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Abstract Recently, a huge amount of social networks have been made publicly available.
In parallel, several definitions and methods have been proposed to protect users’ privacy
when publicly releasing these data. Some of them were picked out from relational dataset
anonymization techniques, which are riper than network anonymization techniques. In this
paperwe summarize privacy-preserving techniques, focusing on graph-modificationmethods
which alter graph’s structure and release the entire anonymous network. Thesemethods allow
researchers and third-parties to apply all graph-mining processes on anonymous data, from
local to global knowledge extraction.

Keywords Privacy · k-Anonymity · Randomization · Social networks · Graphs

1 Introduction

In recent years, an explosive increase of social networks has been made publicly available.
Embeddedwithin this data there is private information about userswho appear in it. Therefore,
data owners must respect the privacy of users before releasing datasets to third parties. In
this scenario, anonymization processes become an important concern. Among others, the
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study of Ferri et al. (2011) reveals that up to 90% of user groups are concerned by data
owners sharing data about them. Backstrom et al. (2007) point out that the simple technique
of anonymizing graphs by removing the identities of the vertices before publishing the actual
graph does not always guarantee privacy. They show that there exist adversaries that can
infer the identity of the vertices by solving a set of restricted graph isomorphism problems.
Some approaches and methods have been imported from anonymization on structured data,
but the peculiarities of graph-formatted data avoid these methods to work directly on it. In
addition, divide-and-conquer methods do not apply to anonymization of graph data due to
the fact that registers are not separable, since removing or adding vertices and edges may
affect other vertices and edges as well as the properties of the graph (Zhou and Pei 2008).

1.1 Contributions

In this paper we present the most important categories related to the privacy-preserving (or
anonymization) problem, but we will focus our attention on graph-modification methods,
since they allow data owners to alter graph’s structure and release the entire network. Conse-
quently, anonymous data can be used to answer all graph-mining tasks, from local to global
techniques.

Some other surveys on graph anonymization can be found, but no one else is dedicated
to in-depth analysis of graph-modification techniques for privacy-preserving on networks,
presenting a wide range of all techniques referring graph-modification operations. In this
survey we include not only the most recent methods and algorithms for graph anonymization
but also new techniques to preserve the user’s privacy in data publishing processes, such as
uncertain graphs. Some other surveys were made some years ago and new definitions and
methods have appeared since then (Zhou et al. 2008; Wu et al. 2010b; Hay et al. 2011);
others are focused on relational data (De Capitani di Vimercati et al. 2012; Torra 2010);
and finally some others are only focused on some specific methods (such as k-anonymity or
generalization) (Nagle 2013).

We will review the most important methods of graph-modification techniques for privacy-
preserving on networks, i.e. random perturbation, constrained perturbation, uncertain graphs
and generalization. Main advantages and drawbacks will be discussed, though sometimes it
is hard to compare algorithms due to the lack of common frameworks, datasets andmeasures.

Firstly, we will pose random perturbation techniques, which are generally the simplest
and present the lowest complexity. Thus, they are able to deal with large networks, though
they do not offer privacy guarantees, but a probabilistic re-identification model. Due to its
simplicity these methods can be adapted to deal with big or streaming data, but none has
been specifically developed for this purpose up to now.

Next, we will focus in constrained perturbation methods. Several methods have been pro-
pounded in this category, such as k-anonymity. These methods provide privacy guarantees,
but its privacymay strongly depend on the adversary’s knowledge. Themost basic adversary’s
knowledge is based on vertex degree. Several works have been developed to fulfil k-degree
anonymity, being able to anonymize large networks based on the vertex degree adversary’s
knowledge. We will review the most important methods in this category, discussing the most
suitable ones. Additionally, wewill considermore complexmodels, such as k-neighbourhood
and k-automorphism, though the complexity ariseswhendealingwith them.Preserving strate-
gies for edge and vertex labelled networks will be also discussed, as so for bipartite graphs.

We will also introduce recently proposed methods based on uncertain graphs. The main
problem of these approaches is the nature of uncertain graphs; several graph-mining tasks,
such as clustering and community detection algorithms, cannot be applied straightforwardly
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to uncertain graphs since they are developed to deal with binary-edge graphs. Nonetheless,
interesting approaches have been presented and it seems that it will be an active field in the
upcoming years.

Finally, generalization methods (also know as clustering approaches) will be introduced.
Although they provide suitable privacy levels, the analysis of local measures and metrics
from the resulting graphs is not straightforward. Nevertheless, they demonstrated to be able
to deal with vertex-labelled networks, offering anonymity in terms of attribute and identity.

1.2 Notation

Let G = (V, E) be a simple, undirected and unlabelled graph, where V is the set of vertices
and E the set of edges in G. We define n = |V | to denote the number of vertices and m = |E |
to denote the number of edges. We use {i, j} to define an undirected edge from vertex vi to
v j , deg(vi ) to denote the degree of vertex vi and the set of 1-neighbourhood of vertex vi as
�(vi ) = {v j : {i, j} ∈ E}. We use d(G) to define the degree sequence of G, where d(G) is a
vector of length n such that d(G) = {deg(v1), deg(v2), . . . , deg(vn)}. Finally, we designate
G = (V, E) and ˜G = (˜V , ˜E) to refer the original and the perturbed graphs, respectively.

1.3 Roadmap

The paper is organized as follows.We introduce the privacy-preserving scenario and problem
definition on networks in Sect. 2. Next, in Sect. 3 we present the basic classification for graph-
modification techniques. Then we review the state of the art of edge and vertex modification
methods in Sect. 4, uncertain graphs in Sect. 5 and generalized graphs in Sect. 6. Lastly, we
finish the paper in Sect. 7 discussing the conclusions and commenting the open problems in
Sect. 8.

2 Problem definition

Currently, large amounts of data are being collected on social and other kinds of networks,
which often contain personal and private information of users and individuals. Although basic
processes are performed on data anonymization, such as removing names or other key iden-
tifiers, remaining information can still be sensitive, and useful for an attacker to re-identify
users and individuals. To solve this problem, methods which introduce noise to the original
data have been developed in order to hinder the subsequent processes of re-identification. A
natural strategy for protecting sensitive information is to replace identifying attributes with
synthetic identifiers. We refer to this procedure as simple or naïve anonymization. This com-
mon practice attempts to protect sensitive information by breaking the association between
the real-world identity and the sensitive data.

Figure 1a shows a toy example of a social network, where each vertex represents an
individual and each edge indicates the friendship relation between them. Figure 1b presents
the same graph after a naïve anonymization process, where vertex identifiers have been
removed and the graph structure remains the same. One can think users’ privacy is secure,
but an attacker can break the privacy and re-identify a user on the anonymous graph. For
instance, if an attacker knows thatDanhas four friends and twoof themare friends themselves,
then he can construct the 1-neighbourhood of Dan, depicted in Fig. 1c. From this sub-graph,
the attacker can uniquely re-identify user Dan on anonymous graph. Consequently, user’s
privacy has been broken by the attacker.

123



344 J. Casas-Roma et al.

Amy Tim Bob Lis

Ann Dan Tom

Eva Joe

(a)

1 2 3 4

5 6 7

8 9

(b)

2 3

6

8 9

(c)

Fig. 1 Naïve anonymization of a toy network, where G (a) is the original graph, ˜G (b) is the naïve anonymous
version and ˜G Dan (c) is Dan’s 1-neighbourhood

Zhou and Pei (2008) noticed that to define the problem of privacy preservation in pub-
lishing social network data, we need to formulate the following issues: firstly, we need to
identify information to be preserved. Secondly, we need to model the background knowledge
that an adversary may use to attack the privacy. And thirdly, we need to specify the usage
of the published social network data so that an anonymization method can try to retain the
utility as much as possible while the privacy information is fully preserved.

