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Abstract In the study of image and vision computing, the generalization capability of an
algorithm often determines whether it is able to work well in complex scenes. The goal of
this review article is to survey the use of photorealistic image synthesis methods in address-
ing the problems of visual perception and understanding. Currently, the ACP Methodology
comprising artificial systems, computational experiments, and parallel execution is playing
an essential role in modeling and control of complex systems. This paper extends the ACP
Methodology into the computer vision field, by proposing the concept and basic framework
of Parallel Vision. In this paper, we first review previous works related to Parallel Vision, in
terms of synthetic data generation and utilization. We detail the utility of synthetic data for
feature analysis, object analysis, scene analysis, and other analyses. Then we propose the
basic framework of Parallel Vision, which is composed of an ACP trilogy (artificial scenes,
computational experiments, and parallel execution). We also present some in-depth thoughts
and perspectives on Parallel Vision. This paper emphasizes the significance of synthetic
data to vision system design and suggests a novel research methodology for perception and
understanding of complex scenes.
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1 Introduction

In the field of computer vision, visual perception and understanding is an attractive technology
to acquire information from video images (Wang and Yao 2015; Wang et al. 2012, 2016;
Gou et al. 2016; Liu et al. 2016; Ramezani and Yaghmaee 2016; Gould et al. 2008; Farabet
et al. 2013; Szeliski 2010). The information is mostly about target objects in the scene,
including object location, identity, appearance, and behavior. Scene-level information such
as semantic segmentation and scene understanding is also useful. Humans possess an innate
ability to acquire information from video images, but for machines, it is surprisingly difficult
to acquire the same information. For decades, many key topics [e.g., object detection and
tracking (Wang and Yao 2015; Wang et al. 2016; Gou et al. 2016; Liu et al. 2016), activity
recognition (Ramezani and Yaghmaee 2016; Wang et al. 2012), image segmentation (Gould
et al. 2008; Farabet et al. 2013)] have been studied to further knowledge of visual perception
and understanding.As a result,many relativelymature techniques have been used in a range of
real-world applications, including optical character recognition, medical image processing,
surveillance and traffic monitoring, and automotive safety (Szeliski 2010).

In recent years, the effectiveness of a vision algorithm in complex scenes has become
a major concern for computer vision researchers (Wang and Yao 2015; Wang et al. 2012,
2016; Gou et al. 2016; Liu et al. 2016; Ramezani and Yaghmaee 2016; Datondji et al. 2016;
Goyette et al. 2014). Let us take the urban traffic scene as an example. Many natural factors
such as bad weather, strongly cast shadow, and low illumination at night often result in
vague image details. In addition, the target objects have varied types, poses, appearance and
behavior patterns, and are likely to be partially occluded by other objects in the field of view
of the camera. Due to the combined effects of these factors, it is extremely difficult to design
a robust vision algorithm. Many vision algorithms have not been sufficiently trained and
evaluatedwith large-scale diversified datasets. Although these algorithmsworkwell in simple
controlled environments, they might easily fail when encountering complex challenging
scenes (Wang and Yao 2015; Wang et al. 2012, 2016; Gou et al. 2016; Liu et al. 2016;
Ramezani and Yaghmaee 2016; Datondji et al. 2016; Goyette et al. 2014).

Before the boom of deep learning, a common methodology adopted by traditional vision
algorithmswas to craft image features [e.g., Haar-like wavelet, SIFT (Scale-Invariant Feature
Transform), HOG (Histograms of Oriented Gradients), and LBP (Local Binary Pattern)] by
hand and then train pattern classifiers [e.g., SVM (Support Vector Machine), AdaBoost, and
CRF (Conditional Random Field)] using certain labeled datasets. In this way, occasional
satisfactory experimental results could be obtained, such as the DPM (Deformable Parts
Model) object detector (Felzenszwalb et al. 2010) and the CRF-based image segmentation
method (Gould et al. 2008). However, these algorithms usually rely on small-scale datasets
(e.g., INRIAPerson (http://pascal.inrialpes.fr/data/human/), CaltechPedestrian (http://www.
vision.caltech.edu/Image_Datasets/CaltechPedestrians/), andKITTI (http://www.cvlibs.net/
datasets/kitti/) datasets), with the number of samples from thousands to hundreds of thou-
sands. Therefore, the datasets can cover only a small portion of the scene space. In contrast,
the recently popular deep learning approach has strong feature representation abilities and is
able to automatically learn hierarchical features with end-to-end training (Krizhevsky et al.
2012; LeCun et al. 2015; Ren et al. 2017; He et al. 2016). In a wide range of recent aca-
demic challenges (such as image classification, object detection, and image segmentation),
deep-learning-based methods significantly outperform traditional methods, and the perfor-
mance has been improving year by year. Deep learning relies on large-scale labeled datasets
[such as ImageNet (http://www.image-net.org/), PASCALVOC (http://host.robots.ox.ac.uk/
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pascal/VOC/), and MS COCO (http://mscoco.org/)], which often contain millions of anno-
tated samples or even more, thus being able to cover a much larger portion of complex scene
space.

To design vision models that can generalize well given novel scenes, we should demand
not only that the size of the labeled dataset be sufficiently large, but also the dataset has enough
diversity. Although the sizes of some recent datasets like ImageNet are large, they do not
satisfy the demand of enough diversity, so that they are still unable to cover complex scenes.
This situation is caused by two major reasons. First, it requires massive manpower to collect
large-scale diversified data from complex scenes. ImageNet [20] is compiled by collecting
natural images from the Internet, but cyberspace and physical space are not equivalent,
and moreover, the collection of the images depends on the human perception of the person
selecting the images and constructing the dataset. This is bound to cause dataset bias (Torralba
and Efros 2011; Model and Shamir 2015). Second, it is time-consuming and error-prone to
annotate large-scale diversified data. Especially under adverse weather and low illumination
conditions, the image details are so vague that it becomes quite difficult for a human annotator
to make precise annotations by observing the images with the naked eye. Due to the faultiness
of the labeled datasets, there is no guarantee that a vision model learned from such datasets
will work well in real-world settings.

To address the difficulty in collecting and annotating large-scale diversified datasets, an
alternative solution is to use artificial scenes that simulate complex real scenes and generate
our desired synthetic datasets.With the great progress in computer graphics and virtual reality
(Bainbridge 2007; Taylor et al. 2007; Butler et al. 2012;Wulff et al. 2012; Veeravasarapu et al.
2015a, b, 2016) in the past decade, it is now possible to construct high-quality photorealistic
artificial scenes. With artificial scenes, various ingredients of real scenes can be simulated,
including illumination periods (daytime, nighttime, dawn, and dusk), weather conditions
(sunny, cloudy, rainy, snowy, foggy, windy, etc), object categories (pedestrians, vehicles,
roads, buildings, vegetation, etc) and subcategories. In addition, all factors such as scene
geometry, object appearance and motion, and camera configurations can be fully controlled
by human users. Thereby, large-scale diversified image datasets can be synthesized, and their
ground-truth annotations can be generated automatically, including object position, motion
trajectory, semantic segmentation, depth, optical flow, and so on. In recent years, synthetic
data have been utilized to design and evaluate a variety of computer vision algorithms (Taylor
et al. 2007; Butler et al. 2012; Wulff et al. 2012; Veeravasarapu et al. 2015a, b, 2016).

In this review paper, we survey the use of photorealistic image synthesis methods in
addressing the problems of visual perception and understanding, from the perspective of
Parallel Vision (see Sect. 3). Building on top of both the real and artificial scenes, Parallel
Vision is a virtual/real interactive vision computing methodology. It is inspired by the ACP
(i.e., Artificial systems, Computational experiments, and Parallel execution)Methodology for
modeling and control of complex systems (Wang 2004, 2010, 2013; Wang et al. 2016). For
Parallel Vision, photorealistic artificial scenes are constructed to simulate the environmental
conditions potentially occurring in real scenes, and precise ground-truth annotations are
generated automatically. Combing large-scale synthetic data and a certain amount of real
data, themachine learning and computer visionmodels can be trainedmore effectively. Based
on artificial scenes, a range of computational experiments can be carried out to evaluate the
performance of vision algorithms. If parallel execution is implemented by operating the vision
model in both the real and artificial scenes concurrently, themodel learning and evaluation can
be implemented online and for a long term, so that the vision system is boosted continuously.
As a result, the vision system is improved in effectiveness and adaptability. To sum up,
Parallel Vision integrates several advanced technologies (such as computer graphics, virtual
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reality, and machine learning) and will promote the research process of intelligent vision
computing. It is worthwhile to note that the term “parallel” throughout this paper means the
virtual/real interaction and parallel execution between artificial scenes and the real scene,
rather than conventional two-camera stereo vision systems (Bertozzi and Broggi 1998).

