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Abstract The modern electric grid is one the most complex man-made control systems.
Proportional–integral–derivative (PID) controllers are widely used in a variety of applica-
tions including automatic generation control (AGC), automatic voltage regulators, power
system stabilizers and flexible AC transmission system devices. Automatic generation con-
trol plays an important role in power system operation to maintain the frequency within an
acceptable range and to properly respond to load changes under normal conditions. Using
the PIDs, AGC keeps the balance between generation and load demand in order to minimize
frequency deviations. Furthermore, the AGC regulates the tie-line power exchange and facil-
itates bilateral contracts spanning over several control areas, thus ensuring reliable operation
of the interconnected transmission system. Since the power system load variations occur
continually, generation control is set to automatic to restore the frequency after disturbances.
The PID controllers have the advantage of simple structure, good stability, and high relia-
bility. However, a robust and efficient tuning of PID parameters are still being investigated
using different techniques. One of the recent areas of such studies is nature-inspired algo-
rithms. The main objective of utilizing nature-inspired algorithms is to optimize parameters
of several controllers simultaneously. This paper reviews the latest applications of various
nature-inspired algorithms for optimal design of AGC control in power systems. Different
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algorithms, proposed in the recent literature, are classified based on the type of controller,
objective function and test systems.

Keywords Automatic generation control (AGC) · PID-controller · Nature-inspired
algorithms · Genetic algorithm · Particle swarm optimization

List of symbols

Indices

i Index for number of areas
j Index for number of areas
t Index for time interval

Parameters

KPi Proportional gain of controller in area i
KDi Derivative gain of controller in area i
KIi Integral gain of controller in area i
�Ptie Incremental change in the tie line power connecting
� fi Frequency deviation of area i
OS Overshoot of controller
US Undershoot of controller
ST Settling time of controller
B Frequency bias constant
ACE Area controller error

Fuzzy linguistic variables

NB Negative big
NM Negative medium
NS Negative small
ZE Zero
PS Positive small
PM Positive medium
PB Positive big
G Maximum error in fuzzy membership function

1 Introduction

Automatic generation control (AGC) schemes are often operated from a central location
where the system’s data are gathered. Control signals are produced in a digital computer and
then sent to the generation units. To operate an AGC system, the following data would be
needed at the control center.
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(a) The output of every committed unit.
(b) Power flow over to neighboring systems.
(c) Frequency of power system.

The “raise” or “lower” control signals are produced in an AGC program and transmitted
to the generating unit to regulate the unit set points accordingly. The main control loop for a
unit consists of an integrator with a gain of K as shown in Fig. 1. The control system details
are depicted in Fig. 2. From Figs. 1 and 2, the control signal is a function of system frequency
deviation, net inter-change error, and eachunits deviation from its scheduled economic output.

The difference between the actual generation and the desired generation is called ACE,
which is the starting point in developing a control scheme. Figure 3 shows the process of
ACE calculation.

For running the economic dispatch orders, the ACE control logic should be operated
according to ACE errors in unit outputs. The control system has been driven with a hybrid
error signal consist of ACE and sum of unit output errors. In Fig. 4, the control system is
built using a combination of ACE signal, generation allocation result, and the unit control
loop output. As shown in Fig. 4, the goal of a control system is to drive the ACE to zero and
to operate each unit in its economic value. In an AGC presentation, the objective of a PID
controller is to manage the load frequency control (LFC) to minimise the ACE position to
variation in rated load and provide the dynamic stability of power plants. A PID controller
increases the “type” of the system and ensures that the steady state error will be zero for the
application of step changes in the load demand. The PID controller calculates the average
error of the plant and generates an output to minimize the plant error. It should be mentioned
that the controller gains should not be too high, otherwise, instability may occur (Wood and
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Wollenberg 2012). The control signal (u (s)), i.e., amount of control action, may be expressed
by

u(s) = GPID(s) × ACE (1)

where GPID(s) may be stated by (2)

GPID(s) = KP + KI

s
+ sKD (2)

In (2), KP , KI and KD are the proportional, integral and derivative gains of PID controller,
respectively. These parameters require optimal tuning (Khodabakhshian and Hooshmand
2010).
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The most important criteria in the process of an AGC design are as follows:

(a) The ACE signal is straightly effected by load variation.
(b) ACE should not allowed to drift. This means that the integral component of ACE must

be small.
(c) The control actions that are used for AGC must be small. Many of the errors in ACE

are basically random load deviations that are not necessary to trigger control action. The
unit speed will wear out if the control system tries to follow these load deviations.

A multi-area interconnection is consists of areas that are connected by tie-lines. The trend
of frequency measured in any area is a sign of the mismatch power in the interconnection and
not in the area only. Any area of a multi area system needs to adjust its generation according
of the load and restore the frequency. For satisfying this purpose, AGC is needed to control
the generation for responding to the variations of power in the interconnection.

The error between generation and the power demanded by loads and losses is the sum of
power flows. Constant net interchange control is the scheme of matching a generation trend
in the other area that has an acceptable match with the sum of areas own load and losses. For
a two area system, the area control error can be obtained as Jaleeli et al. (1992).

ACE = (Ta − Ts) − 10β ( fa − fs) (3)

where β is a coefficient that traditionally is given in MWHz0.1, and relates the combination
of load and governor sensitivity to frequency (Cohn 1971). The area control error for a
multi-area system can be obtained as below.

ACE1 = (P01 − P1) − 10β1 ( f − f01)
ACE2 = (P02 − P2) − 10β2 ( f − f02)
...

