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Abstract Removing or filtering outliers and mislabeled instances prior to training a learning
algorithm has been shown to increase classification accuracy, especially in noisy data sets.
A popular approach is to remove any instance that is misclassified by a learning algorithm.
However, the use of ensemble methods has also been shown to generally increase classifica-
tion accuracy. In this paper, we extensively examine filtering and ensembling. We examine 9
learning algorithms individually and ensembled together as filtering algorithms as well as the
effects of filtering in the 9 chosen learning algorithms on a set of 54 data sets. We compare
the filtering results with using a majority voting ensemble. We find that the majority voting
ensemble significantly outperforms filtering unless there are high amounts of noise present
in the data set. Additionally, for most cases, using an ensemble of learning algorithms for
filtering produces a greater increase in classification accuracy than using a single learning
algorithm for filtering.

Keywords Voting ensemble · Class noise · Filtering · Machine learning

1 Introduction

The goal of supervised machine learning is to induce an accurate generalizing function
F : X �→ Y from a set of input feature vectors X = {x1, x2, . . . , xn} and a corresponding
set of of label vectors Y = {y1, y2, . . . , yn}. The quality of the induced function F by
a learning algorithm is dependent on the quality of the data used for training. However,
many real-world data sets are inherently noisy where the noise in a data set can be label noise
and/or attribute noise. Label noise has been shown to be more detrimental than attribute noise
(Zhu andWu 2004) and is the focus of this paper. Noise can arise from various sources such as
subjectivity, human errors, and sensor malfunctions. Most learning algorithms are designed
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to tolerate a certain degree of noise by avoiding overfitting the training data. There are two
general approaches for handling class noise: (1) creating learning algorithms that are robust
to noise such as the C4.5 algorithm for decision trees (Quinlan 1993) and (2) preprocessing
the data prior to inducing a model of the data such as filtering (Wilson 1972; Brodley and
Friedl 1999), weighting (Rebbapragada and Brodley 2007; Smith and Martinez 2014) or
correcting (Teng 2003) noisy instances.

Previousworks have generally examined filtering in a limited context using a single or very
few learning algorithms and/or using a limited number of data sets. This may be in part due to
the extra computational requirement to first filter a data set and then induce amodel of the data
using the filtered data set. As such, previous works were generally limited to investigating
relatively fast learning algorithms such as decision trees (John 1995) and nearest-neighbor
algorithms (Tomek 1976; Wilson and Martinez 2000). In addition, filtering prior to using
instance-based learning algorithms was motivated in part to reduce the number of instances
that have to be stored and because instance-based learning algorithms are more sensitive
to noise than other learning algorithms. Most previous works also added artificial noise to
the data set to show that filtering, weighting, or cleaning the data set is beneficial (5–50%
of the instances become noisy). In this work, we examine filtering misclassified instances
and using a majority voting ensemble on a set of 54 data sets and 9 learning algorithms
without adding artificial noise. The artificial noise was added in previous works to show that
filtering/weighting/cleaning provided significant improvements with noisy data sets. Within
the context of the benefits of filtering established by the previous work, we examine the extent
to which filtering affects the performance of a learning algorithm without adding artificial
noise to a data set. This also avoids making assumptions about the generation of the noise
which may or may not be accurate. It also shows the effect of filtering on the inherent noise
in real-world data sets that is not known before hand.

The results provide insights on the robustness of a majority voting ensemble and when to
employ amisclassification filter. Using a larger number of data sets allows for more statistical
confidence in the results than if only a small number of data sets are used. We find that, in
general, a voting ensemble is robust to noise and achieves significantly higher classification
accuracy trained on unfiltered data than a single learning algorithm trained on filtered data.
For filtering, we find that using an ensemble filter achieves significantly higher classification
accuracy than using a single learning algorithm filter. On data sets with higher percentages
of inherent noisy instances, however, using the ensemble filter achieves higher classification
accuracy than a voting ensemble for some learning algorithms. Training a voting ensemble
on filtered training data significantly decreases classification accuracy compared to training
a voting ensemble on unfiltered training data. This is likely due to a reduction of diversity in
the induced models of the ensemble.

In the next section, we present previous works for handling noise in supervised classifica-
tion problems. Amathematical motivation for filtering misclassified instances is presented in
Sect. 3. We then present our experimental methodology in Sect. 4 followed by a presentation
of the results in Sect. 5. In Sect. 6 we provide conclusions and directions for future work.

2 Related work

As many real-wold data sets are inherently noisy, most learning algorithms are designed to
tolerate a certain degree of noise. Typically, learning algorithms are designed to be somewhat
robust to noise by making a trade-off between the complexity of the induced model and
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optimizing the induced function on the training data to prevent overfit. Some techniques
to avoid overfit include early stopping using a validation set, pruning (such as in the C4.5
algorithm for decision trees Quinlan 1993), or regularization by adding a complexity penalty
to the loss function Bishop and Nasrabadi (2006). Some previous works have examined how
class noise and attribute noise affects the performance of various learning algorithms (Zhu
and Wu 2004; Nettleton et al. 2010) and found that class noise is generally more harmful
than attribute noise and that noise in the training set is more harmful than noise in the
test set. Further, some learning algorithms have been adapted specifically to better handle
label noise. For example, noisy instances are problematic for boosting algorithms (Schapire
1990; Freund 1990) where more weight is placed upon misclassified instances, which often
includemislabeled and noisy instances. To address this, Servedio (2003) presented a boosting
algorithm that does not place too much weight on any single training instance. For support
vector machines, Collobert et al. (2006) use the ramp-loss function to place a bound on the
maximum penalty for an instance that lies on the wrong side of the margin. Lawrence and
Schölkopf Lawrence and Schölkopf (2001) explicitly model the possibility that an instance
is mislabeled using a generative model and then use expectation maximization to update the
probability that an instance is mislabeled.

Preprocessing the data set is another approach that explicitly handles label noise. This
can be done by removing noisy instances, weighting the instances, or correcting incorrect
labels. All three approaches first attempt to identify which instances are noisy by various
criteria. Filtering noisy instances has received much attention and has generally resulted in
an increase in classification accuracy (Gamberger et al. 2000; Smith andMartinez 2011). One
frequently used filtering technique removes any instance that is misclassified by a learning
algorithm (Wilson 1972) or set of learning algorithms (Brodley and Friedl 1999). Verbaeten
and Van Assche (2003) further pursued the idea of using an ensemble for filtering using ideas
from boosting and bagging. Other approaches use learning algorithm heuristics to remove
noisy instances. Segata et al. (2009), for example, remove instances that are too close or
on the wrong side of the decision surface generated by a support vector machine. Zeng and
Martinez (2003) remove instances while training a neural network that have a low probability
of being labeled correctly where the probability is calculated using the output from the neural
network. Filtering has the potential downside of discarding useful instances. However, it is
assumed that there are significantly more non-noisy instances and that throwing away a few
correct instances with the noisy instances will not have a negative impact on a large data set.

Weighting the instances in a training set has the benefit of not discarding any instances.
Rebbapragada and Brodley (2007) weight the instances using expectation maximization to
cluster instances that belong to a pair of the classes. The probabilities between classes for each
instances is compiled and used to weight the influence of each instance. Smith and Martinez
(2014) examine weighting the instances based on their probability of being misclassified.

Similar to weighting the training instances, data cleaning does not discard any instances,
but rather strives to correct the noise in the instances. As in filtering, the output from a
learning algorithm has been used to clean the data. Automatic data enhancement (Zeng
and Martinez 2001) uses the output from a neural network to correct the label for training
instances that have a low probability of being correctly labeled. Polishing (Teng 2000, 2003)
trains a learning algorithm (in this case a decision tree) to predict the value for each attribute
(including the class). The predicted (i.e. corrected) attribute values for the instances that
increase generalization accuracy on a validation set are used instead of the uncleaned attribute
values.