This paper aims to emphasize the significance of synthetic data to vision system design
and suggest a novel research methodology for perception and understanding of complex
scenes. Specifically, the contributions of this paper are twofold. (1)Wemake a comprehensive
review of previous works related to Parallel Vision, in terms of synthetic data generation and
utilization. In particular, we detail the utility of synthetic data for feature analysis, object
analysis, scene analysis, and other analyses. (2) We propose the basic framework of Parallel
Vision as well as some in-depth perspectives. This ACP-based methodology is expected to
promote the development of intelligent vision computing and speed up its industrialization.

The remainder of this paper is organized as follows. In Sect. 2, the previous works related
to Parallel Vision are reviewed. The framework of Parallel Vision is detailed in Sect. 3, and
some in-depth perspectives on Parallel Vision are presented in Sect. 4. Finally, a conclusion
is drawn in Sect. 5.

2 Related works

As pointed out by Bainbridge (2007), computer-generated virtual worlds where virtual char-
acters can interact in realistic manners have great potential as sites for research in the social,
behavioral, and economic sciences, as well as in human-centered computer science. A variety
of researchmethodologies that scientists have been exploring, including formal experimenta-
tion and quantitative analysis, can be used in virtual worlds. Nowadays, techniques associated
with the construction of virtual worlds and artificial scenes are developing rapidly and play-
ing an important role in scientific research. In this section, we review the related works in
terms of synthetic data generation and utilization. The structure of these works is depicted
as a schematic in Fig. 1.

2.1 Synthetic data generation

Based on the latest advances in computer graphics, some researchers are able to produce
photorealistic synthetic data for vision system design and evaluation, as shown in Fig. 2.
ObjectVideo Virtual Video (OVVV), presented by Taylor et al. (2007), is a publicly available
visual surveillance simulation test bed based on the game engine Half-Life 2. The tool
simulates multiple synchronized video streams from a variety of camera configurations,
including static, PTZ, and omni-directional cameras, in a virtual environment populated with
virtual humans and vehicles. To support performance evaluation, OVVV generates detailed
automatic ground truth for each frame including target centroids, bounding boxes, and pixel-
wise foreground segmentation. The authors described several realistic, controllable noise
effects including pixel noise, video ghosting, and radial distortion to improve the realism of
synthetic video and provide additional dimensions for performance testing. Several indoor
and outdoor virtual environments developed by the authors were described to illustrate the
range of possible testing scenarios using OVVV. Considering that ground truth optical flow
is difficult to measure in real scenes with natural motion, Butler et al. (2012), Wulff et al.
(2012) introduced an optical flowdataset derived from the open source 3D animated short film
Sintel. In contrast to the previous Middlebury dataset, this new dataset has some important
properties: long sequences, large motions, specular reflections, motion blur, defocus blur,
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Analysis of hand-
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Crowd analysis;
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Text recognition;
...

Object analysis
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Camera network 
research;
Camera 

calibration;
...

Other analyses

Previous works related to Parallel Vision

Synthetic data generation

Fig. 1 Schematic of previousworks related toParallelVision.Based on synthetic data, a variety of image/video
analyses can be implemented

Fig. 2 Examples of synthetic images. Top row (left to right): OVVV data (Taylor et al. 2007), MPI-Sintel
data (Butler et al. 2012; Wulff et al. 2012), synthetic data created in Veeravasarapu et al. (2015a, b, 2016), and
SABS data (Brutzer et al. 2011). Bottom row (left to right): synthetic data created in Qureshi and Terzopoulos
(2008), Virtual City data (Kaneva et al. 2011), SYNTHIA data (Ros et al. 2016), and GTA5 data (Richter et al.
2016)

and atmospheric effects. Since the graphics data that generate the movie is open source, it is
possible to render scenes under conditions of varying complexity to evaluate where existing
optical flow algorithms fail. To validate the utility of synthetic data, the authors compared
the image- and flow-statistics of Sintel to those of real films and videos and showed they
are similar. Recently, Veeravasarapu et al. (2015a, b, 2016) described a graphics simulation
platform that is built on top of the open source graphics rendering tool Blender, and used that
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platform for systematic performance characterization and tradeoff analysis for vision system
design. They verified the utility of the platform in a case study of validating the rank-order
consistency model in the contexts of global and local illumination changes, bad weather, and
high-frequency noise. They also examined several invariance assumptions (order consistency,
brightness constancy, gradient constancy, dichromatic scattering, and object shape feature)
used for video surveillance settings and assessed the degree to which those assumptions
deviate as a function of contextual variables on both graphics simulations and in real data.
More recently, Qiu and Yuille (2016) presented an open-source tool called UnrealCV which
can be plugged into the game engine Unreal Engine 4 (UE4) to help construct realistic
virtual worlds from the resources of the game, virtual reality, and architecture visualization
industries. These virtualworlds allowed them to access andmodify the internal data structures
enabling them to extract ground truth, control a virtual camera, and train and test computer
vision algorithms.

Instead of synthesizing images purely from a virtual world, other researchers use some real
images and 3DCADmodels of an object class to generate a large number of synthetic images.
For example, Rematas et al. (2014) proposed a technique to use the structural information
extracted from a set of 3D models of an object class to improve novel-view synthesis for
images showing unknown instances of this class. These novel views can be used to amplify
training image collections that typically contain only a small number of views or lack certain
classes of views entirely (e.g., top views). They extracted the correlation of position, normal,
reflectance and appearance from computer-generated images of a few exemplars and used
this information to infer new appearance for new instances. Rozantsev et al. (2015) proposed
an approach to synthesizing images that are effective for training object detectors. Starting
from a small set of real images, their algorithm estimates the rendering parameters required
to synthesize similar images given a coarse 3D model of the target object. These parameters
can then be reused to generate an unlimited number of training images of the object of interest
in arbitrary 3D poses, which can then be used to increase classification performance. A key
insight of their work is that the synthetically generated images should be similar to real
images, not in terms of image quality, but rather in terms of features used during the detector
training.

Procedural modeling deals with automatic or semi-automatic content generation bymeans
of a program or procedure. Among many advantages, its data compression and the poten-
tial to generate a large variety of detailed content with reduced human intervention, have
made procedural modeling attractive for creating virtual environments. Smelik et al. (2014)
surveyed procedural methods that are useful for generating features of virtual worlds, includ-
ing terrains, vegetation, rivers, roads, buildings, and entire cities. They focused particularly
on the degree of intuitive control and of interactivity offered by each procedural method,
because these properties are instrumental for designers. In order to support research of traf-
fic simulation and human driving behavior, Prendinger et al. (2013) constructed a Virtual
Living Lab using synthesis tools of OpenStreetMap, CityEngine, and Unity3D. They used
an open source tool OpenStreetMap to create both the navigation network and the 3D road
network, and used vehicle agents and the navigation segment agent to acquire knowledge of
the surrounding environment. Recently, Dosovitskiy et al. (2017) proposed to train generative
“up-convolutional” neural networks that are able to generate images of objects given object
style, viewpoint, and color. They trained the networks on rendered 3D models of chairs,
tables, and cars. Their experiments show that the networks do not merely learn all images
by heart, but rather find a meaningful implicit representation of 3D models allowing them
to assess the similarity of different models, interpolate between given views to generate the
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missing ones, extrapolate views, and invent new objects not present in the training set by
recombining training instances, or even two different object classes.

In general, artificial scenes are created using open source or commercial game engines
and graphics simulation tools, rather than starting from scratch. Some commonly used tools
include Unity3D, Half-Life 2, Mental Ray, OpenGL, Panda3D, Google 3DWarehouse, 3DS
MAX, and Blender. For reading convenience, we summarize the existing (though not neces-
sarily complete) publicly available synthetic datasets in Table 1, in terms of the dataset name,
release year, simulation tool, and usage.

2.2 Feature analysis with synthetic data

Image features play an important role in computer vision, as they are used for a range of
tasks such as stereo matching, panorama stitching, 3D reconstruction, and object, scene, and
activity recognition. Because of their importance, analyzing and optimizing image features
is a significant undertaking. In contrast to images captured from the real world, synthetic
images from a virtual world allow complete knowledge of the scene geometry and full
control of the environment, thus making it possible to study the impact of different factors
of the environment on the image features in isolation (Kaneva et al. 2011; Pinto et al. 2011;
Aubry and Russell 2015).