ACEn = (P0n − Pn) − 10βn ( f − f0n)

(4)

0 = P1 + P2 + · · · + Pn (5)

where P01 is the scheduled interchange power, β1 is the frequency bias coefficient, f01 is
the scheduled frequency, ACE1 is the area control error and n is the number of areas in a
multi-area system.

The most important feature of using AGC for a multi-area system is the control algorithm.
The proportional scheme is used in the USA and a proportional integral (PI) algorithm is
used in Europe. The PI algorithm is formulated as

Y = CP · ACE + 1

TN
·
∫

ACE · dt (6)

whereCP is the proportional gain, TN is the time constant andY is the output of the controller,
with typical values, CP = 0.1−0.3 and TN = 30−100 s.

Because the gain of the integral term is relatively small, a high proportional term increases
the controller gain and improves the dynamic response (Glavitsch and Stoffel 1980). Different
perspectives of automatic generation control by considering variousmodels of power systems
(linear or non-linear), classical or optimal control and multi-level control are discussed in
Kumar and Kothari (2005). This study contains different AGC strategies included digital
based, adaptive and self-tuning. Also, AGC systems includingwind turbines, FACTSdevices,
and PV systems has been analyzed (Kumar and Kothari 2005). In some cases, the controller
that is used is a PID controller. Formulation of PID controller that used for AGC is expressed
as
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Gc(s) = KP

(
1 + 1

Ti s
+ Tds

)
(7)

where KP is proportional gain, and Ti and Td are integral and derivative time constants
respectively (Singh and Sen 2004).

The fractional order PIDs (FOPID) have advantages such as castrating steady-state error,
robustness gain deviation, good disturbance rejection and the ability to improve handling
parameters uncertainty. Formulation of an FOPID may be written as

C(s) = kP + kI
Sλ

+ kDS
μ (8)

where λ and μ can accept any value in the range (0, 2) (Sondhi and Hote 2014).
Fuzzy logic controller (FLC) can be implemented by fivedifferent functional blocks:

rated fuzzification, rule-base, data-base, inference engine, and defuzzification (Damarla et al.
1994). For matching the sensors and the actuators requirements, fuzzification of input vari-
ables and defuzzification of output variables are required, as the inputs and outputs of the
fuzzy controller should be real numbers. The purpose of fuzzification is to change the real sen-
sor data into fuzzy linguistic terms so that further fuzzy inferences can be changed according
to the rule-base. Figure 5 shows the sets of fuzzy terms commonly used.

(a) Scaling Factor Tuning
In order to simplify the membership function, the fuzzy linguistic terms in the rule-base
style are defined (Abbasy and Ismail 2009). As a result, the actual alternation of the
inputs are normalized into the interval of (0, 1). The input scaling factors are calculated
by the experts or designers. Normalized linguistic terms are shown in Fig. 6.

(b) Membership Function Width Tuning
The performance of the fuzzy logic controller based on a designedmembership functions
and fuzzy control rules are defined in Damarla et al. (1994). Membership functions form
the fuzzy variables and fuzzy sub sets. By considering the fuzzy variables with fuzzy
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sub sets like (NL, ZE, PL), once the shape and width and the center position of the
membership functions are selected, they cannot be varied in the control process. Figure 7
shows the centers of themembership functions remain unaltered but thewidths are varied
and thus the membership function width is determined as one of the tunable parameters
(Patel et al. 2008; Hyun-Joon et al. 1997).

2 Nature-inspired algorithms applied to AGC controller tuning

2.1 Genetic algorithm (GA)

Genetic algorithms (GAs) are intelligent search methods based on the operations observed
in natural selection and genetics (Karnavas and Papadopoulos 2002). They act on a pop-
ulation of current estimations (the individuals) produced randomly to seek improvements.
The individuals are converted to codes such as strings (chromosomes) built over some spe-
cial alphabet, e.g. the binary code. The chromosomes are uniquely mapped onto the decision
variable phenotypic. Once the decision variable phenotypic of the current population is calcu-
lated, individual performance are computed from the objective function, which characterizes
the problem to be solved. It is also common to use the variable parameters directly to rep-
resent the chromosomes in the GA solution. At the reproduction step, the amount of the
fitness, evaluated through the objective function and associated with each individual will be
ameasure for selection. Highly fit individuals will have better chances to appear in successive
generations. In this way, the genetic algorithms look for many points in the search space at
once so that the accuracy of the search within the areas of the observed best solutions is
improved. The selected individuals are then adjusted through the usage of genetic operators
in order to obtain the next generation. Genetic operators can be separated into three main
parts, reproduction, crossover, and mutation.

(a) Reproduction Fittest individuals are selected in the current population to be formed in
generating the next population.
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(b) Crossover Pairs, or larger groups of individuals to exchange genetic information with
one another.

(c) Mutation Some probabilistic rule makes individual genetic representations to be used in
the next generation.

Genetic algorithms rely on a population of points, and are based on probabilistic transition
laws. Typical optimization methods are formed on deterministic hill-climbing techniques,
which, by definition, will only find local optima. Genetic algorithms can also alter irregularity
and noisy function calculations.