We differ from the related work in that we do not add artificial noise to the data sets when
we examine filtering. Thus, we avoid making any assumptions about the noise source and
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Fig. 1 Graphical model of the
generative probabilistic model
proposed by Lawrence and
Schölkopf (2001)
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focus on the noise inherent in the data sets. We also examine the effects of filtering on a larger
set of learning algorithms and data sets providing more significance to the generality of the
results.

3 Modeling class noise in a discriminative model

Lawrence and Schölkopf (2001) proposed to model a data set probabilistically using a gener-
ative model that models the noise process. They assume that the joint distribution p(x, y, ŷ)
(where x is the set of input features, ŷ is the observed, possibly noisy, class label given in
the training set, and y is the actual unkown class label) is factorized as p(ŷ|y)p(x |y)p(y) as
shown in Fig. 1a. However, since modeling the prior distribution of the unobserved random
variable y is not feasible, it is more practical to estimate the prior distribution of p(ŷ) with
some assumptions about the class noise as shown in Fig. 1b.

Here, we follow the premise of Lawrence and Schölkopf by explicitly modeling the possi-
bility that an instance is misclassified. Rather than using a generative model, though, we use a
discriminative model since we are focusing on classification tasks and do not require the full
joint distribution. Also, discriminative models have been shown to yield better performance
on classification tasks (Ng and Jordan 2001). Using a discrimintative model that accounts
for class noise motivates our investigation of filtering and using a majority voting ensemble.

Let T be a training set composed of instances 〈xi , ŷi 〉 drawn i.i.d. from the underlying
data distribution D. Each instance is composed of an input vector xi with a corresponding
possibly noisy label vector ŷi . Given the training data T , a learning algorithm generally seeks
to find the most probable hypothesis h that maps each xi �→ ŷi . For supervised classification
problems,most learning algorithmsmaximize p(ŷi |xi , h) for all instances in T . This is shown
graphically in Fig. 2a where the probabilities are estimated using a discriminative approach
such as a neural network or a decision tree to induce a hypothesis of the data. Using Bayes’
rule and decomposing T into its individual constituent instances, the maximum a posteriori
hypothesis is:

argmax
h∈H

p(h|T ) = p(T |h)p(h)
p(T )

∝
∏

i

p(xi , ŷi |h)p(h)

argmax
h∈H

p(h|T ) =
∏

i

p(ŷi |xi , h)p(xi |h)p(h). (1)

In Eq. 1, the MAP hypothesis h is found by finding a global optima where all instances
are included in the optimization problem. However, noisy instances are often detrimental
for finding the global optima since they are not representative of the true (and unknown)
underlying data distributionD. The possibility of label noise is not explicitly modeled in this
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Fig. 2 Graphical representation
of a discriminative probabilistic
model for a p(ŷ|x)p(x) and b
p(ŷ|x, y)p(y|x)p(x)
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form—completely ignoring yi . Thus, label noise is generally handled by avoiding overfit
such that more probable, simpler hypotheses are preferred (p(h)). The possibility of label
noise can be modeled explicitly by including the latent random variable yi with xi and
ŷi . Thus, an instance is the triplet 〈xi , ŷi , yi 〉 and a supervised learning algorithm seeks to
maximize p(ŷi |xi , y, h)—modeled graphically in Fig. 2b. Using the model in Fig. 2b, the
MAP hypothesis becomes:

argmax
h∈H

p(h|T ) ∝
∏

i

p(xi , yi , ŷi |h)p(h)

=
∏

i

p(ŷi |xi , yi , h)p(yi |xi , h)p(xi |h)p(h). (2)

Equation 2 shows that for an instance xi , the probability of an observed class label
(p(ŷi |xi , yi , h)) should be weighted by the probability of the actual class (p(yi |xi , h)).

What we are really interested in is the probability that yi = ŷi . Using a discriminative
model h trained on T , we can calculate p(yi |ŷi , xi , h) as

p(yi |ŷi , xi , h) = p(yi |ŷi , h)p(ŷi |xi , h)p(h).
Since the quantity p(y|ŷi , h) is unknown, p(yi |ŷi , xi , h) can be approximated as p(ŷi |xi , h)
assuming that p(yi |ŷi , h) is represented in h. In other words, the induced discriminative
model is able to model if one class label is more likely than another class label given an
observed, possibly noisy, label. Otherwise, all class labels are assumed to be equally likely
given an observed label. Thus, p(yi |ŷi , xi , h) can be approximated by finding the class
distributions for a given xi from an induced discriminative model. That is, after training a
learning algorithmon T , the class distribution for an instance xi can be calculated based on the
output from the learning algorithm. As shown in Eq. 1, p(ŷi |xi , h) is found naturally through
a derivation of Bayes’ law. The quantity p(ŷi |xi , h) is the maximum likelihood of an instance
given a hypothesis h which a learning algorithm tries to maximize for each instance. Further,
the dependence on a specific h can be removed by summing over all possible hypotheses h
in H and multiplying each p(ŷi |xi , h) by p(h):

p(yi |ŷi , xi ) ≈ p(ŷi |xi ) =
∑

h∈H
p(ŷi |xi , h)p(h). (3)

This formulation is infeasible though because (1) it is not practical (or possible) to sum over
the set of all hypotheses, (2) calculating p(h) is non-trivial, and 3) not all learning algorithms
produce a probability distribution. These limitation make probabilistic generative models
attractive, such as the kernel Fisher discriminant algorithm (Lawrence and Schölkopf 2001).
However, for classification tasks, generative models generally have a higher asymptotic error
than discriminative models (Ng and Jordan 2001). The following section shows how we
estimate p(yi |ŷi , xi , h).

This framework for modeling class noise in a discriminative model motivates the use of
removing instances with low p(yi |ŷi , h) and the use of ensembles to lessen the dependence
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on a given hypothesis h. Following Eq. 2, removing instances with low p(yi |xi , h) will
increase the global p(h|T ) since p(ŷi |xi , yi , h) will be low. Further, following Eq. 3, an
ensemble should theoretically be more robust to the bias of a particular hypothesis and
noise by utilizing multiple overfit avoidance techniques. This motivates our examination of
a majority voting ensemble composed of models induced by different learning algorithms1

as a filtering technique and as a classifier.

4 Methodology

In this section, we present how we calculate p(yi |ŷi , xi , h) and the learning algorithms and
data set that we use in our analysis. We also provide an overview of our experimentss.

4.1 Calculating p( yi | ŷi , xi , h)

To calculate p(yi |ŷi , xi , h) for each instance, we use an induced model from training a
learning algorithm on the training set T . To lessen the dependence of p(yi |ŷi , xi , h) on a
particular h, we estimate marginalizing over the hypothesis space H by selecting a diverse
set of learning algorithms to representH. The diversity of the learning algorithm refers to the
learning algorithmsnot having the sameclassification for all of the instances and is determined
using unsupervised meta-learning (UML) (Lee and Giraud-Carrier 2011). UML first uses
Classifier Output Difference (COD) (Peterson and Martinez 2005) to measure the diversity
between learning algorithms. CODmeasures the distance between two learning algorithms as
the probability that the learning algorithmsmake different predictions. UML then clusters the
learning algorithms based on their COD scores with hierarchical agglomerative clustering.
We considered 20 learning algorithms from Weka with their default parameters (Hall et al.
2009). The resulting dendrogram is shown in Fig. 3, where the height of the line connecting
two clusters corresponds to the distance (COD value) between them. A cut-point of 0.18
was chosen to create 9 clusters and a representative algorithm from each cluster was used to
create a diverse set of learning algorithms. The learning algorithms that were used are listed
in Table 1. UML provides a diverse set of learning algorithms intended to be representative
of H.