Regarding the privacy information to be preserved in social networks, three main cate-
gories of privacy threats have been identified:

1. Identity disclosure occurs when the identity of an individual who is associated with a
vertex is revealed. It includes sub-categories such as vertex existence, vertex properties
and graph metrics (Zhou et al. 2008).

2. Attribute disclosurewhich seeks not necessarily to identify a vertex, but to reveal sensitive
labels of the vertex. The sensitive data associated with each vertex is compromised.

3. Link disclosure occurs when the sensitive relationship between two individuals is dis-
closed. Depending on network’s type, we can refine this category as link relationships,
link weight and sensitive edge labels.

Identity disclosure and link disclosure apply on all types of networks. However, attribute
disclosure only applies on vertex-labelled networks. In addition, link disclosure can be con-
sidered a special type of attribute disclosure, since edges can be seen as a vertex attributes.
Identity disclosure often leads to attribute disclosure due to the fact that identity disclosure
occurs when an individual is identified within a dataset, whereas attribute disclosure occurs
when sensitive information that an individual wished to keep private is identified.

Determining the knowledge of the adversary is a challenging problem. A variety of adver-
saries’ knowledge have been proposed in conjunction with their attack and a protection
method. In cryptanalysis, the authors distinguish between two basic types of attacks, and it
may be also an interesting basic classification for network social attacks, although it is also
valid for other types of networks: (1) active attacks, where an adversary tries to compromise
privacy by strategically creating new user accounts and links before the anonymized network
is released, so that these new vertices and edges will then be present in the anonymized
version. And (2) passive attacks are carried out by individuals who try to learn the identities
of vertices only after the anonymized network has been released.

Two attacks were proposed in Backstrom et al. (2007), where the authors showed that
identity disclosure would occur when it is possible to identify a sub-graph in the released
naïvely-anonymized graph. The walk-based attack is an active attack in which an adversary
creates k accounts and links them randomly, then he creates a particular pattern of links to a
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set of m other users that he is interested in. The goal is to learn whether two of the monitored
vertices have links between them. When the data is released, the adversary can efficiently
identify the sub-graph of vertices corresponding to his k accounts with high probability. With
as few a k = O(log(n)) accounts, an adversary can recover the links between as many as
m = O(log2(n)) vertices in an arbitrary graph of size n. In the cut-based attack users of
the system do not create any new vertices or edges, they simply try to find themselves in
the released network, and from this to discover the existence of edges among users to whom
they are linked. Therefore, it is a passive attack. In a network with 4.4 million of vertices, the
authors find that for the vast majority of users, it is possible for them to exchange structural
informationwith a small coalition of their friends, and subsequently uniquely identify the sub-
graph on this coalition in the ambient network. Using this, the coalition can then compromise
the privacy of edges among pairs of neighbouring nodes.

Hay et al. (2007, 2008) proposed structural queries Q which represents complete or partial
structural information of a target individual that may be available to adversaries. Let Q(v) be
a structural query on individual v, then the candidate set is defined as CandQ(v) = {u ∈ V :
Q(u) = Q(v)}. If |CandQ(v)| is small, v can be re-identified with high probability. Vertex
refinement queries are used to model the knowledge of the adversary and also to analyse the
network in terms of k-anonymity. However, the main problem of this approach is that it can
not consider adversary’s partial information. That is, using this approach an adversary with
partial knowledge of the adjacent vertices to a target vertex can not be modelled. Sub-graph
knowledge queries have been developed to overcome this limitation.

Ying andWu (2009a) designed an attack based on the probability of an edge exists and the
similitude between pairs of vertices on anonymous graph. The attack ismodelled usingmatrix
operations: ˜A = A + E where ˜A and A are the adjacency matrix of anonymous and original
graphs, and E is the perturbation matrix. In structured or relation data, some methods allow
an attacker to reconstruct the original matrix (A) from the anonymizedmatrix (˜A) and some a
priori knowledge about the perturbation method applied. Nevertheless, up to now the results
have not been good enough. Ying andWu also investigated how well the edge randomization
approach via addition/deletion can protect privacy of sensitive links. They have conducted
theoretical analysis and empirical evaluations to show that vertex proximity measures can be
exploited by attackers to enhance the posterior belief and prediction accuracy of the existence
of sensitive links amongverticeswith high similarity values. Same authors proposed to exploit
graph space to breach link privacy in Ying and Wu (2009b). Wu et al. (2010a) studied a
reconstructionmethod from randomized graphs by a low rank approximation approach, using
the eigen-decomposition of randomized graph to lead the process. Lastly, Vuokko and Terzi
(2010) tried to reconstruct randomized vertex-labelled networks using the assumption that
vertices which are connected in G are likely to have similar feature vectors F and vice versa.
Their method finds, in polynomial time, G and F such that Pr(G, F |˜G, ˜F) is maximized.

An attack by combining multiple graphs was presented in Narayanan and Shmatikov
(2009), where the authors assumed that adversaries have an auxiliary graph whose members
overlap with anonymous network and detailed information about a few target nodes. Under
these premises, the following attack is considered: First, the adversaries will try to re-identify
the seeds in the anonymous network, and second they will try to re-identify more vertices
by comparing the neighbourhood on both auxiliary and anonymous networks. Gulyás and
Imre (2013, 2015) proposed a technique based on identity separation to avoid this attack
that needs cooperative participation of several users. So, in general, this solution may not be
applicable. Sharad and Danezis (2014) presented an automated approach to re-identifying
nodes in anonymized social networks which uses machine learning (decision forests) to
matching pairs of nodes in disparate anonymized sub-graphs.
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Other attacks on naively anonymized network data have been developed, which can re-
identify vertices, disclose edges between vertices, or expose properties of vertices (e.g., vertex
features). These attacks include: matching attacks, which use external knowledge of vertex
features (Liu and Terzi 2008; Zou et al. 2009; Zhou and Pei 2008); injection attacks, which
alter the network prior to publication (Backstrom et al. 2007); and auxiliary network attacks,
which use publicly available networks as an external information source (Narayanan and
Shmatikov 2009). To solve these problems, methods which introduce noise to the original
data have been developed in order to hinder the subsequent processes of re-identification.

3 Graph-modification techniques

From a high level view, there are three general families of graph-modification techniques to
mitigate network data privacy:

– Edge and vertex modification approaches first transform the data by edges or vertices
modifications (adding and/or deleting) and then release the perturbed data. The data is
thus made available for unconstrained analysis.

– Uncertain graphs are approaches based on adding or removing edges “partially” by
assigning a probability to each edge in anonymous network. Instead of creating or deleting
edges, the set of all possible edges is considered and a probability is assigned to each
edge.

– Generalization or clustering-based approaches, which can be essentially regarded as
grouping vertices and edges into partitions called super-vertices and super-edges. The
details about individuals canbehiddenproperly, but the graphmaybe shrunk considerably
after anonymization, which may not be desirable for analysing local structures.

All aforementioned methods first transform the data by different types of graph’s modifi-
cations and then release the perturbed data. The data is thus made available for unconstrained
analysis. On the contrary, there are “privacy-aware computation” methods, which do not
release data, but only the output of an analysis computation. The released output is such
that it is very difficult to infer from it any information about an individual input datum.
For instance, differential privacy (Dwork 2006) is a well-known privacy-aware computation
approach. We do not consider these methods in this survey, since they do not allow us to
release the entire network, which provides the widest range of applications for data mining
and knowledge extraction.