For the AGC problem, the performance index can be defined by adding the sum of squares
of all errors in ACE, i.e.,

J =
∫ ∞

0

k∑
i=1

(ACEi )
2dt (9)

Minimizing the performance index J can be stated as:

Minimize J

subject to

Kmin
P, j ≤ KP, j ≤ Kmax

P, j
Tmin
i, j ≤ Ti, j ≤ Tmax

d, j
Tmin
d, j ≤ Td, j ≤ Tmax

d, j

(10)

where i, j are the area numbers and KP, j , Ti, j and Td, j are PID controller parameters of
the jth area (Singh and Sen 2004; Hyun-Joon et al. 1997; Demiroren and Zeynelgil 2007;
Pingkang et al. 2002; Abdel-Magid and Dawoud 1995a, b, 1996; Bhatt et al. 2010).

The control variables of KP, j , Td, j and Td, j (i and j = 1 to k) in the GA algorithm can be
obtained simultaneously by solving the constrained optimization problem. Flowchart of the
GA process for AGC controller is depicted in Fig. 8.

2.2 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a nature-inspired algorithm that uses initial population
like other meta heuristic algorithms. In the next step, the particles move towards the bet-
ter solution area which has, which has the best response for an objective function. In this
algorithm, each particle remembers its best solution (local best) and the group best solution
(global best). In PSO, each particle moves in a multi-dimensional area to search the space
according to its flying experience. In this space after choosing a point to each individual, The
particle which has better objective function becomes a good solution for the next iteration.
The search continues until convergence. The velocity and location of the particles are updated
using the following equations.

Vid = Vid + c1r1(Pld − Xid) + c2r2(Pgd − Xid) (11a)

Xid = Xid + Vid (11b)

where Xid represents the location of i-th particle and Vid represents the velocity (rate of
position change) of particle i . The parameters Pld , Pgd represent local and global best par-
ticles. Also, c1, c2 are constant acceleration coefficients and r1, r2 are uniformly distributed
random variables.

There are several methods for load frequency control in multi-area systems. In Jadhav
and Vadirajacharya (2012) two areaes with thermal power systems was studied. The most
important issues in designing a PID controller for this problem are efficiency and a quality
response. The PID Parameters are obtained by optimizing the objective function in (9).
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Fig. 8 Flowchart of genetic algorithm process

Some constraints on the PID parameters are

KPj
min ≤ KPj ≤ KPj

max

KI j
min ≤ KI j ≤ KI j

max

KDj
min ≤ KDj ≤ KDj

max (12)

Application of particle swarm optimization (PSO) in AGC is discussed in Abdel-Magid
et al. (2003). In this paper, a two area reheat thermal system and a PI controller are studied.
The PSO algorithm is implemented to obtain the parameters of the controller in each area.
The objective functions are considered to be

J1 =
∞∫

0

(
�P2

tie + � f 21
)
dt (13a)

J2 =
∞∫

0

t (|�Ptie| + |� f1|) dt (13b)

For calculating optimal gains of the controller, a unit load change is assumed in area 1.
In Haddin et al. (2011), the PSO algorithm has been used to improve the dynamic stability

of the power system. Dynamic stability is characterized by Comprehensive Damping Index
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(CDI), which is used in the objective function to be optimized using the PSO algorithm. The
objective function that incorporates the CDI is

min f(z) = CDI =
n∑

i=1

(1 − ξi ) (14a)

λi = σi + jωi (14b)

ξi = −σi√
σi 2 + ωi

2
(14c)

where λi , σi , ωi are the i-th eigenvalue and its real and imaginary parts, respectively. Also,
ξi is the damping ratio of i-th eigenvalue.

The CDI is a function based on z, a row matrix, which contains the performance of AVR,
PSS and AGC. In the particle swarm optimization (PSO), z is called the position of the
particle with d-dimensional problem space.

In Patel et al. (2008), a robust controller has been designed for automatic generation con-
trol in hydro-thermal and thermal–thermal power systems using the combination of particle
swarm optimization and genetic algorithms. In this case, a secondary Fuzzy controller has
also been implemented. This optimization technique produces a better dynamic performance
in various conditions.

A combination of particle swarm optimization and pattern search (PS) are used for tuning
fuzzy PI controller in Sahu et al. (2015a). In this case, a two-area with non-reheat thermal
systems were considered. A PI Fuzzy controller was used for AGC and the objective function
for this problem was considered to be Integral of Time Multiplied Absolute Error (ITAE).
Constraints were the maximum and minimum value of controllers parameters (KP , KI ).
These two algorithms together can perform a better search in such a high dimensional space.
The PSO algorithm explores the global optimum and finding a suitable search area. Then,
the PS is used for local search and finding the best solution in the area that obtained by the
PSO. The results are the controller gains. The flowchart given in Fig. 9 explains the particle
swarm optimization.

2.3 Imperialist competitive algorithm (ICA)

The imperialist competitive algorithm is an evolutionary algorithm inspired by imperialistic
competition. It beginswith an initial population named colonies. The colony is sorted based on
performance and divided into two groups; the imperialists for best solutions and the colonies
for rest of the solutions. The imperialists attempt to take in more colonies to their empire
space. The colonieswill change according to the policies of imperialists (Mohammadi-Ivatloo
et al. 2012; Rabiee et al. 2011). For the load frequency control, which aims to design a robust
controller for the power system, the initial country is defined as

countryi,k = [KPi,k , KIi,k , KDi,k ] (15a)

objective function = f (country) (15b)

To search various points throughout the countries, a random value is added to the direction
of movement. At the first step, selected colonies of every imperialist are changed randomly. If
there is a colony in an empire that performs is better than that of the imperialist, the positions
of that imperialist and the colony are exchanged. The weakest imperialist among others loses
its weakest colony, and one of the strongest imperialists capture that. An imperialist without
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colonies will collapse and captured by other imperialist. These steps are carried out until the
stoping conditions are satisfied.

