Artif Intell Rev (2017) 47:145-180 @ CrossMark
DOI 10.1007/510462-016-9478-6

A survey on bug prioritization

Jamal Uddin' - Rozaida Ghazali! -
Mustafa Mat Deris! - Rashid Naseem! . Habib Shah?

Published online: 25 April 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Daily large number of bug reports are received in large open and close source
bug tracking systems. Dealing with these reports manually utilizes time and resources which
leads to delaying the resolution of important bugs. As an important process in software main-
tenance, bug triaging process carefully analyze these bug reports to determine, for example,
whether the bugs are duplicate or unique, important or unimportant, and who will resolve
them. Assigning bug reports based on their priority or importance may play an important
role in enhancing the bug triaging process. The accurate and timely prioritization and hence
resolution of these bug reports not only improves the quality of software maintenance task but
also provides the basis to keep particular software alive. In the past decade, various studies
have been conducted to prioritize bug reports using data mining techniques like classifica-
tion, information retrieval and clustering that can overcome incorrect prioritization. Due to
their popularity and importance, we survey the automated bug prioritization processes in a
systematic way. In particular, this paper gives a small theoretical study for bug reports to
motivate the necessity for work on bug prioritization. The existing work on bug prioritization
and some possible problems in working with bug prioritization are summarized.

Keywords Survey - Bug report - Bug prioritization - Bug triaging - Classification -
Clustering
1 Introduction

In large software development systems, bug triaging is an important activity of software
testing. It helps in software bug management, while taking critical decisions related to the

B Jamal Uddin
jamal_maths @yahoo.co.uk

Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia,
Batu Pahat, Malaysia

Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah, KSA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-016-9478-6&domain=pdf

146 J. Uddin et al.

software bugs fixing. It involves process like assigning appropriate developer to the bug who
could fix it, analyzing which bug needs immediate attention and which one does not, and
finding duplicated ones. However, manual bug triaging becomes quite time consuming and
tedious because being a significant part of software development it takes up considerable
amount of time and resources. As of August 2009, the Mozilla bug database contains over
500,000 and the Eclipse bug database over 250,000 bug reports. On average, Mozilla received
170 and Eclipse 120 new bug reports on each day from January to July 2009 (Guo et al. 2010).
So, we can say that in case of large and open source software systems, large number of bugs
are reported per day, which ultimately increases the software maintenance time and cost.

In the process of bug triage, a triager takes a decision about the bugs entered in the bug
repository by analyzing them in two ways. In repository-oriented decisions, after verifies that
the reported bug is not a duplicate bug, the triager checked it for validity, i.e. is it a real bug
or not. The motivation behind these decisions is to remove the bug reports that do not need
to be resolved. Remaining bug reports are investigated for development-oriented decisions
where the triager examine severity and priority levels of the bugs. These levels are changed
by him if inappropriate, so that critical bugs will be given time and resources (Anvik and
Murphy 2011). After this, triager writes remarks for the bug and assigns this bug report to
the suitable developer to resolve the bug. Hence there arises a need to develop an automated
system for bug triaging so as to save developer’s time and efforts, ultimately leading to save
resources of the organization. Researchers addressed this problem by automating its various
aspects like identification of duplicate bugs in Jalbert and Weimer (2008) and Lazar et al.
(2014). Assigning a bug to an appropriate developer who could fix it in Cubranic (2004)
and Zhang and Lee (2013). Kremenek and Engler (2003), Jaweria Kanwal (2010) and Yang
et al. (2014) worked on classifying the priority of bugs. Similarly, severity of the bugs in
Jianhong et al. (2010), Chaturvedi and Singh (2012) and task of grouping similar bug reports
was performed in Anvik et al. (2005), Nagwani and Verma (2012).

As an essential part of bug triaging process the bug prioritization task becomes very impor-
tant for big size projects specially an open source project because the responsiveness of a
project is usually measured by the number of outstanding bug reports in the repository and
how quickly a bug report is addressed (Jaweria Kanwal 2010). Bug prioritization process usu-
ally performed manually which makes it error-prone and require intensive effort. It depends
massively on the triager perception and experience. Many bug reports may have been assigned
incorrect priority levels and many of them may usually left blank. Wrong assignments of
priority levels may result ineffective utilization of resources (for example time and efforts
need to fix unimportant bugs first) (Alenezi and Banitaan 2013). To prioritize bug reports
developers need an automated approach to solve the aforementioned problems. For achieving
these tasks, researchers have used several machine learning approaches such as Decision Tree
(DT) by Giger et al. (2010), Alenezi and Banitaan (2013), Garcia and Shihab (2014), Support
vector machine(SVM) classification algorithm by Jaweria Kanwal (2010), Chaturvedi and
Singh (2012), Naive Bayes (NB) classifier by Lamkanfi et al. (2010), Chaturvedi and Singh
(2012) and Random Forest (RF) by Alenezi and Banitaan (2013), Goyal et al. (2015). Sim-
ilarly, researchers have published surveys in this bug triaging field like Punitha and Chitra
(2013) and Zhang et al. (2015), where they have investigated bug report analysis and software
defects prediction using software metrics. Despite of reasonable work published on assign-
ing appropriate priority level to the reported bug, our research study particularly focuses on
a survey of bug prioritization. The main objectives of this research can be summarize as
follows,

@ Springer

A survey on bug prioritization 147

1. To review the existing literature for exploring what and how much work is published so
far.

To track the trends of research in this area,

To identify the significances of this field,

To identify the problems faced by researchers and

To present the impacts of automated bug prioritization

AR N

Kitchenham and Charters (2007) systematic literature survey approach has been adopted
for this survey to reduce the possibility of researcher bias. This paper reports our study plan in
the form of two survey protocols from year 2003 to 2015 using five online search engines and
the selected search terms. The rest of this paper is organized as follows. Section 2 presents
some terms mostly used in bug prioritization and bug triaging. Section 3 shows a comparative
study of existing surveys and our survey. Section 4 explains our research method. Section 5
reviews the result of our survey by exploring existing work on bug prioritization. Section 6
presents significance outcomes of this survey. Section 7 summarize some research gaps that
were explored during the survey, and finally, Sect. 8 concludes the paper.

2 Preliminary

This section, explains some basic concepts of bug prioritization method, life-cycle of bug
reports, useful attributes as well as terms related to bug triage system.

2.1 Software bug, bug reporting and bug tracking system

A defect or a flaw in the software is called a bug, it indicates the unexpected behavior of a
software system (Nagwani and Verma 2011). Mostly, bugs arise from mistakes made by the
development team in gathering requirements, designing or in coding and a few are caused
by compilers. A program with large number of bugs is known as buggy program (Nigam
et al. 2012). A bug report is a document that is submitted by a developer, tester, or end-user
of a system. It describes the defect(s) that occurred. Such documents generally describe the
situations in which the software does not behave as it is expected, i.e. fails to fulfill the
expected requirements.

This bug reporting and fixing is an important phase of software development, refinement
and maintenance for both open and close source projects. Various bug reporting systems have
been developed for submission or reporting of a bug and tracking their progress of fixing.
Bug reporting and tracking systems provide a platform to record the problems/failures faced
by the client or user of the software. Nowadays, users of software systems are encouraged
to report the bugs they encounter, using bug tracking systems such as Jira! and Bugzilla.?
These systems are designed for quality assurance and helps the programmers to keep track
of reported software bugs in their work. These reporting systems allow users to report, track,
describe, comment on and classify bug reports and feature requests. An example of bug
appear and detected in Mendeley® software is depicted in Fig. 1. While, Fig. 2 presents the
overview and content detail of a sample bug report taken from Eclipse bug repository.

! www.atlassian.com/software/jira.

B www.bugzilla.org.

3 www.mendeley.com.

@ Springer

www.atlassian.com/software/jira
www.bugzilla.org
www.mendeley.com

148 J. Uddin et al.

AR MENDELEY

Our server has caught a bug...

Mendeley is a huge system and although we try to make sure that all our code
works seamlessly together, sometimes a bug or two can slip through.

We apologize and hope this has not ruined your experience. In fact, please help
us to make the site better by visiting our feedback forum.

We have already sent an error report to ourselves, and we will be fixing this bug
as soon as possible. Nevertheless, you can help us by contacting support about
what you were doing before this page appeared — this allows us to fix things even
quicker, and you can even check back to see how we are getting along. Please
quote EID "merr-5456db7b3cd8a" when doing so.