4.2 Experiments

Given a method for estimating p(yi |ŷi , xi , h) and for lessening the dependence on a specific
h, we examine several techniques for filtering instances with low p(yi |ŷi , xi , h) and for
constructing a voting ensemble.

4.2.1 Misclassification filters

In this paper,we examinemisclassification filterswhichfilter any instance that ismisclassified
by a given learning algorithm. Given that a number of different learning algorithms could be
employed for filtering, we conduct an extensive evaluation of filtering misclassified instances
using a diverse set of learning algorithms as described in the previous section. Each learning
algorithm first filters instances from the training set that were misclassified and then induces

1 As opposed to an ensemble composed of models linduced by the same learning algorithm such as bagging
or boosting.
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Fig. 3 Dendrogram of the considered learning algorithms clustered using unsupervised metalearning based
on their classifier output difference

Table 1 Set of learning
algorithms used for filtering

Learning algorithms

Multilayer Perceptron trained with Back Propagation (MLP)

Decision Tree (C4.5) (Quinlan 1993)

Locally Weighted Learning (LWL)

5-Nearest Neighbors (5-NN)

Nearest Neighbor with generalization (NNge)

Naïve Bayes (NB)

RIpple DOwn Rule learner (RIDOR)

Random Forest (RandForest)

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

a model of the data using the filtered training set. Misclassification filters using a single
learning algorithm establish a good baseline to compare against.

4.2.2 Ensemble filter

We also examine using an ensemble filter–removing instances that aremisclassified by differ-
ent percentages of the 9 learning algorithms. The ensemble filter more closely approximates
p(y|ŷi , xi ) from Eq. 3 since it sums over a set of learning algorithms (which in this case were
chosen to be diverse and represent a larger subset of the hypothesis space H) lessening the
dependence on a single hypothesis h. For the ensemble filter, p(y|ŷi , xi ) is estimated using
a subset of learning algorithms L:

p(y|ŷi , xi ) ≈ p(ŷi |xi ,L) ≈ 1

|L|
|L|∑

j=1

p(ŷi |xi , l j (T )) (4)

where l j (T ) is the hypothesis from the j th learning algorithm trained on training set T . From
Eq. 3, p(h) is estimated as 1

|L| for the j th hypothesis generated from training the learning
algorithms in L on T and as zero for all of the other hypotheses in H. Also, p(ŷi |xi , l j (T ))
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Algorithm 1 Adaptively constructing a filter set.
1: Let F be the filter set used for filtering and L be the set of candidate learning algorithms for F .
2: Initialize F to the empty set: F ← {}
3: Initialize the current accuracy to the accuracy from an empty filter set: curr Acc ← runL A({}). runL A(F)

returns the accuracy from a learning algorithm trained on a data set filtered with F .
4: while L 
= {} do
5: best Acc ← curr Acc; best L A ← null;
6: for all g ∈ L do
7: tempF ← F + g; acc ← runL A(tempF);
8: if acc > best Acc then
9: best Acc ← acc; best L A ← g;
10: end if
11: end for
12: if best Acc > curr Acc then
13: L ← L − best L A; F ← F + best L A; curr Acc ← best Acc;
14: else
15: break;
16: end if
17: end while

is estimated using the indicator function (h(xi ) = ŷi ) since not all learning algorithms
produce a probability distribution over the output classes. Set up as such, the ensemble filter
filters an instance that is misclassified by x% of the learning algorithms in the ensemble. In
this paper, we examine an ensemble filter, removing instances that aremisclassified by 50, 70,
and 90 percent of the learning algorithms in the ensemble. One of the problems of using an
ensemble filter is having to choose the percentage of learning algorithms that misclassify an
instance for filtering. For the results, we report the accuracy from the percentage that produces
the highest accuracy using 5 by 10-fold cross-validation to choose the best percentage for
each data set. This method highlights the impact of using an ensemble filter, however, in
practice a validation set is often used to determine the percentage that would be used.

4.2.3 Adaptive filter

We also examine an adaptive filtering approach that iteratively adds a learning algorithm to a
set of filtering learning algorithms by selecting the learning algorithm from a set of candidate
learning algorithms L that produces the highest classification accuracy on a validation set
when added to the set of learning algorithms used for filtering, as shown in Algorithm 1. The
function runLA(F) trains a learning algorithm on a data set using the filter set F to filter
the instances and returns the accuracy of the learning algorithm on a validation set. As with
the ensemble filter, instances are removed that are misclassified by a given percentage of the
filtering learning algorithms. The idea is to choose an optimal subset of learning algorithms
through a greedy search of the candidate filtering algorithms. For the results, we report the
accuracy from the percentage that produces the highest accuracy using n-fold cross-validation
to choose the best percentage for each data set.

4.2.4 Majority voting esemble

In addition, we examine the use of a majority voting ensemble compared to filtering mis-
classified instances. The majority voting ensemble is composed of the diverse set learning
algorithms as described in Sect. 4.1. The classification of an instance is the class that receives
the most votes from the trained ensembled models.
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4.3 Evaluation

Eachmethod is evaluatedusing5by10-fold cross-validation (running10-fold cross validation
5 times, each time with a different seed to partition the data). We examine filtering using the
9 chosen learning algorithms on a set of 47 data sets from the UCI data repository and 7
non-UCI data sets (Thomson andMcQueen 1996; Salojärvi et al. 2005; Sayyad Shirabad and
Menzies 2005; Stiglic and Kokol 2009). For filtering, we examine two methods for training
the filtering algorithms: (1) removing the misclassified instances when trained on the entire
training set and (2) using cross-validation on the training set that removes instances that are
misclassified in the validation set. The number of folds for using cross-validation for the
training set was set to 2, 3, 4, and 5. Table 2 shows the data sets used in this study organized
according to the number of instances, number of attributes, and attribute type. The non-UCI
data sets are in bold.

Statistical significance between pairs of algorithms is determined using the Wilcoxon
signed-ranks test as suggested by Demšar (2006). We emphasize the extensive nature of this
evaluation:

1. Filtering is examined on 9 diverse learning algorithms.
2. 9 diverse learning algorithms are examined as misclassification filtering techniques.
3. In addition to the single algorithm misclassification filters, an ensemble filter and an

adaptive filter are examined.
4. Each filtering method is examined on a set of 54 data sets using 5 by 10-fold cross-

validation.
5. Each filtering method is examined on the entire training set as well as using 2-, 3-, 4-,

and 5-fold cross-validation.
6. A majority voting ensemble is examined on a set of 54 data sets using 5 by 10-fold

cross-validation.