In Shabani et al. (2013), tuning of a PID controller for intense differential control against
load disturbance is studied. Parameters of the controller are obtained by the imperialist
competitive algorithm. This algorithm minimizes the following objective function.
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cost(KP , KI , KD) =
2∑

i=1

⎧⎪⎨
⎪⎩

1
T

∫ Y
0 t × |ACEi |(t)dt + ∑3

j=1
1
T

∫ Y
0 t × |DWi |(t)dt

+ 1
T

∑3
j=1

∫ Y
0 t × |DPTiei− j |(t)dt + overshoot(|ACEi |)

+ overshoot(|DWi |) + overshoot(|DPTiei− j |)
(16)

where ACEi is control error of area i , DWi is Frequency deviation of area i , DPTiei− j is
Active power flow between area i and j .

By minimizing (16), KP , KI and KD of the PID controller are obtained.
In Rakhshani et al. (2012), this algorithm was implemented on a test system used for LFC

system. In the practical systems, access to some of the state variables in LFC system is very
difficult. However, the ICA method achieved the optimal performance.

For a three area AGC control with thermal, hydro and diesel units, PID tuning has been
studied in Hosseini and Tusi (2012). The objective function for this case was considered to
be

J =
3∑

i=1

� fi
2 +

3∑
i=1

3∑
j=1

�Pi j
2 (17)

�fi : frequency fluctuation in area i
�Pi j : power fluctuation between area i and area j
Minimizing (17) using ICA yields the controller parameters. Flowchart of ICA algorithm is
presented in Fig. 10.

2.4 Firefly algorithm (FA)

Firefly algorithm is a nature-inspired algorithm that uses the behaviour of fireflies in hot tem-
perature regions in summer (Debbarma et al. 2014a). Characteristics of fireflies summarized
as below

(a) All fireflies are unisex. Thus, one firefly is attracted to other fireflies inattentive of their
sex;

(b) Attractiveness is dependent upon the brightness.
(c) The light of a firefly is affected by the scenery of the objective function that should be

optimized.

βr = β0 ∗ exp(−γ rm), with m ≥ 1 (18)

where r is the distance between any two fireflies, β 0 is the initial attractiveness and γ is an
absorption coefficient.

ri j = ∥∥xi − x j
∥∥ =

√√√√ d∑
k=1

(xi,k − x j,k)2 (19)

Here, xi,k is the k-th component of the coordinate xi of i-th firefly and d is the dimensions.

xi = xi + β0 ∗ e−γ ri j 2(x j − xi ) + α

(
rand − 1

2

)
(20)

where the first term is the current position and the second term is an attraction term and the
third term is a randomization with coefficient α.
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Fig. 10 Flowchart diagram of ICA algorithm
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Automatic generation control of a three unequal areaes with thermal systems that have
reheat turbines are studied in Debbarma et al. (2014a). The controller is of fractional order
(FO) named I λDμ based on crone approximation to solve the multi-area AGC problem in
power systems. The parameters of the controller for multi-area system are computed by
optimizing the objective function, which is an integral square error (ISE).

J =
T∫

0

{
(� fi )

2 + (�Ptie i−j)
2} dt (21)

� fi is incremental change in frequency of area i , and �Ptie i−j is incremental change in tie
line power connecting between area i and j .

In Saikia and Sahu (2013) AGC for combined cycle gas turbine was studied by consid-
ering small step of load perturbation. The PID parameters are determined by optimizing the
objective function (21).

Two Degrees of Freedom Fractional Order PID (2-DOF-FOPID) controller is proposed
for AGC in Debbarma et al. (2014b). This method considers three unequal areas with thermal
systems and reheat turbines.

Using the firefly algorithm, several parameters of the controller and speed regulation
parameter of the governors are tuned. Integral Squared Error (ISE), Integral of Time Multi-
plied Absolute Error (ITAE) and Figure of Demerits (FD) were minimized in this case. ITAE
and FD are formulated as follows.

ITAE =
T∫

0

{
|� fi |2 + ∣∣�Ptie i−j

∣∣2} t.dt (22a)

FD = (PO)2 + (US)2 + (ST)2 (22b)

To tune of multi variable PID controllers in AGC, the firefly algorithm based on chaotic
Tinkerbell mapwas proposed in Santos Coelho andMariani (2012). The idea of using chaotic
systems instead of randomly process was applied in the optimization problem. Evolutionary
optimization paradigms can enhance convergence speed to avoid premature convergence by
coupling chaotic sequences during the evolutionary cycle of the algorithms. Thus, chaotic
sequences have been used instead of random ones. The two dimensional quadratic map of
the Tinkerbell map is presented as

xt+1 = x2t − y2t + axt + byt (23a)

yt+1 = 2xt yt + cxt + dyt (23b)

where a, b, c, d are non-zero parameters and t is the number of iteration.
Better results can be obtained using this approach. The objective function for this problem

is formulated as

F =
N∑

k=1

k. |e1(k)| + k. |e2(k)| (24)

where k is the number of samples in the time domain. N is the total number of sampling
and e(k) is the error signal. Minimizing this cost function produces the parameters of a
multivariable PID controller. The flowchart of firefly algorithm is depicted in Fig. 11.
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2.5 Pattern search

Pattern search (PS) is a meta heuristic algorithm used for optimization problems. This algo-
rithm computes a sequence of points that may or may not suitable to the optimal point. PS
starts with a set of points called mesh around the initial points. The mesh is produced by
summing the current point with a scalar multiple of a set of vectors called a pattern. If one
point in the mesh has a better objective function value, it becomes the current point at the
next iteration. Pattern search was starts at the initial value of x0 and the pattern vectors or
direction vectors act according to the directions presented in Fig. 12.

