
Artif Intell Rev (2018) 50:241–259
https://doi.org/10.1007/s10462-017-9542-x

Review of background subtraction methods using
Gaussian mixture model for video surveillance systems

Kalpana Goyal1 · Jyoti Singhai1

Published online: 30 January 2017
© Springer Science+Business Media Dordrecht 2017

Abstract Foreground detection or moving object detection is a fundamental and critical
task in video surveillance systems. Background subtraction using Gaussian Mixture Model
(GMM) is a widely used approach for foreground detection. Many improvements have been
proposed over the original GMM developed by Stauffer and Grimson (IEEE Computer Soci-
ety conference on computer vision and pattern recognition, vol 2, Los Alamitos, pp 246–252,
1999. doi:10.1109/CVPR.1999.784637) to accommodate various challenges experienced in
video surveillance systems. This paper presents a review of various background subtraction
algorithms based onGMMand compares them on the basis of quantitative evaluationmetrics.
Their performance analysis is also presented to determine the most appropriate background
subtraction algorithm for the specific application or scenario of video surveillance systems.

Keywords Background Subtraction · Background modeling · Gaussian Mixture Model ·
Foreground detection · Video surveillance

1 Introduction

Analysis and understanding of video sequences is an active research field. The first step
in many computer vision applications like smart video surveillance, traffic monitoring and
analysis, human detection and tracking, automatic sports video analysis, and gesture recog-
nition in human-machine interface etc. is to detect the moving objects called foreground
objects in the scene. Precise localization of foreground objects in a video is a fundamental
and critical task for such applications. A common method to identify foreground objects is
background subtraction. In background subtraction method, each video frame is compared
with a background model and the pixels whose intensity values deviate significantly from
the background model are considered as foreground.
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Accurate foreground detection for complex visual scenes in real time is a difficult task
because real-world video sequences contain several critical situations. Some key challenges
experienced in background subtraction methods are: dynamic background, moving shadows
of moving objects, sudden illumination changes, camouflage, foreground aperture, noisy
image, camera jitter, bootstrapping, camera automatic adjustments, paused and slow moving
objects (Bouwmans 2014).

Many researchers have proposed various background subtraction methods and different
types of background models (image of background which does not include any moving
object) to deal with different challenges. Some commonly used video background model-
ing approaches are basic models, background estimation, background clustering, subspace
learning, kernel density estimation and Gaussian Mixture Model (GMM).

In basic Models, the background is modeled using an average (Power and Schoonees
2002), a median (McFarlane and Schofield 1995) or an histogram analysis over time
(Zheng et al. 2006). Once the model is computed, pixels of the current image are classi-
fied as foreground by thresholding the difference between the background image and the
current frame. These methods require a large memory and a training period where fore-
ground objects are present. Difference of consecutive frames (Roy et al. 2010) is also used to
detect the foreground objects. These simple techniques are very fast, but their performance is
poor in complex background scenes (Bouwmans 2011) which is a major challenge in videos
used in surveillance systems.

Background estimation methods predict the position, value or orientation of pixels or
block from a previous frame. Any pixel of the current frame that deviates significantly from
its predicted value is classified as foreground.Wiener filter (Toyama et al. 1999),Kalmanfilter
(Messelodi et al. 2005), Tchebychev filter (Chang et al. 2004), particle filters (Zhang et al.
2006), and optical flow (Yu et al. 2011) are used for background estimation. Thesemodels are
good for the scenes having gradual illumination changes. But due to their high complexity
and high sensitivity to noise, these models are not suitable for real-time applications. Their
foreground-background discriminant ability is also limited.

Cluster models assume that each pixel in the frame can be represented temporally by
clusters. Incoming pixels are compared against the corresponding cluster group and if a
match occurs, those pixels are classified as background. The clustering approach consists of
K-means algorithm (Butler et al. 2003) and Codebook model (Ilyas et al. 2009). However,
these models seem well adapted to deal with dynamic backgrounds and noise from video
compression but cannot deal with a scene which contains sudden illumination changes, slow-
moving objects and moving shadows (Shah et al. 2014). These methods fail when foreground
objects have similar color to background and when the illumination variations occur because
these methods only use the pixel color or intensity information to detect foreground objects
(Wang and Pan 2011).

Statistical models are the mostly used models due to a good compromise between their
performance and their computation cost. Subspace learning (Bouwmans 2009), kernel density
estimation (Elgammal et al. 2000) and GMM (Stauffer and Grimson 1999) are three main
statistical modeling techniques.

Subspace learning techniques used for video background models are principal component
analysis, independent components analysis and matrix factorization. The subspace learning
models perform better for illumination changes. But, these models do not perform well in
scenes containing irregular quasi-periodic background motions and moving shadows and
have a high processing time (Bouwmans 2009).

The kernel density estimation is a non-parametric background model which estimates the
density of pixels using kernel function. It is a better representation of pixels density than
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that of parametric methods because the probability density function for pixel intensity is
estimated directly from the data without any assumptions about the underlying distribution.
But it is computationally expensive and cannot be used in real-time applications because it
requires many samples to correctly estimate the pixel density over time (Shah et al. 2014).
This method performs well when the background is static for a significant length of time
and objects are moving continuously with a consistent speed. However, they fail to handle
slow-moving objects, multiple moving objects, and multi-modal backgrounds (Stauffer and
Grimson 1999).