Thank you,

The Developers

Date: 3/11/14, 9.36am

Fig. 1 Bug caught in Mendeley

» . .
eclipse Eclipse bugs
Bugzilla Bug 193787 Unecessary scrollbars in preferences Last modified 2007-06-25 14:30.52
Bug List: (This bug is not in your last search results) Show last searchresults Searchpage Enter new buy
[Eclipse] Bug#: 193787 Hardware: [PC | Reporter: = = 3
;: >C: |
Broduct [Fisforn. . _ 0S: [Windows 3P Add CC: L
('omgonenll V] (Choose Subcomponent) Version: [33_5] R ded = —
- — = e —
Stams: TEW Prioritv: [P35 | =—— |
i g 2 C——
Resolution: Severity: [romel | c————— |
Assigned To: Platform-Ul-Inbox <Platform-Ul-Inbox@ectpse. o8> Tayget Milestone E_ 18 I‘b—:_———)
S ————
e d

CC:
@ Leave as NEW
© Accept bug (change status to ASSIGNED)
© Resolve bug, changing resolution [FIED

© Resolve bug. mak 23 dyglicated ‘g #
© Reassign bug ql (Choose Developer) latiorm-UHnbox@edlipse.org |

O Reassign bug to default assignee and QA contact of selected component
Comm

View Bug Activity | Fonmat For Printing | XML | Clone This Bug

Description: [seply) Opened: 2007-06-21 1251

I've noticed vhen I click through the preferences pages, sometimes pages have
vertical scrollbars even though they don't need one. The extra scroll bar isn't
too bad, but it also puts the Restore and Apply buttons off the bottom of the
page (requiring a scroll), even though there is usually plenty of room.

The easiest vay to reproduce is to click quickly back and forth among the

Fig. 2 Bug report sample from Anvik and Murphy (2011)

2.2 Bug repository

A bug repository is one of the most important software repositories, which is considered as a
vital data base in modern software developments. Both users and developers can report bugs
to bug repositories supported by software development projects. These projects are burdened
by the rate at which new bug reports appear in the bug repository. One potential advantage of

@ Springer

A survey on bug prioritization 149

an open bug repository is that it may allow more bugs to be identified and solved, improving
the quality of the software.

The widely available bug repositories have provided an important platform for investi-
gating the quality of software. With the growth in scale, developers in large projects must
handle a large number of bugs in bug repositories. For example, from Oct. 2001 to Dec.
2010, the bug repository of an open source project, Eclipse has recorded 333371 bugs (Xuan
et al. 2012). There are at least two important advantages of such type of a bug repository.
First, the bug repository allows users all around the world to be testers of the software, so it
can increase the possibility of revealing defects and thus increase the quality of the software.
Second, it helps the software evolve according to users requests, and meet the requirements
of more users.

2.3 Bug attributes

A software bug reports have many attributes, some of which are filled at the time of reporting
and others are filled during the process of fixing. Some attributes are qualitative in nature
but some are quantitative. A clear understanding of bug attributes, their interdependence
and their contribution in predicting the other attributes will help in improving the quality of
software. Table 1 presents an example of bug repository which shows bug report features
and class taken from Eclipse bugs data set. Some attributes are categorical such as bug-id,
date of submission, component, product, resolution, status, severity (how serious bug is),
priority (how important bug is, represented normally as levels P1-P5 with P1 being most
important), platform, operating system, reporter, assignee, cc-list, and some are text fields
such as summary and long description. Some of the categorical fields are fixed at the time of
report submission, e.g. bug id, report submission time and reporter name. Some fields such
as product, component, severity, priority, version, platform and operating system are entered
by the reporter but may be changed by the triager or developer if needed (Jaweria Kanwal
2010). Bug attributes also comprises of developer who resolves the bug, list of people who
are interested in bug resolution, bug-status, and resolution, change throughout bug life time.
The free form text includes the title of report, a full description of the bug, and additional
comments. The full description typically contains an elaborated description of the effects of
the bug and any necessary information for a developer to handle bug report. The additional
comments include discussions about possible approaches to fixing the bug, and pointers to
other bugs that contain additional information about the problem or that appear to be duplicate
reports. Reporters and developers may provide attachments to reports to provide non-textual
additional information, such as a screen shot of erroneous behavior (Anvik et al. 2006).

2.4 Interactions with bug report

People play different roles as they interact with reports in a bug repository. The person who
submits the report is known as reporter or the submitter of the report. The triager is the
person who decides if the report is meaningful and who assigns responsibility of the report
to a developer. The one that resolves the report is the resolver. A person that contributes a
fix for a bug is called a contributor. A contributor may also contribute comments about how
to resolve a bug or additional information that leads to the resolution of a report. A person
may assume any one of these roles at any time. For example, a triager may resolve a report
as the duplicate of an existing report. Alternatively, a developer may submit a report, assign
it to himself, contribute a fix, and then resolve the report. For that report, a single person has
fulfilled all the roles (Anvik et al. 2006).

@ Springer

150 J. Uddin et al.

Table 1 Bug repository: bug report features and class label

Bug ID Product Component Summary Opened oS Class

9649 IDT Debug Can’t rebuild all, 2/13/2002 11:01 Linux-Motif P1
never returns

80406 Platform Ul [DynamicUI] 12/7/2004 14:24 Windows XP P1
NPE trying to
open GIF file

6582 DT Debug VM Preference 12/5/2001 7:17 All P1
Page, Checkbox
Table Viewer
has no columns
anymore

40673 DT Debug Detected JRE not 7/23/2003 13:50 Linux P1
set correctly

77462 Platform Debug CVS Plug-in fails 11/2/2004 6:40 Windows XP Pl
to start

2.5 Bug triaging system

According to Hooimeijer and Weimer (2007), triage is the act of inspecting a bug report,
understanding its contents, and making the initial decision regarding how to address the
report. In the normal flow of the bug process, someone discovers a bug and creates the
respective bug report, then the bug is assigned to a developer who is responsible for fixing it
and finally, once it is resolved, another developer verifies the fix and closes the bug report.
Bug triaging is analyzing these bug reports to determine, for example, duplicate or unique,
important or unimportant, and who will resolve them. It is one of the important software
maintenance activities. The task of triaging becomes very important for software projects
because the responsiveness of a project is usually measured by the number of outstanding
bug reports in the repository and how quickly a bug report is addressed (Jaweria Kanwal
2010).

2.6 Life cycle of bug fixing

In IEEE Standard 1219 (Bennett and Rajlich 1999), the software maintenance is defined as,
“The modification of a software product after delivery to correct faults, to improve perfor-
mance or other attributes, or to adapt the product to a modified environment”. Among the types
of software maintenance, the corrective and adaptive get the most attention (Chapin 2000).
During corrective maintenance, the programmer has to understand the software enough to
analyze a problem, locate the bug and determine how it should best be fixed without breaking
anything (VANS 1999). There are different states in which a bug report can experience in
its life-cycle. Figure 3 depicts the life-cycle of bugs in Bugzilla-based projects. When a new
bug report is filed, it is assigned a NEW state. Once it has been triaged and assigned to a
developer, its state is then changed to ASSIGNED. After closing this bug, its state is set
to RESOLVED, VERIFIED or CLOSED. The resolution to this bug is marked in several
ways; the resolution status in the report is used to record how the report was resolved. If
the resolution results in changing code base, this bug is marked as FIXED. When a bug is
considered as a duplicate to other bugs, it is set to DUPLICATE. If a bug will not be fixed,

@ Springer

A survey on bug prioritization 151

——‘[UNCONFIRMED]

Indeed a bug
v
| NEW
4 developer Deehefstug
changed
Developer has takes_
solved the bug POSSESSIOn
of the bug
v
Resolutions of status [ASSIGNED je dev;?oper
RESOLVED The bug takes
FIXED has been Solution possession
WONTFIX resolved is not of the bug
WORKSFORME satisfied

DUPLICATE 'I RESOLVED]—’[REOPEN]

INVALID 7 Y)
Solution worked
Bug is reopened
[VERIFIED |
No occurrence of the bug is reopened
Bug is reopened
[CLOSED]

Fig. 3 Bug report life cycle (Zhang et al. 2015)

or it is not an actual bug, it will be set to WONTFIX or INVALID respectively. If a bug was
resolved but has been reopened, it is marked as REOPENED (Alenezi and Banitaan 2013).

2.7 Why bug prioritization?

Software developers spend a significant portion of their resources handling user-submitted
bug reports. For a software that is widely deployed, the number of bug reports typically
outstrips the resources available to triage them. As a result, some bug reports may be dealt
with too slowly or not at all. Boehmand Basili claims that maintenance consumes over 70 %
of the total life cycle cost of a software product (Hooimeijer and Weimer 2007). In Anvik
et al. (2000) article on page 361, it is mentioned that “Consider the case of the Eclipse open
source project over a four month period (January 1, 2005 to April 30, 2005) when 3426
reports were filed, averaging 29 reports per day. Assuming that a triager takes approximately
five minutes to read and handle each report, two person-hours per day is to be spent on this
activity. If all of these bugs led to improvements in the code, this might be an acceptable cost
to the project”. Main aim of automated bug prioritization is reducing the time spent triaging.

Bug tracking systems allow users to select a severity for the bug they have found. Users
assign severity, and developers give priority to the reports depending on their severity. One

@ Springer

152 J. Uddin et al.

of the major problems when assigning severity to a bug is that a reporter might not be the best
qualified to determine exactly what type the defect falls into. Another issue is that to submit
a report it is required to know the precise difference between the categories, and this is not
always the case (Herraiz et al. 2008). Developers are usually unable to cope with all the bugs
that are notified as they are submitted. They need to prioritize them. They need to determine,
for any particular bug, how important it is, and allocate their time and resources according to
such prioritization. Correct prioritization of bugs helps in bug fix scheduling/assignment and
resource allocation. Failure of this will result in delay of resolving important bugs (Sharma
et al. 2012).