The algorithm computes the objective function at the mesh points in the same order and
when convergence criteria satisfied, this process will stop.

A hybrid firefly algorithm and pattern search (hFA–PS) for designing PID controller for
automatic generation control of a multi-area systems were proposed in Mahapatra et al.
(2014). In this case, two area non-reheat thermal systems were considered. The firefly algo-
rithm was applied to the integral time multiple absolute error objective function, and pattern
search was then employed to find the best tuning of the PID controller parameters that pro-
vided by FA.

2.6 Bat algorithm (BA)

This algorithm is a nature-inspired algorithm that was initially developed by Yang (Dash
et al. 2015). Bats use echolocation to distinguish their path in the dark environment without
any obstacle. They emit loud sound and hear back the echo that comes from nearby objects.
Some features of echolocation are chosen in optimization problems and they can be linked
with the objective function. All bats use echolocation to sense distance and they also know
the difference between food and prey. Bats fly randomly with velocity vi at position xi with
the fixed frequency, varying wavelength and loudness.

Bats motion may be expressed as

fi = fmin + ( fmax − fmin) × β (25a)

vt i = (
xti − x0

) × fi (25b)

xti = xt−1
i + vti (25c)

where β ∈ (0, 1) is a random vector from a uniform distribution, t is a number of iteration
and x0 is the current global best solution among all bats.

xnew = xold + εAt (26)

where ε ∈ [−1 1] is a random number while At = 〈Ai
t 〉 is the average loudness of all the

bats at this time step.
Ai

t+1 = r0i (1 − e−γ t ) (27)

where γ is a constant.
In Dash et al. (2015), AGC of an interconnected multi-area thermal system was studied.

The system has three areas with a single reheat turbine and generation rate constraints (GRC)
of 3%. A cascade PI-PID controller was used in this problem. The objective function is an
integral squared error and the bat algorithm is implemented for minimizing it.

J =
∫ T

0

{
(� fi )

2 + (�Ptie l j−k)
2}dt (28)
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Fig. 12 Flowchart diagram of
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where j is the area number (1, 2). The results demonstrated that BA performs much better
than GA.

Gain scheduling is a technique commonly used in designing a controller for non-linear
systems. In Sathya and Ansari (2015), dual mode bat algorithm is used for scheduling PI
controllers for interconnected power systems with emphasis on load frequency control. The
dualmode approach controls the switching between proportional controllermode and integral
controller mode depending on the magnitude of the output signal. The flowchart diagram of
bat algorithm is shown in Fig. 13.

2.7 Cuckoo search (CS)

Cuckoo search (CS) is a nature-inspired algorithm that based on the obligate brood parasitic
behaviour of some cuckoo species in combination with the Le’vy flight behaviour of some
birds (Mehdinejad et al. 2017). These birds can make a beautiful sound and they can make
aggressive reproduction strategies. Some kind of these birds lay their eggs in communal
nests. These species may remove others eggs to increase the incubate probability of their
own eggs. According to typical features of Le’vy flights, behaviour optimization and optimal
search have been designed. Preliminary results show its promising capability. Flowchart of
the cuckoo search algorithm is shown in Fig. 14. In this algorithm, the following steps are
taken.

(a) Each cuckoo lays on the egg at a time and put in the randomly chosen nest.
(b) The best nest which has many eggs will carry to the next generation.
(c) The number of available nests is fixed and a host can discover an alien egg with a

probability Pa .

Automatic generation control of three unequal areas with hydro-thermal systems in each
area is presented in Saikia et al. (2015). In this case, each area is interconnected with AC/DC
transmission links with the electric governor in the hydro area. For the first time, battery
energy storage (BES) system is employed in the multi-area systems. The controller that used
for the secondary controller is a PID controller and the controller parameters are obtained
by optimizing an integral square error (ISE) objective function using the cuckoo search
algorithm. A methodology for designing an optimal superconducting magnetic energy stor-
age for automatic generation control of multi-area systems with thermal units is presented
in Chaine and Tripathy (2015). The parameters of the controller (KI , KSMES, KI D) are
designed through minimizing the objective functions such as ISE, Integral Absolute Error
(IAT) and Performance Indices (PFIs). These objective functions were calculated and evalu-
ated for each set of optimized controllers to determine optimal gains is determined. Another
controller that used forAGCproblem inmulti-area systems is 2-degree of freedomcontrollers.
This controller called 2DOF-integral plus double derivative (2DOF-IDD) was proposed for
secondary controller in AGC of multi-area systems. The cuckoo search algorithm has been
used for optimizing an ISE cost function (Dash et al. 2014).