Kaneva et al. (2011) proposed to use a photorealistic virtual world to gain complete and
repeatable control of the environment in order to evaluate image features. They used two
sets of images rendered from the Virtual City (as shown in Fig. 3) and from the Statue
of Liberty to evaluate the performance of a selection of commonly-used feature descrip-
tors, including SIFT, GLOH (Gradient Location and Orientation Histogram), DAISY, HOG,
and SSIM (the self-similarity descriptor). Their evaluation was conducted by matching key-
points. They found that the performance of the descriptors on similar datasets from the
real world and virtual Statue of Liberty is similar and results in the same ranking of the
descriptors. They then used the virtual world to study the effects on descriptor performance
of controlled changes in illumination and camera viewpoint. They also studied the effect
of augmenting the descriptors with depth information to improve performance. Pinto et al.
(2011) compared five state-of-the-art visual features on invariant object recognition tasks,
which include SIFT, PHOW (Pyramid Histogram Of visual Words), Pyramid HOG, Geo-
metric Blur, and SLF (Sparse Localized Features). This comparison was conducted on
a synthetic image set where the variation in object view was tightly controlled and the
ground truth was known. The authors reported that most of the features perform poorly
on invariant recognition, but that SLF consistently shows good performance in all of their
tests.

More recently, Aubry and Russell (2015) proposed an approach to analyzing the variation
of deep features generated by convolutional neural networks (CNNs) with respect to scene
factors that occur in natural images. Such factors include intrinsic factors (object category,
style, and color) and extrinsic factors (3D viewpoint and scene lighting configuration). Using
a database of 3DCADmodels, their approach analyzesCNN feature responses corresponding
to different scene factors by fully controlling them via rendering. The rendered images are
presented to a trained CNN and responses for different layers are studied with respect to the
input scene factors. The authors observed important differences across the CNN layers for
different scene factors. For example, the sensitivity to viewpoint decreases progressively in
the last layers of the CNNs. They also demonstrated that their deep feature analysis based
on computer-generated imagery is related to understanding the network representation of
natural images.
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Table 1 Somepublically available synthetic datasets for computer vision research,which are ranked according
to the release year

Dataset name Release year Simulation tool Usage

OVVV (Taylor et al. 2007) 2007 Half-Life 2 Evaluating tracking and
surveillance algorithms

Pedestrian dataset created in
Marín et al. (2010),
Vázquez (2013), Vázquez
et al. (2014), Xu et al.
(2014a, b)

2010 Half-Life 2 Learning pedestrian detection
models

SABS (Brutzer et al. 2011) 2011 Mental Ray Evaluating background
subtraction algorithms

Virtual City and Statue of
Liberty (Kaneva et al. 2011)

2011 3D CAD models
and Mental Ray

Evaluating hand-crafted
image features (e.g. SIFT,
GLOH, DAISY, HOG, and
SSIM)

MPI-Sintel (Butler et al.
2012; Wulff et al. 2012)

2012 Blender Evaluating optical flow
algorithms

BMC (Vacavant et al. 2013) 2012 SiVIC Learning and evaluating
background subtraction
algorithms

AGORASET (Allain et al.
2012; Courty et al. 2014)

2012 Mental Ray Evaluating low-level video
crowd analysis methods,
such as tracking or
segmentation

Dataset created in Haltakov
et al. (2013)

2013 VDrift Learning and evaluating
semantic segmentation
algorithms

Dataset created in Sun and
Saenko (2014), Sun et al.
(2015), Peng et al. (2015)

2014 3D CAD models
and 3DS MAX

Learning object detectors and
evaluating the invariance of
CNN features to low-level
cues

Dataset created in Pinto et al.
(2011)

2015 3D CAD models
and OpenGL

Evaluating deep CNN
features

SceneNet (Handa et al. 2015,
2016)

2015 CAD model
repositories

Learning semantic
segmentation models
(indoor scenes)

SYNTHIA (Ros et al. 2016) 2016 Unity3D Learning semantic
segmentation models (street
scenes)

GTA5 (Richter et al. 2016) 2016 Grand Theft Auto
V and
RenderDoc

Learning semantic
segmentation models

Virtual KITTI (Gaidon et al.
2016)

2016 Unity3D Learning and evaluating
computer vision models for
several video understanding
tasks

RenderCar
(Movshovitz-Attias et al.
2016)

2016 3D CAD models
and 3DS MAX

Learning viewpoint
estimation models
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Table 1 continued

Dataset name Release year Simulation tool Usage

LCrowdV (Cheung et al.
2016)

2016 Menge Engine for
simulation and
Unreal Engine
for rendering

Learning pedestrian detection
and crowd behavior models

CocoDoom (Mahendran et al.
2016)

2016 Doom game
engine

Learning and evaluating
computer vision methods

Dataset created in Chen et al.
(2016)

2016 SCAPE and
Blender

Learning human 3D pose
estimation methods

FlyingThings3D, Monkaa,
and Driving (Mayer et al.
2016)

2016 Blender Learning and evaluating
computer vision methods

Fig. 3 Examples of synthetic images from the Virtual City (Kaneva et al. 2011). a Image pair of a scene under
different viewpoints and illuminations. b The set of corresponding 3D points between the images in (a). c The
corresponding depth maps of the images in (a)

2.3 Object analysis with synthetic data

Acquiring object-related information is an important motive of visual perception and under-
standing research. Object information is highly varied, e.g., positions, silhouettes, categories,
identities, poses, moving directions and speeds, trajectories, and high-level activities. Due
to the complexity of real-world scenes, it is laborious to collect and annotate large amounts
of diversified real data. Instead, synthetic data generated with the latest computer graphics
technology have been used in a range of object analysis tasks.

First, synthetic data have been proved useful for learning pedestrian and vehicle detec-
tors. The works in Marín et al. (2010), Vázquez (2013), Vázquez et al. (2014), Xu et al.
(2014a, b) are among the earliest attempts to learn pedestrian detectors from virtual-world
datasets. The authors used the game engineHalf-Life 2 to generate realistic virtual worlds and
then explored whether virtual worlds can help learn appearance-based models for pedestrian
detection in real-world images. Their experimental results concluded that virtual-world-based
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Fig. 4 Learning scene-specific pedestrian detectors without real data (Hattori et al. 2015). Left: geometrically
consistent computer-generated training data. Right: scene-specific pedestrian detection results

training can provide excellent testing accuracy in the real world, but can also suffer from
the dataset shift problem as real-world-based training does. Accordingly, they designed a
domain adaptation framework, V-AYLA, in which they conducted active learning by col-
lecting a few pedestrian samples from the target domain (real world) and then combining
them with the many examples of the source domain (virtual world) in order to train a domain
adapted pedestrian detector that operates in the target domain. V-AYLA reported the same
detection accuracy as when training with many human-provided pedestrian annotations and
testing with real-world images of the same domain. Recently, Hattori et al. (2015) studied
the problem of designing a scene-specific pedestrian detector in a scenario where there are
zero instances of real pedestrian data (i.e., without labeled or unlabeled real data during
training), as shown in Fig. 4. The key idea of their work is to infer the potential appearance
of pedestrians using geometric scene data and a customizable database of virtual simulations
of pedestrian motion. They proposed an efficient discriminative learning method for gener-
ating a spatially-varying pedestrian appearance model that takes into account the perspective
geometry of the scene. As a result, their method is able to learn a unique pedestrian classifier
customized for every possible location in the scene. The experimental results showed that
their approach outperforms generic pedestrian detection methods [i.e., HOG-SVM (Dalal
and Triggs 2005) and DPM (Felzenszwalb et al. 2010)]. More surprisingly, their method
using purely synthetic data is able to outperform models learned from real scene-specific
data when data is limited. More recently, Johnson-Roberson et al. (2016) proposed a method
to incorporate photorealistic computer images from a simulation engine to rapidly generate
annotated data that can be used for training computer vision models. They demonstrated
that the Faster R-CNN architecture, which is trained using only these synthetic annotations,
performs better than the identical architecture trained on human annotated real-world data
when tested on the KITTI dataset for vehicle detection. By training the detector in a data-
rich virtual world, their work illustrated that real objects in real scenes can be learned and
classified using solely synthetic data.