5 Results

In this section, we present the results from filtering the 54 data sets using (1) a biased
misclassification filter (the same learning algorithm to filter misclassified instances is used to
induce amodel of the data), (2) the ensemble filter, and (3) the adaptive filter aswell as a voting
ensemble. Our results can be summarized as follows: (1) using a voting ensemble is generally
preferable to filtering, (2) when filtering, our results suggest that using the ensemble filter in
all cases produces the best results, and (3) filtering is preferable to a voting ensemble in some
cases with high amounts of noise. Except for the adaptive filter, we find that using cross-
validation on the training set for filtering results in a lower accuracy (and often significantly
lower) than using the entire training set and, as such, the following results for the biased filter
and the ensemble filter are from using the entire training set for filtering rather than using
cross-validation. We first show how filtering affects each learning algorithm in Sect. 5.1.
Next, we examine using a set of data set measures to determine when filtering is the most
effective in Sect. 5.2. In Sect. 5.3, we compare filtering with a voting ensemble.
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Table 2 Datasets used organized by number of instances (# Ins), number of attributes, and attribute type

# Ins # Attributes Attribute type
Categorical Numerical Mixed

M < 100 k < 10 Contact lenses Post-operative
cm1_req

10 < k < 100 Lung cancer desharnais Labor
Pasture

100 < M < 1000 k < 10 Breast-w Iris Badges 2

Breast cancer Ecoli Teaching-assistant

Pima Indians

Glass

Bupa

Balance Scale

10 < k < 100 Audiology Ionosphere Annealing

Soybean(large) Wine Dermatology

Lymphography Sonar Credit-A

Congressional-
voting
records

Heart-Statlog Credit-G

ar1 Horse Colic

Vowel Heart-c

Primary-Tumor Hepatitis

Zoo Autos

Heart-h

eucalyptus

k > 100 AP_Breast-Uterus Arrhythmia

1000 < M < 10,000 k < 10 Car Evaluation Yeast

Titanic

k < 100 Waveform-5000 Thyroid-(sick & hypothyroid)

Segment

Spambase

Ozone level-detection

M > 10,000 k < 10 Nursery MAGIC

Telescope

k < 100 Chess-(King-
Rook vs.
King-Pawn)

Eye-movements

5.1 Filtering results

The results of the biased, ensemble, and adaptive filters are summarized in Table 3—showing
the average classification accuracy for each learning algorithm and filtering algorithm pair.2

2 The NNge learning algorithm did not finish running two data sets: eye-movements and Magic telescope.
RIPPER did not finish on the lung cancer data set. In these cases, the data sets are omitted from the presented
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Table 3 Summary of filtering using the same learning algorithm to filter misclassified instances and to induce
a model of the data, the ensemble filter, and the adaptive filter

MLP C4.5 IB5 LWL NB NNge RF Rid RIP

Orig 81.74 80.80 79.91 72.80 76.94 80.14 82.28 79.90 79.76

Biased 81.72 80.75 79.53 70.91 75.88 80.34 82.14 79.02 79.87

Ensemble 83.40 81.61 80.85 73.48 78.92 82.21 82.93 80.57 81.26

Adaptive 82.38 80.63 80.01 73.44 78.48 81.33 81.87 80.00 80.43

For all learning algorithms, the ensemble filter significantly increases the classification accuracy

The values in bold represent those that are a statistically significant improvement over not
filtering. The results of the statistical significance tests for each of the learning algorithms is
provided in Tables 10, 11, 12, 13, 14, 15, 16, 17 and 18 in “Appendix 1”.

We find that using a biased filter does not significantly increase the classification for
any of the learning algorithms and that using a biased filter significantly decreases the
classification accuracy for the LWL, naïve Bayes, Ridor and RIPPER learning algorithms
(Tables 13, 14, 17, 18). These results suggest that simply removing themisclassified instances
by a single learning algorithm is not sufficient. Bear in mind that these results reflect not
adding any artificial noise to the training set. In the case where artificial noise is added
to the training set (as was commonly done in previous works), using a biased filter may
result in an improvement in accuracy. However, most real-world scenarios do not artifi-
cially add noise to their data set but are concerned with the inherent noise found within
it.

For all of the learning algorithms, the ensemble filter significantly increases the clas-
sification accuracy over not filtering and over the other filtering techniques. An ensemble
generally provides better predictive performance than any of the constituent learning algo-
rithms (Polikar 2006) and generally yields better results when the underlying ensembled
models are diverse (Kuncheva and Whitaker 2003). Thus, by using a more powerful model,
only the noisiest instances are removed. This provides empirical evidence supporting the
notion that filtering instances with low p(ŷi |xi ) that are not dependent on a single hypoth-
esis is preferred to filtering instances where the probability of the class is dependent on a
particular hypothesis p(ŷi |xi , h) as outlined in Eq. 3.

Surprisingly, the adaptive filter does not outperform the ensemble filter and in, one case,
it does not even outperform training on unfiltered data. Perhaps this is because it overfits
the training data since the best accuracy is chosen on the training set. Adaptive filtering
has significantly better results when cross-validation is used to filter misclassified instances
as opposed to removing misclassified instances that were also used to train the filtering
algorithm. Even with using the results with cross-validation, the results are not significantly
better than using the ensemble filter.

Examining each learning algorithm individually, we find that some learning algorithms
are more robust to noise than others. To determine which learning algorithms are more robust
to noise, we compare the accuracy of the learning algorithms without filtering to the accuracy
obtained using the ensemble filter. The p values from the Wilcoxon signed-ranks statistical
significance test are shown in Table 4 ordered from greatest (least significant impact) to

Footnote 2 continued
results. As such, NNge was evaluated on a set of 52 data sets and RIPPER was evaluated on a set of 53 data
sets.
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Table 4 The p values from the Wilcoxon signed-ranks statistical significance test comparing not filtering
with the ensemble filter

RF C4.5 Rid IB5 NNge MLP LWL RIP NB

p val 0.045 0.035 0.019 0.018 0.006 0.004 0.004 <0.001 <0.001

The learning algorithms are ordered in descending order of p value from left to right

least reading from left to right. We see that random forests and decision trees are the most
robust to noise as filtering has the least significant impact on their accuracy. This is not
too surprising given that the C4.5 algorithm was designed to take noise into account and
random forests are built using decision trees. Ridor and 5-nearest neighbor (IB5) are more
robust to noise, but still greatly improve with filtering. IB5 is more robust to noise since
it compares with the 5 nearest neighbors of an instance. If K were set to 1, then filtering
would have a greater effect on the accuracy. Filtering has the most significant effect on
the accuracy of the last five learning algorithms: MLP, NNge, LWL, RIPPER, and naïve
Bayes.

5.2 Analysis of when to filter

Using only the inherent noise in a data set, the efficacy of filtering is limited and can be
detrimental in some data sets. Thus, we examine the cases in which filtering significantly
improves the classification accuracy. This investigation is similar to the recent work by Sáez
et al. (2013) who investigate creating a set of rules to understand when to filter using a
1-nearest neighbor learning algorithm. They use a set of data complexity measures from
Ho and Basu (2002). The complexity measures are designed for binary classification prob-
lems, yet we do not limit ourselves to binary classification problems. As such, we use a
subset of the data complexity measures shown in Table 5 that have been extended to handle
multi-class problems (Orriols-Puig et al. 2009). In addition, we also examine a set of hard-
ness measures (Smith et al. 2014) shown in Table 6. The hardness measures are designed
to determine and characterize instances that have a high likelihood of being misclassified
and are taken with respect to a specific instance. For the hardness measures, the “disjunct”
refers to the class leaf in a decision tree that classifies an investigated instance. We exam-
ine using the set of data complexity measures and the hardness measures to create rules
and/or a classifier to determine when to use filtering. We set up the classification prob-
lem similar to Sáez et al. where the features are the complexity measures and the hardness
measures. The class label is set to “TRUE” if filtering significantly improves the classifi-
cation accuracy for a data set using the Wilcoxon signed-ranks test otherwise it is set to
“FALSE”. We also examine predicting the difference in accuracy between using and not
using a filter. Unlike Sáez et al., we find that the data complexity measures and the hard-
ness measures do not create a satisfactory classifier to determine when to filter. Granted, we
examine more learning algorithms and do not artificially add noise to the data sets which
provides for few data sets where filtering significantly improves the classification accuracy.
In the study by Sáez et al., 75% of the data sets had at least 5% noise added providing
more positive examples. More future work is required to determine when to use filtering on
unmodified data sets. Based on our results, we would recommend always using the ensem-
ble filter for all of the learning algorithms as it significantly outperforms the other filtering
techniques.
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Table 5 List of complexity measures from Ho and Basu (2002)

F2: Volume of overlap region: The overlap of the per-class bounding boxes calculated for each
attribute by normalizing the difference of the maximum and minimum values from each
class