2.8 Teaching learning based optimization (TLBO)

Teaching learning based optimization (TLBO) is a recent algorithm in modern heuristic
optimization techniques developed by Rao et al. (2012). The mechanism of the algorithm is
on the basis of teaching and learning in a class between the teacher and the students. This
method is based on the teaching effectiveness of a teacher. The teacher is the most respected
and highly educated person in a society who gives high quality education to their students
in a class. The result is not only the quality of teaching of the teacher but also the all of the
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Fig. 13 Flowchart diagram of
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Fig. 14 Flowchart of cuckoo
search algorithm for solving
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knowledge of his/her own and sharing the knowledge of his/her classmates. On the students
side, the results are on the basis of their outcomes in the class. TLBO is a nature-inspired,
parameter free algorithm, which uses a population of solutions to reach the optimal solution.
For TLBO, students are the population in a class and the control variables are the subjects
offered to them (Barisal 2015). This algorithm is divided into two parts, namely teaching
phase and learning phase, witch are described in the following. The flowchart of the TLBO
method is depicted in Fig. 15.

123



A contemporary review of the applications of nature… 207

start

Initialize all variables and generate initial 
population array (student x subject)

Evaluate the mean grid of each subject 
(variable)

Identify the best solution (teacher)

Modify new solution based on best solution

Is new solution better than 
existing?

reject

Replace best solution with new one

Select any teo solution randomly and modify the new 
solution

Is new solution better than 
existing?

reject

Replace best solution with new one

Is stopping criteria satisfy?

Return best solution

No 

Yes 

No 

Yes 

Yes 

No 

Fig. 15 Flowchart of the TLBO algorithm
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(a) Teaching phase This is the first part of the algorithm in which the teacher tries to improve
the performance of his/her students according to his/her potential in a class. The average
result of the classroom is improved by the influence of the teacher to some extent i.e.
μk

j . If the new average grade of j-th subject at k-th iteration is μk
new j

, the difference
between the existing mean and new mean of the j-th subject at the k-th iteration may be
given as below.

μk
di f f j = rand

(
μk
new j

− (TF ) μk
j

)
(29)

where TF is the teaching factor, which is evaluated randomly by the following equation.

TF = round (1 + rand (0, 1)) (30)

The grade of the j-th subject of the i-th student at k + 1-th iteration is updated by the
following equation.

xk+1
i, j = xki, j + μk

di f f j (31)

(b) Learning phase This is the last part of the algorithm where students upgrade their results
by mutual interactions among themselves. Any two students such as xi and x j are
randomly selected from the class and their grades are updated based on the better student.
The learning process may be expressed mathematically as

xk+1
i, j = xki, j + rand ×

(
xki, j − xkl, j

)
if f (xi ) ≤ f (xl) (32)

Otherwise,

xk+1
i, j = xki, j + rand ×

(
xkl, j − xki, j

)
if f (xi ) ≥ f (xl) (33)

where xk+1
i, j , xki, j are the grade points of the j-th subject of i-th student at the k-th and

k+1-th iteration; xkl, j is the grade point of j-th subject of l-th student (randomly selected)

at k-th iteration. xkl, j is the overall grade point of i-th student:

Xi = [
xi1 xi2 . . . , xi j . . . , xi N D

]
(34)

There are four types of performance criteria considered in the control design. These are the
integral of absolute error, integral of squared error, integral of time-weighted squared error
and integral of time multiplied absolute error. However, ITAE and ISE criteria are mostly
used in AGC studies due to their better performance as compared to ISTE and IAE criteria.
Systems with ITAE objective functions settle more quickly than ISE method (Sahu et al.
(2015b); Dixit and Roy 2015). Therefore, ITAE is a better objective function among all. The
objective function for the multi-source power system is defined as

J = I T AE =
∫ tsim

0

(
k∑

i=1

ACEi

)
.t.dt (35)

The objective function should be minimized subject to PID controller gains such as

Kmin
i j ≤ Ki j ≤ Kmax

i j (36)

where i = P ,I ,D and j = generation units.
The differential equation of PID controller of each unit can be obtained using the following

equations.

Uj = KPjACE1 + KI j

∫
ACE1 + KDj

dACE1

dt
(37a)
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Uj = KPjACE2 + KI j

∫
ACE2 + KDj

dACE2

dt
(37b)

The ACE signal is the area control error, which includes the data of the frequency error
and the tie line power error for the related control area. For area-1 and area-2, the ACE signal
can be written as a function of frequency variation and tie line power variation,i.e.,

ACE1 = B1�F1 + �PTie (38a)

ACE2 = B2�F2 + �PTie (38b)

The controller gains are tuned by TLBO algorithm according to the ITAE objective func-
tion (Barisal 2015).

2.9 Artificial bee colony (ABC)

The usage of ABC algorithm as a new artificial intelligence based optimization technique in
order to optimize the AGC system and the comprehensive analysis of its tuning performance
is studied in Gozde et al. (2012).

Artificial bee colony algorithm is one of the population based optimization algorithms
used for solving the multidimensional optimization problems. An intelligent behaviour of
honey bee colony that search new food sources around the colony has been considered to build
the algorithm. This colony of artificial bees consists of three groups of bees called employed
bees, onlookers and scouts. If one half of the colony contains the employed artificial bees, the
other half includes the on-lookers. There is only one employed bee for every food source. It
means that the number of employed bees is equal to the number the food sources around the
hive. Each cycle of the bee search consists of three steps: moving the employed and onlooker
bees onto the food sources, calculating their nectar amounts and determining the scout bees
and directing them onto possible food sources. Each food source position stands for a possible
solution of the problem. The amount of nectar of a food source depends on the quality of
the solution stand for that food source. Onlookers are located on the food sources by using
a probability based choice process. When the nectar amount of a food source increases, the
probability value with which the food source is favored by onlookers increases. Every bee
colony has scouts that are the colony’s researcher. The researchers do not have any direction
while looking for food. They are primarily concerned with finding any kind of food source.
For results of these acts, the scouts are characterized by low search costs and a low average
in food source quality. Occasionally, the scouts can accidentally find rich, entirely new food
sources. The group of feasible solutions could be discovery fast in the case of artificial bee’s
colony. The ABC algorithm has triple search capability for search. While the local search
is realized by employed and onlooker bee phases, the global search is realized by scout bee
phase in ABC algorithm consecutively and separately. The flowchart of the ABC algorithm
is shown in Fig. 16.