The GMM (Stauffer and Grimson 1999) is a robust method for dynamic backgrounds.
It is mostly used due to its robustness to various background variations like multi-modal,
quasi periodic and gradual illumination changes. However, it has a number of limitations,
including slow recovery from failures and unsatisfactory performance for sudden illumination
changes and for irregular background motions (Bouwmans and Baf 2010). Furthermore, it is
a parametric model and parameters has to be tuned which makes the procedure complex and
time consuming that makes it less attractive for real-time applications (Figueiredo and Jain
2002; White and Shah 2007). Moreover, the accuracy in selection of these parameters affects
the efficiency of the system. The parameters of concern are: the number of components
(K ), learning rate (α) and classification threshold (T ). Many researchers have proposed
improvements in GMM to overcome some challenges faced by videos used in surveillance
systems. In this paper, review on various modifications suggested in GMM are discussed in
detail.

Previously, various survey papers for background subtraction techniques have been
presented based on implementation techniques or applications. In 2004, Piccardi (2004)
presented a review on implementation techniques of background subtraction based on speed,
memory requirement and accuracy and compares the complexity of the different methods.
Cheung and Kamath (2004) presented a review of background subtraction algorithms based
on recursive and non-recursive techniques. Bouwmans (2014) and Sobral and Vacavant
(2014) presented a survey of background subtraction techniques based on mathematical
tools used. Bouwmans et al. (2008) presented a survey of background subtraction techniques
based on GMM which classifies improvements proposed in GMM (Stauffer and Grimson
1999) in various algorithms. But none of them critically analyze the GMMbased background
subtraction algorithms to deal with various challenges associatedwith video surveillance sys-
tems. In this paper, a review of different background subtraction algorithms based on GMM
has been presented with their brief description, comparative analysis and scope to improve
them.

Section 2 describes the various background subtraction algorithmsusingGaussianMixture
Model while their critical analysis based on various evaluation parameters is discussed in
Sect. 3. Section 4 gives the conclusion and future scope.

2 The reviewed GMM approaches

GMM models the values of a particular pixel over time as a mixture of Gaussians. Based
on the persistence and the variance, Gaussians are classified as background and foreground.
Pixel values that do not fit the background distributions are considered foreground until there
is a Gaussian that includes them with sufficient, consistent evidence supporting it. Some of
the proposed background subtraction algorithms using GMM are discussed in this section
and list of these algorithms is given in Table 1.
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Table 1 List of the algorithms discussed in this section

References Name of algorithms Features

Stauffer and Grimson (1999) GMM RGB

KaewTraKulPong and Bowden (2002) Improved adaptive GMM RGB

Lee (2005) Effective GMM RGB

Zivkovic and Heijden (2006) Efficient GMM RGB

Shah et al. (2010) Localized adaptive learning GMM RGB

Chan et al. (2011) Generalized Stauffer–Grimson GMM Dynamic texture

Shah et al. (2014) SURF based GMM YUV

Chen and Ellis (2014) Self-adaptive GMM RGB

2.1 GMM

Stauffer and Grimson (1999) used the Mixture of Gaussians (MOG) to model dynamic
backgrounds. The recent history of the intensity values (in RGB color space) of each pixel
X1, ..., Xt is modeled by a mixture of K Gaussian distribution. The probability of observing
the current pixel value is given by the formula:

P(Xt ) =
K∑

k=1

ωk,t ∗ η(Xt , μk,t ,Σk,t ) (1)

where K gives the number of Gaussian distributions, ωk,t is the weight of the kth Gaussian
in the mixture at time t having mean μk,t and covariance matrix Σk,t and η is a Gaussian
probability density function which is given by

η(Xt , μ,Σ) = 1

(2π)
n
2 |Σ | 12

exp− 1
2 (Xt−μ)T Σ−1(Xt−μ) (2)

where n is the dimension of the color space.
For computational reasons, authors in Stauffer and Grimson (1999) assumed that the red,

green and blue color components are independent and have the same variances. Hence, the
covariance matrix is assumed to be as:

Σk = σ 2
k I (3)

Due to this assumption, a costly matrix inversion is avoided at the rate of some accuracy.
The distribution of intensity value of each pixel is characterized by amixture of K Gaussians.
Authors in Stauffer and Grimson (1999) proposed the value of K from 3 to 5.

By using an Expectation Maximization (EM) algorithm, parameters of the Gaussian mix-
ture model, i.e., the weight, the mean and the covariance matrix, can be initialized. But
implementation of an exact EM algorithm is very costly. Hence authors used the K-means
algorithm for real time consideration.

Once the parameters are initialized, the K Gaussians are ordered following the ratio ω/σ .
This implies that a background pixel corresponds to a high weight with a weak variance
because the background is more present in a scene than moving objects and its value is
practically constant. The first B Gaussian distributions which exceed certain threshold T are
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retained for a background distribution:

B = argmin
b

(
b∑

k=1

ωk > T

)
(4)

The other distributions correspond to foreground. Every new pixel value, Xt , is checked
against the existing K Gaussian distributions, until a match is found. A pixel matches a
Gaussian distribution if its value lies within 2.5 standard deviation of a distribution.