F3: Max individual feature efficiency: For all of the features, the maximum ratio of the number of
instances not in the overlapping region to the total number of instances

F4: Collective feature efficiency: F3 only return the ratio for the attribute that maximizes the ratio.
F4 is a measure for all of the attributes

N1: Fraction of points on class boundary: The fraction of instances in a data set that are connected
to their nearest neighbors that have a different class in a spanning tree

N2: Ratio of ave intra/inter class NN dist: The average distance to the nearest intra-class
neighbors divided by the average distance to the nearest inter-class neighbors

N3: Error rate of 1NN classifier: Leave-one-out error estimate of 1NN

T1: Fraction of maximum covering spheres: The normalized count of the number of clusters of
instances containing a single class

T2: Ave number of points per dimension: Compares the number of instances to the number of
features

Table 6 List of hardness measures from Smith et al. (2014)

kDN k-Disagreeing neighbors: The percentage of the k nearest neighbors (using Euclidean
distance) for an instance that do not share its target class value

DS Disjunct size: The number of instances covered by a disjunct that the investigated instance
belongs to divided by the number of instances covered by the largest disjunct in an
unpruned decision tree induced using C4.5 (Quinlan 1993)

DCP Disjunct class percentage: The number of instances in a disjunct that have the same class
label as the investigated instance divided by the total number of instances in the disjunct in a
pruned decision tree

TD Tree depth: The depth of the leaf node that classifies an instance in an induced decision tree

CL Class likelihood: The probability that an instance belongs to its class given the input features

CLD Class likelihood difference: The difference between the class likelihood of an instance and the
maximum class likelihood for all of the other classes

MV Minority value: The ratio of the number of instances sharing its target class value to the
number of instances in the majority class

CB Class balance: The difference of the ratio of the number of instances belonging to a class and
the ratio of the classes if they were distributed equally

5.3 Voting ensemble versus filtering

In this section, we compare the results of filtering using the ensemble filter with a voting
ensemble. The voting ensemble uses the same learning algorithms as the ensemble filter
(Table 1) and the vote from each learning algorithm is equally weighted. Table 7 compares the
voting ensemblewith using the ensemble filter on each of the investigated learning algorithms
giving the average accuracy, the p-value, and the number of times that the accuracy of a voting
ensemble is greater than, equal to, or less than using the ensemble filter. The results for each
data set are provided in Table 19 in “Appendix 2”. With no artificially generated noise, a
voting ensemble achieves significantly higher classification accuracy than the ensemble filter
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Table 7 Summary of the comparison between a voting ensemble and filtering using the ensemble filter on
each learning algorithm

Ensemble MLP C4.5 IB5 LWL NB

Acc 84.37 83.40 81.61 80.85 73.48 78.92

p value 0.008 <0.001 <0.001 <0.001 <0.001

>,=,< 33, 1, 20 43, 1, 10 42, 2, 10 47, 1, 6 41, 0, 13

Ensemble NNge RF Rid RIP

Acc 84.37 81.59 82.93 80.57 80.76

p value <0.001 <0.001 <0.001 <0.001

>,=,< 44, 2, 8 39, 0, 15 47, 1, 6 44, 1, 9

The average accuracy for each method over all tested datasets is used to illustrate the differences. Using
the ensemble significantly improves the classification accuracy over using the ensemble filter for all of the
examined learning algorithms

for each of the examined learning algorithms. This is not too surprising considering that
previous research has shown that ensemble methods address issues that are common to all
non-ensemble learning algorithms (Dietterich 2000) and that ensemble methods generally
obtain a greater accuracy than that from a single learning algorithm that makes up part of the
ensemble (Opitz andMaclin 1999). Considering the computational requirements for training,
using a voting ensemble for classification rather than filtering appears to be more beneficial.

Many previous studies (Zhu and Wu 2004; Lawrence and Schölkopf 2001; Brodley and
Friedl 1999; Verbaeten and Van Assche 2003) have shown that when a large amount of
artificial noise is added to a data set (i.e.≥10%), then filtering outperforms a voting ensemble.
We examine which of the 54 data sets have a high percentage of noise using instance hardness
(Smith et al. 2014) to identify suspected noisy instances. Instance hardness approximates the
likelihood that an instance will be misclassified by evaluating the classification of an instance
from a set of learning algorithmsL: p(ŷi |xi ,L). The set of learning algorithmsL is composed
of the learning algorithms shown in Table 1. The instances that have a probability greater than
0.9 of beingmisclassifiedwe consider to be noisy instances. Table 8 shows the accuracies from
a voting ensemble and the considered learning algorithms using the ensemble filter for the
subset of data sets with more than 10% noisy instances. Examining the more noisy data sets
shows that the gains from using the ensemble filter are more noticeable. However, only 9 out
of the 54 investigated data sets were identified as having more than 10% noisy instances. We
ran aWilcoxon signed-ranks test, but with the small sample size it is difficult to determine the
statistical significance of using the ensemble filter over using a voting ensemble. Based on the
small sample provided here, training a learning algorithm on a filtered data set is statistically
equivalent to training a voting ensemble classifier. The computational complexity required
to train an ensemble is less than that to train an ensemble for filtering followed by training
another learning algorithm from thefiltered data set.A single learning algorithm trained on the
filtered data set has the benefit that only one learning algorithm is queried for a novel instance.
Future work will include discovering if a smaller subset of learning algorithms for filtering
approximates using the ensemble filter in order to reduce the computational complexity.

Examining the more noisy data sets shows that filtering has a more significant effect on
classification accuracy, however, the amount of noise is not the only factor that needs to be
considered. For example, 32.2% of the instances in the primary-tumor data set are noisy, yet
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Table 9 Comparison of a majority voting ensemble trained on unfiltered (Ens) and filtered data (FEns)

Ens FEns 50 FEns 70 FEns 90 FEns Max

All

Accuracy 84.37 83.40 82.21 73.96 83.62

p value <0.001 <0.001 <0.001 <0.001

Greater-equal-less 42, 3, 9 44, 2, 8 48, 1, 5 39, 2, 13

Noisy

Accuracy 67.66 67.00 67.47 60.52 67.93

p value 0.102 0.455 0.049 0.633

Greater-equal-less 7, 0, 2 5, 0, 4 6, 0, 3 5, 0, 4

<90%

Accuracy 78.49 77.19 75.74 66.02 77.44

p values <0.001 <0.001 <0.001 <0.001

Greater-equal-less 31, 0, 6 30, 1, 6 34, 0, 3 28, 0, 9

<80%

Accuracy 74.70 73.08 71.41 61.49 73.41

p values <0.001 <0.001 <0.001 0.002

Greater-equal-less 24, 0, 3 22, 0, 5 24, 0, 3 21, 0, 6

<70%

Accuracy 64.65 61.99 60.41 51.04 62.25

p values 0.001 0.002 <0.001 0.009

Greater-equal-less 10, 0, 1 10, 0, 1 10, 0, 1 10, 0, 1

<60%

Accuracy 58.44 55.81 53.49 42.56 56.12

p values 0.016 0.016 0.016 0.016

Greater-equal-less 6, 0, 0 6, 0, 0 6, 0, 0 6, 0, 0

<50%

Accuracy 50.92 48.22 48.07 38.61 49.16

p values 0.250 0.250 0.250 0.250

Greater-equal-less 2, 0, 0 2, 0, 0 2, 0, 0 2, 0, 0

The value after “FEns” represents the percentage of learning algorithms that have to misclassify an instance
for it to be filtered from the training set and “Max” uses the accuracy from the percentage that results in the
greatest accuracy. Training with unfiltered data is significantly better than training with filtered data for a
voting ensemble

only one learning algorithm achieves a greater classification accuracy than the voting ensem-
ble. On the other hand, the classification accuracy on the ar1 and ozone data sets for all of the
considered learning algorithms trained on filtered data is greater than using a voting ensemble
despite only having 3.3 and 0.5% noisy instances respectively. Thus, there are other unknown
data set features affectingwhen filtering is appropriate. Futurework also includes discovering
and examining data set features that are indicative of when filtering should be used.