2.8 Prioritization levels of bug

During bug triaging, a software development team decide how soon bugs needs to be fixed,
using different categories. For example, researchers like Yu et al. (2010) and Lamkanfi et al.
(2011) used four priority categories that are (P1) as soon as possible; (P2) before the next
product release; (P3) may be postponed; (P4) bugs never to be fixed. Five category priority
level scheme (thatis P1, P2, P3, P4, and P5) adopted by most researchers for example Kanwal
and Magbool (2012) and Garcia and Shihab (2014). Also, in Bugzilla there are same 5 priority
levels:P1 is the highest priority and often the software system can only be shipped if these
high priority bugs are fixed. P5 on the other hand is the lowest priority and bugs assigned this
priority might remain unfixed for a long period of time (Tian et al. 2013). If the bug triager
is uncertain about the priority of a bug or it is actually a normal bug, she can set P3 priority
which is the default priority (Saha et al. 2014). Then the assigned developer can adjust it if
appropriate.

3 Related work

Researchers have been studying on bug report prioritization, detecting duplicate bugs and
developer assignment. In addition, there are a number of studies compiling up-to-date devel-
opments in this field. In other words, some researchers focus on surveying about bug reports
and their triaging.

Punitha and Chitra (2013) presented a survey on software defect prediction using software
metrics. They focuses in identifying defective modules and the scope of software that needs
to be examined for defects can be prioritized. The goal of their research is to help developers
identify defects based on existing software metrics using data mining techniques and thereby
improve software quality which ultimately leads to reducing the software development cost
in the development and maintenance phase.

A survey on clustering techniques in data mining for software engineering was conducted
by Kaur and Garg (2014). They explore the useful data mining techniques for software
engineering tasks of programming, testing, bug detection, debugging and maintenance. In
their survey they provide the discussion of data mining specifically clustering techniques.
They concluded that every technique has to solve different problems and have their own
advantages and disadvantages. There is no such clustering technique and algorithm exists
that is used to solve all the problems and is a best fit for all applications.

Mishra and Kumar (2015) presented survey on types of bug reports and general clas-
sification techniques in data mining. Their study shows types of bug reports and various
classification techniques widely used in data mining like statistical and soft computing

@ Springer

A survey on bug prioritization 153

approaches. Their work shows importance of classification techniques in data mining process
especially when dealing with bug reports.

To review the work on bug-report analysis, Zhang et al. (2015) presented an exhaustive
survey on the existing work on bug-report analysis. After introducing some preliminaries, they
presented some statistics on practical bug reports to show that ensuring bug reports quality,
automating bug reports triage and localization are indeed urgent to be solved. Then they
conducted a rather thorough survey on existing bug-report analysis work, mainly including
bug-report optimization, bug-report triage, and bug fixing. They concluded that among the
work in bug-report analysis, machine learning and information retrieval are main techniques
widely used. Also, researchers need to improve the accuracy of existing automatic approaches.

We summarize the above mentioned surveys and current survey with respect to contents
of several aspects of bug prioritization in Table 2. The “generally analyzed” are the topics
that are just defined or generally discussed. Whereas, “deeply analyzed” are those topics
that are discussed with more detail in concerned articles. It can be seen from this table
that our survey deeply analyzed the several contents of bug prioritization as compared to
other surveys. Though, Zhang et al. (2015) tried to cover wide range of work on bug report
thoroughly, but our survey will explore the field of bug prioritization specifically.

4 Method

We follow Kitchenham approach (Kitchenham and Charters 2007) for conducting this survey.
Kitchenham defines three main steps for a systematic review process: planning the review,
conducting the review, and reporting the review. He suggested that a pre-defined protocol
is necessary to reduce the possibility of researcher bias. We followed the guidelines for
conducting systemic literature review which have also been proposed in previous examples
Kitchenham and Charters (2007) and Brereton et al. (2007).

The collected articles are published during the years 2000 to 2015. Moreover, a Bib TeX
library using Mendeley is developed for managing the papers. In this survey, we reviewed 84
journal and conference papers. There was a two-step review process and protocol built for cut-
ting down the paper number to 32. Both qualitative (Sect. 5) and quantitative (Sect. 6)analysis
were conducted for the selected papers.

4.1 Review protocol Step 1 (84 papers)

For our survey, five search venues are targeted. They are:

Institute of Electrical and Electronics Engineers (IEEE Xplore)
Association for Computing Machinery (ACM Digital Library)
Science Direct

Wiley (Wiley Online Library)

The Institution of Engineering and Technology (IET)

IRl e

The related papers which were not found in the given 5 venues were downloaded by using
Google Scholar and are added in “Other” category. Our search terms help to determine the
scope of our definition of bugs prioritization since many of the terms include the word “Bugs”
such as; bugs classification, duplicate bugs, bug fixing, bug assignment, bug triaging, and
bug tracking system. The search conditions and terms that we used included terms for bugs
prioritization in conjunction with terms for possible outcomes, impacts or effects of bugs
prioritization process. Some of search terms are chosen from frequent key words in the bug

@ Springer

154

J. Uddin et al.

Table 2 Comparison of previous surveys and current study

Comparison Survey papers
attributes
Zhang et al. Mishra and Kaur and Garg Punitha and Current
(2015) Kumar (2015) (2014) Chitra (2013) survey
Bug report
Preliminaries wk * * * H3k
Issues *% * * * Ee
Analysis *E - _ _ B
Bug prioritization approaches
Classification * K - # w5k
Information * * - _ EE
retrieval
Classification by * - ok — ok
clustering
Other techniques * * - - ok
Evaluation components
Data sets - * - - ke
Metrics - - - ok EE
Discussion - - - * *
Significance of survey
Systematic survey ~ * - - - ok
Significance ok - #* _ ok
findings
Future directions wE - * _ ok

—, not mentioned; *, generally analyzed; **, deeply analyzed

prioritization articles while, remaining search terms are selected manually that covers the

scope of bug prioritization. Search terms used for our survey are:

— Bug priority

Bug prioritization

Bug priority classification
Reported bug priority prediction
Bug report priority prediction

84 papers were found from academic journals, conference proceedings and book chapters
worldwide. Table 3 summarizes the total retrieved and filtered results.

4.2 Review protocol Step 2 (32 papers)

Step two reduces the number of research papers from 84 to 32, by applying the selection

criteria that is,

1. Removing the duplicate papers that is the papers that are retrieved by more than one

search terms.

@ Springer

A survey on bug prioritization 155

Table 3 Search terms retrieved and filtered results

Search terms IEEE ACM SD Wiley IET
R F R F R F R F R F

Bug priority 45 8 2659 20 544 0 3411 1 43 0
Bug prioritization 31 7 554 3 544 0 393 1 0
Bug priority classification 4 619 12 1487 1 1009 0 0
Reported bug priority prediction 7 6 272 12 767 0 746 0 8 0
Bug report priority prediction 7 5 358 4 948 0 746 0 8 0
Total 96 30 4462 51 4290 1 6305 2 6l 0
R retrieved, F filtered, SD Science Direct
:sgléat:p g :Z;EX fr r;)tocol Step 1 Step 1 filtration Step 2 filtration

IEEE 30 18

ACM 51 5

Science Direct 1 0

Wiley 2 0

IET 0 0

Others 0 9

Total 84 32

2. Selecting papers specifically dealing with bug prioritization process.
3. Removing papers that are dealing with other tasks of bug triaging system like developer
assigning, duplicate bug detection and bug report analysis.

Table 4 summarizes the review protocol Step 1 and Step 2 results. While Table 5 gives year
wise summary of final results. Based on this two-step review protocol, next section describes
and analyzes the collected data from the 32 chosen reviewed papers.

5 Literature review discussion

In this Sect. 32 papers of the researchers that worked on bug prioritization are reviewed.
Different data mining approaches like classification, information retrieval, classification by
clustering and categorization were adopted to prioritize bug reports. Studies about bug priori-
tization using data mining techniques can be grouped into three major classes. The first group
consists of studies focusing on main classification and information retrieval approaches. The
second group of researchers focuses on categorization bug reports in order of importance.
The last group of studies performs other novel approaches to deal with bug prioritization
issue. Each group will be discussed separately in subsequent subsections.

5.1 Classification and information retrieval techniques

Podgurski et al. (2003) proposed automated support for classifying reported software fail-
ures so as to facilitate prioritizing and diagnosing their causes. A classification strategy

@ Springer

156 J. Uddin et al.

Table 5 Year wise summary of

filtered papers Year No. of filtered papers

2003 2
2007 2
2008 1
2009 1
2010 4
2011 2
2012 10
2013 2
2014 7
2015

Total 32

that involves the use of supervised and unsupervised pattern classification and multivariate
visualization is presented. The resulting classification is then used to assess the operational
frequency and severity of failures caused by particular defects and to diagnose those defects.
The methodology involved is subject programs inputs, feature selection, cluster analysis,
visualization and manual examination. With a relative simple type of classifier and with
coarse grained execution profiles the results proved it to be an effective strategy.