Second, some researchers try to create a large number of training images from freely
available 3D CAD models, followed by learning generic object detectors with these images.
For example, Sun and Saenko (2014), Sun et al. (2015), Peng et al. (2015) generated large-
scale image datasets from 3D CAD models directly, and then used them to learn object
detectors and explore the invariance of CNN features to low-level cues. They found that
augmenting the training data of Deep CNN models with synthetic data can be effective,
especially when real training data are limited or not well matched to the target domain. Most
freely available CAD models capture 3D shape but are often missing other low-level cues,
such as realistic object texture, pose, or background. In a detailed analysis, they used synthetic
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CAD-rendered images to probe the ability of CNN to learn without these cues. Surprisingly,
they found that when the CNN is fine-tuned on the target detection task, it exhibits a large
degree of invariance to texture, color and pose, and less invariance to 3D shape. However,
when pre-trained on generic ImageNet classification, the degree of invariance is lower and it
learns better when the low-level cues are simulated. Pepik et al. (2015) used CAD models to
generate three types of synthetic renderings: wire-frame, plain texture, and texture transfer.
These renderings have different levels of photorealism. Their experimental results suggested
synthetic data helps improve the overall quality of object detection and the improvement is
directly proportional to photorealism.

Third, synthetic data can help learn and evaluate object tracking algorithms. For example,
Gaidon et al. (2016) leveraged recent progress in computer graphics to generate fully labeled,
dynamic, and photorealistic proxy virtual worlds. They proposed an efficient real-to-virtual
world cloning method, and validated their approach by building and publicly releasing a new
video dataset, called “Virtual KITTI”, which was automatically labeled with accurate ground
truth for object detection, tracking, scene and instance segmentation, depth, and optical
flow, as shown in Fig. 5. They provided quantitative experimental evidence suggesting: (1)
modern deep learning algorithms pre-trained on real data behave similarly in real and virtual
worlds; (2) pre-training on virtual data improves multi-object tracking performance. As the
gap between real and virtual worlds is small, virtual worlds enable measuring the impact
of weather and imaging conditions on tracking performance, all other things being equal.
They showed these factors may affect drastically otherwise high-performing deep models for
tracking. In particular, badweather (e.g., fog) causes the severest degradation of performance.

Fourth, object pose/viewpoint estimation also benefits from synthetic data, which is capa-
ble of supplying absolutely accurate pose/viewpoint annotations at negligible human cost. For
example, Movshovitz-Attias et al. (2016) explored semi-automating dataset creation through
the use of synthetic data and applied this method to object viewpoint estimation. Using
state-of-the-art rendering software, they generated a large labeled dataset of cars rendered
densely in viewpoint space. The generated dataset was used to train a deep convolutional
network. They investigated the effect of rendering parameters on estimation performance
and showed realism is important. They further reported that models trained on rendered data
are as accurate as those trained on real images and that combining synthetic images with a
small amount of real data improves estimation accuracy. Su et al. (2015) demonstrated that
images rendered from 3D models can be used to train CNN for viewpoint estimation on real
images. Their synthesis approach leveraged large 3D model collections to generate large-
scale training data with fully annotated viewpoint information. Critically, they achieved this
with negligible human effort, in contrast to previous efforts where training datasets have to be
annotated manually. They showed that the CNN trained with rendered 3D model views can
significantly outperform previous methods on the task of viewpoint estimation on 12 object
classes from PASCAL 3D+. They also conducted extensive experiments to analyze the effect
of synthesis parameters and input dataset scale on the estimation performance. Shotton et al.
(2013) described two approaches to human pose estimation. Both can quickly and accurately
predict the 3D positions of body joints from a single depth image without using any temporal
information. The key to both approaches is the use of a large, realistic, and highly varied
synthetic set of training images. This allows for learning models that are largely invariant to
factors such as pose, body shape, field-of-view cropping, and clothing. Similarly, Danielsson
and Aghazadeh (2014) studied the problem of estimating the pose of humans using pure
RGB image input. Specifically, they used a random forest classifier to classify pixels into
joint-based body part categories. Since the random forest requires a large number of training
samples, they used computer-graphics-generated, synthetic training data. They proposed a
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Fig. 5 The Virtual KITTI dataset (Gaidon et al. 2016). Top: a frame of a video from the KITTI multi-object
tracking benchmark.Middle: the corresponding synthetic frame from the Virtual KITTI dataset with automatic
tracking ground truth bounding boxes. Bottom: automatically generated ground truth for optical flow (left),
semantic segmentation (middle), and depth (right)

new objective function for random forest training that uses the weakly labeled data from the
target domain to encourage the learner to select features that generalize from the synthetic
source domain to the real target domain. Recently, Chen et al. (2016) extended Su et al.’s work
(Su et al. 2015) for human 3D pose estimation with a focus on domain adaptation and texture
transfer. They found that pose space coverage and texture diversity are the key ingredients for
the effectiveness of synthetic training data, and thereby presented a fully automatic, scalable
approach that samples the human pose space for guiding the synthesis procedure and extracts
clothing textures from real images. They further explored domain adaptation for bridging
the gap between synthetic training images and real testing photos. Their experimental results
demonstrated that CNNs trained with their synthetic images outperform those trained with
real photos on 3D pose estimation tasks.

Fifth, synthetic data offers the possibility of generating a range of annotations for crowd
video datasets and analyzing the crowded scenes. For example, Allain et al. (2012), Courty
et al. (2014) presented a simulation-based crowd video dataset for evaluation of low-level
video crowd analysis methods, such as tracking or segmentation. This dataset, named AGO-
RASET, was synthesized by using the social force model to simulate and Mental Ray to
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Fig. 6 A sample image and the ground-truth labels of virtual pedestrians (Cheung et al. 2016). Left: a sample
image generated using LCrowdV and consisting of 858 pedestrian agents. Right: automatically generated
labels of the pedestrians. It would be labor-intensive and error-prone if one labels every pedestrian by hand in
such a crowded scene

render. Eight scenarios were designed to reflect eight typical crowd flow patterns observed in
real-world situations. The associated ground-truth and metrics were also described, together
with a case study of using AGORASET to evaluate an object tracker. Their synthetic dataset
made it possible to evaluate crowd analysis methods, through full control of every factor of
the synthetic video and automatic generation of the ground truth. Unfortunately, the pho-
torealism of AGORASET is very limited and needs further improvement. Cheung et al.
(2016) presented a procedural framework (named LCrowdV) to generate an arbitrary num-
ber of labeled crowd videos. The resulting crowd video dataset is used to learn and train
computer vision models for crowded scene understanding. Their approach is composed of
two components: a procedural simulation component for generating crowd movements and
behaviors, and a procedural rendering component to generate synthetic videos or images.
Each video or image is automatically labeled in terms of the environment, number of pedes-
trians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. A sample image and
the ground-truth labels of pedestrians are illustrated in Fig. 6. By combining LCrowdV with
several real-world crowd datasets as the training dataset, they demonstrated that LCrowdV
has the benefit to improve accuracy of pedestrian detection and crowd behavior classification
algorithms.

In addition to the aforementioned topics, realistic synthetic data is also valuable to the
study of other object analysis topics such as background subtraction (Brutzer et al. 2011;
Vacavant et al. 2013; Sobral and Vacavant 2014), action/activity recognition and understand-
ing (Ramezani and Yaghmaee 2016; Karamouzas and Overmars 2012; Fernández et al. 2011)
text recognition (Jaderberg et al. 2014, 2016; Gupta et al. 2016; Ren et al. 2016), and bio-
metrics (Cappelli 2015; Zuo et al. 2007; Ferrer et al. 2015; Charalambous and Bharath 2016;
Galbally et al. 2012a, b; Correa et al. 2016; Luo et al. 2016). Interested readers are referred
to the cited papers for more details.

2.4 Scene analysis with synthetic data

Compared to feature analysis and object analysis, scene analysis puts more emphases on
scene-related information. In other words, scene analysis is a more holistic vision task. Syn-
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Fig. 7 The SYNTHIA dataset (Ros et al. 2016). A sample frame (left) with its semantic labels (middle) and
a general view of the virtual city (right)

thetic data have been proved useful for scene analysis, including semantic scene segmentation
(Veeravasarapu et al. 2016; Ros et al. 2016; Richter et al. 2016; Handa et al. 2015, 2016;
Shafaei et al. 2016), semantic scene understanding (Zitnick et al. 2016; Chen et al. 2015),
and place recognition (Sizikova et al. 2016).

