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Abstract The minimum sum coloring problem (MSCP) is a variant of the well-known ver-
tex coloring problem which has a number of Al related applications. Due to its theoretical
and practical relevance, MSCP attracts increasing attention. The only existing review on the
problem dates back to 2004 and mainly covers the history of MSCP and theoretical devel-
opments on specific graphs. In recent years, the field has witnessed significant progresses on
approximation algorithms and practical solution algorithms. The purpose of this review is to
provide a comprehensive inspection of the most recent and representative MSCP algorithms.
To be informative, we identify the general framework followed by practical solution algo-
rithms and the key ingredients that make them successful. By classifying the main search
strategies and putting forward the critical elements of the reviewed methods, we wish to
encourage future development of more powerful methods and motivate new applications.

Keywords Sum coloring - Approximation algorithms - Heuristics and metaheuristics -
Local search - Evolutionary algorithms

1 Introduction
Given a graph G, a proper k-coloring of G is an assignment of k different colors {1, ..., k}

to the vertices of G such that two adjacent vertices receive two different colors. The classical
graph vertex coloring problem (GCP) is to find a proper (or legal) k-coloring with the mini-
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mum number of colors x (G) (i.e., the chromatic number of G) for a general graph G. The
minimum sum coloring problem (MSCP) is a variant of the GCP and aims to determine a
proper k-coloring while minimizing the sum of the colors assigned to the vertices. MSCP was
proposed by Kubicka (1989) in the field of graph theory and by Supowit (1987) in the field
of VLSI design. MSCP has applications in VLSI design, scheduling and resource allocation
for instance (Bar-Noy et al. 1998; Bonomo et al. 2015; Kroon et al. 1996; Malafiejski 2004;
Sen et al. 1992). MSCP is also related to other generalizations or variants of GCP like sum
multi-coloring (Bar-Noy et al. 1999), sum list coloring (Berliner et al. 2006) and bandwidth
coloring (Johnson et al. 2008).

Like the classical vertex coloring problem, MSCP is notable for its practical applicability
and theoretical intractability. Indeed, in the general case, the decision version of MSCP is
NP-complete (Kroon et al. 1996; Kubicka 1989) and approximating the minimum color sum
within an additive constant factor is NP-hard (Kubicka et al. 1991). As a result, MSCP is
a computationally challenging problem and any algorithm able to determine the optimal
solution of the problem is expected to require an exponential complexity. Due to its high
computational complexity, polynomial-time algorithms exist only for some special cases of
the problem (see Sect. 3) and solving the problem in the general case remains an imposing
challenge.

In the past several decades, much effort has been devoted to developing various approxima-
tion algorithms and practical solution algorithms. Approximation algorithms aim to provide
solutions of provable quality while practical solution algorithms try to find sub-optimal solu-
tions as good as possible within a bounded and acceptable computation time. The class
of heuristic and metaheuristic algorithms has been mainly developed since 2009 and has
enlarged our capacity of finding improved solutions on the benchmark graphs. Representa-
tive examples of the existing heuristic algorithms include greedy algorithms (Li et al. 2009;
Moukrim et al. 2010), tabu search (Bouziri and Jouini 2010), breakout local search (Benlic
and Hao 2012), iterated local search (Helmar and Chiarandini 2011), ant colony (Douiri and
Elbernoussi 2012), genetic and memetic algorithms (Douiri and Elbernoussi 2011; Jin and
Hao 2016; Jin et al. 2014; Kokosinski and Kwarciany 2007; Moukrim et al. 2013; Wang et al.
2013) as well as heuristics based on independent set extraction (Wu and Hao 2012, 2013).

To the best of our knowledge, there is only one review published one decade ago in 2004
(Kubicka 2004) that focuses on polynomial-time algorithms for specific graphs, MSCP gen-
eralizations (or variants) and applications. For the purpose of solving MSCP, the first studies
essentially concerned the development of approximation algorithms and simple greedy algo-
rithms. Research on practical solution algorithms of MSCP was relatively new and appeared
around 2009. Nevertheless, important progresses have been made since that time. The purpose
of this paper is thus to provide a comprehensive review of the most recent and representative
MSCP algorithms. To be informative, we identify the general framework followed by the
existing heuristic and metaheuristic algorithms and their key ingredients that make them suc-
cessful. By classifying the main search strategies and putting forward the critical elements of
the reviewed methods, we wish to encourage future development of more powerful methods
and motivate new applications.

