D,U ) = Φ and QCONR(D,U ) = Φ; otherwise, CONR(D,U ) �= Φ and
QCONR(D,U ) �= Φ.

Proposition 3 Let S = (U,C
⋃

D, V, f ) be a decision table and P ⊆ R ⊆ C. The
following properties hold.

(1) POSP (D,U ) ⊆ POSR(D,U ) and CONR(D,U ) ⊆ CONP (D,U ),
(2) |POSP (D,U )| ≤ |POSR(D,U )| and |CONR(D,U )| ≤ |CONP (D,U )|,
(3) |QPOSP (D,U )| ≤ |QPOSR(D,U )| and |QCONP (D,U )| ≤ |QCONR(D,U )|.
Definition 8 Let S = (U,C

⋃
D, V, f ) be a decision table and R ⊂ C . For each a ∈ C−R,

the joined significance measures of the attribute a based on the conflict region in S can also
be defined as (Ge et al. 2012):

SIGCON
+(a, R, D,U ) = |CONR(D,U )| − |CONR∪{a}(D,U )|

123



Incremental reduction algorithm with acceleration strategy… 513

Definition 9 Let S = (U,C
⋃

D, V, f ) be a decision table and R ⊆ C . For each a ∈ R,
the weeded significance measures of the attribute a based on the conflict region in S can also
be defined as: (Ge et al. 2012)

SIGCON
−(a, R, D,U ) = |CONR−{a}(D,U )| − |CONR(D,U )|

According to Definition 9, when an attribute is removed from the attribute set R, the signifi-
cancemeasure of the attribute with respect to R can be obtained. If SIGCON

−(a, R, D,U ) >

0, then the attribute a is indispensable; otherwise, if SIGCON
−(a, R, D,U ) = 0, it is dis-

pensable.
Therefore, according toDefinition 9,we can delete dispensable attributes from the attribute

set R while reserving other important attributes. Deleting redundant attributes from the
obtained attribute subset guarantees the completeness of the attribute subset.

Proposition 4 Given a decision table S = (U,C
⋃

D, V, f ), for a ∈ C, if S IGCON
−

(a, R, D,U ) > 0, then a ∈CORE(C) (Ge et al. 2012).

Definition 10 Given a decision table S = (U,C
⋃

D, V, f ) and R ⊆ C , R is the positive
region reduct of S, which satisfies the following two conditions.

(1) |CONR(D,U )| = |CONC (D,U )|;
(2) ∀ a ∈ R, |CONR−{a}(D,U )| �= |CONR(D,U )|.
The first condition guarantees that the reduct R has the same conflict information as the
whole attribute set C ; the second condition guarantees that there are no redundant attributes
in the reduct R.

Example 1 Table 1 illustrates a decision table S, whereU={x1, x2, x3, x4, x5, x6, x7, x8, x9},
C = {a, b, c, d} is the condition attribute set, and D is the decision attribute set. Let P = {bc}
and R = {bcd}.

We can obtainU/P = {{x1, x7}, {x2, x5}, {x4, x8}, {x3, x6, x9}},U/R = {{x2}, {x3, x9},
{x5}, {x6}, {x1, x7}, {x4, x8}}, U/C = {{x2}, {x3, x9}, {x5}, {x6}, {x1, x7}, {x4, x8}} and
U/D = {{x4}, {x1, x5, x6, x8}, {x2, x3, x7, x9}}, where D1 = {x4}, D2 = {x1, x5, x6, x8},
D3 = {x2, x3, x7, x9} and r = 3.

Assume X = {x1, x2, x4, x5, x7}, we can have
P̃−(X) = {{x1, x7}, {x2, x5}} and P̃−(X) = {{x1, x7}, {x2, x5}, {x4, x8}};
R̃−(X) = {{x1, x7}, {x2}, {x5}} and R̃−(X) = {{x1, x7}, {x2}, {x4, x8}, {x5}};
QPOSP (X) = P̃−(X) = {{x1, x7}, {x2, x5}}, QBNDP (X) = P̃−(X) − P̃−(X) =

{{x4, x8}} and QNEGP (X) = U/P − P̃−(X) = {{x3, x9}};
QPOSR(X) = R̃−(X) = {{x1, x7}, {x2}, {x5}}, QBNDR(X) = R̃−(X) − R̃−(X) =

{{x4, x8}} and QNEGR(X) = U/R − R̃−(X) = {{x3, x9}}.
Moreover, we can obtain
POSP (D,U ) = ⋃r

i=1 P−Di = Φ,
CONP (D,U ) = U − ⋃r

i=1 P−Di = U − POSP (D,U ) = {x1, x2, x3, x4, x5, x6,
x7, x8, x9},

QPOSP (D,U ) = ⋃r
i=1 P̃−Di = Φ,

QCONP (D,U ) = U/P − ⋃r
i=1 P̃−Di = U/P −QPOSP (D,U ) = {{x1, x7}, {x2, x5},

{x4, x8}, {x3, x6, x9}},
POSR(D,U ) = ⋃r

i=1 R−Di = {x2, x3, x5, x6, x9},
CONR(D,U ) = U − ⋃r

i=1 R−Di = U − POSR(D,U ) = {x1, x7, x4, x8},
QPOSR(D,U ) = ⋃r

i=1 R̃−Di = {{x2}, {x3, x9}, {x5}, {x6}},
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Table 1 A decision table s U a b c d D

x1 0 0 0 1 1

x2 0 1 0 0 2

x3 0 1 1 1 2

x4 1 0 1 0 0

x5 1 1 0 1 1

x6 1 1 1 0 1

x7 0 0 0 1 2

x8 1 0 1 0 1

x9 0 1 1 1 2

QCONR(D,U ) = U/R − ⋃r
i=1 R̃−Di = U/R −QPOSR(D,U ) = {{x1, x7}, {x4, x8}},

POSC (D,U ) = ⋃r
i=1 C−Di = {x2, x3, x5, x6, x9},

CONC (D,U ) = U − ⋃r
i=1 C−Di = U − POSC (D,U ) = {x1, x7, x4, x8}.