We further investigate the robustness of the majority voting ensemble to noise by applying
the ensemble filter to the training data for the voting ensemble. We find that a majority voting
ensemble is significantly better without filtering. The summary results are shown in Table 9
and the full results for each data set can be found in Table 20 in “Appendix 2”. Table 9
divides the data sets into subsets that have more than 10% noisy instances (“Noisy”), and
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those that have an original accuracy less than 90, 80, 70, 60, and 50% averaged across
the investigated learning algorithms (<N %). Even with harder data sets and more noisy
instances, using unfiltered training data produces significantly higher classification accuracy
for the voting ensemble. Thus, we find that a majority voting ensemble is more robust to noise
than filtering in most cases. The strength of a voting ensemble comes from the diversity of the
ensembled learning algorithms. However, the induced models from the learning algorithms
trained on the filtered training data are less diverse since the diversity often comes from how
a learning algorithm treats a noisy instance, lessening the power of the voting ensemble. This
is evidenced as we examined a voting ensemble consisting of C4.5, random forest, and Ridor
which are three of themore similar learning algorithms using unsupervisedmeta-learning (see
Sect. 4). When trained on the filtered training data, the less diverse voting ensemble achieves
a significantly lower classification average accuracy of 82.09% compared to 83.62% from
the voting ensemble composed of the 9 examined learning algorithms. Thus, some noise in
the training set is beneficial to create diversity in the ensemble.

6 Conclusions and Discussion

In this paper, we presented an extensive empirical evaluation of misclassification filters on a
set of 54 multi-class data sets and 9 diverse learning algorithms. As opposed to other work on
filtering, we used a large set of data sets and learning algorithms and we did not artificially
add noise to the data set. In previous works, noise was added to a data set to verify that the
noise filtering method was effective and that filtering was more effective when more noise
was present. However, the artificial noise may not be representative of the actual noise and
the impact of filtering on an unmodified data set is not always clear.

Using a set of multi-class data sets, we focused our analysis on accuracy. However, for
many 2-class problems other metrics could be more indicative of good performance such as
precision or recall. We also did not examine the case of class imbalance that may affect the
probability of a class or cases where one class may be more important than another such
as a false negative in diagnosing a terminal disease. These are important issues that arise in
many real-world machine learning applications. In cases of extreme data imbalance, all of the
instances of a majority class could be removed because they have low p(yi |ŷi , xi , h). Thus,
other techniques to account for class imbalance should also be used. This risk also highlights
a benefit of using a voting ensemble as instances will not be discarded. However, the voting
ensemble requires a higher computational budget to induce the ensembledmodels. For dealing
with class imbalance or class weighted differently by importance, we suggest using a voting
ensemble with another technique that address the class imbalance or weighted classes.

Through our experiments we found that, without artificially adding label noise, using the
same learning algorithm for filtering and for inducing a model of the data can be significantly
detrimental and does not significantly increase the classification accuracy even when exam-
ining harder data sets. Using the ensemble filter significantly improved the accuracy over
not filtering and outperformed both the adaptive filtering method and using each learning
algorithm individually as a filter for all of the investigated learning algorithms. We compared
filtering with a voting ensemble and found that a voting ensemble achieves significantly
higher classification accuracy than any of the other considered learning algorithms trained
on filtered data. A majority voting ensemble trained on unfiltered data significantly outper-
forms a voting ensemble trained on filtered data. Thus, a voting ensemble exhibits robustness
to noise in the training set and is preferable to filtering.
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Appendix 1: Statistical Significance Tables

This section provides the results from the statistical significance tests comparing not filtering
with filteringwith a biased filter, the ensemble filter, and the adaptive filter for the investigated
learning algorithms. The results are in Tables 10, 11, 12, 13, 14, 15, 16, 17 and 18. The p
values with a value <0.05 are in bold and “greater-equal-less” refers to the number of times
that the algorithm listed in the row is greater than, equal to, or less than the algorithm listed
in the column.

Table 10 Pair-wise comparison of filtering for multilayer perceptrons trained with backpropagation

Orig Biased Ensemble Greedy

Accuracy 81.74 81.87 83.33 82.33

Orig

p values 1 0.771 1.000 0.953

Greater-equal-less 0, 54, 0 25, 2, 27 16, 2, 36 18, 3, 33

Biased

p values 0.232 1 1 0.957

Greater-equal-less 27, 2, 25 0, 54, 0 9, 4, 41 23, 2, 29

Ensemble

p values <0.001 <0.001 1 <0.001

Greater-equal-less 36, 2, 16 41, 4, 9 0, 54, 0 40, 1, 13

Greedy

p values 0.048 0.044 1 1

Greater-equal-less 33, 3, 18 29, 2, 23 13, 1, 40 0, 54, 0

Table 11 Pair-wise comparison of filtering for decision trees

Accuracy 80.80 80.83 81.59 80.56

Orig

p values 1 0.460 1.000 0.221

Greater-equal-less 0, 54, 0 26, 5, 23 17, 3, 34 29, 2, 23

Biased

p values 0.544 1 0.999 0.271

Greater-equal-less 23, 5, 26 0, 54, 0 17, 5, 32 29, 1, 24

Ensemble

p values <0.001 0.001 1 <0.001

Greater-equal-less 34, 3, 17 32, 5, 17 0, 54, 0 44, 2, 8

Greedy

p values 0.782 0.732 1 1

Greater-equal-less 23, 2, 29 24, 1, 29 8, 2, 44 0, 54, 0
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Table 12 Pair-wise comparison of filtering for 5-nearest neighbors

Orig Biased Ensemble Greedy

Accuracy 79.91 79.40 80.83 79.91

Orig

p values 1 0.693 0.985 0.877

Greater-equal-less 0, 54, 0 25, 1, 28 17, 2, 35 20, 2, 32

Biased

p values 0.310 1 1 0.999

Greater-equal-less 28, 1, 25 0, 54, 0 5, 4, 45 17, 1, 36

Ensemble

p values 0.015 <0.001 1 <0.001

Greater-equal-less 35, 2, 17 45, 4, 5 0, 54, 0 44, 1, 9

Greedy

p values 0.125 0.001 1 1

Greater-equal-less 32, 2, 20 36, 1, 17 9, 1, 44 0, 54, 0

Table 13 Pair-wise comparison of filtering for locally weighted learning (LWL)

Orig Biased Ensemble Greedy

Accuracy 72.80 70.91 73.48 73.44

Orig

p values 1 <0.001 0.992 0.988

Greater-equal-less 0, 54, 0 34, 11, 9 14, 9, 31 16, 8, 30

Biased

p values 0.999 1 1 1

Greater-equal-less 9, 11, 34 0, 54, 0 3, 12, 39 9, 10, 35

Ensemble

p values 0.009 <0.001 1 0.595

Greater-equal-less 31, 9, 14 39, 12, 3 0, 54, 0 19, 8, 27

Greedy

p values 0.013 <0.001 0.409 1

Greater-equal-less 30, 8, 16 35, 10, 9 27, 8, 19 0, 54, 0

Table 14 Pair-wise comparison of filtering for naïve Bayes

Orig Biased Ensemble Greedy

Accuracy 76.94 75.84 78.82 78.45

Orig

p values 1 0.001 1.000 0.985

Greater-equal-less 0, 54, 0 38, 0, 16 17, 4, 33 24, 1, 29

Biased

p values 0.999 1 1 1

Greater-equal-less 16, 0, 38 0, 54, 0 4, 2, 48 10, 2, 42
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Table 14 continued