A pixel is classified as background if it matches with the Gaussian distribution which is
identified as background and it is classified as foreground if it matches with the Gaussian
distribution which is identified as foreground. If it does not match with any of K Gaussians
then it is classified as foreground. Hence a binary mask is obtained. For next foreground
detection, parameters of the Gaussian must be updated.

ωk,t = (1 − α)ωk,t−1 + α(Mk,t ) (5)

where α is the constant learning rate and Mk,t is 1 for the matching Gaussian components
and 0 for the remaining components. The mean and variance for the unmatched components
remain unchanged and for the matched component, they are updated as given below:

μk,t = (1 − ρ)μk,t−1 + ρ · Xt (6)

σ 2
k,t = (1 − ρ)σ 2

k,t−1 + ρ(Xt − μk,t−1)
T · (Xt − μk,t−1) (7)

where ρ = α · η(Xt , μk,tΣk,t ). If a pixel does not match with any of the K Gaussians,
then the distribution with the least probability is replaced with the new parameters. The least
probable distribution is replaced with a distribution with the current value as its mean value,
an initially high variance, and low prior weight.

2.2 Improved adaptive GMM

KaewTraKulPong and Bowden (2002) presented a method to improve the adaptive back-
ground mixture model. This method is different from GMM (Stauffer and Grimson 1999)
in the update equations, initialization method and the introduction of a shadow detection
algorithm based on a computational color space. By reinvestigating the update equations,
different equations are utilized at different phases. Due to this, system learns faster and more
accurately as well as adapts effectively to changing environments.

The GMM is estimated by expected sufficient statistics update equations and then instead
of comparing all frames in time t only L-recent window samples are processed which
increases the processing speed of the algorithm. In the beginning, the expected sufficient
statistics update equations provide a good estimate before all L samples can be collected.
The accuracy of the estimate and the performance of the tracker is improved using this initial
estimate. It also allows fast convergence on a stable backgroundmodel. The L-recent window
update equations give priority to recent data therefore the tracker can adapt to changes in
the environment effectively. The online EM algorithms by expected sufficient statistics are
shown below:

ωk,t = ωk,t−1 + 1

t

(
Mk,t − ωk,t−1

)
(8)

μk,t = μk,t−1 + Mk,t∑t
i=1 Mk,i

(
Xt − μk,t−1

)
(9)
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Σk,t = Σk,t−1 + Mk,t∑t
i=1 Mk,i

(
(Xt − μk,t−1)(Xt − μk,t−1)

T − Σk,t

)
(10)

The online EM algorithms by L-recent window version are given below:

ωk,t = ωk,t−1 + 1

L

(
Mk,t − ωk,t−1

)
(11)

μk,t = μk,t−1 + 1

L

(
Mk,t Xt

ωk,t
− μk,t−1

)
(12)

Σk,t = Σk,t−1 + 1

L

(
Mk,t (Xt − μk,t−1)(Xt − μk,t−1)

T

ωk,t
− Σk,t−1

)
(13)

For identifying moving shadows, a color model is used that can separate chromatic and
brightness components. This is done by comparing a non-background pixel against the current
background components. If the difference between chromatic and brightness components lies
within some threshold range, the pixel is considered as a shadow. This color model consists
of a position vector at the RGB mean of the pixel background, E , an expected chromaticity
line, ||E ||, a chromatic distortion, d , and a brightness threshold, τ . For a given observed pixel
value, I , brightness distortion, a, and color distortion, c, from the background model can be
calculated as

a = argmin
z

(I − zE)2 (14)

c = ||I − aE || (15)

The standard deviation of the kth component, σk can be set equal to d if the Gaussian
distribution is spherical. The calculation of a and c are trivial using vector dot product. A
non-background observed sample is considered as moving shadow if a lies within 2.5σk and
τ < c < 1.

2.3 Effective GMM

Lee (2005) proposed an effective online learning algorithm that significantly improves
modeling convergence and accuracy for adaptive Gaussian mixture modeling of dynamic
distributions without compromising model stability. A modified learning rate ρ is used to
achieve fast convergence and temporal adaptability which is computed for each Gaussian
independently from the cumulative expected likelihood estimate. A counter ck is also used,
which is increased when the Gaussian parameters are updated and reset to 1 if the Gaussian
is re-assigned.

In Stauffer and Grimson (1999), ρ = αηk(Xt )where the value of ηk(Xt ) = P(Xt/Gk) is
very small, which makes convergence slower. Hence, ρk,t = αP(Gk/Xt ) is used. Weighing
ρ by the expected posterior achieves the soft partitioning.

Mostly, a single best matching component is selected for parameter update in the other
algorithms for efficiency reasons. However, if the distribution contains two significantly
overlapping clusters, this strategy can lead to starvation where one Gaussian stretches with
increasingly more weight to overdominate the others. In the algorithm proposed in Lee
(2005), multiple Gaussians may be updated for a single sample. It uses soft-partition where
all Gaussians that match a pixel value are updated by an amount proportional to their esti-
mated posterior probability P(Gk/Xt ). It improves robustness in early learning stage for
components whose variances are too large and weights are too small to be the best match.
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At the pixel level, background segmentation involves a binary classification problem based
on P(B/Xt ) where B represents the background.