Since, |CONR(D,U )| = |CONC (D,U )| and ∀ a ∈ R, |CONR−{a}(D,U )| �=
|CONR(D,U )|, R is a reduct of S. Nevertheless, P is not a reduct of S.

3.2 Static attribute reduction algorithm based on the conflict region

According to the research of Sect. 3.1, in this subsection, we will design a static heuristic
attribute reduction algorithm based on the conflict region. The reduction algorithm includes
three components: core attributes computation, attribute subset generation and redundant
attributes detection. The description of the algorithm is as follows.

The time complexity analysis The radix sort algorithm is used to compute equivalence
classes. The time complexity of computing the core attributes is O(|C |2|U |) in Step 1. Step 2
is to compute conflict regionCONR(D,U ), whose time complexity are O(|CORE||U |) in the
worst case. In Step 3, the indispensable attributes are computed and added into the selected
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attribute subset in turn, the time complexity is
∑|C−CORE|

i=1 |U |(|C − CORE| − i + 1). In
Step 4, in the worst case, the time complexity of deleting redundant attributes from the
obtained attribute subset R is O(|C |2|U |). Hence, the time complexity of Algorithm SRACR
is 2O(|C |2|U |) + O(|CORE||U |) + ∑|C−CORE|

i=1 |U |(|C − CORE| − i + 1).

Example 2 Table 1 illustrates a decision table S,whereU = {x1, x2, x3, x4, x5, x6, x7, x8, x9},
C = {a, b, c, d} is the condition attribute set and D is the decision attribute set.

WehaveU/C = {{x1, x7}, {x2}, {x3, x9}, {x4, x8}, {x5}, {x6}}, where {x1, x7} and {x4, x8}
are two inconsistent object set. Hence, Table 1 is an inconsistent decision table, and we have
POSC (D,U ) = {x2, x3, x5, x6, x9} and CONC (D,U ) = {x1, x7, x4, x8}.

WecangetCONC−{a}(D,U ) = CONC−{c}(D,U ) = CONC−{d}(D,U ) = {x1, x7, x4, x8},
and CONC−{b}(D,U ) = {x1, x7, x4, x8, x6}. Since SIGCON

−(b,C, D,U ) =
|CONC−{b}(D,U )| − |CONC (D,U )| = 1 > 0, b ∈ CORE(C). Let R = {b}. We get
SIGCON

+(a, R, D,U )=6 and SIGCON
+(c, R, D,U ) = SIGCON

+(d, R, D,U ) = 0. We
should select a to add into R = {ab} and get CONR(D,U ) = {x1, x7, x4, x8}. And then, we
have |CONR(D,U )| = |CONC (D,U )|. The attribute a can not be deleted from R. Hence,
a reduct of S is R = {ab}, where U/R = {{x1, x7}, {x2, x3, x9}, {x4, x8}, {x5, x6}}.

4 Incremental attribute reduction algorithm based on the conflict region
when adding one object

With variation of the decision systems, new objects are added into the original decision
system due to the arrival of new information, which results in the existing reduct possibly
becoming invalid. The static (non-incremental) attribute reduction approach is to re-perform
Algorithm1 to acquire new reduct, which is often very costly or even intractable. To overcome
this shortcoming, it is necessary to develop the incremental reduction algorithm to avoid re-
computation by utilizing previous results.

In this section, we focus on discussing attribute reduction updating mechanisms and an
acceleration strategy when adding one object into the decision system.

4.1 Incremental updating mechanisms based on the conflict region when adding
one object

When a new object is added into the decision system, instead of re-computing the reduct,
the incremental reduction approach can be applied to obtain the new reduct to improve
the performance of the attribute reduction algorithm. In this sub-section, we introduce the
incremental mechanisms for updating the conflict region when adding one object instead of
re-computing the new decision table. To further improve the efficiency of the incremental
reduction algorithm, we research an acceleration strategy of reducing the number of the radix
sort for equivalence partition. Finally, we design an incremental reduction algorithm with
the acceleration strategy based on the conflict region when adding one object and list some
examples to show the effectiveness of the proposed algorithm.

Given a decision table S = (U,C
⋃

D, V, f ) and a reduct R, we can get U/R =
{X1, X2, . . ., Xm} andU/C = {Y1, Y2, . . ., Yn}. Assume that a new object xnew is added into
the decision table S. We can get S′ = (U

⋃{xnew},C ⋃
D, V, f ). Let U ′ = U

⋃{xnew},
U ′/R = {X1, . . ., X ′

i , . . ., Xm} andU ′/C = {Y1, . . ., Y ′
j , . . ., Yn}. Four cases exist as follows

for adding the object xnew into the decision table S.
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Case (a) :∃ j ∈ [1, . . . , n], Y ′
j = Y j

⋃{xnew}, |Y j/D| = 1 and |Y ′
j/D| = 1;

Case (b) :∃ j ∈ [1, . . . , n], Y ′
j = Y j

⋃{xnew}, |Y j/D| �= 1 and |Y ′
j/D| �= 1;

Case (c) :∃ j ∈ [1, . . . , n], Y ′
j = Y j

⋃{xnew}, |Y j/D| = 1 and |Y ′
j/D| �= 1;

Case (d) : j = n + 1, i.e., Y ′
j = {xnew}.

Case(a) shows that the object xnew belongs to an existing non-conflict class; Case(b) shows
that the object xnew belongs to an existing conflict class; Case(c) shows that the object xnew
results in the generation of a new conflict region; Case(d) shows that the object xnew produces
a new non-conflict region.

Proposition 5 Given a decision table S and R ⊆ C, let CONR(D,U ) be the conflict region
of D with respect to R. A new object xnew is added into S to get S′ = (U ′,C

⋃
D, V, f ),

where U ′ = U
⋃{xnew} and U ′/R = {X1, . . ., X ′

i , . . ., Xm}. Let ∃i ∈ [1, . . .,m], X ′
i =

Xi
⋃{xnew}; we have the following propositions.