Artificial Neural Network(ANN) technique was used to predict defect priorities by Yu
et al. (2010). They improved the efficiency of troubleshooting, by proposing to employ
neural network technique to predict the priorities of defects, adopt evolutionary training. A
framework is built up for the model evaluation, and a series of experiments on five different
software products of an international healthcare company to demonstrate the feasibility and
effectiveness. The threefold cross-test in both the closed test and opening test ways were
executed. Compared with Bayes algorithm, the ANN model showed better qualification in
terms of recall, precision and F-measure. The comparison was carried on the RIS2.0 software
project with sample size about 2000 bug reports.

Meanwhile a classification-based approach to create a bug priority recommender was
presented by Jaweria Kanwal (2010), which assigns a priority level to new bug reports in a
bug repository. Priority assignment assists triager in resolving the important bugs first. The
main contributions were proposing the machine learning based approach SVM for automatic
assignment of bug priority to new bug reports in open source bug repository, exploring the bug
report attributes that contribute more towards determining the priority of a bug and evaluating
the affect of training data set size on the accuracy of bug priority recommender. Experimental
evaluation of their recommender using precision and recall measures reveal the feasibility of
their approach for automatic bug priority assignment.

Lamkanfi et al. (2010) in the first stage investigated whether they can accurately predict
the severity of a reported bug by analyzing its textual description using text mining algorithm
Naive Bayes classifier. They evaluated the performance of predictions based on three cases
drawn from the open-source community. This study motivates researchers to implement a
more automated and more efficient bug triaging process. They investigated whether the longer
description included in a bug report would result in a better predictor. Performance of their
approach stabilizes in terms of precision and recall for GNOME as compared to Mozilla and

@ Springer

A survey on bug prioritization 157

Eclipse. They concluded that how soon a reported bug needs to be fixed partly depends on
its severity.

In the second stage Lamkanfi et al. (2011), reported on a follow-up study where they
compare four well-known text mining algorithms with respect to accuracy and training set
size. They discovered that for the cases under investigation of two open source systems which
algorithm performs superior compared to the other proposed algorithms. Steps involved in
their approach are extract and organize and preprocessing the bug reports, training of the
predictor, predicting the severity and hence concluding that Naive Bayes Multinomial is
best suited for the purpose of classifying bug reports. They also deduce from the resulting
classifiers, that the terms indicating the severity of a bug report are component dependent.
Their work contributed well in a way that current research can be combined with this approach
to improve the overall reliability of more automated bug triaging process.

To demonstrate the applicability of various machine learning algorithms in determining
the class of bug severity based on the textual summary of the bug report Chaturvedi and Singh
(2012) made an attempt. The applicability of algorithm in determining the various levels of
bug severity for bug repositories has been validated using various performance measures by
applying fivefold cross validation. They observed that the performance of machine learning
techniques stabilizes as we increase the number of terms. F-measures of the data sets for
severity level 2, 3 and 4 are more than 80 and 90 % for all most all the techniques. Based on
the models developed, the severity level for the newly submitted bug reports can be predicted
which will be helpful in automatic determination of severity level.

Abdelmoez et al. (2012) used Naive Bayes (NB) classifier to compute prediction model
that will distinguish the very fast and the very slow bugs in order to prioritize which bugs to
start with and which to exclude at the mean time respectively. They take into consideration
the development effort coordination and addressed two questions that are which bug to fix
first and how long it will take to fix. They gathered data from four software systems, using 17
attributes only from every bug report of the chosen systems, as they are the most commonly
used attributes. Procedure of their work is they first obtain bug report information and than
compute using NB algorithm. NB shows with better prediction performance.

Meanwhile, Dommati et al. (2012) focuses on the feature extraction, noise reduction in
data and classification of network bugs using probabilistic Naive Bayes approach’s different
event models like Bernoulli and Multinomial on the extracted features. New unseen bugs are
given as input to the algorithms, the performance comparison of different algorithms is done
on the basis of accuracy and recall parameters. They concluded from the results that there is
need to go into semantics of bug information. They had successfully extracted some of the
bug specific features. By analyzing and depending on the static analysis of the bug reports,
the feature extraction and selection has been performed.

This time in the next part of their work, Kanwal and Magbool (2012) proposed and
evaluated a classification based approach to build bug priority recommender. They used two
classifiers, and presented a comparison to evaluate which classifier performs better in terms
of accuracy. Another evaluation that they performed was to determine the combination of
features that better determines the priority of a bug. They also proposed two new measures,
Nearest False Negatives (NFN) and Nearest False Positives (NFP), which provide insight
into the results produced by precision and recall. The main contributions were proposing and
evaluating a classification based approach for automatic bug priority prediction, exploring
different features, defining new measures for the evaluation of bug priority recommender.
The highest accuracy is achieved with SVM when categorical and text features are combined
for training.

@ Springer

158 J. Uddin et al.

Sharma et al. (2012) evaluated the performance of different machine learning techniques
in predicting the priority of the newly coming reports on the basis of different performance
measures. They use summary feature of bug report to predict the priority of newly coming
bug report. Also, they used series of operators in Rapid Miner for pre-processing of the bug
reports like stop words removal and tokenization. Evaluation of model has been done by
applying cross project validation for 76 cases of five data sets of Open office and Eclipse
projects. The accuracy of different machine learning techniques in predicting the priority of
a bug report with in and across project is found better except Naive Bayes.

Thung et al. (2012) analyzed bugs from three Java software systems. They extracted
bug reporting data from version control repositories and bug tracking systems, identify bug
locations based on bug fixes, and back-trace bug introducing time based on change histories of
the buggy code. Also, they removed nonessential changes, and most importantly, recover root
causes of bugs from their treatments/fixes. Then they calculated the bug reporting latencies,
and found that bugs have diverse reporting latencies. Based on the calculated reporting
latencies and features they extracted from bugs, they build classification models that can
predict whether a bug would be reported early (within 30 days) or later, which may be helpful
for prioritizing bug fixing activities. Their evaluation on the three software systems shows
that their proposed bug reporting latency prediction models could achieve an AUC (Area
Under the Receiving Operating Characteristics Curve) of 70.869 %.

To automatically predict the severity of bug reports a new approach leveraging information
retrieval based nearest neighbors in particular BM25-based document similarity function was
proposed by Tian et al. (2012). Their approach automatically analyzes bug reports reported
in the past along with their assigned severity labels, and recommends severity labels to newly
reported bug. They focused on predicting fine-grained severity labels, namely the different
severity labels of Bugzilla including: blocker, critical, major, minor, and trivial. Compared to
the existing state of the art study on fine-grained severity prediction, the proposed approach
brings significant improvement.

Xuan et al. (2012) have addressed the problem of the developer prioritization, which
aims to rank the contributions of developers. They mainly explored two aspects, namely
modeling the developer prioritization in a bug repository and assisting predictive tasks with
their model. First, they modeled how to assign the priorities of developers based on a social
network technique. Second, they consider leveraging the developer prioritization to improve
three predicted tasks in bug repositories, i.e., bug triage, severity identification, and reopened
bug prediction. Three problems are investigated, including the developer rankings in products,
the evolution over time, and the tolerance of noisy comments. They empirically investigate
the performance of proposed model and its applications in two bug repositories. The results
indicate that the developer prioritization can provide the knowledge of developer priorities
to assist software tasks, especially the task of bug triage.

An approach to predict the priority of a reported bug using different machine learning
algorithms presented by Alenezi and Banitaan (2013). Also, they investigated the effect
of using two feature sets (textual contents and meta data information of bug reports) on
the classification accuracy. They conduct experimental evaluation using two open-source
projects. The contributions of their work includes investigating the effectiveness of applying
several machine learning techniques, evaluating the impacts of using different feature sets to
build the predictive model and conduct experimental evaluation using two bug reports data
sets. They used the meta-data features like component, operating system and severity because
they contain useful information that may help in discriminating between priority levels.

Zanetti et al. (2013) proposed an efficient and practical method to identify valid bug reports
which (a) refer to an actual software bug, (b) are not duplicates and (c) contain enough infor-

@ Springer

A survey on bug prioritization 159

mation to be processed right away. Their classification is based on nine measures to quantify
the social embeddings of bug reporters in the collaboration network. They demonstrated its
applicability in a case study, using a comprehensive data set of more than 700,000 bug reports
obtained from the Bugzilla installation of four major OSS communities, for a period of more
than 10years. Based on this finding, they developed an automated bug report classification
mechanism. They used nine topological measures at the level of bug reporters.

For reducing human efforts, for analyzing bug reports and supporting bug tracking system,
Behl et al. (2014) presented an efficient bug classification tool in the process of identify-
ing bug reports as security or non-security. They focuses on security bug and presents a
bug mining system for the identification of security and non-security bugs using the term
frequency-inverse document frequency (TF-IDF) weights and Naive Bayes. They performed
experiments on bug report repositories of bug tracking systems. In a Probabilistic Naive Bayes
they used different models like Bernoulli or Multinomial event model for classification pur-
poses. Thereby, making TF-IDF based bug Mining tool feasible to use as a complimentary
tool in the bug tracking system.