4 Edge and vertex modification approaches

Edge and vertex modification approaches anonymize a graph by modifying (adding and/or
deleting) edges or vertices in the graph. These modifications can be made at random, and we
will refer to them as randomization, random perturbation or obfuscation methods. However,
modification can be performed in order to fulfil some desired constraints, and in that cases
we will call them constrained perturbation methods.

We define three basic edge modification processes to change the network’s structure by
adding and/or removing edges. These methods are the most basic ones, and they can be
combined in order to create complex combinations. We are interested in them since they
allow us to model, in a general and conceptual way, most of the privacy-preserving methods.
In the following lines we will introduce these basic methods, which are illustrated in Fig. 2.
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Fig. 2 Basic operations for edge modification. a Edge add/del, b edge rotation, c edge switch

Dashed lines represent existing edges which will be deleted and solid lines constitute the
edges which will be added. Node color indicates whether a node changes its degree (dark
grey) or not (light grey) after the edge modification has been carried out. These are:

– Edge add/del is the most generic edge modification. It simply consists of deleting an
existing edge {vi , v j } ∈ E and adding a new one {vk, vp} /∈ E . Figure 2a illustrates this
operation.

– Edge rotation occurs between three nodes vi , v j , vp ∈ V such that {vi , v j } ∈ E and
{vi , vp} /∈ E . It is defined as deleting edge {vi , v j } and creating a new edge {vi , vp} as
Fig. 2b illustrates. Note that edge switch would have been more appropriate but it had
already been defined in the relevant literature in the context of a “double switch”.

– Edge switch occurs between four nodes vi , v j , vk, vp ∈ V where {vi , v j }, {vk, vp} ∈ E
and {vi , vp}, {vk, v j } /∈ E . It is defined as deleting edges {vi , v j } and {vk, vp} and adding
new edges {vi , vp} and {vk, v j } as Fig. 2c illustrates.
For all three presented edge modification techniques, the number of nodes and edges

remain the same but the degree distribution changes for Edge add/del and Edge rotation
while not for Edge switch. Clearly, Edge add/del is the most general concept and all other
perturbations can be modelled as a particular case of it: Edge rotation is a sub case of Edge
add/del and Edge switch a sub case of Edge rotation.

Most of themethods outlined in this survey are based on one (or a combination ofmore than
one) edge modification techniques previously presented. Several random-based anonymiza-
tionmethods are based on the concept of Edge add/del. For example, theRandomPerturbation
algorithm (Hay et al. 2007), Spctr Add/Del (Ying and Wu 2008) and Rand Add/Del-B (Ying
et al. 2009) use this concept to anonymize graphs. Most k-anonymity methods can be also
modelled through the Edge add/del concept (Hay et al. 2008; Zhou and Pei 2008; Zou et al.
2009). Edge rotation is a specification of Edge add/del and a generalization of Edge switch: at
every edge rotation, one node keeps its degree and the others change theirs. The UMGA algo-
rithm (Casas-Roma et al. 2013, 2016) applies this concept to anonymize the graph according
to the k-degree anonymity concept. Other methods are related to Edge switch: for instance,
Rand Switch and Spctr Switch (Ying andWu 2008) apply this concept to anonymize a graph.
Additionally, Liu and Terzi (2008) also apply this concept to the graph’s reconstruction step
of their algorithm for k-degree anonymity.

4.1 Random perturbation

These methods are based on adding random noise in original data. They have been well
investigated for structured or relational data. Naturally, edge randomization can also be
considered as an additive-noise perturbation. Notice that the randomization approaches pro-
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Fig. 3 Random perturbation example, where G (a) is the original graph, ˜Gra (b) and ˜Gsw (c) are perturbed
versions of the network by Rand add/del and Rand switch, respectively

tect against re-identification in a probabilistic manner. Specifically, methods based on Edge
add/del or Edge rotation preserve against identity disclosure, when presuming an adversary’s
knowledge based on degree or neighbourhood information, and also against link disclosure.
Methods based on Edge switch do not protect against identity disclosure when an adversary
has knowledge about vertices’ degree since using this edgemodification technique the degree
distribution remains the same.

Naturally, graph randomization techniques can be defined in terms of removing some true
edges and/or adding some fake ones. Two natural edge-based graph perturbation strategies
are:

– Rand add/del applies Edge add/del at random considering the entire edge set, without
restrictions or constraints. This strategy preserves the number of edges in the original
graph.

– Rand switch randomly switches a pair of existing edges following Edge switch descrip-
tion. This strategy preserves the degree of each vertex and the number of edges.

Example 1 An example of random perturbation process is presented in Fig. 3. The original
network is depicted in Fig. 3a. Next, Fig. 3b shows a perturbed version of the same network
by Rand add/del. During the anonymization process, two edges have been removed ({1, 5}
and {2, 3}) and two new ones have been created ({6, 7} and {8, 9}). An alternatively perturbed
version of the same network by Rand switch is presented in Fig. 3c, where edges {1, 2} and
{4, 5} were switched to {1, 4} and {2, 5}. Both methods preserve the number of vertices and
edges. Additionally, Rand switch also preserves the degree sequence, i.e. d(G) = d(˜Gsw) =
{3, 2, 4, 4, 2, 4, 2, 2, 1} while Rand add/del does not, i.e. d(˜Gra) = {2, 1, 3, 4, 1, 5, 3, 3, 2}.

Hay et al. (2007) proposed a method, called Random perturbation, to anonymize unla-
belled graphs usingRand add/del strategy, i.e. randomly removing p edges and then randomly
adding p fake edges. The set of vertices does not change and the number of edges is preserved
in the anonymous graph. Themain advantages of thismethod are its simplicity but also its low
complexity. On the contrary, hubs are not well-protected and can be re-identified. Ying and
Wu (2008) studied how different randomization methods (based on Rand add/del and Rand
switch) affect the privacy of the relationship between vertices. The authors also developed
two algorithms specifically designed to preserve spectral characteristics of the original graph,
called Spctr Add/Del and Spctr Switch. The same authors proposed a method to preserve any
graph feature within a small range using Markov Chain in Ying and Wu (2009b). Stokes and
Torra (2011) stated that an appropriate selection of the eigenvalues in the spectral method can
perturbate the graph while keeping its most significative edges. The authors in Casas-Roma
(2014) presented an strategy which aims to preserve the most important edges in the network,
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trying to maximize data utility while achieving a desired privacy level. Generally, methods
based on spectral properties of the network achieve lower information loss, but at a cost of
increasing complexity.

An interesting comparison between a randomization and a constrained-based method, in
terms of identity and link disclosure, was presented by Ying et al. (2009). In addition, the
authors developed a variation of Random perturbation method, called Blockwise Random
Add/Delete strategy (or simply Rand Add/Del-B). This method divides the graph into blocks
according to the degree sequence and implements edge modifications on the vertices at high
risk of re-identification, not at random over the entire set of vertices. Blockwise Random
Add/Delete strategy achieves better results than the previous ones when dealing with scale-
free networks, since it focuses on hubs and other vertices at high risk of re-identification.

More recently, Bonchi et al. (2011, 2014) offered a new information-theoretic perspective
on the level of anonymity obtained by random methods. The authors proposed an entropy-
based quantification of the anonymity level that is provided by the perturbed graph. They
stated that the anonymity level quantified by means of entropy is always greater than or equal
to the one based on a-posteriori belief probabilities. They also introduced a new random-
based method, called Sparsification, which randomly removes edges without adding new
ones. The extended version of the work (Bonchi et al. 2014) also studied the resilience of
obfuscation by random sparsification to adversarial attacks that are based on link prediction.