First, synthetic data have begun to play a role in semantic scene segmentation, due to the
inherent difficulty in labeling pixel-level semantic annotationsmanually and the photorealism
of recently constructed artificial scenes. For example, Handa et al. (2015, 2016) presented
an effective solution to the problem of indoor scene understanding—deep network trained
with large numbers of rendered synthetic depth frames is able to achieve near state-of-the-art
performance on per-pixel image labeling despite using only depth data. Their experiments
showed that adding synthetic data improves the performance on NYUv2 and SUN RGB-D
datasets for depth-only experiments and offers a promising route for further improvements
in the state-of-the-art. Almost concurrently, Ros et al. (2016) presented SYNTHIA, a new
dataset for semantic segmentation of driving sceneswithmore than 213,400 synthetic images,
including both random snapshots and video sequences in a computer-generated virtual city.
Simulating different seasons, weather, and illumination conditions from multiple viewpoints
generates the images. Frames include pixel-level semantic annotations, as shown in Fig. 7.
They used SYNTHIA in combination with publicly available real-world urban images with
manually provided annotations. Their experiments with CNNs showed that the inclusion of
SYNTHIA in the training stage significantly improves performance on the semantic seg-
mentation task. Richter et al. (2016) presented an approach to rapidly creating pixel-accurate
semantic label maps for images extracted from computer games. Although source code and
internal operation of the commercial games they used are inaccessible, they managed to
produce dense pixel-level semantic annotations for 25,000 images extracted from the game
Grand Theft Auto V. The labeling process was completed in only 49 h, which is in contrast
to at least 12 person-years if using conventional manual labeling. Their experiments showed
that synthetic data is able to increase the performance of semantic segmentation models on
real-world images and reduce the need for expensive hand-labeling. In addition to Ros et al.
(2016), Richter et al. (2016), Handa et al. (2015, 2016), some other works (Veeravasarapu
et al. 2016; Shafaei et al. 2016) on semantic segmentation got similar findings. In Haltakov
et al. (2013), proposed another framework to generate a synthetic dataset for the task ofmulti-
class image segmentation. They used synthetic data to train a CRF model and then analyzed
the effects of using various combinations of features on the segmentation performance.

Second, synthetic data offers an excellent research platform for semantic scene under-
standing, due to its great ability to fully control the content in the scenario and automatically
generate the desired labels. For example, Zitnick et al. (2016) proposed to study semantic
information in abstract images created from collections of clip art. Abstract images provide
several advantages over real images. They allow for the direct study of high-level semantics
since they remove the reliance on noisy low-level object, attribute and relation detectors, or
the tedious hand-labeling of real images. More importantly, abstract images allow the ability
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to generate huge datasets of semantically similar scenes that would be nearly impossible
with real images. The authors created 1002 sets of 10 semantically similar abstract images
with corresponding written descriptions. They thoroughly analyzed this dataset to discover
semantically important features, the relations of words to visual features and methods for
measuring semantic similarity. Furthermore, they studied the relation between the saliency
and memorability of objects and their semantic importance. Another interesting example
relates to direct perception for autonomous driving, in which Chen et al. (2015) proposed
to learn a mapping from an image to several meaningful affordance indicators of the road
situation, including the angle of the car relative to the road, the distance to the lane markings,
and the distance to cars in the current and adjacent lanes. This representation provides a
set of compact yet complete descriptions of the scene to enable a simple controller to drive
autonomously. To demonstrate this, they used a car racing video game TORCS for model
training and testing. Specifically, they trained a deep CNN model using the recording from
12 h of human driving in TORCS and showed that their trained model can work well to
drive a car in a diverse set of virtual environments. Testing their TORCS-based model on car-
mounted smartphone videos further demonstrated good generalization ability in real-world
perception.

Moreover, synthetic data is also beneficial to exploring other scene analysis tasks. One
such example is visual place recognition,which refers to detectingwhen two images in a video
sequence depict the same location, possibly under camera viewpoint or illumination-related
appearance changes (Lowry et al. 2016). It is an important tool for robots to localize them-
selves in their surroundings. Sizikova et al. (2016) proposed to augment the place recognition
process with individual separate intensity and depth networks trained on synthetic data. They
showed that synthetic depth can be employed to train view-invariant CNNs that are useful
for place recognition. Their experiments further indicated that combining descriptors from
depth and intensity images shows improvement over intensity-only based place recognition,
even when only a handful of aligned RGB-D frames are available for training.

2.5 Other analyses with synthetic data

In addition to the aforementioned feature-, object-, and scene-related analysis works, syn-
thetic data have also been used to conduct other analyses, e.g., camera network research
(Qureshi and Terzopoulos 2008; Starzyk and Qureshi 2013) and camera calibration (Creusot
and Courty 2013).

As an alternative to real scenes, the computer-generated artificial scenes can be used as
virtual experimental platform to conduct camera network research. For example, Qureshi
and Terzopoulos (2008) proposed to study smart camera networks in virtual reality. A unique
centerpiece of their work is the combination of computer graphics, artificial life, and com-
puter vision technologies to develop such networks and experiment with them. Specifically,
they demonstrated a smart camera network comprising static and active virtual surveillance
cameras that provides extensive coverage of a large virtual public space, a train station popu-
lated by autonomously self-animating virtual pedestrians, as shown in Fig. 8. The simulated
network of smart cameras performs persistent visual surveillance of individual pedestrians
with minimal human intervention. On top of pedestrian detection and tracking, their camera
control strategy addresses camera aggregation and handoff in the absence of camera calibra-
tion, detailed world model, or central controller. However, their simulated camera network
has a limited scale (up to 16 virtual cameras and 100 virtual pedestrians) and the photorealism
is low, lacking realistic imaging details such as shadow, highlight, or complex illumination.
Afterwards, Starzyk and Qureshi (2013) presented a distributed virtual vision simulator that
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Fig. 8 Plan view of the virtual train station (Qureshi and Terzopoulos 2008), revealing the concourses and
train tracks (left), the main waiting room (middle), and the shopping arcade (right). The yellow rectangles
indicate pedestrian portals. An example camera network comprising 16 virtual cameras is illustrated. (Color
figure online)

is capable of simulating large-scale camera networks. Simulated cameras generate synthetic
video feeds that are fed into a vision processing pipeline to perform pedestrian detection and
tracking. The visual analysis results are then used for subsequent processing, such as camera
control, coordination, and handoff. Their virtual vision simulator is realized as a collection
of modules that communicate with each other over the network. In consequence, they could
deploy their simulator over a network of computers to simulate much larger camera networks
andmuchmore complex scenes. Specifically, their simulated camera network could comprise
more than one hundred active PTZ and passive wide field-of-view cameras.

Another example explores the applicability of synthetic data to camera calibration.Creusot
and Courty (2013) investigated the use of synthetic 3D scenes to generate temporally dense
and precise segmentation ground truth of pedestrians in 2D crowd video data. They compiled
a dataset of 1.8 million pedestrian silhouettes presenting human-to-human occlusion patterns
that are likely to be seen in real crowd videos. They further discussed how to determine the
camera tilt angle using the shape of the people in the video. Looking at a single frame only,
their method is able to retrieve the camera tilt angle for angle views between 10◦ and 80◦
vertical angle, with the error less than 7◦ for low angle view and less than 3◦ for high tilt
angles. This study demonstrated the utility of their proposed ground-truth data.

2.6 Summary

In summary, the previous works related to Parallel Vision take on three major trends. First,
open-source and commercial simulation tools with increasingly stronger power emerge abun-
dantly in recent years, making the constructed artificial scenes more and more photorealistic.
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Fig. 9 Yearly number of the related works cited in Sect. 2

Figures 5 and 7 show two instances of photorealistic artificial scenes released in 2016. Second,
the construction and utilization of artificial scenes have infiltrated into a wide range of com-
puter vision tasks. From low-level tasks such as feature description and object detection, to
mid-level tasks such as object tracking, and finally to high-level tasks such as action/activity
recognition and understanding, virtual reality and artificial scenes have begun to play an
important role. Third, more and more research papers related to Parallel Vision are pub-
lished in international journals and conferences. Figure 9 shows the number of related works
that are cited in this section, w.r.t. the publication years between 2007 and 2016. Although
some works may be omitted, Fig. 9 clearly indicates that increasingly more related papers
have been published in recent years. Moreover, in October 2016, the First Workshop on Vir-
tual/Augmented Reality for Visual Artificial Intelligence was held in conjunction with the
ECCV 2016, which is a clear signal that the role of computer graphics and virtual reality has
received high attention in the computer vision community. Under these trends, we propose
the concept and framework of Parallel Vision as well as some critical perspectives on it, in
order to bring inspiration to computer vision researchers and promote the development of
this fascinating research field.

3 Framework of Parallel Vision

3.1 Extending ACP into computer vision

In 2004, Fei-YueWang proposed the ACPMethodology for modeling and control of complex
systems (Wang 2004), which can be expressed as:

ACP = Artificial systems + Computational experiments + Parallel execution.