Blocking bugs are software bugs that prevent other bugs from being fixed. These blocking
bugs may increase maintenance costs, reduce overall quality and delay the release of the
software systems. To deal with this, recently, Garcia and Shihab (2014) build prediction
models based on decision trees to predict whether a bug will be a blocking bug or not. As a
data set, authors used 14 factors extracted from the bug repositories of six large open source
projects. They analyzed these decision trees in order to determine which factor best indicates
these blocking bugs. The goal is to help developers identify these blocking bugs early on.
Their results show that proposed prediction models achieve better F-measures. They also
find that the most important factors in determining blocking bugs are the comment text,
comment size, the number of developers in the CC list of the bug report and the reporters
experience. They found that blocking bugs take approximately two to three times longer to
be fixed compared to non-blocked bugs. Their analysis shows that proposed models reduce
the median time to identify a blocking bug.

A novel way of assigning software bug priority using supervised classification on clus-
tered bugs data was presented by Goyal et al. (2015). Their work based on the study which
claims that when classification is done on the data which is previously clustered, it signif-
icantly improves its performance. It is being proposed, to cluster the software bugs based
on their similarity before directly applying classification algorithms on them. In this work,
this approach has been used for the first time for predicting the priority of the software bugs
to find if classifier performance improves when it is preceded with clustering. Using this
system, clustering was performed on problem title attribute of the bugs to group similar bugs
together using clustering algorithms. Classification was then applied to the clusters obtained,
to assign priority to the bugs based on their attributes severity or component using classi-
fication algorithms. It was then studied which combination of clustering and classification
algorithms used provided the best results. Overall, the best results were obtained with X
Means, when used with the Bayesian Networks classifier.

An overview of above discussed researchers work in terms of techniques, evaluation
criteria and data sets utilized is presented in Table 6. While comprehensive summary which
includes features, results, pros and cons of these classification and information retrieval
techniques are shown in Table 7.

@ Springer

J. Uddin et al.

160

QuaoN T pue ‘ouryy ‘rroadsy
asdrjog ‘eoyjo uadp
asdipog

IS

uonezIuesIo paseq SuryIomau y

Qwoun) ‘asdI[oy ‘e[[IZON

spooford SLId SVSVN

aAIN) onsueloeIey) SuneredQ

aInseowr
A pue uoIsIIg ‘AoeIndoy

JdAN ‘NN ‘[[899Y ‘UoIsIoalg
QINSBON -]
pue £oBIMO0Y “[[BO0Y ‘UOISIORI]

[[B991 ‘UOISIOAI]

KoeInooy
‘QINSLIN - ‘[[BOY ‘UOISIOAI]

uondoorog
PRIOA ‘sekeq QAIBN ‘QULAY

sakeg QATEN
SoAeg QATEN

SoAeg QATEN

QUIYORIN

QuUIYIRIA 10309A Joddng

Jou [eInoN ‘ToquSToN
1S9IB3U Y “QUIYORIA] 10J03A Moddng

uIydR]A 10J99A Moddng

I[nourag
soeg QATEN ‘[eTWIOUNINIA SOARY QATEN

Sokeg QATEN

YaddIy ‘8p[‘Terwuounniy

sokeq 9ATRN ‘QUIYORIA 10J09A 1oddng
‘I0QUSTON] 118U Y ‘sokeq ATEN

(2100)
‘I8 39 Suny,

(z100)
‘Te 12 euLIRyS

(2107) 100gbey
pue [emuey]

(2100)
‘Te 39 newwo(

(T100)
‘Te 19 Zoow[apqy

(2107) ysurg
pue paAIneyD)

10309 1oddng ‘10qu3roN (1102)
swoun) ‘asdijog 971S 10§ ‘AovINdoy Jsa1BaU Y ‘SoAeg 9ATEN [erwounnjA soAeg 9ATeN ‘[e 12 yueywe|
(0100
wour) ‘osdrfoq ‘e[IZoN 1809y ‘UOISIOaIg - sokeq oAreN ‘Te 10 gueywe|
(0100)
asdrog 1899} ‘UOISIOAI] - QuUIYORA 10309A 1oddng [emuURY] BLIOME[
0°ZSTI aIseaw-,] pue uorsroaId ‘[reosy] yoeoxddy sokeg SSIOMION] [EINON [BIOYIITY (0107) 'Te 30 nx
uonezifensiA (€000
oeae[pue ‘soyIf ‘DDD Kerdsip SQINH UONBZI[ENSIA 9)BLIBATINIA QeLRANNIA + SISA[eUy I91sn[) ‘[e 19 pysIn3pod
sjesereq SOLIJOUWI UOT)BN[eAT sonbruyos) peredwo)) onbruyo9) pasodoig IOYOIBISAY

sanbrutd9) [BASLNAT UOTIRWLIOJUT PUL UOTEOYISSED JO MATAIOAQ 9 I[qEL,

pringer

Ns

161

A survey on bug prioritization

UONeZIULIIO AIBMIJOS

oyjQuedQ pue suedgloN

‘[[IZOJA ‘dO{so(aa1]
‘asdrog ‘wnrwory)
e[[1zsng

SuBaqN
*osdi[oy “LRIIIZOIN ‘BIIIZOIN

xojair] ‘asdipog
e[[1IZo]N ‘asdijog
asdiog pue e[[1ZoJ ‘@oyjouedQ

[[209Y PUE UOISIOAI] ‘AOBINOdY

KoeInooy
PUE 2INSBAW- ‘[[BIY ‘UOISIOAI]

UOISIOAI ‘SS900Ng
Q100G PUE [[BOY ‘UOTSIOAIJ

QINSBAW- ‘[[BOIY ‘UOISIOAIJ
QINSLAW- ‘[[2OY ‘UOISIOAIJ

QINSBAW] PUE [[BONY ‘UOISIOAIJ

uoneziundQ
[ewrturA [enzuonbog
95210, wopuey 1N sekeg

-0I97Z pue $)S9I10,]

wopuey ‘NN ‘soheq dAteN
aN

aN

STIFAHS

uonezrundQ ewurjy renuonbag
15910, WoOpURY ‘1N soAeq + ueouwry
‘UoTRZIWIXBA UonEeIadXy ‘UBIAX

(S'$D) 991 UOISIA(
4dI-dL

QuIYdRIA 10J09A Joddng

S1S10,] WOPURY ‘931, UOISIOA(]
QuIYdRIA 10)09A Joddng ‘sokeq AteN
SI0QUSTON] 1S0TBAN]

(S100) T8 10 [BAOD

(#100)
QEYIYS pue eroIen

(¥102) Te 10 [Uog

(€100)
‘Te 19 mauey

(€107) ueenueg
pUE 1Zoud[y

(T107) T8 10 uBNY
(2100) T8 10 ueL],

sjasereq

SOLIOW UOT)EN[BAT

sanbruyo9) paredwo)

anbruyo9) pasodoig

REJOOAENEN |

panunuod 9 IqeY,

pringer

Qs

J. Uddin et al.

162

remxag,

remxag,

[eo11039380
pue [enyxay,

[eon10391e)

Teo
1103918

J[qeI[eIun 2q 0] A[YI[SNY) AjTunwwod
Yy £q panrwqns syrodar 3nq 9s() SI0LID
urejuod Jy3rw vyep ay) ssa001d 0) pasn
s[003 9y, 's300f01d arem)jos 1oyjo yIm
ploy 03 padjuerens jou are yoeordde
pajudsald woIy paurejqo s}NsaI oy,

SIOIIO UTEIUO0d JYSTUW BIep Y} ssoo01d

0] pasn s[00) ay [, 's309lo1d aremijos
I9U)0 YJim p[oy 0} pasjuerens JoN

Kyond 14 pauSisse are

sy10dar jueprodwirun Auew jey) suedw

SIY], "SOLI05918D 2INJB9y [[B 10J % Of
uey ssI st [9A9] Aj1orxd |4 Jo uorsIoalg

Sururen 1910
Kq paonpar oq Aew A)I[Iqe UOTIRZI[BIdUID)

AIessa0au ST A391e1S UONBIYISSB[O
ay) jo uonen[eAd [euonIppy ‘sindur
[euonerado uey) IOYIEI POsn aIoM
sindur 159} pa)jeId PUBH “2IBMIJOS JO

"KIL19ADS A}

1o1pa1d 0) pasn 2q Os[e UBd UOTJBRWLIOJUL

1emx?) 110dax Sng ‘sseooid uiden

3nq JUAIOYJe dI0W puE pIjeWIoINe
orow € Juowd[dwr 0 SN SA[QRUD I]

Snq ay) Surquiosep uoneuLIOJUT
1emxa) oy rernoned ur ‘u1odar Snq
B Ul POUIBIUOD UOTBULIOJUT JOYI0 UO
paseq A1110A3s) 301paid 03 9[qissod st 3]
Pasn 2JoMm SUOIIRUIQUIOD
JUQIQHIP JIOY) PUE JX9) pue [eo1I03a1ed
yog 181y s3nq jueptodwr Jurajosar
ur s193e11) ISISSe JuawuIsse AJLIoLg
paroxdur
s1 Sunooyse[qnor Jo Louaroyje
AU, "o3pa[mouy urewrop Surnso)
9y} UO Paseq [opow Ay} JO AoeINOdE Ay}
9SBAIOUI 0 SAIFRIRNS [BIaAdS Sursodold
SUIQISAS UONIAJAP A[ewoue
Aq payrodar suorsnnur 19yndwod
Surkjisse[d 103 [njosn 9q Aew yoeoiddy
*s9[yo1d UonNoIXd paureIs-osIeod
ynm pue 1oyisse[d jo odAy ojdwrs