In the following sections, we first provide a general definition of MSCP, then a brief intro-
duction of approximation algorithms in Sect. 3, followed by the presentation of the studied
heuristics and metaheuristics in Sect. 4. Section 5 presents lower and upper bounds. Before
concluding, Sect. 6 introduces MSCP benchmark instances and summarizes the computa-
tional results reported by the best performing algorithms on these instances.
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2 Definitions and formulation of MSCP

Let G = (V, E) be a simple undirected graph with vertex set V = {vy, ..., v,} and edge
set E C V x V. A proper k-coloring ¢ of G is a mapping ¢ : V — {l,...,k} such
that c(v;) # c(vj), Y{v;, v;} € E. Equivalently, a proper k-coloring can be defined as a
partition of V into k mutually disjoint independent sets (or color classes) Vi, ..., Vi such
that Vu,v € V; (. = 1,...,k),{u,v} ¢ E. The objective of MSCP is to find a proper
k-coloring ¢ with a minimum sum of the colors that are assigned to the vertices of V. The
minimum sum of colors for MSCP is called the chromatic sum of G, and is denoted by
>(G). The strength s(G) of a graph G is the smallest number of colors over all optimal
sum colorings of G. Obviously, the chromatic number x (G) of G from the classical vertex
coloring problem is a lower bound of s(G), i.e., x(G) < s(G).

Let € (G) be the set of all proper k-coloring of G and the minimization objective f(c)
(c € ¥(G)) of MSCP is given by Eq. (1).

n k
fley= cw) or fle)=D 1V 1)
i=1 =1

where |V;| is the cardinality of V; and | V1| > ... > | V| with the chromatic sum given by:
G) = min 2
>(G) min_ f(©) ©)

Figure 1 shows an illustrative example for MSCP. The graph has a chromatic number
x(G) of 3 (left figure), but requires 4 colors to achieve the chromatic sum (right figure).
Indeed, with the given 4-coloring, we achieve the chromatic sum of 15 while the 3-coloring
of left figure leads to a suboptimal sum of 18 (upper bound).

As shown in Sen et al. (1992), MSCP can be conveniently formulated as an integer linear
programming problem as follows:

minimize g(x) =31 S 1. xy

Stk oxu=1, ie(l,...,n) 3)
subjectto 9 xyy +xj; <1, Y{v;,vj}e E,le{l,... k}
xi1 € {0, 1}
where x;; =1 € {1,...,n},l € {1,...,k})if v; is assigned color /, x;; = 0 otherwise.

The first constraint of this ILP model ensures that each vertex receives a single color
while the second constraint states that two adjacent vertices cannot be assigned the same

3 3

Fig. 1 An illustrative example for MSCP (Jin and Hao 2016). The optimal coloring of the graph leads to an
upper bound of the chromatic sum of the graph
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color. This linear model can be solved by any ILP solver like CPLEX (Wang et al. 2013).
Finally, as shown in Wang et al. (2013), MSCP can also be formulated as a binary quadratic
programming model.

3 Polynomial-time and k-approximation algorithms for MSCP

One notes that till now no exact algorithm especially designed for MSCP was reported
in the literature except the general solution approach used in Wang et al. (2013) which
applies CPLEX to the integer linear programming formulation (Eq. (3)). On the other hand, a
number of polynomial-time and k-approximation algorithms have been proposed for specific
classes of graphs, such as trees, interval graphs, bipartite graphs, etc (Borodin et al. 2012;
Hajiabolhassan et al. 2000; Jiang and West 1999; Kosowski 2009; Malafiejski 2004). These
algorithms exploit particular properties of the special graphs considered. In what follows, we
briefly recall the main characteristics of these specific classes of graphs:

e A cograph, also called P4-free graph, is a graph that does not contain the path P, for any
four vertices!;

e P4-reducible graphs are a generalization of cographs where every vertex belongs to at
most one Py;

e Py-sparse graphs generalize Ps-reducible graphs by imposing that every set of five ver-
tices induces at most one Py;

e Unicyclic graphs contain exactly one cycle;

e A partial k-tree G is a graph with treewidth of at most k, where the treewidth is the size
of the largest vertex set in a tree decomposition of G;

e A graph is outerplanar if it is planar (it can be embedded in the plane without crossing
edges) and all its vertices lie on the exterior face;

e The line graph L(G) of any graph G = (V, E) is such that its vertex set is E and two
vertices of L(G) are adjacent if their corresponding edges in G are incident;

e In an interval graph, each vertex corresponds to an interval (over the set of real numbers
for instance) and there is an edge between two vertices if their corresponding intervals
Intersect.