Temporal distribution P(Xt ) is given by:

P(Xt ) =
K∑

k=1

P(Gk)P(Xt/Gk) =
K∑

k=1

ωk,t ∗ η(Xt , μk,t ,Σk,t ) (16)

The posterior probability can be expressed in terms of the mixture components P(Gk)

and P(Xt/Gk), and a density estimate P(B/Gk) as follows:

P(B/Xt ) =
K∑

k=1

P(B/Gk)P(Gk/Xt ) =
∑K

k=1 P(Xt/Gk)P(Gk)P(B/Gk)∑K
k=1 P(Xt/Gk)P(Gk)

(17)

In Stauffer andGrimson (1999), P(B/Gk) equals to 1 for Gaussians with the highestω/σ ,
and 0 for all others whereas in Lee (2005), a sigmoid function is used on ω/σ to approximate
P(B/Gk) using logistic regression which is given below:

P(B/Gk) = f (ωk/σk; a, b) = 1/(1 + e−a.ωk/σk+b) (18)

After P(Xt ) and P(B/Gk) are estimated, the foreground and background pixels can be
classified. The pixels for which P(B/Xt ) < 0.5 are classified as foreground and others are
classified as background.

2.4 Efficient GMM

Zivkovic and van der Heizden (2006) presented an improved adaptive GMM which uses
model selection criterion to choose the right number of components for each pixel on-line and
automatically fully adapt to the scene. The recursive update equations are same as the update
equations proposed in Stauffer and Grimson (1999). The background model is estimated by
first B largest clusters where B is given by

B = argmin
b

(
b∑

k=1

ωk > (1 − c f )

)
(19)

where c f is a measure of the maximum portion of the data that belongs to foreground objects
without influencing the background model. The weight wk is the fraction of the data that
belongs to the kth component of the GMM. A constant α = 1/T defines an exponentially
decaying envelope that is used to limit the influence of the old data. The adaptive update
equation used in Zivkovic and Heijden (2006) is given below:

ωk,t = ωk,t−1 + α(Mk,t − ωk,t−1) − αcT (20)

After each update weightwk-s are normalized so that they add up to one. AGMMwith one
component is started which is centered on the first sample. For a new sample the ownership
(matching function)Mk,t is set to 1 for thematching component (if theMahalanobis distance,
MD from the component is less than a specified threshold) and for other components it is set
to 0. The squared MD from the kth component is calculated as:

D2
k (xt ) = δTk,tΣ

−1
k,t δk,t (21)

where δk,t = xt −μk,t−1. If there are nomatched components, a new component is generated
with ωk+1,t = α, μk+1,t = xt and σk+1,t = σo, where σo is an appropriately initialized vari-
ance value. If the maximum number of components is reached, the component with smallest
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wk is discarded. cT is a negative prior evidence weight which suppress the components
that are not supported by the data and ensures that components with negative weights are
discarded. This also ensures that the mixing weights stay non-negative.

2.5 Localized adaptive learning GMM

In Shah et al. (2010), a pixel based recursively adaptive learning rate forMixture of Gaussians
is proposed. A separate learning rate is used for each pixel because different regions in a frame
have different learning behavior and need a different learning rate.

Intensity of each pixel in the t th frame denoted as I (Xt ) = (X R
t , XG

t , XB
t ), where

(X R
t , XG

t , XB
t ) are R, G and B components of that pixel of the t th frame. Long-term history

of intensity fluctuation of each pixel Xt is modeled as exponential weighted moving average
and short term change in pixel intensity is modeled as an absolute difference in intensity of
pixel in consecutive frames as shown below:

δ = E
(∣∣∣X R

t − X R
t−1|, |XG

t − XG
t−1|, |XB

t − XB
t−1

∣∣∣
)

(22)

Long-term intensities fluctuation is calculated using a practical and simple recursive for-
mula:

�t = (1 − γ )�t−1 − γ δ (23)

where γ = 0.4 is normally sufficient, which is selected empirically.
The proposed recursive procedure for automatic tuning of α only needs to keep last frame

and removes the dependence on the initial value. In comparison to MoG model, the only
extra storage required by this technique is the previous frame and α, a separate learning rate
for each pixel, which is insignificant compared to performance gain. A learning rate α has
strong correlation with fluctuation history of the pixels. Thus, α for each pixel is modeled as
shown below:

αt =

⎧
⎪⎨

⎪⎩

αt−1 + |δ−�t |
δ+�t

; if δ > �t and αt−1 ≥ 1

αt−1 − |δ−�t |
δ+�t

; if δ < �t and αt−1 ≥ 0
αt−1; otherwise

(24)

This algorithm is referred as ’MoG-LALl’, i.e.Mixture of Gaussians using Local Adaptive
Learning, with the local learning rate tuned by intensity changes. In MOG-LAL1, adaptation
step size is modeled using amount of change of pixels intensity, but in reality it depends
on fluctuation frequency. Hence, authors in Shah et al. (2010) proposed another algorithm
’MOG-LAL2’ i.e., Mixture of Gaussians using Local Adaptive Learning with learning rate
tuned by fluctuation frequency. In MOG-LAL2, step size is modeled using fluctuation fre-
quency as given below:

f =
{
1; if δ > φ

0; otherwise
(25)

Ft = (1 − γ )Ft−1 + γ f (26)