InGozde et al. (2012), theABCalgorithmhas been applied to theAGCprocess to optimize
the gains of a PI and a PID controller using the standard cost functions such as ITAE, IAE,
ISE, ITSE.

2.10 Ant lion optimizer (ALO)

Ant lion optimizer (ALO) algorithm is a nature-inspired algorithm which uses the hunting
behaviour of ant lions (Mirjalili 2015). Ant lions have two main cycles in their life named
larvae phase and adult phase. Larvae period is the revelation of ALO algorithm. ALO algo-
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Fig. 16 Flowchart of the ABC algorithm
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Fig. 17 Flowchart of the ALO algorithm

rithm has five main steps which made by operation of ant lions. These steps are accidental
movement, making traps, trapping the ants, getting victims and rebuilding traps.

The first position of ants are saved in the Pant and also the value of fitness function for
each ant is stored in Fof . The process of searching food named random movement of ants
and formulated as below:
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Table 1 Classification of
controller type and used test
systems in a solution of AGC
problem using nature inspired
algorithms

Algorithm Controller Test system

GA I (Demiroren and
Zeynelgil 2007;
Abdel-Magid and
Dawoud 1995a, 1996),
PI (Karnavas and
Papadopoulos 2002),
PID (Bhatt et al. 2010;
Singh and Sen 2004),
PID-fuzzy (Hyun-Joon
et al. 1997)

Single area (Karnavas and
Papadopoulos 2002),
Two area (Singh and
Sen 2004; Abdel-Magid
and Dawoud 1995a,
1996), Three area
(Demiroren and
Zeynelgil 2007;
Hyun-Joon et al. 1997)

PSO I (Abdel-Magid et al.
2003; Haddin et al.
2011), PI (Patel et al.
2008), PID (Jadhav and
Vadirajacharya 2012),
Fuzzy-PI (Sahu et al.
2015a)

Two area (Patel et al.
2008; Jadhav and
Vadirajacharya 2012;
Abdel-Magid et al.
2003; Haddin et al.
2011; Sahu et al. 2015a)

ICA PID (Shabani et al. 2013),
PI-PID (Hosseini and
Tusi 2012) Feedback
controller (Rakhshani
et al. 2012)

Two area (Rakhshani et al.
2012; Hosseini and Tusi
2012), Three area
(Shabani et al. 2013)

BA PI (Sathya and Ansari
2015), PD-PID (Dash
et al. 2015)

Two area (Sathya and
Ansari 2015), Three
area (Dash et al. 2015)

FA Fractional order (IλDμ)
(Debbarma et al.
2014a), I, PI, ID (Saikia
and Sahu 2013), PID
(Santos Coelho and
Mariani 2012;
Mahapatra et al. 2014),
2DOF-PID (Debbarma
et al. 2014b)

Two area (Santos Coelho
and Mariani 2012;
Mahapatra et al. 2014),
Three area (Debbarma
et al. 2014a, b),
Combined cycle (Saikia
and Sahu 2013)

CS PI (Chaine and Tripathy
2015), PID (Saikia et al.
2015)

Two area (Chaine and
Tripathy 2015), Three
area (Saikia et al. 2015)

TLBO PID (Dixit and Roy 2015;
Barisal 2015),
PID-fuzzy (Sahu et al.
2015b)

Two area (Sahu et al.
2015b), Three area
(Dixit and Roy 2015;
Barisal 2015)

ABC PI-PID (Gozde et al.
2012)

Two area (Gozde et al.
2012)

ALO PID-DD (Raju et al. 2016) Three area (Raju et al.
2016)

X (t) = [0, csum (2r (t1) − 1) , csum (2r (t2) − 1) , . . . , csum (2r (tn) − 1)] (39)

where csum indicate cumulative sum, n is a maximum number of ants and t is an iteration.
The normalized form is used to keep under control the random movement. So the position
of each ant can be defined as:
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Table 2 Different objective
functions used in the optimal
design of AGC controller using
nature-inspired algorithms

Objective function Algorithm

IAE = ∫ t
0 |ACEi | dt GA (Singh and Sen 2004;

Hyun-Joon et al. 1997;
Demiroren and
Zeynelgil 2007; Bhatt
et al. 2010), PSO
(Jadhav and
Vadirajacharya 2012)

I SE = ∫ t
0 (ACEi )

2dt PSO (Abdel-Magid et al.
2003), FA (Debbarma
et al. 2014a, b; Saikia
and Sahu 2013), BA
(Mahapatra et al. 2014;
Dash et al. 2015), CS
(Sathya and Ansari
2015; Saikia et al. 2015;
Chaine and Tripathy
2015), ABC (Dixit and
Roy 2015)

ITAE = ∫ t
0 t · |ACEi |2dt PSO (Abdel-Magid et al.