(1) |Xi/D| = 1 and |X ′
i/D| = 1, then CONR(D,U ′) = CONR(D,U ), QCONR(D,U ′) =

QCONR(D,U ) and |CONR(D,U ′)| = |CONR(D,U )|;
(2) |Xi/D| = 1 and |X ′

i/D| �= 1, then CONR(D,U ′) = CONR(D,U )
⋃

X ′
i ,

QCONR(D,U ′) = QCONR(D,U )
⋃

Xi ’ and |CONR(D,U ′)| = |CONR(D,U )| +
|X ′

i |;
(3) |Xi/D| �= 1 and |X ′

i/D| �= 1, then CONR(D,U ′) = CONR(D,U )
⋃{xnew},

QCONR(D,U ′) = QCONR(D,U )−Xi
⋃

X ′
i and |CONR(D,U ′)| = |CONR(D,U )|+

1.
(4) i = m + 1, then CONR(D,U ′) = CONR(D,U ), QCONR(D,U ′) = QCONR(D,U )

and |CONR(D,U ′)| = |CONR(D,U )|;
Proposition 6 Given a decision table S, let CONC (D,U ) be the conflict region of D with
respect to C. A new object xnew is added into S to get S′ = (U ′,C

⋃
D, V, f ), where

U ′ = U
⋃{xnew} and U ′/C = {Y1, . . ., Y ′

j , . . ., Yn}. Let ∃ j ∈ [1..n], Y ′
j = Y j

⋃{xnew}; we
have the following propositions.

(1) |Y j/D| = 1 and |Y ′
j/D| = 1, then CONC (D,U ′) = CONC (D,U ) and |CONC (D,U ′)|

= |CONC (D,U )|;
(2) |Y j/D| = 1 and |Y ′

j/D| �= 1, then CONC (D,U ′) = CONC (D,U )
⋃

Y ′
j and

|CONC (D,U ′)| = |CONC (D,U )| + |Y ′
j |;

(3) |Y j/D| �= 1 and |Y ′
j/D| �= 1, then CONC (D,U ′) = CONC (D,U )

⋃{xnew} and
|CONC (D,U ′)| = |CONC (D,U )| + 1;

(4) j = n+1, then CONC (D,U ′) = CONC (D,U ) and |CONC (D,U ′)| = |CONC (D,U )|.
Theorem 1 Given a decision table S, R is a reduct of S. Let CONR(D,U ) andCONC (D,U )

be the conflict region of D with respect to R and C, respectively. A new object xnew is
added into the decision table S to get S′ = (U ′,C

⋃
D, V, f ), where U ′ = U

⋃{xnew},
U ′/R = {X1, . . ., X ′

i , . . ., Xm} and U ′/C = {Y1, . . ., Y ′
j , . . ., Yn}. Let ∃i ∈ [1..m], X ′

i =
Xi

⋃{xnew}, and ∃ j ∈ [1..n], Y ′
j = Y j

⋃{xnew}; the following properties hold.

(1) If xnew satisfies Case(a), then |CONR(D,U ′)| = |CONC (D,U ′)|;
(2) If xnew satisfies Case(b), then |CONR(D,U ′)| = |CONC (D,U ′)|;
(3) If xnew satisfies Case(c), then |CONR(D,U ′)| ≥ |CONC (D,U ′)|;
(4) If xnew satisfies Case(d), then |CONR(D,U ′)| ≥ |CONC (D,U ′)|.
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Proof (1) In this case, new conflict objectswith respect toC and R are not generated, respec-
tively. Thus, CONC (D,U ) = CONC (D,U ′) and CONR(D,U ) = CONR(D,U ′).
Hence, |CONR(D,U ′)| = |CONC (D,U ′)|.

(2) In this case, ∃x ∈ CONC (D,U ) satisfies f (x,C) = f (xnew,C) ∧ f (x, D) �=
f (xnew, D) such that CONC (D,U ′) = CONC (D,U )

⋃{xnew}. Likewise, ∃y ∈
CONR(D,U ) satisfies f (y, R) = f (xnew, R) ∧ f (y, D) �= f (xnew, D) such that
CONR(D,U ′) = CONR(D,U )

⋃{xnew}. Hence, |CONR(D,U ′)| = |CONC (D,U ′)|.
(3) In this case, ∃x ∈ Y j satisfies f (x,C) = f (xnew,C) ∧ f (x, D) �= f (xnew, D), such

that CONC (D,U ′) = CONC (D,U )
⋃

Y j
⋃{xnew}. Suppose xnew ∈ X ′

i ; there exist
two cases as follows.

(1) ∃y ∈ Xi and Xi ⊃ Y j , then CONR(D,U ′) = CONR(D,U )
⋃

Xi
⋃{xnew}, such

that |CONR(D,U ′)| > |CONC (D,U ′)|;
(2) ∃y ∈ Xi and Xi = Y j , then CONR(D,U ′) = CONR(D,U )

⋃
Xi

⋃{xnew}, such
that |CONR(D,U ′)| = |CONC (D,U ′)|.

(4) In this case, xnew is a whole new object that is not the same as any objects of S such that
CONC (D,U ′) = CONC (D,U ). However, there may exist three cases as follows.

(a) i = m + 1, then |CONR(D,U ′)| = |CONC (D,U ′)|;
(b) i ≤ m, |Xi/D| = 1 and |X ′

i/D| = 1, then |CONR(D,U ′)| = |CONC (D,U ′)|;
(c) i ≤ m, |Xi/D| �= 1 and |X ′

i/D| �= 1, then CONR(D,U ′) = CONR(D,U )
⋃

X ′
i

such that |CONR(D,U ′)| > |CONC (D,U ′)|.