αt =
{
0.9αt−1 + 0.1 Ft

N ; if 0 ≤ αt−1 ≤ 1
αt−1; otherwise

(27)

where f is short-term, F is long-term pixels intensity fluctuation frequency and φ is a
threshold used to avoid change due to noise and typically set to some small value.
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Fig. 1 Overview of generalized Stauffer–Grimson background modeling method (Chan et al. 2011)

2.6 Generalized Stauffer–Grimson GMM

Chan et al. (2011) proposed a Generalized Stauffer–Grimson (GSG) algorithm for dynamic
backgrounds. A background modeling method based on dynamic textures is proposed in
this paper which extends the background subtraction algorithm proposed by Stauffer and
Grimson. The sufficient statistics required for online learning of the dynamic texture is
derived and is used to generalize the GMM proposed in Stauffer and Grimson (1999)
to dynamic scenes. This algorithm adapts to long-term variations via online estimation,
it can quickly embrace new background motions through the addition of mixture com-
ponents and easily discards outdated information by dropping mixture components with
small priors (Chan et al. 2011). An overview of the proposed algorithm is shown in
Fig. 1.

The background scene is modeled as a mixture of K dynamic textures, from which spa-
tiotemporal volumes Y1:τ are drawn. Chan et al. (2011) assumed the value of τ equal to 5.
The j th dynamic texture is denoted by Θ j , and a prior weight ω j is associated with each
dynamic texture such that

∑K
j=1 ω j = 1. Each video location is represented by a neighboring

spatiotemporal volume. Firstly, the component of largest prior weight, i = argmax j (ω j ), is
selected as the active background component. The video location is marked as background
if the log-likelihood of the corresponding spatiotemporal volume Y1:τ under the active back-
ground component is above a specified threshold T .

log p(Y1:τ |Θi ) ≥ T (28)

Next, the mixture component with the largest log-likelihood of generating Y1:τ is updated
using an approximation to online Expectation- Maximization algorithm, if the log-likelihood
is above threshold. If the largest log-likelihood is below threshold then a new component is
learned which replaces the component of lowest prior probability. The background mixture
model is learned with an online K-means algorithm.

2.7 SURF based GMM

Themodel proposed in Shah et al. (2014) automatically learns dynamics of a scene and adapts
its parameters accordingly. The framework of the model is shown in Fig. 2. It uses YUV color
vector instead of RGB. A new matching function is proposed which checks the intensity (Y)
and color (UV) values of the current pixel against the existing Gaussian components:
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Fig. 2 Framework of the model proposed in Shah et al. (2014)

Mk,t =
⎧
⎨

⎩

1; if |μY
k,t−1 − XY

t | < λk,tσ
Y
k,t−1 and

|μc
k,t−1 − Xc

t | < λk,tσ
c
k,t−1

0; otherwise
(29)

where XY
t is the pixel intensity, Xc

t stands for a color component value (i.e., c is either U or
V ), and λk,t , is the local coefficient (typically set to 2.5) to the pixel value deviations (σ Y

k,t
and σ c

k,t ) for thresholding.
Some background components occur less frequently, hence they have lower weights and

cannot qualify for background component because of low ranking instead of being in the
model for long time. Therefore, a counter ν is used which starts from zero when a component
is created or replaced and is increased by 1 in every update. To differentiate between slow
moving objects and paused objects, a winning frequency � is calculated for each component.
Hence, if thematched component is not among the first B components, ν > T T and 1

2 ≥ � ≥
1
K (K is the number of Gaussian Components), then the component is labeled as background.
Here, T T is a threshold which is empirically as T T = 100. If the pixel does not match with
any of the Gaussians then the component is replaced by new parameters given below:

μc
k,t = (1 − ρk,t )μ

c
k,t−1 + ρk,t X

c
t (30)

μY
k,t = (1 − ρk,t )μ

Y
k,t−1 + ρk,t X

Y
t (31)

(σ c
k,t )

2 = (1 − ρk,t )(σ
c
k,t−1)

2 + ρk,t (μ
c
k,t−1 − Xc

t )
2 (32)

(σ Y
k,)

2 = (1 − ρk,t )(σ
Y
k,t−1)

2 + ρk,t (μ
Y
k,t−1 − XY

t )2 (33)

ρk,t = αt Mk,t

ωk,t
(34)

In this model, a local learning rate is used because it is very difficult to model a complex
dynamic scene with a single global learning rate. A small learning rate is required for static
background, whereas a higher learning rate is required for dynamic background scene. The
fluctuation frequency is given by:

ft =
{
ft−1 + 1; if |Xt − Xt−1| > λk,t
ft−1; otherwise

(35)

where λk,t is a threshold used to ignore minor changes due to noise.

αt =
∑N

i=1 fi,t
K N

(36)

where N is the set of recent frames such that 10 ≤ N ≤ 20.

123



Review of background subtraction methods using Gaussian… 251

Fig. 3 Flowchart of SAG combined with MDGKT (Chen and Ellis 2014)

To handle rapid changes such as shadows and lighting switching, causing a large number of
false positives (’ghosts’), a SURF featuresmatching algorithm is used to suppress ghosts. The
identified foreground regions are further matched with the background image using feature
descriptors. Matched regions are then regarded as ’ghosts’, re-classified as background, and
removed from the foreground map. The SURF descriptors are illumination invariant and fast
enough to serve the purpose of real-time processing, hence they are used for ghosts detection
and suppression.