In the field of VLSI design, Kroon et al. (1996) considered the “optimum cost chromatic
partition problem” (OCCP), whose definition is similar to MSCP. For this problem, they
introduced a linear-time algorithm for trees (see also Kubicka and Schwenk 1989). Other
classes of graph optimally solved in linear time include cographs (Jansen 2000) or unicyclic
graphs (Kubicka 2005) for instance.

In Jansen (2000), Jansen found that the OCCP can be solved in polynomial time for partial
k-trees. Then, Salavatipour presented a polynomial-time algorithm for P4-reducible graphs
(Salavatipour 2003). Furthermore, Bonomo and Valencia-Pabon (2014) studied Ps-sparse
graphs and found a large sub-family of P4-sparse graphs that can be solved in polynomial
time. A cubic algorithm has also been proposed for outerplanar graphs (Kubicka 2005).

Bar-Noy et al. (1998) proposed a 2-approximation algorithm? for line graphs and showed
a (A + 2)/3-approximation algorithm for graphs with maximum degree A. Then, Bar-Noy
and Kortsarz (1998) proposed a 10/9-approximation algorithm for bipartite graphs. This

N path Py is a sequence of 4 vertices, say (vi, v2, v3, v4), such that {vi, vi_,_]} e EVi € {l1,2,3} and
{v,-, v,-+k} ¢ EVk e {1,2,3,4}\{i — 1,i +1}.

ZA k-approximation algorithm ensures to return a solution whose evaluation / cost is no more than a factor
k of the optimum.
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approximation ratio was next improved to 27/26 by Malafiejski et al. (2004) which is the
best ratio for bipartite graphs to our knowledge. For interval graphs, Nicoloso et al. (1999)
presented a 2-approximation algorithm, the best known ratio for this class of graphs being
1.796 (Halldérsson et al. 2003). Let us finally mention a 2-approximation algorithm for the
entire class of P4-sparse graphs (Bonomo et al. 2015).

4 Heuristics and metaheuristics for MSCP

Since these approximability results cannot be generalized to an arbitrary graph, for practically
solving MSCP in the general case, a number of heuristic and metaheuristic algorithms have
been proposed recently. In this section, we review the most representative and effective MSCP
heuristic and metaheuristic algorithms which belong to three large classes of methods: greedy
algorithms, local search heuristics, and evolutionary algorithms. For each reviewed algorithm,
we identify its key ingredients, and highlight if the search process is constrained in the feasible
space or is allowed to visit infeasible regions. We also provide in Table 1 a summary of the
reviewed algorithms as well as indicators about their performances.

4.1 Greedy algorithms

Greedy algorithms are among the first heuristics proposed for MSCP. These algorithms are
generally fast, simple, and easy to implement. Nevertheless, they usually achieve results of
poor quality. On the other hand, given their particular features (speed and simplicity), they
can advantageously be integrated into other more elaborated approaches where the greedy
heuristic is used to generate an initial solution and seeds the search process. For instance,
they can be used to provide initial upper bounds for an exact algorithm or to build the initial
solution(s) for local search heuristics and evolutionary algorithms.

Two families of greedy algorithms for MSCP are proposed in Li et al. (2009): MDSAT(n)
and MRLF(n). They are based on the two well-known greedy coloring heuristics DSATUR
(Brélaz 1979) and RLF (Leighton 1979).

The original DSATUR heuristic employs the saturation degree dsat of a vertex> as the
selection criterion to dynamically determine the next vertex to color. MDSAT(#) improves
DSATUR by considering the impact of coloring a vertex where the impact is measured based
on the number of vertices whose dsat would (not) be changed. The original RLF heuristic
follows the partition perspective of a vertex coloring. It colors as many non-adjacent vertices
as possible with one color before going to another color. MRLF(n) which extends RLF is
based on the idea of selecting the next candidate vertex v for coloring such that it reduces the
chance of using a new color next and keeps the current color class as large as possible. To
achieve this goal, MRLF(n) implements sophistic greedy rules which rely on the cardinality
of a subset of uncolored vertices that could be colored with and without using a new color.