Through this combination, ACP builds artificial cyberspace as the other half space, and
then unites it with natural physical space into the complete “complex space” for solving
complex problems. The emerging technologies of Internet of Things, Cloud Computing, and
Big Data are ACP’s core supporters. In essence, the fundamental idea of ACP is to build
artificial systems as complex systems’ virtual proxy, on top of which it is possible to conduct
quantitative computational experiments and solve the complex problems more effectively.
Fei-Yue Wang further proposed the concept of Parallel System through parallel execution
between the unique real system and one or multiple artificial systems. After more than a
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Fig. 10 Basic framework and architecture for Parallel Vision

decade of development, the ACP and Parallel System theories have gained applications in
many fields, such as urban traffic management and control, Ethylene production process
management, and social computing (Wang 2010, 2013; Wang et al. 2016).

In this paper, by extending ACP and Parallel System theories into the computer vision
field, we present a novel vision computing methodology, named Parallel Vision. Our purpose
is to develop a systematic approach to tackle the long-standing difficulty in visual perception
and understanding of complex scenes. Figure 10 depicts the basic framework and architecture
of Parallel Vision. In brief, Parallel Vision is composed of an ACP trilogy, which is described
in the following subsections.

3.2 Artificial scenes

The first stage of Parallel Vision is to construct photorealistic artificial scenes by simulating a
diverse variety of environmental conditions that may occur in real scenes, and accordingly to
synthesize large-scale diversified datasets with precise annotations generated automatically.
Generally speaking, the construction of artificial scenes can be regarded as “video game
design”, i.e., using the computer animation-like techniques to model the artificial scenes. The
main technologies used in this stage include computer graphics, virtual reality, and micro-
simulation. Computer graphics and computer vision, on the whole, can be thought of as a
pair of forward and inverse problems. The goal of computer graphics is to synthesize image
measurements given the description of world parameters according to physics-based image
formation principles (forward inference), while the focus of computer vision is to map the
pixelmeasurements to 3D scene parameters and semantics (inverse inference) (Veeravasarapu
et al. 2015b). Apparently their goals are opposite, but can converge to a common point, i.e.,
Parallel Vision.

In many situations, due to the difficulty in data collection and annotation, we are unable
to obtain a satisfying training dataset from real scenes. This situation is bound to hinder the
design and evaluation of computer vision algorithms. Fortunately, the synthetic dataset com-
piled from artificial scenes can function as an alternative to real dataset. First, by means of the
off-the-shelf computing resources, artificial scenes are ready to generate an infinite amount
of training data, and by flexibly configuring the ingredients (e.g., scene layout, illumination,
weather, and camera viewpoint) of artificial scenes, we can synthesize images with suffi-
cient diversity. In consequence, it becomes possible to meet the requirement for large-scale
diversified datasets. Second, while the real scene is usually unrepeatable, computer-generated
artificial scenes can be repeated easily. By fixing some physical models and parameters while
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tuning the others for the artificial scenes, we can customize the image formation factors. This
allows us to evaluate our vision algorithms from various angles. Last but not least, there are
some peculiar real scenes from which it is impossible to capture valuable training images,
while the artificial scenes are seldom limited. Assuming we are developing a visual surveil-
lance system for a novel battlefield, we may not be able to obtain video images with access
to the enemy activities in advance. Under this situation, we are still able to construct artificial
scenes in which virtual enemy troops are on the move, thereby using the synthetic images
to develop the visual surveillance system. To sum up, constructing artificial scenes is of
great significance, given that it offers a reliable data source (as a supplement to conventional
real-scene data) for design and evaluation of vision systems.

3.3 Computational experiments

The second stage of Parallel Vision is to conduct various computational experiments with
the artificial scene dataset as well as the available real dataset, in order for us to design the
vision algorithms and evaluate them under complex environments. The main technologies
used in this stage include machine learning, domain adaptation, and performance character-
ization. Most of the existing vision systems have not been validated thoroughly in complex
environments, but rather been designed and evaluated under only a few common types of
environments. As a result, it is quite uncertain whether such systems are valid or not when
working under complex challenging conditions. To make a vision system truly effective, we
should use artificial scenes to conduct thorough experiments. Specifically, we should estab-
lish a software laboratory for computer vision research, conduct computational experiments
with the computer-generated artificial scenes, and design and evaluate vision algorithms thor-
oughly. In contrast to real scene-based experiments, the artificial scene-based experiments
are fully controllable, observable and repeatable, and can really produce “big data”, allowing
for subsequent algorithm optimization.

The computational experiments have two operating modes: “learning and training” and
“experiment and evaluation”. The first mode “learning and training” focuses on the design
of vision algorithms. In general, machine learning is located at the core of computer vision
algorithms. Both classic statistical learning methods (e.g., SVM and AdaBoost) and the cur-
rently fashionable deep learning methods depend on “learning from data”, which means
training data plays a critical role in computer vision. If we combine a large-scale synthetic
dataset with a certain scale of real data during training of machine learning models, the per-
formance of vision algorithms can be improved to some degree. In particular, deep learning
is a data-hungry method. The performance of deep learning models usually improves, as the
amount of training data increases (Ren et al. 2017; Johnson-Roberson et al. 2016; Chen et al.
2015; Jones 2014). However, all machine learning methods suffer from a so-called “dataset
bias” problem, that is to say, the training (source) domain has a distinct distribution with
the testing (target) domain. Thus domain adaptation must be achieved. More perspectives
on domain adaptation will be presented in Sect. 4.2. The second operating mode “experi-
ment and evaluation” focuses on the evaluation of vision algorithms. It demands us to use
the artificial scene dataset (as well as the available real dataset) to evaluate the performance
of vision algorithms. Since we are able to completely control the generating factors (such
as illumination, weather, objects, camera, etc) of artificial scenes, the validation of vision
algorithms will be more thorough and more comprehensive. By means of performance char-
acterization techniques (Thacker et al. 2008; Venetianer and Deng 2010), we can quantify the
performance of vision algorithms w.r.t. environmental conditions. Such quantitative assess-
ments will give us a confidence about the fielded efficacy of vision systems. To sum up, by
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extending the computational experiments from real scenes to artificial scenes, we are able
not only to expand the breadth of experiments but also to increase the depth of experiments,
leading to improved performance of vision algorithms.

3.4 Parallel execution

The third stage of Parallel Vision is parallel execution, which means operating the vision
model in both the real scene and one or multiple artificial scenes concurrently. In this way,
the model learning and evaluation can be conducted online and for a long term. Through the
virtual/real interaction between real-scene execution and artificial-scene execution, the vision
system is optimized continuously. In addition to those technologies used in artificial scenes
and computational experiments, online learning is particularly significant in this stage. From
the related works elaborated in Sect. 2, it can be seen that many vision researchers have had
ACP-like ideas, but mainly focused on A (Artificial scenes) and C (Computational experi-
ments). In our opinion, all of the three stages of ACP are necessary to overcome the inherent
difficulty in visual perception and understanding. Due to the unpredictable complexity, chal-
lenge, and variation of application environments, it is generally impossible (at least for now)
to solve a vision computing problem once and for all. For that reason, parallel execution
makes the virtual/real interaction a routine practice and attempts to boost the vision system
at run time.

Parallel execution is driven by big data, and its primary characteristic is to construct
artificial scenes in the loop. The available big data includes not only the real-time images,
illumination and weather data from the physical space, but also large repositories of virtual
object 3D models from the cyberspace. Analyzing the real-time images, one can (semi-
)automatically acquire the scene/object geometry, illumination and weather conditions, etc.
Combining them with the virtual object 3D models, it is possible to construct a variety of
meaningful artificial scenes. Under the support of Internet of Things and Cloud Computing, a
single real scene can correspond to multiple artificial scenes. As for constructing meaningful
artificial scenes, we do not intend to clone or reconstruct the real scene, but intend to predict
or foster the virtual proxy of real scenes. For an artificial scene to be meaningful, it must
satisfy two demands: (1) it must follow and simulate the latest environmental challenges in
the real scene, such as adverse illumination and weather conditions; (2) it must be beneficial
to boosting the vision computing methods. On top of the online constructed artificial scenes,
both of the operating modes of computational experiments, “learning and training” and
“experiment and evaluation”, can be applied to the vision system. As a result, the vision
system is improved in its adaptability to the dynamic scene, and moreover it gets ready
to meet future environmental challenges. To sum up, relying on the online construction
and utilization of artificial scenes, parallel execution is a data-driven, virtual/real interactive
approach to perception and understanding of complex scenes.