Other approaches are based on generating new random graphs that share some desired
properties with the original ones, and releasing one of this new synthetic graphs. For instance,
these methods consider the degree sequence of the vertices or other structural graph charac-
teristics like transitivity or average distance between pairs of vertices as important features
which the anonymization process must keep as equal as possible on anonymous graphs. Usu-
ally, these methods define Gd,S as the space of networks which: (1) keep the degree sequence
d and (2) preserve some properties S within a limited range. Therefore, Gd,S contains all
graphs which satisfy both properties. For example, an algorithm was proposed for generat-
ing synthetic graphs in Gd,S with equal probability in Ying and Wu (2009b) and a method
that generates a graph with high probability to keep properties close to the original ones in
Hanhijärvi et al. (2009).

4.2 Constrained perturbation

Another widely adopted strategy of edge and vertex modification approaches use edge addi-
tion and deletion to meet some desired constraints. Probably, the k-anonymity model is the
mostwell-known in this group even though othermodels and extensions have been developed.

4.2.1 k-Anonymity

The k-anonymity model was introduced in Samarati (2001) and Sweeney (2002) for pri-
vacy preservation on structured or relational data. The k-anonymity model indicates that
an attacker can not distinguish between different k records although he manages to find a
group of quasi-identifiers. Therefore, the attacker can not re-identify an individual with a
probability greater than 1

k .
Some concepts can be used as quasi-identifiers to apply k-anonymity on graph formatted

data. Awidely applied option is to use the vertex degree as a quasi-identifier. Accordingly, we
assume that the attacker knows the degree of some target vertices. If the attacker identifies
a single vertex with the same degree in the anonymous graph, then he has re-identified
this vertex. That is, deg(vi ) �= deg(v j ) ∀ j �= i . This model is called k-degree anonymity
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Fig. 4 Constrained perturbation example, where G (a) is the original graph, ˜Gem (b) and ˜Gva (c) are 2-degree
anonymous versions of the network by edge modifications and by vertex and edge addition, respectively

(Liu and Terzi 2008) and these methods are based on modifying the graph structure (by
edge modifications) to ensure that all vertices satisfy k-anonymity for their degree. In other
words, the main objective is that all vertices have at least k − 1 other vertices sharing the
same degree. A network G = (V, E) is k-degree anonymous if its degree sequence is k-
anonymous, i.e. every distinct value di appears at least k times in d(G). Furthermore, Liu
and Terzi (2008) developed a method based on integer linear programming and Edge switch
in order to construct a new anonymous graph which is k-degree anonymous, V = ˜V and
E ∩ ˜E ≈ E . Notice that this model protects data from identity disclosure and also from
link disclosure but in a probabilistic manner. Hartung et al. (2015) studied the complexity of
k-degree anonymity. They showed that k-degree anonymity has a polynomial-size problem
kernel when parameterized by the maximum vertex degree δ of the input graph, and also
proved that k-degree anonymity becomes NP-hard on graphs with H-index three.

Example 2 A k-degree anonymity example is illustrated in Fig. 4. The original network
G, depicted in Fig. 4a, is k = 1 degree anonymous since its degree sequence is d(G) =
{2, 4, 2, 1, 3, 2, 2, 2, 2}. An example of a k = 2 degree anonymous network is presented in
Fig. 4b. Edge modification is used to fulfil the k-degree anonymity model. Thus, the number
of vertices is the same, i.e. ñ = n, and the perturbation is achieved by adding and removing
edges. Its degree sequence is d(˜Gem) = {2, 3, 2, 2, 3, 2, 2, 2, 2}. Accordingly, it is a 2-degree
anonymous sequence due to the fact that each vertex degree value appears at least two times
in the degree sequence.

Liu and Terzi’s work inspired many other authors who improved such seminal work both
in terms of speed and scalability (allowing to tackle larger datasets) by dealing with differ-
ent kinds of heuristics. Lu et al. (2012) proposed a greedy algorithm, called Fast k-degree
anonymization (FKDA), that anonymizes the original graph by simultaneously adding edges
to the original graph while anonymizing its degree sequence. Their algorithm is based on Liu
and Terzi’s work and it tries to avoid testing the realizability of the degree sequence, which
is a time consuming operation. Hartung et al. (2014) also proposed an enhancement of Liu
and Terzi’s heuristic, including new algorithms for each phase which improve theoretical and
practical running times. Related to this work, Nagle et al. (2012) proposed a local anonymiza-
tion algorithm based on k-degree anonymity that focuses on obscuring structurally important
vertices that are not well anonymized, thereby reducing the cost of the overall anonymization
procedure. However, results are similar to Liu and Terzi’s algorithm in terms of information
loss. Furthermore, no analysis of large networks is provided. In Casas-Roma et al. (2013,
2016), the authors also presented a k-degree anonymous algorithmwhich is based on univari-
ate micro-aggregation and it is able to anonymize large networks of thousands or millions of
vertices and edges.
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Chester et al. (2011, 2013a) permit modifications to the vertex set, rather than only to the
edge set, and this offers some differences with respect to the utility of the released anonymous
graph. The authors only created new edges between fake and real vertices or between fakes
vertices. They studied k-degree anonymity on both vertex-labelled and unlabelled graphs.
Under the constraint of minimum vertex additions, they show that on vertex-labelled graphs,
the problem is NP-complete. For unlabelled graphs, they give a near-linearO(nk) algorithm.
Nonetheless, results showed that information loss increases using vertex and edge addition.
Following the same path, Bredereck et al. (2014) studied the problem ofmaking an undirected
graph k-degree anonymous by adding vertices (together with incident edges). The authors
explored three variants of vertex addition and studied their computational complexity. Ma
et al. (2015) also presented a k-degree anonymity based on vertex and edge modification. As
the previous algorithms, it is a two-step method which firstly finds the optimal target degree
of each vertex, and secondly it decides the candidates to increase the vertex degree and adds
the edges between vertices to satisfy the requirement.

Example 3 Regarding our previous example presented in Fig. 4, a k = 2 degree anony-
mous network by vertex and edge addition is depicted in Fig. 4c. As shown, the original
structure remains the same, but a new vertex is added (dark grey) and also two edges
{a, 4} and {a, 5} are created to fulfil the 2-degree anonymity. Its degree sequence is
d(˜Gva) = {2, 4, 2, 2, 4, 2, 2, 2, 2, 2}. Using this model, the number of vertices is increased
by 1 (̃n = n + 1) and the number of edges by 2 (m̃ = m + 2).

Instead of using a vertex degree, Zhou and Pei (2008) considered the 1-neighbourhood
sub-graph of the objective vertices as a quasi-identifier. For a vertex vi ∈ V , vi is k-
anonymous in G if there are at least k − 1 other vertices v1, . . . , vk−1 ∈ V such that
�(vi ), �(v1), . . . , �(vk−1) are isomorphic. Then, G is called k-neighbourhood anony-
mous if every vertex is k-anonymous considering the 1-neighbourhood. They proposed a
greedy method to generalize vertices labels and add fake edges to achieve k-neighbourhood
anonymity. The authors consider the network as a vertex-labelled graph G = (V, E, L ,L),
where V is the vertex set, E ⊆ V × V is the edge set, L is the label set and L is the labelling
function L : V → L which assigns labels to vertices. The main objective is to create an
anonymous network ˜G which is k-anonymous, V = ˜V , E = E ∪ ˜E , and ˜G can be used to
accurately answer aggregate network queries. In addition to identity and link disclosure, the
authors also considered attribute disclosure. More recently, an extended and revised version
of the paper was presented in Zhou and Pei (2011), demonstrating that the neighbourhood
anonymity for vertex-labelled graphs is NP-hard. However, Tripathy and Panda (2010) noted
that their algorithm could not handle the situations in which an adversary has knowledge
about vertices in the second or higher hops of a vertex, in addition to its immediate neigh-
bours. To handle this problem, they proposed a modification of the algorithm to handle such
situations. He et al. (2009) utilized a similar anonymization method that partitions the net-
work in a manner that tries to preserve as much of the structure of the original social network
as possible. They do this by anonymizing the local structures of individual nodes such that
all generalizations reflect actual structures of the original graph. The privacy level achieved
by the aforementioned methods is higher than those obtained by preserving only a k-degree
anonymity. However, the complexity of such proposals is too high and these methods cannot
be applied efficiently to large networks.