Orig Biased Ensemble Greedy

Ensemble

p values <0.001 <0.001 1 0.012

Greater-equal-less 33, 4, 17 48, 2, 4 0, 54, 0 32, 4, 18

Greedy

p values 0.016 <0.001 0.988 1

Greater-equal-less 29, 1, 24 42, 2, 10 18, 4, 32 0, 54, 0

Table 15 Pair-wise comparison of filtering for NNge

Orig Biased Ensemble Greedy

Accuracy 80.62 80.30 82.18 81.32

Orig

p values 1 0.080 1.000 0.888

Greater-equal-less 0, 52, 0 25, 5, 22 12, 4, 36 24, 1, 27

Biased

p values 0.921 1 1 0.992

Greater-equal-less 22, 5, 25 0, 52, 0 12, 2, 38 18, 2, 32

Ensemble

p values <0.001 <0.001 1 <0.001

Greater-equal-less 36, 4, 12 38, 2, 12 0, 52, 0 41, 2, 9

Greedy

p values 0.114 0.008 1 1

Greater-equal-less 27, 1, 24 32, 2, 18 9, 2, 41 0, 52, 0

Table 16 Pair-wise comparison of filtering for random forests

Orig Biased Ensemble Greedy

Accuracy 82.28 82.21 82.92 81.85

Orig

p values 1 0.408 0.981 0.022

Greater-equal-less 0, 54, 0 28, 2, 24 23, 1, 30 35, 2, 17

Biased

p values 0.595 1 0.992 0.084

Greater-equal-less 24, 2, 28 0, 54, 0 22, 4, 28 31, 2, 21

Ensemble

p values 0.020 0.009 1 <0.001

Greater-equal-less 30, 1, 23 28, 4, 22 0, 54, 0 46, 1, 7

Greedy

p values 0.979 0.918 1 1

Greater-equal-less 17, 2, 35 21, 2, 31 7, 1, 46 0, 54, 0
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Table 17 Pair-wise comparison of filtering for Ridor

Orig Biased Ensemble Greedy

Accuracy 79.90 79.16 80.56 79.96

Orig

p values 1 0.016 1.000 0.895

Greater-equal-less 0, 54, 0 33, 2, 19 15, 1, 38 20, 3, 31

Biased

p values 0.985 1 1 0.998

Greater-equal-less 19, 2, 33 0, 54, 0 7, 3, 44 17, 2, 35

Ensemble

p values <0.001 <0.001 1 <0.001

Greater-equal-less 38, 1, 15 44, 3, 7 0, 54, 0 36, 3, 15

Greedy

p values 0.107 0.002 1.000 1

Greater-equal-less 31, 3, 20 35, 2, 17 15, 3, 36 0, 54, 0

Table 18 Pair-wise comparison of filtering for RIPPER

Orig Biased Ensemble Greedy

Accuracy 80.34 79.98 81.25 80.41

Orig

p values 1 0.040 1 0.704

Greater-equal-less 0, 53, 0 30, 2, 21 11, 2, 40 21, 6, 26

Biased

p values 0.961 1 1 0.989

Greater-equal-less 21, 2, 30 0, 53, 0 8, 1, 44 19, 4, 30

Ensemble

p values <0.001 <0.001 1 <0.001

Greater-equal-less 40, 2, 11 44, 1, 8 0, 53, 0 38, 4, 11

Greedy

p values 0.300 0.011 1 1

Greater-equal-less 26, 6, 21 30, 4, 19 11, 4, 38 0, 53, 0

7 Appendix 2: Ensemble results for each data set

This section provides the results for each data set comparing a voting ensemble with filtering
using the ensemble filter for each investigated learning algorithm as well as filtering using
the ensemble filter for a voting ensemble. The results comparing a voting ensemble with
filtering for each investigated non-ensembled learning algorithm are shown in Table 19. The
bold values represent the highest classification accuracy and the rows highlighted in gray are
the data sets where filtering with the ensemble filter increased the accuracy over the voting
ensemble for all learning algorithms. The results comparing a voting ensemble with a filtered
voting ensemble are shown in Table 20. The bold values for the “Ens” column represent if the
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Table 19 Comparison of the accuracy for each data set using a voting ensemble (Ens) with using the ensemble
filter for the investigated learning algorithms