3.5 Summary

As a novel vision computing methodology, Parallel Vision makes an extension of the
ACP and Parallel System theories (Wang 2004, 2010, 2013; Zhang et al. 2008; Zhu
and Wang 2012; Yang and Wang 2007; Wang et al. 2016, 2017) for visual perception
and understanding of complex scenes. For Parallel Vision, the ACP trilogy serves as a
unity. Photorealistic artificial scenes are constructed to simulate and represent complex real
scenes, computational experiments are utilized to design and evaluate a variety of vision
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models, and parallel execution is finally implemented to optimize the vision system contin-
uously.

4 Perspectives on Parallel Vision

In this section, we present some in-depth perspectives on the ACP trilogy of Parallel Vision,
in order to shed some light and stimulate thought for the computer vision community.

4.1 Perspectives on artificial scenes

The first perspective on artificial scenes relates to the photorealism of computer-generated
imagery,which is exactly a focus of attention in computer graphics.Wedo expect the synthetic
images from artificial scenes to be as photorealistic as possible. In general, the photorealism
depends on the level-of-detail in the domain models that simulate the real world as well
as the level-of-fidelity of the rendering engine. To increase the level-of-detail, one needs to
comply with physical rules when modeling a given application domain. For example, the
3D geometric structures and surface textures of artificial scenes and virtual objects should
be consistent with those of real-world scenes and objects; when virtual pedestrians move in
artificial scenes, they should be similar in speed and gait to real pedestrians; when virtual
vehicles drive on the virtual road, they should comply with the driving behaviors of real
vehicles. Nevertheless, all virtual models are simplifications of reality, leading to a trade-off
as to what level of detail is included in the model. If too few details are included one runs
the risk of getting very unrealistic images. If too much detail is included the model may
become too complicated to handle. On the other hand, to maximize the level-of-fidelity of
the rendering engine, one needs to use exact sampling and rendering processes from physics
inspired models. This is mostly infeasible and computationally intractable. All in all, the
photorealism of synthetic images is still limited, so that the utility and training value of a
single synthetic image is generally lower than that of a single real image.This is a disadvantage
of artificial scenes.

The second perspective on artificial scenes involves the diversity of labeled datasets. It is
known that the real world is extremely diverse. In typical real scenes, there can be a variety
of objects with distinct appearance and motion patterns. Taking an urban traffic scene as
an example, the possible factors that constitute the scene are listed in Table 2. Even though
the real world is diverse, due to the insuperable difficulty in data collection and annotation
(see Sect. 1), real-scene datasets are often not diverse enough and suffer from the dataset
bias issue (Torralba and Efros 2011; Model and Shamir 2015). By contrast, the computer-
simulated artificial scenes are also extremely diverse, and can easily achieve data collection
and annotation. Synthetic images from artificial scenes should still have bias, while injecting
additional diversity. In accordancewith thephysical rules of real scenes, various scene layouts,
objects, and even illumination and weather conditions can be simulated in artificial scenes.
Moreover, we are able to completely control the generating factors of artificial scenes and
synthesize our desired images. As a result, synthetic images seem more diverse than real
image datasets compiled from the real world.

As another perspective, constructing artificial scenes with modern computers provides
the flexibility to enlarge the scale of synthetic data. As long as the computing and storage
resources are sufficient, the artificial scenes can be constructed to a size large enough. The
synthetic images are captured using virtual cameras that can be easily configured in artificial
scenes, without requiring the cumbersome installment of real cameras. Thus, the base number
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Table 2 Possible factors that
constitute an urban traffic scene

Factors Contents

Static objects Sky, building, road, pavement, fence, vegeta-
tion, lamp pole, lane marking, traffic sign, etc

Dynamic objects Car, bus, truck, pedestrian, bicycle, motorcy-
cle, etc

Seasons Spring, Summer, Autumn, and Winter

Weather conditions Sunny, cloudy, rainy, snowy, foggy, windy, etc

Light sources Sun in daytime, street light and vehicle light
at night, etc

of synthetic images can be much larger than the real image datasets. More importantly, since
the artificial scenes are constructed in a bottom-up manner, a wide variety of ground truth
annotations for the synthetic images canbegenerated automatically, includingobject position,
silhouette, category, pose/viewpoint, motion trajectory, semantic scene segmentation, depth,
optical flow, and so on. Having the ability to build large-scale labeled datasets is absolutely
an advantage of artificial scenes.

In summary, artificial scenes have the potential to build synthetic image datasets with large
scale and enough diversity, which helps to eliminate overfitting a computer vision model and
enhance its generalization ability. However, the photorealism of current synthetic images is
still limited, thus leading to dataset bias. Hence domain adaptation must be achieved to tackle
this issue, as will be discussed in the next subsection. In spite of this, artificial scenes offer a
powerful path forward as the ever-developing computer graphics technology can ultimately
produce images that are indistinguishable from real-world images, yet still have all ground
truth variables known and under parametric control.

4.2 Perspectives on computational experiments

Under the operating mode “learning and training”, the synthetic images from artificial scenes
are used to learn the computer vision model. Due to the limited photorealism of synthetic
images, however, there is a gap (called dataset bias or domain shift) between the distributions
of synthetic images and real images, so that the model learned from synthetic images cannot
be directly applied to real images. To mitigate the effects of dataset bias, three domain
adaptation strategies (Gopalan et al. 2015; Ganin et al. 2016; Ghifary 2016) could be used.

(1) Unsupervised domain adaptation—using a large amount of labeled synthetic data and
a large amount of unlabeled real data together to train the model. Under this strategy,
one does not have any labeled data from the target (real) domain. Some recent methods
(Chen et al. 2016; Ganin et al. 2016; Ghifary 2016) propose to learn powerful features
that are both discriminative for the label prediction task and invariant to the changes of
domain, i.e., have very similar distributions in the source and the target domains.

(2) Supervised domain adaptation—using a large amount of labeled synthetic data and a
small amount of labeled real data together to train the model. The unlabeled real data is
not used in this strategy. One simple yet effective practice (Ros et al. 2016; Movshovitz-
Attias et al. 2016) is to combine the labeled synthetic and real data as a common training
set to train the model; another frequently adopted practice (Vázquez et al. 2014; Xu et al.
2014a, b; Handa et al. 2016; Gaidon et al. 2016) is first learning the model from labeled
synthetic data and then fine-tuning it with labeled real data.

123



Parallel vision for perception and understanding of complex... 321

Fig. 11 Results for traffic sign classification with different model training strategies. Syn and Real denote
available labeled data (100,000 synthetic and 430 real images respectively); Adapted means that ≈ 31,000
unlabeled target domain (real) images were used for domain adaptation. The best performance is achieved by
employing the semi-supervised domain adaptation strategy. This example comes from Ganin et al. (2016). It
is should be noted that after model training, the validation errors corresponding to the curves have the same
order from top to down with the legend

(3) Semi-supervised domain adaptation — using a large amount of labeled synthetic data,
a small amount of labeled real data, and a large amount of unlabeled real data together
to train the model. Since the most data are utilized, this strategy is usually able to yield
the best performance.

Let us quote an example from Ganin et al. (2016) to illustrate how useful the three domain
adaptation strategies can be. This example relates to learning deep CNNs for classification
of traffic signs (total 43 classes). Five model training strategies are evaluated, and Fig. 11
shows the change of validation error throughout the training. Because the number of labeled
real images is too small (only 430 samples), the model learned purely from labeled real
data results in the highest validation error. By learning purely from large amounts of labeled
synthetic data (100,000 samples), the validation error can be reduced a little but is still high
due to dataset bias. By using the unsupervised domain adaptation strategy, a sensible decrease
in validation error is achieved although no labeled data from the target domain is utilized.
Supervised domain adaptation further improves performance. However, the best performance
is achieved by employing the semi-supervised domain adaptation strategy, perhaps because
the most data are utilized. This example suggests that domain adaptation is beneficial to
“learning and training” and that semi-supervised domain adaptation seems to be the most
promising.