Other authors modelled more complex adversary’s knowledge and used them as quasi-
identifiers. For instance, Hay et al. (2008) proposed a method named k-candidate anonymity.
In this method, a vertex vi is k-candidate anonymous with respect to question Q if there are
at least k − 1 other vertices in the graph with the same answer. Formally, |candQ(vi )| ≥ k
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where candQ(vi ) = {v j ∈ V : Q(vi ) = Q(v j )}. A graph is k-candidate anonymous
with respect to question Q if all of its vertices are k-candidate with respect to question Q.
Zou et al. (2009) consider all structural information about a target vertex as quasi-identifier
and propose a new model called k-automorphism to anonymize a network and ensure pri-
vacy against this attack. They define a k-automorphic graph as follows: (a) if there exist
k − 1 automorphic functions Fa(a = 1, . . . , k − 1) in G, and (b) for each vertex vi in G,
Fa1(vi ) �= Fa2(1 ≤ a1 �= a2 ≤ k −1), then G is called a k-automorphic graph. The key point
is determining the automorphic functions. In their work, the authors proposed three methods
to develop these functions: graph partitioning, block alignment and edge copy. K-Match algo-
rithm (KM)was developed from these threemethods and allows us to generate k-automorphic
graphs from the original network. Identity disclosure was protected when considering an
adversary’s knowledge based on question Q and automorphic functions, respectively. Since
both methods used edge modifications, link disclosure was also protected in a probabilistic
manner. Likewise the previous methods, these ones also achieve high privacy levels, but the
complexity rises again. Thus, they are not able to deal with large networks in reasonable time.

Tai et al. (2011) identified a new type of attack called a friendship attack, where an
adversary utilizes the degrees of two vertices connected by an edge to re-identify related
victims in a published network. The concept of k2-degree anonymitywas introduced to protect
against such attacks,where for every vertexwith an incident edge of degree pair (d1, d2), there
exist at least k−1 other vertices sharing the same degree pair. The authors proposed an integer
programming formulation tofindoptimal solutionwhich is not scalable for large networks, but
they also presented an heuristic approach for anonymizing medium or large-scale networks.

Assam et al. (2014) introduced the k-core attack, which relies on the concept of coreness
(or k-core) and aims to uniquely re-identify vertices or infer the linkage of edges in anonymous
graphs by exploiting the degree and coreness of a vertex or the structure of a sub-graph Gs ⊆
G together with the degree and coreness of the vertices in Gs. The authors propounded an
structural anonymization technique called (k, δ)-Core anonymity, which uses k-core property
to structurally anonymize vertices and edges of a published network and prevent the k-core
attack. This method is based on vertex and edge addition, and it seems scalable to large
networks of millions of vertices and edges.

Regarding to the theoretical complexity of the problems focused by the aforementioned
methods, Kapron et al. (2011) analysed privacy issues for arbitrary and bipartite graphs.
For arbitrary graphs, they show NP-hardness and use this result to prove NP-hardness for
neighbourhood anonymity, i-hop anonymity, and k-symmetry anonymity. Following the same
path, Chester et al. (2013b) studied the complexity of anonymizing different kind of networks
(labelled, unlabelled and bipartite) and stated that edge-labelled graphs, label sequence subset
anonymization (and thus table graph anonymization, k-neighbourhood anonymity, i-hop
anonymity, and k-symmetry) are NP-complete for k ≥ 3.

The methods we have outlined above work with simple and undirected graphs, but other
types of graph are also considered in the literature. Bipartite graphs allow us to represent
rich interactions between users on a social network. A rich-interaction graph is defined as
G = (V, I, E) where V is the set of users, I is the set of interactions and E ⊆ V × I . All
vertices adjacent to specific is ∈ I shares an interaction, i.e, for v j ∈ V : (v j , is) ∈ E all
vertices interact on the same is . Lan et al. (2010) presented an algorithm to meet k-anonymity
through automorphism on bipartite networks, called BKM (Bigraph k-automorphism match).
They discussed information loss, of both descriptive and structural data, through quasi-
identifier generalisations using two measures for both data, namely Normalised Generalised
Information Loss (NGIL) and Normalised Structure Information Loss (NSIL) respectively.
Hongwei et al. (2013) considered the problem of sensitive edges identification attacks in
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social networks,which are expressed using bipartite graphs. Three principles against sensitive
edge identification based on security-grouping theory (Sihag 2012) were presented: positive
one-way (c1, c2)-security algorithm, negative one-way (c1, c2)-security algorithm and two-
way (c1, c2)-security algorithm. Based on these principles, a clustering bipartite algorithm
divides the simple anonymous bipartite graph into n blocks, and then clusters the blocks
into m groups which includes at least k blocks, creating an anonymous version of the graph
with an objective function of the minimum anonymous cost (computed by the difference
between original an anonymous vertices and edges). However, all aforementioned methods
were tested using small and medium networks. Kapron et al. (2011) analysed privacy issues
and concluded that k-degree anonymity of unlabelled bipartite graphs is in P for all k ≥ 2.
Additionally, Chester et al. (2013b) stated that for bipartite, unlabelled graphs, degree-based
subset anonymization is in P for all values of k.

Cormode et al. (2010) also studied the anonymization problem on bipartite networks,
nevertheless they focused on link disclosure instead of identity disclosure. Their scenario
is based on the typical pharmacy example, i.e. customers buy products. The association
between two nodes (who bought what products) is considered to be private and needs to
be protected while properties of some entities (product or customer information) are public.
Their anonymization method preserves the graph structure exactly by masking the mapping
from entities to vertices rather than masking or altering the graph’s structure. The graph is
defined as G = (V, W, E), where V and W are the vertex sets and E ⊆ V × W is the edge
set. The method, called (k,�)-grouping, splits V into size k groups and W into size � groups.
In addition, they defined the safe grouping introducing the �-diversity condition to grouping
function and proved that finding a safe, strict 3-grouping is NP-hard.

Edge-labelled networks present specific challenges in terms of privacy and risk disclo-
sure. The following methods understand that the edge information is private and it have to
be preserved, so they focus on link disclosure. Kapron et al. (2011) used edge addition to
achieve anonymization on social networks modelled as edge-labelled graphs, where the aim
is to make a pre-specified subset of vertices k-label sequence anonymous with the minimum
number of edge additions. Here, the label sequence of a vertex is the sequence of labels of
edges incident to it. Moreover, the authors showed that k-label sequence anonymity is in P
for k = 2 but it is NP-hard for k ≥ 3 for labelled bipartite graphs. Additionally, Chester et al.
(2013b) stated that for bipartite, edge-labelled graphs, label sequence subset anonymization
is in P for k = 2 and is NP-complete for k ≥ 3. Alternatively, Das et al. (2010) considered
edge weight anonymization in social graphs. Their approach builds a linear programming
model which preserves properties of the graph that are expressible as linear functions of the
edge weights. Such properties are related to many graph-theoretic properties such as shortest
paths, k-nearest neighbours and minimum spanning tree. The k-anonymity model is applied
to edge weight, so an adversary can not identify an edge with a probability greater than 1

k
based on edge weight knowledge.