A new spatio-temporal filter is introduced to further refine the foreground detection
results. To handle global illumination changes, global illumination detection and background
adjustment techniques are introduced and paused objects are detected and handled using
spatio-temporal history of foreground blobs.

2.8 Self-adaptive GMM

Chen and Ellis (2014) proposed a self-adaptive GMM (SAG). Flowchart of this model is
shown in Fig. 3. This model uses dynamic learning-rate adaptation to cope with fast illumi-
nation changes. This algorithm is less sensitive to sudden changes in the global illumination.

In background learning process, image noise is suppressed using a spatio-temporal filter
(MDGKT) which improves the stability and robustness of the algorithm and a global illu-
mination changing factor (g) is computed by the MofQ applied to the smoothed image. The
MofQ global illumination change factor g is defined as

g = mediansεS

(
ic,s
ir,s

)
(37)

for all pixels s in set S(the image), between the current image ic and a reference image ir .
Then, the background is learned using self-adaptive GMM (SAG). SAG introduces the factor
g between the learnt background and the current input image which keeps track of global
illumination changes and a counter ck which is increased when the Gaussian parameters are
updated and if the Gaussian is re-assigned, it is reset to 1. When the parameters are updated,
a new learning rate βk is calculated as given below:

ωk,t = (1 − α)ωk,t−1 + α(Mk,t + CT ) (38)

βk,t = α(l + ck)/ck (39)
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μk,t = μk,t−1 + Mk,t (βk,t/ωk,t )δk,t (40)

σ 2
k,t = σ 2

k,t−1 + Mk,t (βk,t/ωk,t )
(
δTk,tδk,t − σ 2

k,t−1

)
(41)

ck = ck + 1 (42)

where l is a constant, α = 1/T is a constant that defines an exponentially decaying envelope
and is used to limit the influence of the old data.CT is a negative prior weight which suppress
the components that are not supported by the data. Mk,t is set to 1 for the matched component
(if the MD from the component is less than a specified threshold) and for other components,
it is set to 0. The squared MD is calculated as given below:

D2
k (xt ) = δTk,tΣ

−1
k,t δk,t (43)

where δk,t = g·xt−μk,t−1 If there are nomatched components, a newcomponent is generated
with ωk+1,t = α, μk+1,t = xt , σk+1,t = σo and ck+1 = 1, where σo is an appropriately
initialized variance value. If the maximum number of components is reached, the component
with smallest wk is discarded.

This algorithm also detects shadows and highlights using spectral, spatial and temporal
features either individually or in combination. The distorting effect of shadow and highlight
in RGB space is decomposed into two components, brightness and chromaticity distortion.
If the intensity value of the i th pixel is Ii = [IRi , IGi , IBi ]T in RGB space, the estimated
mean is Ei = [μRi , μGi , μBi ]T and the pixel standard deviation is σi = [σRi , σGi , σBi ],
then the distortion of the brightness Bi and chromaticity CDi are computed as:

Bi = g
(
IRiμRi/σ

2
Ri + IGiμGi/σ

2
Gi + IBiμBi/σ

2
Bi

)

(μRi/σRi )2 + (μGi/σGi )2 + (μBi/σBi )2
(44)

CDi =
√

((gIRi − BiμRi )/σRi )2 + ((gIGi − BiμGi )/σGi )2 + ((gIBi − BiμBi )/σBi )2

(45)

A foreground pixel is then classified according to the following condition:
{
shadow; if CDi < γ1 and γ2 < Bi < 1
highlight; if CDi < γ1 and Bi > γ3

(46)

where γ1, γ2 and γ3 are the threshold values. γ1(0 < γ1 ≤ 1) distinguishes between chro-
maticity values of the GMM-learnt background and the current image frame, γ2(0 < γ2 < 1)
differentiates between dark pixel values and shadows and γ3(γ3 > 1) is used to detect high-
lights.

3 Evaluation metrics and analysis

3.1 Evaluation metrics and quantitative analysis

Background subtraction algorithms using GMM have limited performance for various chal-
lenges due to the assumption of parameters. The performance of algorithms vary with
challenges. Generally used standard performance metrics for quantitative analysis are Recall
(REC), Precision (PRE), F-measure (FM), Specificity (Sp), False Positive Rate (FPR), False
Negative Rate (FNR) and Percentage of Wrong Classifications (PWC) (Goyette et al. 2012)
which evaluate the performance of algorithm and its robustness against various challenges.
The Recall, Precision and F-measure are based on the accuracy in detecting the pixels as
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foreground and background and is measured by the number of foreground pixels classified
as foreground (True Positives, TP), number of background pixels classified as foreground
(False Positives, FP), number of background pixels classified as background (True Negatives,
TN) and number of foreground pixels classified as background (False Negatives, FN).

Recall is also known as sensitivity and is used to measure the correctly identified fore-
ground pixels with reference to the total number of pixels classified as foreground.

REC = correctly classified foreground pixels

total number of pixels classified as foreground
= TP

(TP + FN)
(47)

Precision is the positive predictive value and it is the fraction of correctly classified foreground
pixels to the actual number of foreground pixels.