Proposition 7 Given a decision table S, a new object xnew is added into S to get S′ =
(U ′,C

⋃
D, V, f ), CONR(D,U ′) and QCONR(D,U ′), where U ′ = U

⋃{xnew}. Let R ⊂
C; for a ∈ C − R, CONR

⋃{a}(D,U ′) can be illustrated as follows.

|CONR
⋃{a}(D,U ′)| = |

⋃
{Z |W ∈ QCONR(D,U ′) ∧ Z ∈ W/a ∧ |Z/D| �= 1}|

Proposition 8 Given a decision table S, let R ⊂ C; a new object xnew is added into S to
obtain S′. For each a ∈ C − R, the joined significance measures of the attribute a based on
the conflict region in S′ can also be defined as follows.

SIGCON
+(a, R, D,U ′) = |CONR(D,U ′)| − |CONR

⋃{a}(D,U ′)|
= |CONR(D,U ′)| − |

⋃
{Z |W ∈ QCONR(D,U ′)

∧Z ∈ W/a ∧ |Z/D| �= 1}|
4.2 The acceleration strategy for deleting redundant attributes

As we know, if a subset R* of C only satisfies condition(1) of the reduct definition, the
attributes in R* are sufficient. Namely, the condition(1) is not a necessary condition for the
reduct of S and R* is only a superset of a reduct. There may exist one real reduct R of S and
R ⊆ R*. Hence, we should check whether there exist redundant attributes in R*.

Generally, for an attribute a of reduct-superset R*, if SIGCON
−(a, R∗, D,U ′) = 0, the

attribute a is redundant and should be deleted from the attribute set R*. The time complexity
of this operation is O(|R|2|U |) and the number of radix sort is |R|(|R| − 1). This opera-
tion of checking every attribute in R* will require plenty of computational time. Can we
further improve the performance of incremental reduction algorithms? This motivates us to
research an acceleration approach by reducing sort times in the process of checking redun-
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dant attributes to improve efficiency. In the following, we discuss the acceleration strategy
based on the conflict region for updating reduct.

Given a decision table S = (U,C
⋃

D, V, f ), C is a condition attribute set that includes
c1, c2, . . ., ci , . . . ,etc.U/C is a partition of the universe with respect to C . We can use radix
sort to compute the equivalence classes ofU/C . ForU/C −{ci } andU/C −{ci+1}, |C |− 2
times sorts are repetitive (i.e., ci+2, . . ., c|C |, c1, . . ., ci−1) and have only one different sort.
We all know that the radix sort is stable; thus we can obtain U/(C − {ci+1}) derived from
U/(C − {ci }) (Qian et al. 2011; Zhou et al. 2007).

Proposition 9 For a decision table S = (U,C
⋃

D, V, f ), RS(U,C − {ci+1}) =
RS(RS(U,C − {ci }), {ci }).
Proof RS(U,C − {ci+1}) denotes the result of the radix sort with respect to the attributes
order ci+2, . . ., c|C |, c1, . . ., ci . We divide two steps to obtain RS(RS(U,C − {ci }), {ci }).
That is, firstly, we can obtain RS(U,C − {ci }) by radix sort with respect to the attributes
order ci+1, . . ., c|C |, c1, . . ., ci−1; then, based on RS(U,C − {ci }) we complete the radix
sort by the attribute ci . Therefore, the result of radix sort with respect to the attributes order
ci+1, ci+2,…,c|C |, c1, . . ., ci is equivalent to merging the above two steps of sort operations.
Because the radix sort is a stable sort, RS(U,C − {ci+1}) is equivalent to RS(RS(U,C −
{ci }), {ci }). Hence, Proposition 9 holds.

From Proposition 9 we can significantly reduce the number of the radix sort between
U/C−{ci } andU/C−{ci+1}. Hence, we can employ Proposition 9 to carry out the operation
of checking redundant attributes from the previous result of attribute reduction to accelerate
the efficiency of incremental reduction algorithms.

4.3 Incremental reduction algorithm based on the conflict region when adding
one object

Based on the above discussion, we present an incremental reduction algorithm (IRACR-O)
with the acceleration strategy when adding one object into the decision table. The algorithm
includes three main steps:

(1) The first step (Steps 1–2 in algorithm IRACR-O) is to update CONR(D,U ′),
QCONR(D,U ′) and CONC (D,U ′) when adding one object;

(2) The second step (Step 3 in algorithm IRACR-O) is to select new attributes from the
remaining attributes to add into the attribute subset, until the new attribute subset satisfies
|CONR(D,U ′)| = |CONC (D,U ′)|;

(3) The third step (Steps 4–5 in algorithm IRACR-O) is to delete the redundant attributes
of the new attribute subset with the acceleration strategy.
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The time complexity analysis In Step 1, when adding one object into the decision system,
the time complexity of computing the partition of the whole object set under the attribute
sets R and C is O(|C ||U |); the time complexity of Step 2 is O(|X ′

i |) in the worst case. In
general, we only execute the ‘while’ loop structure once and can select an attribute to satisfy
the termination condition of the loop structure. Hence, the time complexity of Step 3 is
O(|C−R||X ′

i |); In Steps 4–5, the selected attributes are checked to delete redundant attributes
with the acceleration strategy, the time complexity of Step 4 –5 is O(|C ||U ′ +1|). Hence, the
total time complexity of algorithm IRACR-O is 2O(|C ||U ′|) + O(|X ′

i |) + O(|C − R||X ′
i |).

The performance analysis From IRACR-O, we can find that the incremental reduction
algorithm improves the performance of the reduction algorithm compared with the non-
incremental reduction algorithm SARCR when adding one object.

(1) In Step 2, the new conflict regions (CONR(D,U ′) and CONC (D,U ′)) are computed via
an incremental approach based on the existing conflict region.

(2) In Step 3, the new attribute subset is generated from the original reduct, which generally
only needs to execute the loop structure once to get the attributes subset R that satisfies
|CONR(D,U ′)| = |CONC (D,U ′)|.

(3) From Steps 4–5, the acceleration strategy with reduction of the radix sort time is used to
improve the performance of deleting redundant attributes.
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When multiple objects immigrate into the decision system, we need to execute Steps 1–3 of
Algorithm 2 repeatedly and execute Step 4 once to update reduct. The incremental reduction
algorithm for adding multiple objects is as follows.