Zheleva and Getoor (2007) focused on the problem of preserving the privacy of sen-
sitive relationships in graph data. They considered a database describing a multi-graph
G = (V, E1, . . . , Ek, Es), composed of a set of vertices V and sets of edges E1, . . . , Ek, Es .
Each vertex vi represents an entity of interest. An edge e1i, j represents a relationship of type

E1 between two vertices vi and v j . The E1, . . . , Ek are the observed relationships, and Es

is the sensitive relationship, meaning that it is undesirable to disclose the es edges to the
adversary. The authors proposed five possible anonymization approaches, ranging from one
which removes the least amount of information to a very restrictive one, which removes the
greatest amount of relational data.
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Even fulfilling some privacy models, an attacker can succeed on acquiring private infor-
mation. For instance, a privacy leakage can occur on a k-degree anonymous network and
user’s privacy information can be revealed to an attacker. For example, we suppose an adver-
sary who wants to know if there is a relation (edge) between users (vertices) v1 and v2.
The k-degree anonymity model does not allow an attacker to uniquely re-identify each ver-
tex. Instead, he will obtain two sets VG1 where vi ∈ VG1 ⇔ deg(vi ) = deg(v1) and VG2

where vi ∈ VG2 ⇔ deg(vi ) = deg(v2). If there are edges between each vertex on VG1 and
each vertex on VG2, an adversary can infer, with absolutely confidence, that a relation exists
between vertices v1 and v2, although he is not able to re-identify each user in group VG1 and
VG2. So, even fulfilling the k-degree anonymity model a link disclosure can occur.

4.2.2 Extending k-anonymity

Aforementioned methods apply k-anonymity model using a variety of concepts as quasi-
identifiers. However, some other models appeared trying to extend the k-anonymity model
to overcome some specific drawbacks.

Feder et al. (2008) called a graph (k, �)-anonymous if for every vertex in the graph there
exist at least k other vertices that share at least � of its neighbours. Given k and � they defined
two variants of the graph-anonymization problem that ask for the minimum number of edge
additions to be made so that the resulting graph is (k, �)-anonymous. The authors showed
that for certain values of k and � the problem is polynomial-time solvable, while for others
it is NP-hard. Their algorithm solves optimally the weak (2, 1)-anonymization problem in
linear time and the strong (2, 1)-anonymization problem can be solved in polynomial time.
The complexity of minimally obtaining weak and strong (k, 1)-anonymous graphs remains
open for k = 3, 4, 5, 6 while is NP-hard when k > 6.

Severe weaknesses on previous work were found by Stokes and Torra (2012). They state
that for any pair (k, �) with k ≤ � it is possible to find a graph that is (k, �)-anonymous, but
in which re-identification is possible for a large proportion of the vertices using only two
of their neighbour vertices. The authors proposed an alternative definition for k-anonymity,
in which G is k-anonymous if for any vertex v1 ∈ V , there are at least k distinct vertices
{vi }k

i=1 ∈ V : �(vi ) = �(v1) for all i ∈ [1, k]. Due to the fact that this definition can be
quite restrictive, they proposed a relaxation of this definition, which is also a correction of
previous definition by Feder et al. According to the authors, a graph is (k, �)-anonymous if
it is k-anonymous with respect to any subset of cardinality at most � of the neighbour sets of
the vertices of the graph.

Some users cannot be concerned by data owners sharing data about them, such as celebri-
ties. Additionally, these users are hubs-like in network’s structure; outliers considering vertex
degree property. Generally, these users are quite hard to anonymize and the perturbation
induced in the network is high. To overcome this issue, some authors proposed to anonymize
only a subset of vertices, instead of all vertex set. The model is called k-subset anonymity
and the goal is to anonymize a given subset of nodes, while adding the fewest possible
number of edges. Formally, the k-degree-subset anonymity problem is defined as given an
input graph G = (V, E) and an anonymizing subset X ⊆ V , produce an output graph
˜G = (V, E ∪ ˜E) such that X is k-degree-anonymous and |˜E | is minimized. Obviously, if
X = V then this model is equal to k-anonymity. Chester et al. (2012) introduced the con-
cept of k-subset-degree anonymity as a generalization of the notion of k-degree-anonymity.
Additionally, they presented an algorithm for k-subset-degree anonymity which is based on
using the degree constrained sub-graph satisfaction problem. The output of the algorithm
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is an anonymous version of G where enough edges have been added to ensure that all the
vertices in X have the same degree as at least k − 1 others.

4.2.3 Beyond k-anonymity

New privacy challenges appear when dealing with vertex-labelled networks, which are
defined as G = (V, E, L ,L), where E = V × V , L is the set of labels and L : V → L
assigns a label to each vertex. Information contained on vertex attributes is considered con-
fidential, and therefore it must be preserved. Thus, the following methods deal with attribute
disclosure and identity disclosure, since as we have previously stated, identity disclosure
often leads to attribute disclosure.

Machanavajjhala et al. (2007) introduced the notion of �-diversity for tabular data, wherein
each k-anonymous equivalence class requires � different values for each sensitive attribute.
In this way, �-diversity looks to not only protect identity disclosure, but was also to protect
against attribute disclosure. Zhou and Pei (2011) adapted the definition of �-diversity for
graphs and proposed a method to achieve k-anonymity and �-diversity on vertex-labelled
networks. Additionally, they showed that the problem of computing optimal k-anonymous
and �-diverse social networks is NP-hard. Alternatively, Yuan et al. (2013) proposed another
method to achieve k-degree-�-diversity anonymity on vertex-labelled networks. This method
adds fake vertices and edges, trying to preserve the average path length on anonymous graph.
Firstly, it computes the target degree for each vertex, and then this method changes each
vertex’s degree to its target degree by adding noise edges and vertices. Average path length
is used as a measure to lead the process to a better data utility and lower information loss.

However, even �-diversity can experience privacy breaches under the skewness attack or
similarity attack (Li et al. 2007). To address the shortcomings of �-diversity, Li et al. (2007)
introduced t-closeness model, which requires that the distribution of attribute values within
each k-anonymous equivalence class needs to be close to that of the attributes’ distribution
throughout the entire set.More recently, Chester andSrivastava (2011) argued that t-closeness
cannot be clearly applied to social networks. They proposed a notion of data anonymization
called α-proximity that protects against attribute disclosure attacks, and provide an algo-
rithm that modifies a vertex-labelled graph by adding new fake edges, so as to ensure it is
α-proximal. Chester et al. (2013b) demonstrated that for general, vertex-labelled graphs, the
vertex label sequence-based anonymization, and consequently t-closeness, is NP-complete.

5 Uncertain graphs

Rather than anonymizing social graphs by generalizing them or adding/removing edges to
satisfy given privacy parameters, recent methods have exploited the semantics of uncertain
graphs to achieve privacy protection. Considering G = (V, E) as a simple graph, we denote
V2 as the set of all

(n
2

)

unorderedpairs of vertices fromV , i.e.V2 = {(vi , v j ) : 1 ≤ i < j ≤ n}.
An uncertain graph is a pair ˜G = (V, p), where p : V2 → [0, 1] is a function that assigns
existing probabilities to all possible edges. These techniques anonymize a deterministic graph
by converting it into an uncertain form.

Example 4 Figure 5 shows the anonymization process under the uncertain graph model. The
original graph G is depicted in Fig. 5a, and the uncertain version of the same graph is shown
in Fig. 5b. As it can be seen, there are all possible edges, i.e.