A more complicated greedy heuristic (EXSCOL) is proposed in Wu and Hao (2012, 2013).
It is based on independent set extraction and is highly effective for hard and large graphs. At
each iteration, EXSCOL first identifies an independent set S as large as possible by using a
tabu search procedure. Secondly, it searches as many independent sets as possible of the same
size | S| to build a pool of candidate independent sets. Then, EXSCOL determines a maximum
number of disjoint independent sets by solving a maximum set packing problem. Finally, the
vertices of each extracted independent set receive the same smallest available color to form
a color class. The above process is repeated until the graph becomes empty. Notice that there

3 dsat (v;) is the number of colors used to color the vertices adjacent to v;.
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is no procedure to reconsider the extracted independent sets such that it is impossible for
EXSCOL to attain an optimal solution once a “bad” independent set has been extracted.

4.2 Local search heuristics

Local search (or neighborhood search) heuristics progressively modify a candidate solution
¢ by local transformations until a stop condition is reached (Gendreau and Potvin 2010). The
two key components of a local search procedure are the evaluation function and the move
(or transformation) operator which are defined on a given search space.

The evaluation function is used to assess the quality of a given coloring. The existing MSCP
algorithms employ one of two types of evaluation function according to whether feasible or
infeasible colorings are visited. For algorithms that explore only feasible solutions (i.e. proper
colorings), the minimization function f (i.e., the sum of colors, Eq. (1)) of the MSCP problem
is directly used. On the other hand, algorithms that visit both feasible and infeasible solutions
usually call for an augmented evaluation function f, which combines the objective function
f and a penalty function p.

In local search algorithms, one iteratively uses one or more move operators to transform
the incumbent solutions ¢ to generate new neighboring solutions ¢’. The set of neighboring
solutions that can be reached by applying a move operator (rmv) to the current solution forms
the neighborhood (denoted by N,,,). We describe the commonly used operators as follows.

e One-move changes the color of a vertex in the current solution by moving a vertex v from
its current color class V; to another color class V; (i # j). This operator can generate
both proper or improper colorings and thus can be used to explore feasible and infeasible
regions of the coloring search space;

e Swap displaces a vertex v from its current color class V; to another color class V; (as
One-move) and then moves all adjacent vertices u of v to V;. This operator can generate
both proper or improper colorings;

e FExchange swaps a subset of vertices A C V; (JA| > 1) and another subset of vertices
B C V; (IB| > 1) (i # j) such that the subgraph induced by A U B is a connected
component (Jin et al. 2014). The new solution ¢’ is feasible (respectively infeasible) if
the starting solution c is feasible (infeasible).

In what follows, we classify the representative local search algorithms into two
categories according to the adopted neighborhood(s): single neighborhood search and multi-
neighborhood search. Since local search can get stuck in local optima, most local search
algorithms for MSCP use some diversification techniques to help the search to escape local
optima encountered during the search. This is typically achieved by applying one or more
perturbation operators to change a local optimum in a random or dedicated way.

4.2.1 Single neighborhood search

The tabu search (TS) algorithm proposed in Bouziri and Jouini (2010) adapts the tabu algo-
rithm designed for the classic vertex coloring problem (Galinier and Hao 1999; Hertz and
Werra 1987). It starts with a random coloring and visits both proper and improper colorings
with the neighborhood Ngje—move induced by the One-move operator. If there exist con-
flicting vertices, TS chooses a best move (according to its evaluation function f),) to change
the color of a conflicting vertex. Otherwise, TS picks a (non-conflicting) vertex and change
its color at random. The above steps are repeated until a stopping criterion is satisfied. This
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algorithm relies simply on the tabu list for its diversification and does not call for other
perturbation mechanism. This algorithm only showed limited computational results.

The breakout local search (BLS) algorithm described in Benlic and Hao (2012) jointly uses
two descent methods and an adaptive multi-perturbation strategy to escape local optima. The
basic idea of BLS is to use descent-based local search to discover local optima and employ
adaptive perturbations to continually visit different search regions in the search space. BLS
explores both feasible and infeasible solutions with the help of the One-move operator. At
each iteration, if the current solution c is a feasible coloring, BLS applies a first descent search
procedure to attain a local optimum in terms of the objective function f. If ¢ is an infeasible
coloring (i.e., with conflicting vertices), BLS applies another descent search procedure guided
by an augmented evaluation function which takes into account both the objective function f
and the conflicting vertices. BLS is characterized by its adaptive perturbation strategy which,
upon the discover of a local optimum, triggers dedicated perturbation operations to escape the
local optimum trap. Based on the information on the search state, the perturbation strategy of
BLS introduces a varying degree of diversification by dynamically determining the number
of perturbation moves to be applied and by adaptively selecting the suitable moves (random
or directed perturbations).