The time complexity analysis Suppose that l objects are added into the decision system.
From the analysis of the time complexity of algorithm 2, we know that the time complexity of
Step 1 is l∗(O(|C ||U |)+O(|X ′

i |)+O(|C−R||X ′
i |)); In Steps 2–3, the operations of checking

the redundant attributes of obtain selected attribute subset R and deleting the redundant
attributes form R with the acceleration strategy are performed, whose time complexity is
O(|C ||U ′ + 1|). Hence, the time complexity of algorithm IRACR-M is l∗(O(|C ||U |) +
O(|X ′

i |) + O(|C − R||X ′
i |)) + O(|C ||U ′ + 1|).

Example 3 (Continuation of Example 1) For Table 1, R = {ab} is a reduct of the deci-
sion table S, and we can get U/R = {{x1, x7}, {x2, x3, x9}, {x4, x8}, {x5, x6}} and U/C =
{{x1, x7}, {x2}, {x3, x9}, {x4, x8}, {x5}, {x6}}, where X1 = {x1, x7}, X2 = {x2, x3, x9},
X3 = {x4, x8}, X4 = {x5, x6}, Y1 = {x1, x7}, Y2 = {x2}, Y3 = {x3, x9}, Y4 = {x4, x8},
Y6 = {x5} and Y6 = {x6}. A new object y1 = (0, 1, 0, 0, 1) is added to Table 1.

Execute IRACR-O; we can find that X2 = {x2, x3, x9} and X ′
2 = {x2, x3, x9, y1}, where

|X2/D| = 1 and |X ′
2/D| �= 1. Hence, we update CONR(D,U ′) = {x1, x7, x4, x8, x2, x3,
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x9, y1} and CONC (D,U ′) = {x1, x7, x4, x8, x2, y1} and can get |CONR(D,U ′)| = 8,
|CONC (D,U ′)| = 6 and |CONR(D,U ′)| �= |CONC (D,U ′)|. Thus, we need to exe-
cute Step3 to add attributes for C − R into R. In the first circulation, we can get
SIGCON

+(c, R, D,U ′) = 2 and SIGCON
+(d, R, D,U ′) = 2. Then, we select c into R,

and have R = {ab} ⋃{c} = {abc}. Thus, we have |CONR(D,U ′)| = |CONC (D,U ′)| = 6.
Redundant attributes in R do not exist. Hence, the new reduct is R = {abc}.

Example 4 (Continuation of Example 1) For Table 1, R = {ab} is a reduct of the deci-
sion table S, and the three objects (i.e., y1 = (0, 1, 0, 0, 1), y2 = (0, 1, 0, 1, 1) and
y3 = (1, 0, 1, 0, 2)) are added into Table 1.

(1) We suppose that the adding order is y1, y2, y3 and execute IRACR-M. From Example
3, we can get R = {abc}, CONR(D,U ′) = CONC (D,U ′) = {x1, x7, x4, x8, x2, y1} and
QCONR(D,U ′) = {{x1, x7}, {x4, x8}, {x2, y1}}.

Then, adding y2 into the decision table, we can find that X2 = {x2, y1} and X ′
2 =

{x2, y1, y2}, where |X2/D| �= 1 and |X ′
2/D| �= 1. We update CONR(D,U ′) =

{x1, x7, x4, x8, x2, y1, y2} and CONC (D,U ′) = {x1, x7, x4, x8, x2, y1}; |CONR(D,U ′)| �=
|CONC (D,U ′)|. We select d into R and have R = {abc} ⋃{d} = {abcd}.

Next, adding y3 into the decision table, we have CONR(D,U ′) = {x1, x7, x2, y1, x4, x8,
y3} and CONC (D,U ′) = {x1, x7, x2, y1, x4, x8, y3}; |CONR(D,U ′)| = |CONC (D,U ′)|.

Finally, according to Steps 2–3, we find that a in R can be deleted. Hence, the new reduct
is R = {bcd}.

(2) We suppose that the adding order is y3, y2, y1 and execute the algorithm IRACR-M.
Similar to the above analysis, when y3 is added into the decision table, we can get

CONR(D,U ′) = {x1, x7, x4, x8, y3} and CONR(D,U ′) = {x1, x7, x4, x8, y3} such that
R = {ab}.

Then, adding y2 into the decision table, we can have CONR(D,U ′) = {x1, x7, x4, x8,
y3, x2, y2} and CONC (D,U ′) = {x1, x7, x4, x8, y3}, where |CONR(D,U ′)| �= |CONC

(D,U ′)|. We have SIGCON
+(c, R, D,U ′) = 0 and SIGCON

+(d, R, D,U ′) = 2. We
select d into R and have R = {ab} ⋃{d} = {abd}, CONR(D,U ′) = {x1, x7, x4, x8, y3}
and CONC (D,U ′) = {x1, x7, x4, x8, y3}.

Next, adding y1 into the decision table, we have CONR(D,U ′) = {x1, x7, x2, y1, x4, x8,
y3} and CONC (D,U ′) = {x1, x7, x2, y1, x4, x8, y3}; |CONR(D,U ′)| = |CONC (D,U ′)|.

Finally, redundant attributes in R do not exist. Hence, the new reduct is R = {abd}.
ForExample 4,we canfind that the results of the two reduction processes are not coincident

because of the different orders in which objects are added.