PRE = correctly classified foreground pixels

foreground pixels in ground truth
= TP

(TP + FP)
(48)

Both precision and recall are based on the measure of relevance. In terms of segmentation,
a low recall indicates that the algorithm has over-segmented the foreground object , while a
low precision indicates an under-segmented foreground object.

The F-measure considers both the Recall and the Precision. It is a weighted average of
the Recall and the Precision. Higher FM means a good background subtraction algorithm.

FM = (2 ∗ Pre ∗ Rec)

(Pre + Rec)
(49)

The other performance metrics used are calculated with the help of TP, FP, TN, FN are
Specificity, FPR, FNR, PWC. They are expressed as:

Sp = TN

(TN + FP)
(50)

FPR = FP

(FP + TN)
(51)

FNR = FN

(TP + FN)
(52)

PWC = 100 ∗ (FN + FP)

(TP + FN + FP + TN)
(53)

Based on these quantitative analysis parameters, comparison of some of the algorithms
given in Sect. 2 on CDnet Dataset (Goyette et al. 2012) is presented in Table 2. Table 2 shows
that algorithm proposed by KaewTraKulPong and Bowden (2002) and Zivkovic and Heijden
(2006) has low recall value and high FNR compared to other algorithms i.e., it oversegments
the foreground object and is not able to classify the different foreground objects according to
their shape. Algorithm proposed by Lee (2005) has a very low value of precision and a high
FPR which results in undersegmented foreground object. Overall, the algorithms proposed
in KaewTraKulPong and Bowden (2002), Lee (2005), Stauffer and Grimson (1999) and
Zivkovic and Heijden (2006) have a low FM score which shows the poor background and
foreground detection in comparison to algorithm proposed by Shah et al. (2014) and Chen
and Ellis (2014).

Visual results have also been presented in Fig. 4 which shows the segmentation results of
the algorithms GMM (Stauffer and Grimson 1999), Efficient GMM (Zivkovic and Heijden
2006) and Self-adaptive GMM (Chen and Ellis 2014). These segmentation results has been
obtained on PETS 2006 and Fall video sequences from CDnet dataset (Goyette et al. 2012)
and SEQ111 and SEQ121 fromBMCdataset (Vacavant et al. 2013). SEQ111 and SEQ121 are
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Table 2 Comparative results for some algorithms given in Sect. 2 on CDnet dataset (Goyette et al. 2012)

Method REC PRE FM PWC FPR FNR Sp

Stauffer and Grimson
(1999)

0.7108 0.7012 0.6624 3.1037 0.0140 0.2892 0.9860

KaewTraKulPong and
Bowden (2002)

0.5072 0.8228 0.5904 3.1051 0.0053 0.4928 0.9947

Lee (2005) 0.7794 0.6237 0.6475 3.7014 0.0244 0.2206 0.9756

Zivkovic and Heijden
(2006)

0.6707 0.7882 0.6785 2.7954 0.0093 0.3293 0.9907

Shah et al. (2014) 0.8306 0.8576 0.8548 1.0609 0.0051 0.1916 0.9918

Chen and Ellis (2014) 0.9385 0.8026 0.8652 0.0020 0.0016 0.0615 0.9984

Bold values indicate the best performing models for that performance metric

Fig. 4 Segmentation results

synthetic video sequences while PETS 2006 and Fall are real video sequences. For all video
sequences, algorithm proposed by Chen in Chen and Ellis (2014) gives better segmentation
results due to the use of varying learning rate. But for Fall video sequence, algorithmproposed
in Chen and Ellis (2014) does not perform better because of the strong dynamic background.

3.2 Performance analysis

Background Subtraction for foreground detection in video surveillance systems faces chal-
lenges like dynamic background, illumination changes, processing speed, initial learning etc.
Algorithms discussed in Sect. 2 are capable to overcome some of the challenges.

GMM proposed by Stauffer and Grimson (1999) can cope well with the illumination
changes as well as it can handle the problem of objects being introduced or removed from
the scene. This works well for a static background subject to gradual illumination changes
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in the scene but it fails to handle dynamic changes in the background such as leaves sway-
ing, or water waves. Background having fast variations cannot be accurately modeled with
just a few Gaussians (usually 3–5), which causes problems for sensitive detection. It also
suffers from slow learning at the beginning, especially in busy environments and cannot
distinguish between moving shadows and moving objects (KaewTraKulPong and Bowden
2002).

GMM is improved by KaewTraKulPong and Bowden (2002) to accommodate the slow
learning issue of GMM and also introduced a shadow detection technique using brightness
and chromatic distortion cue’s. KaewTraKulPong and Bowden in KaewTraKulPong and
Bowden (2002) proposed new update equations using expected sufficient statistics at the
initial learning stage to improve convergence speed and switching to recursive filter learning
after sufficient samples were observed. But this approach is not helpful for learning new
foreground objects at a later stage, where effective learning is most needed due to the small
number of samples (Lee 2005).

In Lee (2005), Lee proposed an algorithm with improved speed and adaptation rate of the
model. An adaptive learning rate is introduced for each Gaussian along with global learning
rate. For efficiency reasons, it also uses a winner-take all option where parameters of the
single best matching Gaussian component are selected for update and increases the learning
rate of thewinnerGaussian by some small fraction every time it wins. Although this technique
achieves some improvements in segmentation but it is time and memory expensive due to
introduction of additional learning rate for each matching Gaussian components, especially
when number of Gaussian components are high.When the number of observations increases,
it starts to behave like the standardGMM(Stauffer andGrimson 1999)model. This is because
this additional fraction is normalized by the number of frames encountered until time t . It
also fails in scenarios where there is a dynamic background and modes of the pixels are
fluctuating rapidly (Shah et al. 2010).