4.2.2 Multi-neighborhood search

The MDS(5)+LS algorithm (Helmar and Chiarandini 2011) applies an iterated multi-
neighborhood search and also explores feasible and infeasible regions of the search space. It
first employs the Swap operator until no further improvement exists in terms of its augmented
evaluation function. Note that the obtained solution is not necessarily a proper coloring. If
this is the case, MDS(5)+LS switches then to the One-move operator to repair the solution.
Additional colors can be used to guarantee that the final coloring is proper at the end of this
search phase. Finally, it assigns all the vertices with their smallest legal color and changes the
color labels according to the sorted cardinality of the color classes V; (|Vi]| > ... > |Vi]).
Afterward, a random perturbation operator is applied which consists in moving some vertices
from their current color class to another color class at random. This perturbed solution is then
used as the starting point of the next round of the search procedure.

4.3 Evolutionary algorithms

Different from local search algorithms which are based on a single solution, evolutionary
algorithms use a pool of solutions and try to find gradually better solutions by applying
genetic operators (e.g., crossover, mutation, ...) to solutions of the population (Gendreau and
Potvin 2010).

The most popular evolutionary algorithms for MSCP follow the hybrid evolution frame-
work called the memetic algorithm which jointly uses a recombination operator and a local
search improvement to explore the search space (Gendreau and Potvin 2010). They include,
for instance, the MASC algorithm (Jin et al. 2014), MA-MSCP algorithm (Moukrim et al.
2013) and the HESA hybrid search algorithm (Jin and Hao 2016). Besides, an early par-
allel genetic algorithm PGA (Kokosinski and Kwarciany 2007) employs assignment and
partition crossovers, first-fit mutation, and proportional selection without any local search
improvement.

The MASC memetic algorithm (Jin et al. 2014) follows the design guidelines of memetic
algorithms for discrete optimization (Hao 2012) and combines a multi-parent crossover oper-
ator (called MGPX) and a double-neighborhood tabu search procedure. MGPX is a variant of
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the well-known GPX crossover originally proposed for the classical vertex coloring problem
(Galinier and Hao 1999). It builds the color classes of the offspring (which is always a proper
coloring) one by one and transmits entire color classes as large as possible until all vertices
of the offspring are colored. Besides, the tabu search procedure applies the two different and
complementary neighborhoods induced by Exchange and One-move in a token-ring way to
find good local optima (according to the objective function f) until the search is stagnat-
ing. MASC employs a dedicated perturbation operator to diversify the search. MASC only
explores the feasible search space of MSCP.

MA-MSCP is another hybrid genetic algorithm (Moukrim et al. 2013) that also focuses
on the feasible search space. It includes a two-parent crossover operator (yet another adaptive
variant of GPX (Galinier and Hao 1999)), a hill-climbing local search algorithm and a “destroy
& repair” procedures. During the local search phase, the hill-climbing procedure is first
applied to improve the current solution by using the One-move operator. To escape local
optima, MA-MSCP then applies the “destroy & repair” strategy, which randomly removes
some vertices and re-inserts each of them into its largest available color class while keeping
the solution feasible. If there is no such a color class, the vertex is moved to a new color class.
MA-MSCP employs the above two procedures alternately until no further improvement can
be obtained.

HESA is also a hybrid search algorithm (Jin and Hao 2016) that alternates between feasible
and infeasible regions of the search space. HESA relies on a double-crossover recombination
method and an iterated double-phase tabu search procedure. The recombination method
jointly uses a diversification-guided crossover and a grouping-guided crossover to generate
promising offspring solutions. During the double-phase tabu search procedure, it first checks
if the given solution c is a proper coloring. If ¢ is proper, the first tabu search is called to
improve its sum of colors. Otherwise, another tabu search is used to attain a proper coloring
which is further improved by the first tabu search to obtain a better sum of colors. The
double-phase tabu search only explores the Nope-move neighborhood. For the purpose of
search diversification, HESA applies a conditional mixed perturbation strategy: (1) apply
the Swap operator to a randomly chosen vertex to transform the incumbent solution, or (2)
replace the current solution by the last local optimum.

Table 1 summarizes the reviewed existing heuristic algorithms with their main character-
istics including the type of search paradigm, the neighborhood(s) and the presence or absence
of a perturbation strategy together with a comment on their relative performance.