5 Incremental attribute reduction based on the conflict region when
adding the object set

In real-life applications, it is not often the case that only one object is added into the decision
system. Generally, an object set (i.e., multiple objects) is added into the decision system.
From Algorithm 2, obviously, immigration of multiple objects can be seen as the cumulative
immigration of a single object. If we re-execute Algorithm 2many times to update the reduct,
it will consume plenty of time. In this sub-section, to improve the efficiency of the incremental
attribute reduction algorithm when adding multiple objects, we will develop an incremental
reduction algorithm in an efficient manner to obtain the new reduct that avoids repeated
execution.
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For a decision table S = (U,C
⋃

D, V, f ), a reduct R, U/R = {X1, X2, . . ., Xm}
and U/C = {Y1, Y2, . . ., Yn}, we assume that an object set Unew is added into the
decision table S; we can get S′ = (U

⋃
Unew,C

⋃
D, V, f ). Let U ′ = U

⋃
Unew,

U ′/R = {X ′
1, . . ., X

′
s, X

′
s+1, . . ., X

′
m} and U ′/C = {Y ′

1, . . ., Y
′
t , Y

′
t+1, . . ., Y

′
n}, where ∀i ∈

[1, . . . , s], |X ′
i/D| �= 1; ∀i ∈ [s + 1, . . . ,m], |X ′

i/D| = 1; ∀ j ∈ [1, . . . , t], |Y ′
j/D| �= 1;

∀ j ∈ [t + 1, . . . , n], |Y ′
j/D| = 1. Hence, we have CONR(D,U ′) = ⋃{X ′

i |i ∈ [1, . . . , s]}
and CONC (D,U ′) = ⋃{Y ′

j |i ∈ [1, . . ., t]}.
Proposition 10 Given a decision table S, R is a reduct of S and the object set Unew is
added into S. Let U ′ = U ′ ⋃Unew, U ′/R = {X ′

1, . . ., X
′
s, X

′
s+1, . . ., X

′
m′ } and U ′/C =

{Y ′
1, . . ., Y

′
t , Y

′
t+1, . . ., Y

′
n′ }. For each a ∈ C − R, the joined significance measures of the

attribute a based on the conflict region can also be defined as follows.

S IGCON
+(a, R, D,U ′) = |CONR(D,U ′)| − |

⋃
{Z |W ∈ QCONR(D,U ′) ∧

Z ∈ W/a ∧ |Z/D| �= 1}|
In the following, we present an incremental reduction algorithm with the acceleration

strategy when adding an object set into the decision table.

The time complexity analysis Step 1 is to compute CONR(D,U ′), QCONR(D,U ′) and
CONC (D,U ′)when addingmultiple objects, whose time complexity is O(|C ||U ′|). Step 3 is
to check the selected attributewhether satisfies the stopping condition,whose time complexity
3 is O(|C − R|2|CONR(D,U ′)|); In Steps 4–5, the selected attributes are checked to delete
redundant attributes with the acceleration strategy. So the time complexity of Steps 4–5
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is O(|C ||U ′|). Hence, the total time complexity of algorithm IRACR-S is 3O(|C ||U ′|) +
O(|C − R|2|CONR(D,U ′)|).

The performance analysis We can find that IRACR-S improves the efficiency of the
incremental reduction algorithm compared with IRACR-M when adding multiple objects
into the decision system.

(1) For IRACR-S, we only need to execute Step 1 at a time to update the conflict region.
(2) For adding multiple objects, in Step 3, we only need to run the ‘while’ loop-structure

once to obtain the selected attributes, while in IRACR-M, for adding every object of the
object set, we should run the ‘while’ loop-structure once.

Example 5 (Continuation of Example 1) For Table 1, R = {ab} is a reduct of the
decision table S; we have U/R = {{x1, x7}, {x2, x3, x9}, {x4, x8}, {x5, x6}} and U/C =
{{x1, x7}, {x2}, {x3, x9}, {x4, x8}, {x5}, {x6}}. Let X1 = {x1, x7}, X2 = {x2, x3, x9}, X3 =
{x4, x8}, X4 = {x5, x6}, Y1 = {x1, x7}, Y2 = {x2}, Y3 = {x3, x9},Y4 = {x4, x8},
Y5 = {x5} and Y6 = {x6}; we add an object set Unew = {y1, y2, y3} into Table 1, where
y1 = (0, 1, 0, 0, 1), y2 = (0, 1, 0, 1, 1), y3 = (1, 0, 1, 0, 2).

For IRACR-S, we have U ′ = {x1, x2, x3, x4, x5, x6, x7, x8, x9, y1, y2, y3} and can get
U ′/R = {{x5, x6}, {x1, x7}, {x4, x8, y3}, {x2, x3, x9, y1, y2}} and U ′/C = {{x6}, {y2},
{x3, x9}, {x1, x7}, {x2, y1}, {x4, x8, y3}}. Obviously, U ′/R

⋃{c} = {{x5}, {x6}, {x3, x9},
{x1, x7}, {x2, y1, y2}, {x4, x8, y3}} and U ′/R

⋃{d} = {{x5}, {x6}, {x1, x7}, {x4, x8, y3},
{x2, x3, x9}, {y1, y2}}. We can get SIGCON

+(c, R, D,U ′) = 2 and SIGCON
+(d, R, D,U ′)

= 0. Thus,we select c tomerge into R = {ab} ⋃{c} = {abc} and updateCONR(D,U ′) to get
|CONR(D,U ′)| = 8. Next, we haveU ′/{abc} = {{x5}, {x6}, {x3, x9}, {x1, x7}, {x4, x8, y3},
{x2, y1, y2}} and select d to merge into R = {abc} ⋃{d} = {abcd}. According to Steps 4–5,
we find that the attribute a in R is a redundant attribute and must be deleted. Hence, the new
reduct is R = {bcd}.

Table 2 gives the comparison of the time complexity for static and incremental algorithms
when adding multiple objects.

Step(1) is to compute the core attribute set and CONC (D,U ) for SRACR and to update
CONC (D,U ′) and CONR(D,U ′) for IRACR-M and IRACR-S; Step(2) is to add the
attributes into the subset R; Step(3) is to delete the redundant attributes from the subset
R.

From Table 2, when adding l objects into the decision table, we can find that the time
complexity of IRACR-M is smaller than that of SRACR and that the time complexity of
IRACR-S is smaller than that of IRACR-M. Hence, we can draw the conclusions that the
proposed incremental algorithm IRACR-S is more efficient than the non-incremental algo-
rithm SRACR and is also more efficient than the proposed incremental algorithm IRACR-M.

To further illustrate the efficiency of the proposed incremental reduction algorithms with
the acceleration strategy, we present comparisons of the sorting number for four incremental
reduction algorithms (IARC-S (Liang et al. 2014), GIARC-S (Liang et al. 2014), IRACR-M
and IRACR-S) in Table 3.