971$ J3s Jururen pue AoeIndoe

03 30adsa1 yym swiyLoge pasodoid 1oyjo

9y 03 paredwod Jorradns swrojrad [erwounnA
soAeg QATRN UONBIIISIAUL JOPUN SASBI A} 10

SL'0 pue
G9°() U2am)aq AIeA [[eda1 pue uorstoaxd [joq areym
£9BINOO. 9[qRUOSEAI B (1M AILIOAS A Jo1paid
01 21qrssod ST 1T 9Z1S JUAIOYJNS JO 19 SUTUTLI) B UIAID)
QUIYIRTA 10199A 1oddng ur sa11039)ed Jay)0
[[® uey) 101399 ST 1039380 (1,SD)uondLosap Suo|
pue Arewwng ‘[eon10391e)) Jo [[8oa1 pue uorsioaxd
910da1 8nq JO sUONBUIqUIOD JUIIRJJIP Suowy

[opouw sakeg ayy

uey) 19m10q st woperd uonoipaid Ayuond 309j9p

9} UT Pasn [opOW SYIOMION] [eINAN [BIOYTIY
JO AouaIoLJa Ay ‘synsal JudwIadXe 9y uo paseqg

swei3old a31e[01 SA[BIS puB IANIIY ST AF)enSs
Ay Jey) 18933ns oeael pue ‘sayif ‘HDD 01 A3enS

(1100

‘Te 30 gueywe |

(0100

‘Te 30 gueywe |

(0102)
[emues|
eLIOME[

(0100)
Te 19 nx

(€002) Te 10

pue [emyxa], sad£) 10Ujo 0) 9ZI[eIOUAT Jou Avw SJNSAY A[QANR[AI B)IM [[om pauriojrad A39jeng uoneodyisse[d pasodoid Juidde jo synsar oy, D{sindpod
pasn
saImeaq suo) sold SISy IOYIIBISY

sanbruyo9) [ASIIAI UOIBULIOJUT PUE UONEBOYISSE]d JO ATewumuns aA1suayaidwo)) £ d[qer,

pringer

as

163

A survey on bug prioritization

Jemxa],

[eMIX9) pue

[eon103918)

[eo11039)80

pue [en)xa,

[eou08e)

[emxay,

SULId)
Jo Joquunu oY) SuIsLaIdUT Aq paseaIddp
Soueuio)rad 10quSiau Jsareau Y ‘[[e

JO 1SIMO[) ST Sakeg SATEN JO KOBINDOY

1X9) Jo Ayeuorsuawip Y3y oy
Surppuey ur poo3 Jou SI s9Aeg JAIEN
‘QuIyorw 103034 J1oddns 03 paredwod sy

UOTIBOYISSB[O SSB[O N[N
10J Pasn 2q JOUULD PUB UOTBIYISSE[O
ayy 10J uosear 1odoid Kue 9A1S Jou sa0p I

uaye)
j0u BIRp UOISSTILIQNS Jsod Jas vlep [[EWS

sy00fo1d oy Jo 3sowr ur ozI[Iqe)s 33 Jou
S0P IOYISSe[O SaAeg QATRN JO AORINJOY

[9AQ] AovInode 19339q YIM UIIom I8

S3SBD JUAIRJJIP JoJ uonepifea 1o2foxd

sso1D) 10301paxd Ayurond 103399 St

JUSWUOIIAUD 201n0s uado ur padojarap
s300f01d 19730 JO BIEp [EOLI0ISTH

IOYISSB[O

) AQ 9peU SUOIIBPUUIOIAT

o) SunenyeA? J0J SAINSLIW

[njasn are N pue NAN ‘stogern djoy

ued 19pudwodd Ayuoud pasodoxd
1B} SAIBJIPUI SISYISSB[O) JO AOBINOIY

sanjea) oyroads 3nq oy Jo
Qwos pajornxa A[[nyssaoons pey Kay)
OS[V "UOTJEULIOJUT pIOM 0 paredwiod
Koeanooe 19139q 213 oy1oads Snq

SUISN S[OPOJAl [BIWIOUT[NJA] PUB I[[NOUISE]

woy) I9Jop pue
9pN[OX? 0] JOPIO UI $3NQ MO[S AIoA pue
)i 1Ie)s ued sradofeasp os s3nq ise}
K19A 0jul s3nq Y} 9Z11039)BD 0] IOPIO
ur AJuo UBIpIW Ay} Sulsn Jo peajsul

Suruuiq 103 €0 ‘10 so[nrenb pasn Aoy,

Xy $11 10J 12dooAdp ay) 01 3nq pajrodar

Jo JuowuSIsse dnewolne ur o5er)

Ay} JoJ [nJasn AIng) ‘[OAJ] AILIAAQS JO

UOTJRUTULIOOP Orjewojne ut [nyd[oy oq

114 yorym payorpaid oq ued syodar 3nq
pantwqns A[mau) J0J [QAJ] AILIAQS

SQINSBAUW UONBN[RAD JUSIJJIP JO SISBq) UO
sy1odar Surwos Aimau oy Jo Ayond ayy Sunorpaid
Ur 135 BIEP [[B 10J SaARg 9ATBN PUE SI0qU3IoUu
JsaIeau Y Jo uostredwod ur Kovinooe 1oy3y

[[BI9A0 9AIS JoU [BINAU ‘QUIYdRW 103024 Joddng

Sururen
10 PaUIqUIOD ATk 1X3) PUE [BILI0FILD UAYM
uIyorw 103994 1oddns yym paasryoe st AoeInooe
1SQYSIY Y], "ouIyorW 03094 J1oddns uey) 10109 St
doueuniojrad soeg QATRN ‘[2O110301D JOJ SEAIaYM
X9} J0J w03 sokeq QATEN oy} Uey]) 19)3oq

QIe QUIYORW J0J03A J1oddns Jey) (oAl SFUIpUL]

pasn s1ojowered uonENEA JO SISEq

9} UO [opoW [eTWOUN[NIA dY) 0} pareduod uaym

S)[nsa1 poo3 JUIAIS SI [9POJA I[[NOUIdY SASSB[O

0M) J0J J[qRI[I ST 9INJBIJ SB UOIIBULIOJUT PIOM

Sursn s8nq Jo uoneoyIsse[d 10J [Spowl urISAkeqg
Surkjdde jey) moys sjynsar eyuwiLadxa oy,

Qw1 UBSW Y] Je IpN[OX? 0] YIIyM pue
A 1138 03 S3Nq YoIyM 9ZIILIOL “douewIojrad
uonoIpaId 19139q SINSaI S[OpOW JOY0

2101dX9 0) PopUSWIIOdAI St WIIIOTE sokeg dATEN

anbruyo9) pasodoxd

KI9A3 JSOWE JOJ QINSEIW-,] 1SO¢ SULId) JO JoquInu

Q) 9SBAIOUT OM SB SAZI[Iqe)s sanbruyoe) Surures)
suryoew Jo doueuLiojrad ay) Jey) paAIasqo St I

(2102
‘Te 19 ey

(z100)
100gbey
pue [emuesy

(T100)

“Te 10 newrwo(q

(T100) 1810
Zoow[opqy

(T100)
ysurs pue

1paAIIEYD)

pasn
SaIN)B,]

suoD)

solq

synsoy

IOUOIBISAY

panunuod /£ J[qe],

pringer

Qs

J. Uddin et al.

164

Sureourdue

QIEM1JOS QAIIRIOQR[[0 UI UOTIRZIUBSIO
[e100S JO saInseaw danenuenb Juisn

Jo renuajod ay) sIYSIYSIH 2ouLA[I
reonoead jo 2q 01 y3nouo drduwirs

SONIUNWIWOd §SO PAIAPISUOD
Q) ur douewIoyrad syt ozATeue pue sutioperd
Sunyoen Snq ojur pajeiSayur oq A[Isea ued jey)
QWIAYOS UOTIBOYISSL[O PIJBWOINE UY *SANIUNWWOD