(6
2

)

, and each one is assigned to
probability equal to 1 (black lines) or 0 (gray dashed lines). Thus, G∗ is the representation
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Fig. 5 Uncertain graph perturbation example, where G is the original graph. The uncertain version is G∗,
where some edges have probability equal to 1 (black lines) and others have probability equal to 0 (gray dashed
lines). ˜G is a possible uncertain graph after anonymization process, i.e. injecting uncertainty. a G, b G∗, c ˜G

of G under uncertain graph model, but it is not perturbed or anonymized. The anonymized
version is presented in Fig. 5c, where the probability of each edge is set in range [0,1]. Edges
with probability equal to 0 are not depicted in ˜G to preserve a clear visualization of the
perturbed uncertain graph.

The first approach was proposed by Boldi et al. (2012) and it is based on injecting uncer-
tainty in social graphs and publishing the resulting uncertain graphs. The authors noticed that
from a probabilistic perspective, adding a non-existing edge {vi , v j } corresponds to chang-
ing its probability p({vi , v j }) from 0 to 1, while removing an existing edge corresponds to
changing its probability from 1 to 0. In their method, instead of considering only binary edge
probabilities, they allow probabilities to take any value in range [0,1]. Therefore, each edge
is associated to an specific probability in the uncertain graph. However, they proposed to
inject uncertainty only to a small candidate subset of pairs of vertices Ec, and assuming that
other pairs of vertices do not exist, i.e. p(vi , v j ) = 0 ∀(vi , v j ) /∈ Ec. An uncertain graph is
(k, ε)-obfuscation with respect to property P if the entropy of the distribution YP(v) over at
least (1 − ε)n vertices of ˜G is greater than or equal to log2(k), i.e. H(YP(v)) ≥ log2(k).

Nguyen et al. (2015) proposed a generalized obfuscation model based on uncertain adja-
cency matrices that keep expected node degrees equal to those in the original graph, and
a generic framework for privacy and utility quantification of anonymization methods. The
same authors presented a second approach (Nguyen et al. 2014) based on maximum variance
to achieve better trade-off between privacy and data utility. They also described a quanti-
fying framework for graph anonymization by assessing privacy and utility scores of typical
schemes in a unified space.

It is important to underline that statistics and metrics must be defined (or re-defined) to be
applied on this kind of graphs, since almost all of them were designed to work with binary-
edge graphs and cannot be applied directly on uncertain graphs. In this direction, computation
of statistics based on degree, such as number of edges, average degree, maximal degree and
degree variance were propounded in Boldi et al. (2012). The same authors also proposed to
compute statistics based on the shortest-path distance and clustering coefficient by sampling
some graphs in the space of possible edge-binary graphs induced by an specific uncertain
graph.

6 Generalization approaches

Generalization approaches (also known as clustering-based approaches) can be essentially
regarded as grouping vertices and edges into partitions called super-vertices and super-
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Fig. 6 Generalization example, where G is the original graph. A vertex set sample partition is presented and
used to create a generalized graph ˜G. a G, b vertex set partition, c ˜G

edges. The details about individuals can be hidden properly, but the graph may be shrunk
considerably after anonymization, which may not be desirable for analysing local structures.
The generalized graph, which contains the link structures among partitions as well as the
aggregate description of each partition, can still be used to study macro-properties of the
original graph. Even if it holds the properties of the original graph, it does not have the same
granularity. More so than with other anonymization algorithms, the generalization method
decreases the utility of the anonymous graph in many cases, while increasing anonymity.

These methods reduce the size of the graph, both the number of vertices and edges, from
the original graph. They produce a summary of the original network, which can be also useful
to reduce the computation time in subsequent graph mining processes. However, all methods
developed heretofore need the whole graph to be applied to. Consequently, they are not able
to deal with big or streaming data. Even so, new methods can be developed using this model
to generate anonymous and generalized data from very large or streaming datasets.

As all aforementioned methods, generalization approaches also protect against iden-
tity disclosure. Moreover, it is interesting to underline that generalization approaches also
preserve against attribute and link disclosure, since two vertices from any cluster are indis-
tinguishable based on either their relationships or their attributes.

Example 5 Ageneralization approach is described in Fig. 6, where G is the original network.
Firstly, these methods compute a partition of the whole vertex set. A sample partition is
presented in Fig. 6b. This is the most important process, since grouping vertices with similar
characteristics lead the generalization process to better results, in terms of data utility and
information loss. Secondly, once partitions are created, these methods group all vertices in
the same partition into a super-vertex and create super-edges between them. A generalized
version of G is depicted in Fig. 6c. As shown, each super-vertex contains information about
the number of vertices and intra-edges between them. Generally, each super-edge is labelled
according to the number of inter-edges between vertices in each super-vertex.

Hay et al. (2008) applied structural generalization approaches using the size of a par-
tition to ensure node anonymity. Their method obtains a vertex k-anonymous super-graph
by clustering nodes into super-vertices and edges into super-edges. Each super-vertex rep-
resents at least k nodes and each super-edge represents all the edges between nodes in two
super-vertices. Only the edge density is published for each partition, so it will be hard to
distinguish between individuals in a partition. The authors evaluated the effectiveness of
structural queries on real networks from various domains and random graphs. Their results
showed that networks are diverse in their resistance to attacks: social and communication
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networks tend to be more resistant than some random graph models would suggest, and hubs
cannot be used to re-identify many of their neighbours.

Campan and Truta (2008, 2009) worked on undirected networks with labelled-vertices
and unlabelled-edges. Vertices attributes contains identifiers, quasi-identifiers and sensitive
attributes. The k-anonymity model is applied to quasi-identifiers in order to achieve indis-
tinguishable vertices from their attributes or relationships between attributes. The authors
developed a new method, called SaNGreeA, designed to anonymize structural information.
It clusters vertices into multiple groups and then, a label for each partition is assigned with
summary information (such as the number of nodes in the partition). Then, Ford et al. (2009)
introduced an extension to k-anonymitymodel that adds the ability to protect against attribute
disclosure. There are two related aspects in anonymizing a vertex-labelled social network:
the data associated to the social network’s vertices (identifier, quasi-identifier and sensitive
attributes) and the structural information the network carries about the nodes’ relationships
have to be properly masked. The resulting masked network data has to protect the nodes
against identity disclosure (i.e, determining who exactly is the individual owning the node)
and attribute disclosure (i.e, finding out sensitive data about an individual, but without iden-
tity disclosure). They also presented a new algorithm, based on the work of Campan and
Truta, to enforce p-sensitive k-anonymity on social network data based on a greedy cluster-
ing approach. Campan et al. (2015) compared SaNGreeA to a k-degree anonymous algorithm
(Lu et al. 2012) in terms of the community preservation between the initial network and its
anonymized version. The results show that the k-degree anonymous algorithm better pre-
serves the communities on the released graphs, though the privacy level is also lower.

Bhagat et al. (2009) assumed that adversaries know part of the links and vertices in the
graph. They presented two types of anonymization techniques based on the idea of grouping
nodes into several classes. The authors pointed out that merely grouping nodes into several
classes cannot guarantee the privacy. For instance, one can considers the case where the
nodes within one class form a complete graph via a certain interaction. Then, once the
adversary knows the target is in the class, he can be sure that the target must participate in
the interaction. The authors provided a safety condition, called class safety to ensure that the
pattern of links between classes does not leak information: each node cannot have interactions
with two (or more) nodes from the same group. Note that the released graph contains the
full topological structure of the original graph, and therefore some structural attacks such
as the active attack and passive attack (Backstrom et al. 2007) can be applied. To prevent
identity disclosure, the authors further proposed a solution, called partitioning approach,
which groups edges in the anonymous graph and only releases the number of interactions
between two groups.