In Table 3, for convenience, let θ denote θ = ∑|C−R|−1
i=0 (|C | − (|R| + i)). Step(1) is to

updateME(D|C) andME(D|B) for IARC-S and GIARC-S and to update CONC (D,U ′) and
CONR(D,U ′) for IRACR-M and IRACR-S; Step(2) is to add the attributes into the subset
R; Step(3) is to delete the redundant attributes from the subset R.

From Table 3, because of using the acceleration strategy, the sorting numbers of IRACR-
M and IRACR-S are both 2|R| in step(3), which are less than one of IARC-S and GIARC-S.
Hence, the sorting number of IRACR-M is less than one of IARC-S and the sort time of
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Table 4 Descriptions of data sets

ID Data set # of objects # of attributes # of core attributes # of classes

a Led17 2000 22 14 10

b Chess 3196 36 27 2

c Landsat-trn 4435 37 0 7

d Gene 3190 60 0 3

e Semeion 1593 256 0 10

f Mushroom 8124 22 0 2

g Handwritten 5620 64 0 10

h Ticdata2000 5822 85 9 2

i Connect-4 67, 557 42 0 3

IRACR-S is lower than the sorting numbers of the other three algorithms. It can be known
that the sort for the decision systems is a pivotal and frequent operation in the process of
attribute algorithms. The computation of reducing the number of the sort can improve the
efficiency of reduction algorithms. Hence, the proposed incremental reduction algorithms
IARC-S and GIARC-S make use of the acceleration to further improve the efficiency of
reduction algorithms.

6 Experiments

In this section, we present a series of experiments to demonstrate the effectiveness and
efficiency of the proposed algorithms. The experiment data use 11 UCI data sets (https://
archive.ics.uci.edu/ml/datasets.html) whose basic information is outlined in Table 4. All of
the experiments have been carried out on a personal computer with Windows XP, Pentium
Dual-CORE CPU i5-3470 3.20GHZ and 3.47GB memory. The software used is Microsoft
Visual Studio 2005, and the programming language is C++.

6.1 A comparison of static and incremental reduction algorithms when adding
data

To evaluate the efficiency of the proposed incremental reduction algorithms, we compare the
incremental reduction algorithms (IRACR-M, IRACR-S) with the static reduction algorithm
SRACRwhen adding data sets. For each data set in Table 4, 50% of the objects of the original
data set are selected as the basic data set. Then, we divide the remaining 50% of the objects
into ten equal parts. The first part is regarded as the 1st data set, the combination of the first
part and the second part is viewed as the 2nd data set, the combination of the 2nd data set and
the third part is regarded as the 3rd data set, · · ·, the combination of all eight parts is viewed
as the tenth data set, i.e., 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50% of the universe. Next, we
add ten data sets into the basic data set and run the static reduction algorithm (SRACR) and
two incremental reduction algorithms (IRACR-M and IRACR-S). The results are shown in
Fig. 1. In each sub-figure (a–i) of Fig. 1, the x-coordinate pertains to the ratio of adding the
data set, while the y-coordinate concerns the computational time.

It is easy to see from Fig. 1 that for each data set, the computational time of IRACR-M is
much smaller than that of SRACR and the computational time of IRACR-S is much smaller
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Fig. 1 The comparison of static and incremental algorithms when adding objects

than that of the incremental reduction algorithm IRACR-M. Namely, the performance of
IRACR-M is higher than that of SRACR and the performance of IRACR-S is most efficient
among the three algorithms.

From Fig. 1 it is easy to find that with the increment of the condition attributes number,
the slope of the curve for algorithms IRACR-M and IRACR-S decreases. For example, the
slopes of the data sets Gene, Ticdata2000 and Semeion are close to zero due to including
more condition attributes.

To more clearly compare the efficiency between IRACR-M and IRACR-S, for data sets
Landsat-trn, Gene, Semeion, Ticdata2000 and Handwritten, Fig. 2 gives the more detailed
trend of IRACR-M and IRACR-S as the size of the data sets increases. We can see from
these figures that IRACR-S takes less time to select a new feature subset than IRACR-M.
For example, the computational time of IRACR-M achieves 0.076s for the Gene data set,
while IRACR-S needs 0.0345s. The main reason is that IRACR-M needs to be carried out
repeatedly to handle multiple objects, while IRACR-S only deals with multiple objects at a
time instead of repetitive operations.

6.2 Comparison with reduct results of static and incremental reduction
algorithms

To compare the results of incremental and static reduction algorithms, for each data set in
Table 4, we randomly select 50% of the objects as the basic data set. Then, the remaining
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Fig. 2 The comparison of two incremental algorithms when adding objects

50% of the objects are added into the corresponding basic data set. The generated reducts
are shown in Table 5.

It is easy to see fromTable 5 that the results of reducts for SRACR, IRACR-Mand IRACR-
S are not entirely identical; the reason is that the different orders of objects being added into
the decision table result in different significances of the selected features in SRACR, IRACR-
M and IRACR-S such that the feature subsets selected by the reduction algorithms are not
wholly the same.

Moreover, we can observe that IRACR-S can find relatively smaller or equal-sized
attributes reduct than IRACR-M. For example, for data sets Mushroom, Ticdata2000 and
Semeion, the sizes of attributes in the reduct by IRACR-S are less than that of IRACR-M.
This is because for IRACR-S, the selected most significant attributes apply to the whole
adding object set, while the selected most significant attributes only rely on the current one
object for IRACR-M. Relative to IRACR-M, IRACR-S can more fully select the significant
attributes from the integrity of the adding object set, which results in one needing to select
smaller attributes than IRACR-M.

6.3 Performance comparison of the essential step for the static and incremental
reduction algorithm

When an object set is added, the static reduction algorithm includes the following three steps.

Step 1 Compute the core attributes set;
Step 2 Select the most significant attributes to add into the alternative attribute subset;
Step 3 Delete the redundant attributes from the alternative attribute subset.