Ens MLP C4.5 IB5 LWL NB NNge RF Rid RIP Per

anneal 98.08 98.29 91.72 92.91 92.72 83.93 92.87 94.8 96.59 94.84 0.33

AP-BU 97.61 96.87 94.87 96.87 93.3 96.72 96.72 98.01 93.59 94.73 0.85

ar1 90.08 92.29 92.56 92.56 92.29 92.29 92.29 92.29 92.56 92.56 3.31

arrhyth 71.11 70.13 70.65 59.14 57.67 65.63 65.71 66.59 70.65 71.09 11.95

audiolo 78.94 78.61 76.99 62.54 47.05 73.01 72.42 73.6 71.24 73.89 7.08

autos 83.51 78.54 79.84 64.72 51.71 56.1 74.8 82.6 69.59 76.1 4.88

badges2 100 100 100 100 100 99.66 100 99.89 100 100 0.00

balance 88.45 90.35 78.67 89.65 60.59 89.97 82.56 82.77 79.68 79.09 4.16

breastc 73.99 73.43 75.17 74.13 73.31 73.43 74.13 73.19 74.71 74.59 10.14

breastw 96.88 97.00 95.14 96.76 92.61 95.95 95.99 96.57 95.61 95.8 1.72

bupa 71.3 71.5 66.47 62.71 60.29 59.03 65.31 69.28 67.44 68.02 2.61

carEval 96.7 98.82 92.09 92.77 70.02 85.22 94.21 92.46 95.72 87.15 0.00

chess 99.53 99.41 99.44 96.17 72.15 87.85 98.56 98.77 98.72 99.21 0.03

cm1_req 75.73 76.4 77.53 77.53 76.78 77.53 77.15 76.78 77.53 76.78 16.85

colic 85.33 86.41 85.78 82.97 81.52 83.33 84.42 85.69 84.42 85.96 4.35

contact 76.67 83.33 83.33 76.39 76.39 76.39 80.56 80.56 79.17 77.78 12.50

credita 86.64 85.7 85.99 86.62 85.51 81.64 85.6 86.04 85.85 86.09 4.35

creditg 75.64 75.07 73.17 73.37 70.03 74.8 73.33 74.2 71.97 72.6 5.20

derma 97.43 97.09 93.99 96.08 87.61 97.36 95.36 95.99 94.35 88.8 0.00

desh 74.32 70.78 69.55 65.84 71.6 62.14 67.49 74.49 71.6 71.6 7.41

ecoli 87.44 86.21 84.72 87.2 65.87 86.9 85.22 85.71 83.73 82.74 4.76

eucalyp 65.11 63.32 62.86 55.8 51.04 57.52 56.84 56.88 61.73 63.32 6.66

eye-mov 64.76 54.34 63.72 54.93 42.88 44.11 48.13 62.8 54.11 56.04 1.77

glass 74.02 66.04 68.07 66.51 52.18 53.58 71.5 74.92 68.85 68.85 5.14

heart-c 83.83 83.39 77.56 83.17 75.69 83.94 79.98 81.63 79.65 80.97 3.30

heart-h 82.93 83.22 81.63 84.69 80.16 84.47 81.07 81.75 82.54 81.63 5.44

heart-s 82.44 83.09 81.23 81.73 74.44 84.07 78.89 83.09 79.01 79.51 3.33

hepatit 83.1 84.3 81.51 84.95 79.35 85.59 83.23 84.09 79.14 80.22 3.87

hypo 99.43 94.32 99.58 93.3 95.39 95.51 98.75 99.08 99.33 99.45 0.05

iono 92.99 89.84 90.98 84.43 83 83.57 90.79 92.78 89.84 90.6 1.71

iris 95.33 96.00 94.67 95.33 94 95.56 95.33 94.22 93.56 92.67 0.67

labor 92.98 87.72 78.36 89.47 83.63 92.4 87.72 85.96 78.36 82.46 0.00

lungCan 53.75 52.08 56.25 47.92 55.21 55.21 56.25 52.08 51.04 54.17 12.50

lympho 83.24 83.56 77.48 83.33 75.68 81.98 77.48 80.63 78.38 78.15 2.03

MagicTe 86.27 86.09 85.58 83.98 76.27 76.08 82.88 86.43 84.77 85.29 2.90

nursery 98.91 98.78 97 98.1 88.96 90.21 96.97 97.97 95.67 96.73 0.02

ozone 97.01 97.12 97.12 97.12 97.12 97.12 97.12 97.13 97.12 97.12 0.51

pasture 86.11 77.78 78.7 68.52 87.04 75 80.56 76.85 74.07 68.52 2.78

pimaDia 77.06 76.56 76.61 75.17 73.26 75.78 75.22 76.22 75.3 75.26 6.77

post-op 69.78 71.11 71.11 71.11 71.11 71.11 71.11 71.11 71.11 71.11 26.67
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Table 19 continued

Ens MLP C4.5 IB5 LWL NB NNge RF Rid RIP Per

pri-tum 48.08 47.79 41.2 45.82 34.42 48.57 44.44 45.23 39.82 40.41 32.15

segment 98.00 96.05 96.62 95.04 78.59 80.69 96.36 97.37 95.83 94.82 0.17

sick 98.45 96.93 98.51 96.3 96.55 94.82 96.86 98.16 98.1 98.03 0.13

sonar 81.92 81.89 72.92 82.53 74.84 68.27 71.63 79.49 73.24 79.01 0.00

soybean 94.32 94.05 91.7 90.14 56.95 92.83 93.02 92.53 90.41 91.85 1.46

T.A. 57.88 55.19 51.66 45.25 50.99 49.89 52.98 53.42 43.49 47.9 8.61

titanic 78.72 78.66 78.68 78.59 77.9 77.77 78.68 78.68 78.28 78.68 16.86

vote 95.82 95.86 95.71 92.8 95.63 90.96 95.4 96.4 94.18 95.63 1.61

vowel 95.54 92.83 75.81 93.13 35.05 63.54 87.12 94.48 75.93 71.57 0.00

wave 84.21 85.11 77.92 79.69 56.93 79.91 82.44 81.7 80.11 79.75 1.34

wine 97.53 97.75 93.26 95.88 90.26 97.57 96.25 97.57 91.01 92.51 0.00

yeast 61.08 59.43 60.13 59.32 40.7 58.15 59.4 61.08 59.74 60.01 13.68

zoo 95.25 95.38 92.41 94.72 85.48 94.72 94.72 91.75 90.43 86.8 1.98

Acc 84.37 83.40 81.61 80.85 73.48 78.92 81.59 82.94 80.57 80.76

The column “Per” refers to the percentage of instances that have a p(ŷi |xi ) greater than or equal to 90%. The
values in italics represent those datasets where filtering with the ensemble filter increased the accuracy over
the voting ensemble for all learning algorithms

Table 20 Comparison of the accuracy from amajority voting ensemble trained on unfiltered (Ens) and filtered
data (FEns)

Data set Ens FEns 50 FEnse 70 FEns 90 FEns Max

anneal.ORIG 98.08 97.57 96.26 86.15 97.57

AP-Breast-Uterus 97.61 97.69 97.44 96.15 97.69

ar1 90.08 90.08 90.41 92.40 92.40

arrhythmia 71.11 70.40 69.69 55.58 70.40

audiology 78.94 77.52 72.30 48.58 77.52

autos 83.51 82.15 73.56 49.66 82.15

badges2 100.00 100.00 100.00 100.00 100.00

balance-scale 88.45 86.46 85.28 71.42 86.46

breast-cancer 73.99 73.71 74.20 74.34 74.34

breast-w 96.88 96.71 96.62 93.45 96.71

bupa 71.30 70.84 68.35 60.52 70.84

carEval 96.70 95.51 91.81 70.02 95.51

chess-KRVKP 99.53 99.42 99.26 83.94 99.42

cm1-req 75.73 75.06 77.53 77.53 77.53

colic 85.33 85.54 85.98 81.52 85.98

contact-lenses 76.67 77.50 80.00 70.83 80.00

credit-a 86.64 86.26 86.03 85.51 86.26

credit-g 75.64 74.52 72.84 70.00 74.52
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Table 20 continued

Data set Ens FEns 50 FEnse 70 FEns 90 FEns Max

dermatology 97.43 97.43 97.27 91.58 97.43

desharnais 74.32 73.09 72.84 69.38 73.09

ecoli 87.44 87.74 86.90 64.88 87.74

eucalyptus 65.11 63.97 61.82 52.83 63.97

eye-movements 64.76 59.02 55.26 45.21 59.02

glass 74.02 62.52 61.59 49.53 62.52

heart-c 83.83 82.38 82.18 80.20 82.38

heart-h 82.93 82.86 83.40 82.04 83.40

heart-statlog 82.44 82.37 81.26 78.59 82.37

hepatitis 83.10 83.35 83.10 80.26 83.35

hypothyroid 99.43 99.37 98.17 94.04 99.37

ionosphere 92.99 92.82 91.34 84.67 92.82

iris 95.33 94.53 94.13 94.13 94.53

labor 92.98 91.58 88.07 82.11 91.58

lungCancer 53.75 51.25 53.13 38.75 53.13

lymphography 83.24 81.35 80.95 76.35 81.35

MagicTelescope 86.27 85.49 84.73 74.91 85.49

nursery 98.91 98.55 97.24 90.43 98.55

ozone 97.01 97.07 97.09 97.12 97.12

pasture 86.11 81.11 78.89 66.67 81.11

pimaDiabetes 77.06 76.46 75.81 73.91 76.46

post-opPatient 69.78 70.22 71.11 71.11 71.11

primary-tumor 48.08 45.19 43.01 38.47 45.19

segment 98.00 97.62 96.54 85.65 97.62

sick 98.45 98.32 98.17 97.16 98.32

sonar 81.92 81.44 80.10 73.75 81.44

soybean 94.32 93.85 93.12 67.88 93.85

spambase 94.95 94.78 94.17 84.43 94.78

teachingAssistant 57.88 54.44 47.15 39.60 54.44

titanic 78.72 78.65 78.00 77.60 78.65

vote 95.82 95.72 95.68 95.40 95.72

vowel 95.54 94.75 86.44 40.14 94.75

waveform-5000 84.21 84.26 81.77 63.42 84.26

wine 97.53 97.64 96.97 96.18 97.64

yeast 61.08 61.01 60.55 40.50 61.01

zoo 95.25 94.65 93.66 87.13 94.65

Ave 84.37 83.40 82.21 73.96 83.62

The value after “FEns” represents the percentage of learning algorithms that have to misclassify an instance
for it to be filtered from the training set and “Max” uses the accuracy from the percentage that results in
the greatest accuracy. Training with unfiltered data is significantly better than training with filtered data. The
values in bold for the “Ens” represent if the majority voting ensemble is greater then the filtered majority
voting ensemble. The values in bold for the “FEns” columns represent if using filtered training data results in
greater classification accuracy
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voting ensemble trained on unfiltered data achieves higher accuracy while the bold values for
the “FEns” columns represent if the voting ensemble trained on filtered data achieves higher
accuracy than the voting ensemble trained on unfiltered data.
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