Finally, we mention the BQP-PR evolutionary algorithm (Wang et al. 2013) which relies
on a binary quadratic programming formulation of the problem (see Sect. 2) and combines
a path relinking approach with a tabu search procedure.

5 Bounds for MSCP

We will refer here to “theoretical” (lower and upper) bounds if they are formally proved,
see Sect. 5.1. By opposition, “computational” bounds introduced in Sect. 5.2 designate those
obtained running approximate algorithms.

5.1 Theoretical bounds
Recall that for any undirected simple graph G = (V, E) with n = |V| vertices and m = |E|

edges, the chromatic number x (G) is the smallest number of colors needed to color the
vertices of G such that a proper k-coloring exists and the chromatic sum »_(G) is the minimum
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sum of the colors assigned to all vertices among all proper k-colorings of G. In this section, we
list the current known theoretical lower and upper bounds of MSCP according to Kokosiriski
and Kwarciany (2007), Moukrim et al. (2013) and Thomassen et al. (1989).

DG =n+m
Vam1 = 3(6) = {@J
X (G (G) = 1) n(x(G) + 1)
n+ 5 <6< Liz J “

From Eq.(4), one easily observes that the best theoretical lower and upper bounds avail-
able for MSCP are respectively LB; = max [|\/ 8m7,n + W} and UB; =

min {n +m, L3(m2+1>J i Ln(x(g)H)J}_

5.2 Computational bounds

Given that MSCP is to find a proper k-coloring while minimizing the sum of the colors
assigned to the vertices, Eq. (1) gives a computational upper bound for MSCP.

Let G’ = (V, E")(E' C E) be any partial graph of G = (V, E), > .(G’) is a lower bound
of >_(G) since any proper coloring of G must be a proper coloring of G’: > (G) > >(G").

Partial graphs considered in the literature to estimate the computational lower bound f7 p
include bipartite graphs (trees and paths) (Garey and Johnson 1979; Kroon et al. 1996) and
cliques (Moukrim et al. 2010; Wu and Hao 2013), while graph decomposition into cliques*
provide better bounds according to Moukrim et al. (2010). Let ¢ = {Si, S2, ..., Sk} be a
clique decomposition of G, then Eq. (5) gives a computational lower bound for MSCP since
there is a single way of coloring any clique S; (with |S;| colors) and the sum of colors of S;
is [S;[(1S1] + 1)/2.

i ISll(ISzl +1)

fLe(c) = 5)

Figure 2 shows an illustrative lower bound via clique decomposition. We decompose G
into six cliques by ignoring some edges of the original graph G and obtain the chromatic
sum > (G’) = 13 (right figure). Clearly, this is a lower bound for MSCP while the chromatic
sum > (G) = 15 (left figure).

To obtain a clique decomposition, one popular approach is to find a proper coloring of the
complementary graph G of G (Helmar and Chiarandini 2011; Jin and Hao 2016; Moukrim
et al. 2013; Wu and Hao 2013), since each color class of G is a clique of G.

6 Benchmark and performance evaluation

In this section, we first introduce a set of MSCP instances (benchmarks) that are commonly
used to assess the performance of MSCP algorithms and then provide indications about the
performances of the reviewed MSCP algorithms. Due to many different factors (programming
languages, running platforms, experimental protocols...), itis quite difficult to draw definitive

4 A clique is a complete graph where all the vertices are pairwise adjacent. A clique decomposition of a graph
is a partition of the vertex set V into a collection of cliques.
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1. e 1
3 1

Fig. 2 An illustrative lower bound via clique decomposition. The right figure is a clique decomposition of
the graph on the left

conclusions. Nevertheless, we try to provide some useful indications with respect to their
performance in terms of best and average results.

6.1 Benchmark

There exists a set of 94 frequently used benchmark instances often used for performance eval-
uation of MSCP algorithms. 58 instances are part of the COLOR 2002-2004 competitions’
while the remaining 36 instances come from the second DIMACS challenge.® Compared
to the well-known DIMACS instances, the COLOR 2002-2004 instances are relatively easy
except the four large “wap” graphs. These instances refer to various topologies and densities,
which can be classified into the 13 following types:

e Twelve classical random graphs (DSJCn.d, n € {125,250, 500, 1000}, d € {1, 5, 9});

e Three geometric graphs (DSJR500.d, d € {lc, 1, 5});

Six flat graphs (flat300_x_0 with x € {20,26,28} and flatl000_yx_0 with x €

{50, 60, 76});