elRp 93uQ[[eyd © SUTRWAI SONIUNUILIOD UI0q 104 ‘9)eIndoe ATY3Iy are jey) sowayds JUQIQJJIP SSOIOR AdBINOJR Y31y A[qesIeuror (€102)
[eou03e) A[mau 0) A3o[opoyiau SIy) JO UOISUAXH UONBIYISSR]D SPIBMO) UOTNQLIIUOD Y B SOAQIYOB WISIUBYIIW UonedyIsse[d pasodoid ‘[e 19 mjouey
KoeInooe UONeIYISSe[o
AU} UO S10S 2InJeaJ 0Mm) SuIsn Jo J00]j0
)9S BIRp Y)oq JoJ A[[eonewrep (SaInjesy sy1odax 3nq jo Ayuond ayy Sunorpaxd QYY) PAJESNSAUL OS[Y "SoAeg QAIBN UBY) S)NSAX (€102)
BIEp BloW [emxa}) T 39S 21mjed, swrojrodino ur o[qrseoJ st yoeoidde pesodoid oy UONEOYISSE[O 19139q 9ALS 99I], UOTSIO9(] PUB JSAI0] ueejrueg
pue 1X9], (soInjeay BIRp BIOW)T 19S 2INJEI] 1B} SMOUS UONEN[BAD [RIUSWILIAdX0 9U], WOPURY 10q JBY} PaMOYs S)nsal [ejuowiiadxe oy, puE 1Zoud[y
B[[1ZOJA UI s3nq UO
a3e1n 3nq jo yse) QInseaw-{ pue ‘[[esal ‘uorsioald 10)19q ureiqo ued
oy A[reroadso ‘sy[se) o1emIJos ISISse SI0JO9A PIXIW A} UO Paseq uonorpaid oy, “sestou
03 sonuond 10do[oAap Jo a3pajmouy JO 90UBIS[0] A} PUE ‘UONN[OAD Y] ‘sjonpord
1X9], pue JueoyIugIs oy ap1aoid ueod uoneznuoud ur so1sLIR)oRIRYD Y A[owreu ‘uoneznuoud (2102)
[eorr0Sa18) j0U ST 9sdI[OF UI $}[NSAT JO 9OUAIHI(T JodoTeAap oy} ey} 9JEdIPUT SINSI Y, 1odoteap o) Jo swoqoid ea1y) ozATeuy ‘Te 30 uenyy
s[oqe| £110A9s o1paid 0}
s3nq prey uo Areroadse juswaaoxduwir jueoyrugis ssuriq
aaoxdur 1oypany ued yoeoxdde pasodoxd aznuonid 0) sredofeasp 10y jueroduwr yoeoidde pasodoid ‘snorepy pue sa1Zus|y Aq
[eMIx9) pue) Jo AJRINDOY sSuIpuy Iy} Jo A1 s[eqe] AJL1A9s sk sjodar Snq yI1om oy} A[owreu ‘uonorpard AJ110Ads paureis-ouy (2102)
[eouo3ae) A)IqezIferoudd ‘yuowodxa oy ul SIoF JO s[oqe[AJIAds oy Jo1paid 0) uonnjos uo Apmis 3Ie oy} Jo 9Je)s 3unsixo ay) oy pareduwo)) ‘Te 19 uely,
DNV Y31y 2AMYI. P[Nod s[opowr uonorpaid
Kouaye| Suniodar Snq pasodoid yeyy smoys
sonranoe Surxy Snq SUIO)SAS IEM]JOS 99IY) 9Y) UO UOTJEN[BAF] "OUIYOBUI
Surznuoud 10§ [nydjey aq Aew yorym 103924 1oddns A)se[pue QoI IV ‘Sekeg QATRN
uni oy awrn ‘19)8] 10 (sAep (¢ unpIm) Ared poyodar Kq pamorjoj wiyiLog[e Isayse] oy st uondodrod
1X9) pue Suo] e soye) 1 “oourwIo}1ad 1s9q oy 9q p[nom 3nq e JoyIaym Jorpaid ‘uonn[os dy} Ul WYILI0F[e UOIBIYISSL[O 9)eINdoR (2102)
[eou03o)e) sey auryoew 103094 Joddns y3noyy uoag ued JBY) S[OpOW UONEBIYISSB[O pling Jsowr Q) 9q 0) Punoy AuIydORW 10304 J10ddng ‘Te 30 Sunyg,
i
pasn 2o
soImyea,j suoD) solq synsoy IOUOIBISAY m
o

panunuod /£ J[qe],

as

165

A survey on bug prioritization

SaInjea)

J[9SIT UONRZIUESIO A} JO SAIINOSAT
3y jo Suraes 01 Jurpea[A[erewnin
410Jj0 pue sw) s19do[Adp dALS

IOYISSE[d JON SoArg) IIM Pasn uaym ‘Furalsnyo
SUBIJAl X)M PAUTL)QO 2IdM S)[NSAI 1S3
Ay L ‘swyjioS[e SULIISN[O PIUOHUSW JA0]R Y}

qrdnnu 105 seyorordde pasodoid -ouewIoyrad syt soaoxdwr Apuesyrugis Jo Aue £q papadald sem UOTIBOYISSE[O UyM 1Y) (S102)
remxag, A1dde 03 paoN ‘pesn amjeadj o[Surg BJEp PAIA)SN]O UO UOTJBOYISSL]D) sKemJe sem douewIO}Iod 9y} UT 9SBAIOUT [[BIOAQ) ‘Te 10 [eAon
Qouarradxa
s19110da1 o) pue IS D) Ay T S19do[aAdp
JO JoquINU ‘9ZIS-JUdUILIOD ‘SJUSUILIOD Y} I8 s3nq
Sunyoo[q aunuIs}ep 03 $I030] Juelrodwr Jsouw Ay}
uo Apres s3nq Suryoo[q asay} Jey) smoys sisATeue opoN dof, "s10)01paxd wopuex
Kynuapr s1adojaasp djogSnq Suryoorq JuIaseq 3y} 190 Juawasoiduwr pjoj-Inoj 0y #102)
[en)xa) pue syoofoxd © AJ1)UOpT 0} OWIT) UBIPAWI 9} 90NPaX -0M] © ST YOTYM ‘9, TH—GT JO SQINSLOW-,] POAAIYOL qeyrys
[eor1039e) JO QWOS J0J SAN[BA [[BIAI MO] PIAJIYOY sjopow pasodouid jey) smoys sisAeuy sfopow uonoipaid pasodoid jey) moys sinsoy pue eroren
yoeoidde sokeg
s3nq uoIssaI3oy pue s3nq QATEN 1oA0 SIyS1om Aouanbaiy Jog QJe1 $$200ns Y31y € yiim syrodar 3nq pajeqersiux
QourwI0}Idd ‘s3nq dnues[) ‘sSnqyser) pue Sururtw x93 Surkdde jo syyouaq Q) pauryd [OPOJA "9JeI $S00nS pue uoIsroaxd
Y11 spodar Snq Jo sar039ed y) smoys ‘s3nq Surwodur Ay} Jo JO SWLIQ) UI SaAeg SAIBN] UO Paseq [00) Y} #102)
remxag, QI0W YIIM T3P 0) Padu [00) pasodoid sonyorxd oy Surproop ur sdjey [003 Y], uey) snsar 10)39q SurAls st J([-L U0 paseq [00], ‘Te 10 [yog
pasn
soInyeo,] suoD) soid Synsoy IOUOIBISAY

panunuod 7 3[qey,

pringer

Qs

166 J. Uddin et al.

5.2 Categorization approaches

An automated method named SEVERIS (SEVERity ISsue assessment) algorithm presented
by Menzies and Marcus (2008) to assists the test engineer in assigning severity levels to defect
reports. SEVERIS always found good issue predictors with high f-measures. Their study
shows that unstructured text might be a better candidate for generating severity assessments
than the structured data. Steps taken for conversion of unstructured data to structural data
are tokenization, stop word removal, stemming, employing TF-IDF and InfoGain. The case
study results indicate that SEVERIS is a good predictor for issue severity levels, while it is
efficient easy to use.

Several solutions to the challenging task of clustering software defect reports was pre-
sented by Rus et al. (2009). Their work has been motivated by belief that the rich information
in software defect reports, which are generated during the testing phase in the form of textual
reports, can be of great value. They proposed advanced methods for clustering defect reports
that take advantage of the description and summary fields of the reports. The experiments on
defect reports from Mozillas Bugzilla and with three clustering algorithms showed that nor-
malized cut using a TF-IDF vectorial representation based on a combination of descriptions
and summaries of reports leads to better clustering than using the summary or the description
of defects alone.

As an example of classification by clustering Nagwani and Verma (2011) used Suffix Tree
Clustering(STC) algorithm for software bug classification. First clusters are created from the
bug repositories and then labels are assigned to the each cluster, which indicates the classes of
the clusters. Three software bug repositories are taken for experiment with different number of
software bug records. Here STC implementation is available as the part of Carrot2 framework
(component based framework for text clustering). They evaluated designed technique using
the common clustering parameters. STC appears to be an effective way of classifying the
software bug in just a small time, also cluster purity calculated is adoptable.

A software bug classification algorithm, CLUBAS (Classification of Software Bugs Using
Bug Attribute Similarity) which is another example of classification by clustering was pre-
sented by Nagwani and Verma (2012). The proposed algorithm works in three major steps
that are creation of text clusters, generation of cluster labels and mapping of the cluster labels
against the bug taxonomic terms to identify the appropriate categories of the bug clusters. The
designed algorithm is evaluated using the performance parameters that are then compared
with the standard classification techniques using clustering algorithms. A GUI (Graphical
User Interface) based tool is also developed in Java for the implementation of CLUBAS
algorithm.