More recently, Singh and Schramm (2010) took the generalization concept further and
create a generalized trie structure that contains information about network sub-graphs and
neighbourhoods. This information can be used to answer questions about network centrality
characteristics without revealing sensitive information. Stokes and Torra (2011) presented
two methods for graph partitioning using the Manhattan distance and the 2-path similarity
as measures to create the clusters which group vertices into partitions of k or more ele-
ments.

Finally, Sihag (2012) presented a method for k-anonymization via generalization on undi-
rected andunlabelled graphs. In thismethod, vertices are clustered together into super-vertices
of size at least k. The author chose genetic algorithms to optimize this NP-hard problem.
The author compared his algorithm with SaNGreeA on small networks (from 10 up to 300
vertices), achieving better results in terms of information loss. Unfortunately, this method
does not seems scalable for medium or large networks.
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7 Conclusions

In this paper we have presented a survey of recent work on graph modification methods
concerning privacy in social networks. We have reviewed the three main categories of
graph-modification methods, which are edge and vertex modification, uncertain graphs and
generalization approaches.

Obviously, each method has its own advantages and drawbacks. It is important to consider
three main aspects before choosing the best method to anonyimize a dataset, which are the
specific properties of the network and the data contained in it, the knowledge of the adversary
and the utility of the released data.

Edge and vertex modification approaches offer a wide range of graph mining and knowl-
edge extraction from anonymous data. Anonymous data can be used to answer wide range
of queries, from local to global data extraction.

Random perturbation techniques are usually the simplest and lowest complexity meth-
ods. Due to this, they are able to deal with large networks. Additionally, methods based
on random perturbation can be designed to specifically work with streaming or big data.
Contrary, they do not offer privacy guarantees, but a probabilistic re-identification model.
We underline some methods in Table 1. Hay et al. (2007) proposed the simplest method,
which involves very low complexity though privacy was not secure, specially for hub-like
vertices. The method in Ying and Wu (2008) reduced information loss during anonymiza-
tion process, but still no guarantees were presented. Finally, recent method in Bonchi et al.
(2014) performed a deep privacy analysis of random sparsification, offering interesting pri-
vacy results.

Research privacy attention has been recently focused on constrained perturbationmethods.
Several proposals have appeared since the k-anonymity work in Liu and Terzi (2008). These
methods provide privacy guarantees, but its privacy may strongly depend on the adversary’s
knowledge defined by the quasi-identifiers in k-anonymity models. The k-degree anonymity
considers basic adversary’s knowledge based on vertex degree. For that reason, methods
based on this model are able to anonymize large networks, as demonstrated by works in Lu
et al. (2012); Casas-Roma et al. (2013, 2016). Chester et al. (2013a) proposed an interesting
alternative based on vertex and edge addition to fulfil k-degree anonymity, though infor-
mation loss increased and data utility decreased in their experimental framework. Recently,
Assam et al. (2014) proposed to protect not only the vertex degree but also the coreness. As
aforementioned methods, theirs is able to anonymize large networks. Nonetheless, k-degree
anonymity has been criticized to consider too simple adversary’s knowledge. More complex
models, such as k-neighbourhood and k-automorphism, appeared to overcome its shortcom-
ings. The main problem of these methods relies on its complexity. Some of them are based on
sub-graph isomorphism, which implies high complexity and prevents them from working on
large networks efficiently. Finally, as previously commented methods work with simple and
undirected networks. However, real networks usually present labels on vertices and edges,
multiple types of edges or particular graph structures, such as bipartite networks. Although
some works have been done in this direction, for instance Das et al. (2010) in edge-labelled
networks or Cormode et al. (2010) in bipartite graphs, it is still a young research field and
there exist several open problems.

Methods based on uncertain graphs are more recent than other approaches and they can
offer interesting proposals. However, the main problem is the nature of these graphs them-
selves, which is difficult to apply on several graph-mining tasks, such as clustering and
community detection algorithms. Vast majority of graph-mining tasks have been developed
to binary-edge graphs and it is not straightforward to redefine them to work on uncertain
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graphs. In spite of this, works in Boldi et al. (2012); Nguyen et al. (2015) propounded, not
only stimulating approaches, but also methods to anonymize real and large networks.

Lastly, generalization approaches provide good privacy levels, though they complicate the
analysis of local measures and metrics. Nevertheless, they demonstrated to be able to deal
with vertex-labelled networks, offering anonymity in terms of attribute and identity. Due to
the fact that they cluster some vertices in the same partition, they hide identity and attribute
data of some vertices in the same partition. Campan and Truta (2008, 2009) developed the
most well-known generalization method, but the approach in Ford et al. (2009) achieved
similar results in terms of information loss and data utility.

8 Open problems

There are several open problems in privacy-preserving data publishing on graphs or social
networks. First of all, it is important to underline that some anonymity issues discussed
in this paper are NP problems. Consequently, several methods do not achieve the optimal
solution but only an approximation. This problem becomes harder when data size increases,
as it is happening with currently tremendous explosion of social and interaction networks.
Additionally, all methods we have presented, except those based on random perturbation,
need to analyse the whole dataset to compute the proposed solution. It makes them unusable
to work with big or streaming data, where the whole dataset is not available.

Another problem can be spotted when focusing on other types of networks. For instance,
constrained perturbation methods cannot deal with directed networks straightforward. They
have to consider in- and out-degree sequences in order to anonymize the network and the
problem becomes even more challenging. Moreover, anonymity in rich-interaction graphs
will be an interesting research topic in the near future. For example, ensuring k-anonymity in
time-varying graphs, i.e. graphs with a structure that changes over time, is quite challenging.
Similar problems appear when dealing with multi-layer graphs, i.e. graphs with multiple
types of links.

Anonymizing big data is even harder due to the amount and variety of data. The following
aspects of anonymization are specific to big data and need to be deeply analysed (D’Acquisto
et al. 2015): (1) methods that prevent re-identification and attribute disclosure while allowing
some linkability are of interest since big data anonymization should be compatible with
linking data from several (anonymized) sources (controlled linkability). (2) Composability
is very important for big data, where datasets are formed by merging data from several
sources.Aprivacymodel is composable if its privacy guarantees hold for a dataset constructed
by linking together several datasets for each of which the privacy guarantee of the model
holds. (3) Anonymization of dynamic or streaming data where continuous data streams are
considered instead of static datasets, such as the readings of sensors. (4) Computability for
large data volumes is challenging in big data. Even static data sets may be challenging to
anonymize due to their sheer volume. Hence, computational efficiency may be a critical
issue when choosing a privacy model or an anonymization method. (5) Under decentralized
anonymization paradigm, the data subject anonymizes one’s data at the source, using one’s
personal computing device, before releasing those data to the data controller.

Without being specific to any particular analysis, linkability is key to obtain information
from the fusion of data collected by several sources. In big data, information about an indi-
vidual is often gathered from several independent sources. Hence, the ability to link records
that belong to the same individual is crucial in big data creation. The amount of linkability
compatible with an anonymization technique or with an anonymization privacy model deter-
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mines whether and how an analyst can link data independently anonymized that correspond
to the same individual. While linkability is desirable from the utility point of view, it is also
a privacy threat: the accuracy of linkages should be significantly less in anonymized datasets
than in original ones.

Governments and other public institutions all around the world are pressed to publish data
to fulfil transparency and to share information with the community. However, releasing more
and richer information to researchers and the public comes at the cost of potentially exposing
private and sensitive user information. Thus, privacy-preserving will be a key actor in the
new era of big, open and linked data.
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