Twelve Leighton graphs (1e450_yxa, 1e450_xb, 1e450_xc, 1e450_xd, x € {5, 15, 25});

Four latin square graph (latin_sqr_10 and qg.ordery, x € {30, 40, 50});

Two very large random graphs (C2000.5 and C4000.5);

Fourteen graphs based on register allocation (fpsol2.i.a, inithx.i.a, zeroin.i.a, mulsol.i.b,

aec{l,2,3}and b € {1, 2,3,4,5});

Two graphs from the scheduling area (schooll and schooll_nsh);

e Twenty four graphs from the Donald Knuth’s Stanford GraphBase (milesn with n €
{250, 500, 750, 1000, 1500}, anna, david, huck, jean, homer, games120, queen8.12, and
queena.a, a € {5, ..., 16});

e Five graphs based on the Mycielski transformation (myciela, a € {3, 4, 5, 6, 7});

e Four graphs that have a hard-to-find four clique embedded (mugn_a, n € {88, 100}, a €
{1,25});

e Two “insertion” graphs (2-Insert_3 and 3-Insert_3);

e Four graphs from real-life optical network design problems (wap05, wap06, wap07, and
wap08).

Table 2 gives the detailed characteristics of the benchmark graphs. Columns 2-5 and 9-12
indicate the number n of vertices, the number m of edges, the density d = 2m/n(n — 1) and

5 http://mat.gsia.cmu.edu/COLORO2.
6 http://dimacs.rutgers.edu/Challenges/.
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the chromatic number y (G) of each graph. Columns 6—7 and 13—14 show the best theoretical
lower and upper bounds of the chromatic sum (LB; and U B, respectively). Italics entries
(in all tables) indicate that theoretical upper bounds equal the computational upper bounds
while no theoretical lower bound equals the computational lower bound. Note that, since the
chromatic number x (G) of some difficult graphs are still unknown, we use the minimum &
for which a k-coloring has been reported for G in the literature instead of x (G) to compute
LB, and U B, using the min / max equations introduced in Sect. 5.1.

6.2 Performance of MSCP algorithms

Based on the benchmark introduced in the previous section, Table 3 (see the “Appendix”)
summarizes the computational results of six representative and effective MSCP algorithms
presented in Sect. 4: BLS (Benlic and Hao 2012), MASC (Jin et al. 2014), MDS(5)+LS (Hel-
mar and Chiarandini 2011), EXSCOL (Wu and Hao 2012, 2013), MA-MSCP (Moukrim et al.
2013) and HESA (Jin and Hao 2016). Columns 1-3 present the tested graph and its best known
lower and upper bounds ( f f » and f{j  Tespectively, in bold face when optimality is proved),
the following 18 columns give the detailed computational results of the six algorithms. “-”
marks for the reference algorithms mean non-available results. The results in terms of solu-
tion quality (best / average lower and upper bounds, f5/f;'p and f7; 5/ f{; g respectively)
are directly extracted from the original papers. Computing times are not listed in the table
due to the difference of experimental conditions (platforms, programming languages, stop
conditions...). Nevertheless, the second and third lines of the heading respectively indicate
the main computer characteristic (processor frequency) and the stop condition to have an
idea of the maximum amount of search used by each approach. Note that there is no spe-
cific stop condition for EXSCOL since its extraction process ends when the current graph
becomes empty. Furthermore, some heuristics can halt before reaching the stop criterion,
when a known (lower) bound is reached for instance.

From Table 3, one observes that only HESA reports results for all the 94 graphs of the
benchmark. Besides, MDS(5) +LS, EXSCOL, MA-MSCP, and HESA provide lower and
upper bounds while BLS and MASC only give an upper bound. Additionally, Fig. 3 provides
performance information of each of the six algorithms compared to the best known upper
and lower bounds. One observes that no algorithm can reach all the best known results. BLS
and MASC attain the best upper bounds for 17 graphs out of the 27 tested graphs and for 56
graphs out of the 77 tested graphs respectively. MDS(5)+LS reaches the best lower (upper)
bound for 24 (26) instances out of 38. EXSCOL reaches the best lower and upper bounds
for 38 (out of 62 graphs) and 24 (out of 52 graphs) respectively. MA-MSCP reaches the best
lower / upper bound for 51 / 53 graphs out of 81. HESA equals the best lower (upper) bound
for 86 (85) instances out of 94.