Under the operating mode “experiment and evaluation”, the testing datasets from both
artificial and real scenes are used sequentially to evaluate the vision algorithm. We suggest
a circulation procedure for evaluating a vision algorithm. The algorithm should first be
evaluated on synthetic dataset from artificial scenes. This is because artificial scenes are
fully controllable and their ground truth can be automatically generated, so that we are
able to freeze all scene-related factors (e.g., scene geometry, object appearance and motion,
illumination, camera, etc) but adjust one (e.g., weather condition) during evaluation. This
enables us to separate the impact of each factor on algorithm performance, evaluate the
algorithm thoroughly, and discover the pros and cons of the algorithm. Even though a vision
algorithm is confirmed effective in artificial scenes, it still needs to be evaluated on real
dataset. This is because the vision algorithm will eventually be applied to real scenes, but
there is a gap between artificial scenes and real scenes. If a vision algorithm performs badly
in artificial or real scenes, it must be re-designed and re-evaluated. During “experiment and
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evaluation”, the hard examples could be automatically mined and added to the training set for
algorithm re-design. This is followed by a new iteration, i.e., evaluate the vision algorithm
first on artificial scenes and then on real scenes. And this iteration repeats until the algorithm
passes the test in both kinds of scenes.

4.3 Perspectives on parallel execution

The aim of parallel execution is to online boost the vision systemwith a virtual/real interactive
policy. Due to the unpredictable complexity, challenge, and variation of fielded environments,
in many cases we do not have the ability to produce a perfect vision system once and for all.
Parallel execution offers a more viable option, by first building an acceptable vision system
at the beginning and then boosting it through online learning and optimization. For parallel
execution, the artificial scenes are constructed and utilized in the loop. Under the support of
Internet of Things and Cloud Computing, although the real scene is unique, multiple artificial
scenes can interact in parallel with a single real scene. The artificial scenes are constructed
by simulating the major generating factors (e.g., scene geometry, illumination, weather, etc)
of the real scene. On the one hand, the artificial scenes should follow and simulate the
dynamically changing environments in the real scene. For instance, the illumination and
weather conditions in artificial scenes should be kept similar with those in the real scene. On
the other hand, the artificial scenes could be made specific with respect to a real scene. This
is particularly important for visual surveillance applications where the real scene is observed
by a stationary camera, and the scene geometry is fixed. In general, a scene-specific vision
model learned from scene-specific data performs better than a generic one (Hattori et al. 2015;
Wang et al. 2014; Zeng et al. 2014). While collecting large amounts of training data from
a specific real scene is time-consuming and laborious, constructing artificial scenes offers
the feasibility of synthesizing large-scale diversified data for specific scenes and learning
a scene-specific vision model. To sum up, the online constructed artificial scenes produce
infinite labeled data that are essential to online learning, optimization, and evaluation of the
vision system.

Both of the operating modes for computational experiments (i.e., “learning and training”
and “experiment and evaluation”) should be closely interwoven in this stage. For “learning
and training”, online bootstrapping (or hard examplemining) can be implemented to automat-
ically mine the hard examples where the vision model fails or performs badly (Felzenszwalb
et al. 2010;Vázquez et al. 2014; Shrivastava et al. 2016;Loshchilov andHutter 2016). Thehard
examples from both the online constructed artificial-scene data and the randomly selected
real-scene data are accumulated to compose new batches of training data, which can then be
used to fine-tune the vision model. The real-scene data may be offline or online, labeled or
unlabeled. They are all useful to online learning, as domain adaptation (see Sect. 4.2) will
be conducted to integrate information from both artificial and real scene data and suppress
the dataset bias problem. Through such online learning and training, the vision model will
adapt itself to the dynamically changing environments in the real scene. For “experiment and
evaluation”, the circulation procedure suggested in Sect. 4.2 can also be used to evaluate the
vision model periodically. The online synthetic dataset from artificial scenes is first used for
evaluation, and then the (offline or online) real dataset from real scenes is used. Performance
characterization is conducted, and hard examples are automatically mined and accumulated.
If a large drop in performance takes place, one needs to use new batches of training data to
amend the vision model, or even substitute the previous model with a better-performing one.
This procedure repeats continuously! As a result, the vision system is continuously optimized
by parallel execution.
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Fig. 12 Constructing artificial scenes by superimposing virtual pedestrians onto the real background images

4.4 Perspectives on applications

The Parallel Vision methodology can be applied to a broad range of vision computing tasks,
including visual surveillance (Neves et al. 2016), robotic vision (Halim et al. 2016), medical
imaging (Angel and Mary 2017), and so on. The ability of Parallel Vision to construct
controllable artificial scenes and synthesize photorealistic images is rather useful for CVPR
(computer vision and pattern recognition) research. By means of Parallel Vision, a CVPR
system can learn from synthetic images and be evaluated in artificial scenes, which provide
more flexibilities than actual images and scenes.

We have applied the Parallel Visionmethodology to the study of visual surveillance. Given
a specific surveillance scene, we can train object detectors even without any real training
data. Since the camera is stationary and a background image can be estimated and updated
online, we can construct an artificial scene to augment the real scene by superimposing virtual
pedestrians onto the background image, as shown inFig. 12. The virtual pedestriansmoving in
artificial scenes are exploited to simulate real pedestriansmoving in actual scenes.At the same
time, ground-truth annotations for the bounding boxes of virtual pedestrians are generated
automatically. The synthetic images are collected to compose the training set, which can be
used to train pedestrian detectors in case of lacking any real training data. Our experimental
results indicate that training Faster R-CNN with scene-specific synthetic images increases
the AP (average precision) of pedestrian detection by a large margin (averagely 15.8% in our
experiment), compared to training Faster R-CNN with the generic PASCAL VOC dataset.
From this case study of Parallel Vision, it can be expected that purely synthesized datasets
are enough to train high-performance CVPR models.

The Parallel Vision methodology can also be applied to robotic vision research. As a kind
of wheeled robot, on-road intelligent vehicle should perceive the surrounding situations and
guide the vehicle to drive (Halim et al. 2016). Due to the complexity of real-world traffic
scenes and the limitations of real datasets, it is difficult to design and evaluate the visual
perception model based solely on real datasets and scenes. Artificial scenes are considered as
a complementary space, in whichmodel learning and evaluation can be conducted effectively
and safely. We have constructed an artificial urban road network, in which virtual vehicles,
pedestrians and cyclists move like real objects. The illumination and weather conditions can
be controlled completely, simulating complex environmental conditions in the real world.
Figure 13 shows the fidelity and diversity of synthetic images captured from our constructed
artificial scenes. We are employing this artificial road network to develop new perception
and decision methods for intelligent vehicles. Preliminary results have proved the feasibility
of Parallel Vision.

Medical imaging is another field where Parallel Vision can play an important role. In
this application field, CVPR systems should detect and segment various pathological tissues
from radiology images (X-ray, ultrasound, computed tomography (CT), positron emission
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Fig. 13 Virtual images synthesized from our constructed artificial scenes under different weather conditions
(Left top: cloudy weather; right top: sunny weather; left bottom: foggy weather; right bottom: rainy weather)

tomography (PET) andmagnetic resonance image (MRI)) and histopathology images (Angel
and Mary 2017). In order to train the CVPR systems, a number of training images should
be collected and the ground-truth annotations (including pathological tissue segmentation
and categorization) should be labeled by human experts. However, the collectable medical
images with pathological tissues are limited and the experts are always sparse. It is practi-
cally impossible to collect and annotate large-scale diversified medical images with various
pathological tissues. As an alternative, synthetic images with virtual pathological tissues can
be generated by using the virtual reality technology. Synthetic images and real images can
be combined to design the medical CVPR systems. This should be a promising application
of Parallel Vision in medical imaging.

5 Conclusion

In this article, we survey the use of photorealistic image synthesis methods in addressing the
problems of visual perception and understanding, from the perspective of Parallel Vision.
We extend the ACPMethodology into the computer vision field and propose the concept and
basic framework of ParallelVision.As a novel vision computingmethodology, ParallelVision
builds on top of computer graphics and virtual reality to explore a systematicmethod for visual
perception and understanding of complex scenes. Parallel Vision is composed of a new ACP
trilogy. Photorealistic artificial scenes are constructed to simulate and represent complex
real scenes, making it possible to collect and annotate large-scale diversified datasets. Then
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computational experiments are utilized to learn and evaluate a range of visionmodels, leading
to improved performance. Finally, parallel execution is implemented to optimize online the
vision system, making virtual/real interaction a routine practice of vision computing.

The Parallel Vision related research has attracted much attention in the computer vision
community. In recent top-class computer vision conferences and journals (e.g., ICCV, CVPR,
ECCV, IJCV, and PAMI), a great many works that use computer graphics to help address
a range of vision computing problems have been published. With the rapid development of
computer graphics, the computer-generated artificial scenes will bemore photorealistic in the
future, thus providing a more reliable foundation support for Parallel Vision. We believe that
Parallel Vision will become an important research branch in the computer vision field. In par-
ticular, the combination of Parallel Vision and Deep Learning has great potential to promote
the development of intelligent vision systems and speed up the process of industrialization.
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