Zivkovic and Heizden proposed an algorithm in Zivkovic and Heijden (2006) which
adaptively select the number of Gaussians used to model each pixel and employs a recursive
computation to update the model parameters and hence it is suitable for online (real-time)
operation.But this technique uses a single learning ratewhich results in a trade-off in detection
accuracy. For a high learning rate, the model updates too quickly, and slow-moving objects
are absorbed into the background model, which results in a high false negative detection rate.
A low learning rate will fail to adapt to sudden illumination changes which results in a high
false positive rate (Chen and Ellis 2014).

In Shah et al. (2010), Shah et al. proposed a pixel based recursively adaptive learning rate
for Mixture of Gaussians. A strong correlation between learning rate and the local temporal
intensity variations has been explored in order to adapt this over time and a separate learning
rate is used for each pixel. This is both time and memory efficient and gave significant
improvements in segmentation results. But this algorithm uses fixed number of Gaussian
components K. The number of Gaussian components depends upon possible modes in pixel
values. As in real-world application, a prior value of modes of pixel cannot be determined,
hence it is very difficult to set a value of K. Higher number of Gaussian components will make
the algorithm computationally expensive because most of these components in most of the
cases will be of no use and lower number of Gaussian components cannot accurately model
the background and foreground. Consequently, there is a need for a dynamic procedure for
the optimal selection of Gaussian components.

TheGSGmethod (Chan et al. 2011) proposed byChan et al. supportsmodelswith arbitrary
component densities but these densities can only be summarized by sufficient statistics.
This model is applied where the component densities are dynamic textures and produces an
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adaptive background subtraction algorithm based on the mixture of dynamic textures, which
is suitable for dynamic scenes and online video processing. This algorithm achieved high
detection and low false positive rates. Since this algorithm used texture features, hence it is
good to handle illumination variation. But texture features are sensitive to noise, hence it
cannot be applied in low resolution video (Shah et al. 2014).

Another algorithm (Shah et al. 2014) proposed by Shah et al. automatically learns dynam-
ics of a scene and adapts its parameters accordingly. This algorithm uses YUV color space
along with SURF features to model the background and refine the foreground mask. SURF
features are quite resilient to noise and better to deal with illumination changes. A SURF
features matching algorithm is employed to suppress the ghosts and also introduces a new
spatio-temporal filter to further refine the foreground detection results. Although this model
achieved fairly good results for shadows detection while remaining computing inexpensive,
but it cannot detect the strong shadows (Shah et al. 2014). The SURF based approach clas-
sifies the low texture regions as background and high texture regions as foreground. Hence,
if very few features are detected for a region, it will be classified as background resulting in
false positive detections. This algorithm also uses fixed number of Gaussian components.

The algorithm (Chen and Ellis 2014) proposed by Chen and Ellis has a dynamically
adaptive learning rate, adaptively selects the number of Gaussians to model each pixel and is
less sensitive to sudden changes in the global illumination. It also employs a spatio-temporal
Gaussian smoothing algorithm and shadow removal algorithm. But, this proposed algorithm
is not able to remove the ghosts. This algorithm uses RGB color features which are good
for high-quality video but if foreground objects and the background have similar color, then
color features will not give good results. It also assumes that red, green and blue pixel values
are independent and have the same variance but these color components are not independent
and so using a simplification of the covariance by a 3× 3 identity matrix is not accurate and
results in more false positive and false negative detections (Bouwmans et al. 2008).

Table 3 presents the comparison of these algorithms in brief. This table gives the mod-
ification done in the standard GMM algorithm by the different authors. It also gives the
advantages and limitations of various algorithms.

4 Conclusion and future scope

This paper presents a performance analysis of different background subtraction algorithms
based on GMM. Quantitative analysis is also presented using standard performance met-
rics and also identifies the advantages and limitations of these algorithms to determine most
suitable algorithm for a particular scenario in video surveillance systems. Algorithms pro-
posed by Chen and Ellis (2014) and Shah et al. (2014) are most promising for the challenges
faced by video surveillance systems like sudden illumination changes, dynamic background
etc. but they have limited performance in videos with moving shadows. Hence their perfor-
mance degrades for videos taken during bright sunlight. Most of the algorithms assumed
that the dimensions of a pixel value are statistically independent and simplified the covari-
ance matrix to an identity matrix which results in more false positive and false negative
detections. Variances of red, green and blue pixel values are also assumed equal for RGB
color space. Considering the pixel value dimensions dependent and computing the variance
for each component (color or intensity component) separately will result in more accurate
foreground and background detection. Generally, the parameters weight, mean and variance
used in GMM are initialized based on assumptions suitable for the particular scenario. The
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value of these parameters can be more accurately determined for different scenarios using
artificial intelligence. The deviation threshold is fixed which is set equal to 2.5 but this fixed
value is not good enough for every case and depends upon the camera noise and variance in
pixel values. Hence, a mechanism should be there to calculate this threshold automatically
for the particular condition.
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