Since the number of tested graphs differs from one algorithm to another, the performance
of these algorithms cannot be compared from a statistical viewpoint. However, from Table 3
and Fig. 3, we can roughly conclude that BLS, MASC, MDS(5)+LS, EXSCOL, MA-MSCP
and HESA are currently the most effective algorithms for solving the MSCP problem.

From the theoretical and computational bounds reviewed above, we can make the follow-
ing observations:

e Optimality is proved for 21 instances out of the 94 tested graphs since the best upper
bounds are equal to the best lower bounds (see entries in bold in Table 3);

e 12 theoretical upper bounds equal the computational upper bounds while no theoretical
lower bound equals the computational lower bound (italics in Tables 2, 3);
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Fig. 3 The performance of six representative MSCP algorithms. The y-axis shows the number of graphs for
which an algorithm attains a result equal to or worse than the best known reported bound. a Lower bounds.
b Upper bounds

e The theoretical upper bounds of queena.a (a € {11, 12, 13, 14, 15, 16}) are equal to the
best computational lower bounds meaning optimal results;

e Table 3 shows that the best computational lower bounds of some easy graphs (myciela,
a € {3,4,5, 6}, for instance) are not equal to the optimal upper bounds (optimality
proved with CPLEX (Wang et al. 2013)). Hence, the method of decomposing the graph
introduced in Sect. 5.2 is not good enough in some cases and should be improved.

7 Perspectives and conclusion

This review is dedicated to recent approximation algorithms and practical solution algorithms
designed for the minimum sum coloring problem which attracted increasing attention in
recent years. MSCP is a strongly constrained combinatorial optimization problem which is
theoretically important and computationally difficult. In addition to its relevance as a typical
model to formulate a number of practical problems, MSCP can be used as a benchmark
problem to test constraint satisfaction algorithms and solvers.
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Based on this review, we discuss some perspective research directions.

e Evaluation function and search space: as introduced in Sect. 2, the aim of MSCP is
twofold: (1) find a proper k-coloring c¢ of a graph and (2) ensure that the sum of the
colors assigned to the vertices is minimized. An evaluation function combining these two
objectives has been proposed in Helmar and Chiarandini (2011):

k
f1© =D Vil + MIE(V))

=1

where E(V)) is the set of conflicting edges in V; and M > 0 is a sufficiently large natural
number. Since the evaluation function is used to guide the heuristic search process,
it would be interesting to design other effective evaluation function based on a better
recombination of the two parts of f”.

Another possibility could be to explore only the feasible graph coloring search space,
like in the competitive MASC and MA-MSCP approaches (Jin et al. 2014 and Moukrim
et al. 2013), using more effective (multi-)neighborhood structures.

Besides, the combination of the above two ingredients in a proper way may lead to
improved MSCP algorithms.

e Maximum independent sets extraction: As shown in Sect. 4.1, EXSCOL is a greedy
heuristic based on the independent sets extraction that is quite effective for large graphs.
Its major deficiency is that it does not include a procedure to reconsider “bad” independent
sets that has been extracted. Hence, one possibility is to devise a backtracking procedure
when a “bad” independent set has been identified as proposed for the graph coloring
problem (Wu and Hao 2012).

e FExact algorithms: There is no exact algorithm especially designed for MSCP except
the general approach which applies CPLEX to solve the integer linear programming
formulation of MSCP (Wang et al. 2013). However, as shown in Wang et al. (2013), this
approach is only applicable to easy DIMACS instances. On the other hand, some exact
algorithms for the classical vertex coloring problem successfully solved a subset of the
hard DIMACS graphs. Hence, it would be important to fill the gap by designing exact
algorithms for MSCP.

To conclude, the minimum sum coloring problem, like the classical coloring problem, is a
generic and useful model. Advances in solution methods (both exact and heuristic methods)
for these coloring problems will help find satisfying solutions to many practical problems.
Given the increasing interest in the sum coloring problem and their related coloring problems,
it is reasonable to believe that research in these domains will become even more intense and
fruitful in the forthcoming years.
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have helped us to improve the paper. This work was partially supported by the LigeRO (2009-2014, Pays de la
Loire Region), PGMO (2014-2016, Jacques Hadamard Mathematical Foundation) projects and the National
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Appendix

For the purpose of completeness, this Appendix, which reproduces and extends the results
given in Jin and Hao (2016), shows a performance summary of the six main heuristic algo-
rithms for the set of 94 DIMACS benchmark graphs in terms of the lower and upper bounds
of the MSCP problem.
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