2003; Sahu et al.
2015a), FA (Saikia and
Sahu 2013; Debbarma
et al. 2014b; Santos
Coelho and Mariani
2012), TLBO (Dash
et al. 2014; Rao et al.
2012), ABC (Dixit and
Roy 2015)

FD = (PO)2 + (US)2 + (ST )2 FA (Debbarma et al.
2014b)

F =
N∑

k=1
k. |e1(k)| + k. |e2(k)| FA-CFA (Santos Coelho

and Mariani 2012)

CDI =
n∑

i=1
(1 − ξi ) PSO (Haddin et al. 2011)

Xt
m =

(
Xt
m − am

) (
bm − ctm

)
(
dtm − am

) + ct (40)

where am , bmrepresents maximum and minimum of ran-dom steps of ants and ctm , d
t
mare

minimum and maximum of m-th ant at iteration t . After obtaining the new position for each
ant, the trapping process of ants is started. The formulation of trapping ants by ant-lion can
be expressed as

ctm = ant − liontn + ct (41a)

dtm = ant − liontn + dt (41b)

Also for trapping the ants by ant-lion, the sliding of ants into the traps should be considered.
After that when the ants arrive at the bottom of the trap, the ant-lions catches them and
update the position to hunt new preys. The flowchart of the ALO algorithm is depicted in
Fig. 17.
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Table 4 Controller parameters for different algorithms in a single area test system

Algorithm Parameter of controller (single area test system)

KP KI KD

Genetic 0.7330 (Karnavas and
Papadopoulos 2002)

0.5659 (Karnavas and
Papadopoulos 2002)

*

∗ Not available

Table 5 Controller parameters for different algorithms in a two area test system

Algorithm Parameter of controller (two area test system)

KP KI KD

Genetic * 0.7116
(Abdel-Magid
and Dawoud
1995a), 0.5398
(Abdel-Magid
and Dawoud
1996)

*

PSO 0.8176 (Sahu et al. 2015a) 0.561
(Abdel-Magid
et al. 2003), 0.05
(Haddin et al.
2011), 0.7948
(Sahu et al.
2015a)

*

TLBO 1.9857 (Sahu et al. 2015b) 1.9968 (Sahu et al.
2015b)

1.6870 (Sahu et al. 2015b)

FA-PS 0.3834 (Rakhshani et al.
2012)

0.6127
(Rakhshani et al.
2012)

0.4021 (Rakhshani et al. 2012)

ABC 0.6011 (Gozde et al.
2012)

0.2017 (Gozde
et al. 2012)

*

∗ Not available

Ant lion optimizer algorithm is used for tuning controller of automatic generation con-
trol of three unequal thermal systems (Raju et al. 2016). Also, controllers like Integral
(I), Proportional–Integral (PI), Proportional–Integral–Derivative (PID) and Proportional–
Integral–Derivative plus second order Derivative (PID-DD) are considered as secondary
controllers. The objective function of this study is introduced as

J =
T∫

0

{
(� fi )

2 + (�Ptie)
2}dt (42)

3 Comparison of nature-inspired algorithms applied to AGC

In this section, nature-inspired algorithms applied to the AGC problem are categorized with
a different criteria. Table 1 summarizes the type of the controller and properties of the test

123



216 F. Kalavani et al.

Table 6 Controller parameters for different algorithms in a three area test system

Algorithm Parameter of controller (three area test system)

KP KI KD

Genetic 1.0333 (Bhatt
et al. 2010)

0.1881
(Demiroren and
Zeynelgil 2007),
1.3870 (Bhatt
et al. 2010)

1.8718 (Bhatt et al. 2010)

ICA 1.08716 (Shabani
et al. 2013)

1.85041 (Shabani
et al. 2013)

1.11767 (Shabani et al. 2013)

CS 0.0825 (Saikia
et al. 2015)

0.2169 (Saikia
et al. 2015)

0.1094 (Saikia et al. 2015)

TLBO 1.0431 (Barisal
2015)

0.6030 (Barisal
2015)

2.2866 (Barisal 2015)

system used in solving AGC problem using nature-inspired algorithms. For example, the
GA algorithm is used for optimal design of I, PI, PID and PID-fuzzy controllers for AGC
problem and the results are illustrated using single area, two-area and three-area test systems.
The corresponding reference number of each controller and each test system are indicated in
Table 1.

Table 2 shows the different objective functions used in the optimal design of AGC con-
troller using nature-inspired algorithms. For example, IAE of ACE is used as an objective
function of AGC controller design using GA and PSO.

Table 3 provides a numerical comparison between the values of objective functions for
different algorithms, andTables 4, 5 and 6 showa numerical comparison of the PID coefficient
according to the test systems of a single area, two area and three areacases used in literature.

4 Conclusion

The key issue with using PID controllers is how to tune their parameters accurately and effi-
ciently. The classical technique based on trial and error is time consuming and often yields
suboptimal results. Nature-inspired algorithms, alternatively, can achieve a better dynamic
performance, overshoot and settling time compared to conventional techniques. On the other
hand, generally, most industrial processes are multi variable systems. For processes with
minimal interactions, a diagonal PID controller structure will be suitable. Otherwise, cross
coupling of the process channels makes it difficult to design a controller for each loop inde-
pendently. In otherwords, adjusting controller parameters in one loop affects the performance
of another loop, sometimes to the extent of destabilizing the whole system. This is where
nature-inspired methods with a global overview of the whole system can come in. In this
paper, applications of different nature-inspired algorithms in the optimal design of AGC
controllers were studied. Such algorithms were classified based on the type of controller,
objective function and the test cases used for performance evaluation.
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