The mains steps of the incremental reduction algorithm are as follows.

Step 1 Select the most significant attributes to add into the alternative attribute subset;
Step 2 Delete the redundant attributes from the alternative attribute subset.

To concretely illustrate the performance of the static algorithm and incremental algorithms
when an object set is entered into the decision system, we compare the time consumed for
the main steps of three attribute reduction algorithms (SRACR, IRACR-M and IRACR-S)
for each data set in Table 4. We select 60% of the objects of the original data set as the basic
data set and add 10% of the objects of the universe into the basic data set. The details of the
computational time of the main steps of the static and incremental reduction algorithms for
nine data sets are shown inTable 6 and Fig. 3 . In Table 6, ‘Core’ denotes the time consumption
of computing core attributes, ‘Add’ denotes the time consumption of adding the attributes
into the reduct, ‘Del’ denotes the time consumption of deleting the redundant attributes, and
‘Total’ denotes the whole time consumption of the reduction algorithm.
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Fig. 3 The comparison of the running time for the static and incremental algorithms of the main steps

Each column denotes the whole computational time of the reduction algorithm. In the
sub-figures of Fig. 3, the red part denotes the running time of computing core attributes for
the static algorithm, the blue part represents the running time of selecting attributes in the
reduct, and the green part denotes the running time of deleting redundant attributes.

It is clear that the static reduction algorithm spends a lot of time on computing core
attributes. Meanwhile, for the incremental reduction algorithm, the computational time of
selecting attributes and deleting redundant attributes is less than that of the static reduction
algorithm. These reasons illustrate that the incremental reduction algorithm is faster than the
static reduction algorithm with respect to finding the reduct.

6.4 The performance comparison with other incremental algorithms

To further illustrate the efficiency of the IRACR-M and IRACR-S algorithms, in this sub-
section, our proposed algorithms are compared with other existing incremental reduction
algorithms.We select the incremental reduction algorithm based on the positive region in (Hu
et al. 2005), denoted as IRPR, and only select four incremental reduction algorithms (IARC-
S and GIARC-S, IARC-C and GIARC-C) (Liang et al. 2014). IARC-S and IARC-C are
incremental algorithms for reduct based on Shannon’s entropy and the combination entropy,
respectively. GIARC-S and GIARC-C are group incremental algorithms for reduct based
on Shannon’s entropy and the combination entropy, respectively. Actually, the algorithms
IRACR-M, IARC-S and IARC-C are the incremental reduction algorithms for adding one
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Fig. 4 The comparison of the running time with other incremental algorithms

object, and the algorithms IRACR-S, GIARC-S and GIARC-C are the group incremental
reduction algorithms for adding the object set.

For each data set in Table 4, we randomly select 50% of the objects as the basic data
set. Then, the remaining 50% of objects are added to the corresponding basic data set. The
comparison results of the computational time are shown in Table 7 and Fig. 4.

From Table 7 and Fig. 4, we can easily find that the computational time of IRACR-M is
much less than those of IARC-S and IARC-C and that the computational time of IRACR-S
is much less than those of GIARC-S and GIARC-C. The computational times of IRACR-M
and IRACR-S are both much less than that of IRPR. Hence, the experimental results indicate
that IRACR-M is much more efficient than IARC-S and IARC-C and that IRACR-S is much
more efficient than GIARC-S and GIARC-C.

6.5 Comparison of classification accuracies for five algorithms

To evaluate the classification performance with respect to generated reducts by the proposed
incremental reduction algorithms (IRACR-M, IRACR-S), we use the results of the corre-
sponding reduction algorithms to train the C4.5 classifier based on tenfold cross-validation
method. IRACR-M, IRACR-S are used to select the attribute reducts when randomly select-
ing 50% of the objects as the basic data set and the remaining 50% of the objects as adding
objects. The classification accuracywith respect to the rawdata and the reduct result generated
by different algorithms are shown in Table 8.

FromTable 8, it can be seen thatwhen adding objects into the decision systems, the average
classification accuracy of the reduct selected by algorithms IRACR-Mand IRACR-S is closed
to that of algorithm SRACR on most data sets and the classification accuracy of IRACR-S
are better than that of Initial reduct and SRACR on many data sets. The experimental results
indicate that algorithm IRACR-M and IRACR-S can find a feasible reduct as algorithm
SRACR and selecting a feasible reduct based on the incremental algorithms IRACR-M and
IRACR-S can consume much shorter computational time.

7 Conclusions

In many real-world tasks, the objects of decision systems may vary dynamically. Quickly
updating attribute reduction is a significant task for knowledge discovery. In this paper, firstly,
the concept and properties of the conflict region are presented. When a single object and an
object set are added into the decision systems, the incremental mechanisms for the conflict
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Table 8 Comparison of classification accuracy for three algorithms

Data sets Initial reduct (%) SRACR (%) IRACR-M (%) IRACR-S (%)

Led17 99.6812 99.7368 99.7603 99.7831

Chess 99.4379 99.4379 97.3094 99.4379

Landsat-trn 78.4456 79.4363 75.5584 77.4379

Mushroom 100.000 100.000 99.7361 100.000

Gene 61.9442 74.5465 72.8683 74.3578

Handwritten 63.9382 77.9141 78.6121 78.5691

Ticdata2000 89.7284 90.0213 89.9816 90.0382

Semeion 68.3203 71.3241 71.6941 71.4639

Connect-4 79.3531 80.1704 79.3642 80.9251

The bold numbers denote the highest accuracy

region are discussed. To further improve the efficiency of incremental reduction algorithms,
we give an acceleration strategy and develop incremental feature selection algorithms with
the acceleration strategy based on the conflict region in terms of adding a single object and an
object set. Theoretical analysis and experimental results for UCI datasets have shown that the
proposed algorithms can effectively reduce computational time to improve the performance
of updating reduct. In the future, we will extend the acceleration strategy to the variation of
the attribute set and discuss quickly incremental reduction algorithms when the attribute set
varies.
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