Similarly, Somasun and Murphy (2012) investigated whether combining Latent Dirichlet
Allocation(LDA) with a machine learning approach could improve the consistency with
which component recommendation could be performed for bug reports. They considered
broadening the consistency of the recommendations produced by an automatic approach
by investigating three approaches to automating bug report categorization. They focused
on the use of the long free-form discussion portion of Bugzilla bugs for both the training
and testing of the classifiers. The experiments on three open source projects showed that an
approach which combines LDA with Kullbach-Leibler Divergence LDA-KL) can produce
recommendations with more consistency in recall values across all components of a system
than previous approaches.

An automated technique for bug labeling using Term Frequency-Inverse Document Fre-
quency (TF-IDF) and Latent Semantic Indexing (LSI) presented by Chawla and Singh (2014).
They suggest a method which takes semantic information present in the bug report into con-

@ Springer

A survey on bug prioritization 167

sideration. Experimental study shows that there is improvement in results with the addition
of semantically similar words obtained from LSI in conjunction with the terms extracted
using TF-IDF. Main steps in the proposed procedures are selection, preprocessing, training
and testing data. Using LSI along with TF-IDF, they achieved better accuracy for the polish
bug reports and for security bug reports as compared to using TF-IDF alone. This work has
shown improvement in automatic bug labeling by addition of semantically similar words.

An overview of above discussed researchers work in terms of techniques, evaluation
criteria and data sets utilized is presented in Table 8. While comprehensive summary which
includes features, results, pros and cons of the classification by clustering approaches are
shown in Table 9.

5.3 Other approaches

A technique to rank error reports emitted by static program checking analysis tools was
explored by Kremenek and Engler (2003). They developed the idea of z-ranking that uses
frequency counts of successful and failed checks to rank error messages from most to least
probable. Z-ranking employs a simple statistical model to rank those error messages most
likely to be true errors over those that are least likely. They demonstrated that z-ranking applies
to a range of program checking problems and that it performs up to an order of magnitude
better than randomized ranking. Further, it has transformed previously unusable analysis
tools into effective program error finders. The authors explored the hypotheses comprise of
probable and improbable error reports.

Meanwhile, Kim and Ernst (2007a) prioritized warning categories by analyzing the soft-
ware change history. The underlying intuition is that if warnings from a category are resolved
quickly by developers, the warnings in the category are important. The work aggregates prop-
erties of warning instances to prioritize warning categories. They suggest that their technique
will be most effective when the categories are relatively fine-grained and homogeneous. They
ran bug finding tools on each development transaction of open source projects. Results indi-
cate that different warning categories have very different lifetimes. Based on that observation,
they proposed a preliminary algorithm for warning category prioritizing.

Proceeding further in their work this time Kim and Ernst (2007b) observed the warnings
output by bug-finding tools for three subject programs. They proposed an automated history-
based warning prioritization (HWP) algorithm that mines previous fix and warning removal
experience that is stored in the software change history. The underlying intuition is that if
warnings from a category are eliminated by fix-changes, the warnings are important. Their
prioritization algorithm improved warning precision. They extended the previous work as
they incorporate information regarding bug fixes instead of warning lifetime, proposed a
prioritization algorithm rather than merely observing the varying lifetimes of warnings and
evaluation by using the software change history.

In the same year, Giger et al. (2010), computed prediction models in a series of experi-
ments with initial bug report data as well as post-submission information from three active
open source projects. They investigated empirically the relationships between bug report
attributes and the time to fix. Their objective is to compute prediction models that can be
used to recommend whether a new bug should and will be fixed fast or will take more time
for resolution. They examined in detail if attributes of a bug report can be used to build
such a recommender system. They used decision tree analysis to compute and tenfold cross
validation to test prediction models and explore prediction models in a series of empirical
studies with bug report data of six systems of the three open source projects. Their study
shows that incoming bug reports can be classified into fast and slowly fixed, post-submission

@ Springer

J. Uddin et al.

168

QwoIy)) 9[3005H

(e[nzoJN pue UK[AIN osdijog
‘urropierd asdrpog)eizsng

IbSAN
‘B[IZOJN ‘SSOg[‘PIOIpUY

TOSAN
‘Weag-ssoqf ‘e[IZON

BI[IZON

SLId 19°l01d VSVN

KoeInooy

ey

KoeInooy
QINSBAW-{ ‘UOISIOAI]

wrlL
pue Adonug ‘s1aisn|D
Jo Toquiny ‘AIang
uonewLIOJul
[eninuw paZI[eUWLION pue
‘Loenooy ‘Aiund 131sn)D
aInseowr
A ‘T[e09y ‘uorstoald

ANIN ddI-dL

QUIYIRA 10J99A 1oddng

QUIYOBIA
10399/ 1oddng ‘g1
‘sokeq oAIBN ‘sokeq oATEN

Surxopuy onuewos jusre T JAI-4.L
QOUITIAAIP
191q17 Yorq[Iny ‘UOnBIO[Y
19y Judre] ‘Kouonbaig
JUOWNDO(T 9SIoAU] Aouanbar]
w4 QuIyorA 10309 Hoddng

SvdanIo

Surdsny) 921, XyIng

SuBQW-Y
N pazLre[n3al 9ZI§ pue PIZI[BULION

STIHAHES

(#102) ysurs pue ejmey)

(2107) Aydjy pue unsewog

(2107) BWIOA pue ruemSeN

(T107) BWIdA pue ruemSeN

(6007) 'T& 10 sy

(8007) SNOIEJAl PUE SATZUIA

$)as eleq

SOLIJOU UOT)BN[BAF

sonbruyo9) paredwo)

anbruyo9) pasodoig

IOUDIBSY

sonbruyd9) UONEZII0321ED JO MAIATIAQ § J[qEL,

pringer

as

169

A survey on bug prioritization

Ted
-1103918D)
pue [emxa,

remxag,

[emxay,

Temxa],

S12S BJBP MQJ 10J 9SIM AdRINOOR
[1om ttozrad jou se0p SYFNTD

PAIOPISUOD J3S BJEP [[PWS 1XQ)
uey) 19Y)o saImeaj Snq asn Jou DS

135 ejEp SIY) U0 A10od
pawrograd Jnoys “suonejussardar
[BLI0JO9A 9211} [[E UO JNd
N JO asoy3 uey) 1omof ApueoyruSts
QI SUBAW-Y JO UOTJRULIOJUT

[EMINW PIZI[EUWLIOU PUE AOBINOJE Y],

SurkJnIe0-J1os
QIk SO[NI ‘PISBIQ I SUOISN[IUOD
‘S.LId ur Aoua)sIsuod jo oe|

pajuasard st SYENTO

UOTBOYISSE[O SNnq 2IBMIJOS 10 [00)

paseq [ND V- anbruyod) urraisnio ursn
uoneoyIsse[d jo ajdwexs ue st SYgN1D

sdnoi13 Sunynsar ay) 9qLIOSIP
0] PUB JOA0ISIP 0 J0q Pasn Ik SaseIyd

-anbruyo9) SuLRysnyo Aq uonNBOYISSB[D B SII]

$109J9p

QIEM)JOS JO QINJBU JY) PUBISIAPUN I3))q

0] pue 10} Junsa) Ay Jurznuord 10y
[nJasn A1aa 9q ued syrodar 109j9p Jurrisn|)

SO)INQLINE/SUOTSUWIP
JO Iaquunu Y} 20NpaI ‘93 paymouy]
Urewop [N “poISPISUOD BIEP PAINONISU()

$19S ©JEP MO UI SWILIOZ[R JOYI0
uey) A9BINJOE JO SULID) UI 19))9q suuiojrad
[erwoun iy sokeq 9AIRN pue sakeg
QATEN "QINSEAW JO SULID) UI JOYIO Uey)
Io119q surtoyrad pue Aiqeis moys SYINTD
J1qerdope
st paje[noed Ajund 193snpo os[e ‘own
[rews e isnf ur Snq arem)jos ay) Surkjissero
Jo Kem 2A1093J9 Uk 2q 03 steadde
DS "s1orowrered Sure)sn[d UOWWIOD
9y Sursn anbruyod) pouSisop pajenfead Aoy,

Juore
PIoY Arewrwins Jo auofe proy uondosop
A JoyIo uIsn Uey) 19)39q ST SULIAISN[O

103 proy uondrosep pue ploy Arewrwins
9} Jo uorun Ay} SuIs() ‘UONBULIOJUT [Enjnu
pazifewou pue ‘Aoeindoe ‘Ajund 19)snjo
oSeIoAe Jo swiId) ur oouewIofrad 1saq oY)
PAARIYOE JND PAZITBUWLIOU OS]V "senbruyod)
Suruonnied ydeis pue Surssesoid
a3en3ue] fernyeu Jursn syrodar 309jop
QIem)jos SuL)SN[d 10§ S}NsaI JuIsiolg

s10301paxd

ansst pooS punoj skemfe STYTALS ‘Sonsst

K)119A9s Y31y Jo sojdwrexa (¢ uey) arow

UIIM S1OS BIRP 10, "[[2O9] PUE SQINSBIWI-]
‘uotstooxd ySiy yim poos punoy SIYAAHS

(T102) BUtiop
pue ruem3eN

(1107) purop
pue ruemseN

(6000) 'T& 10 sy

(8007) snorey
puE SOTZUSJA]

pasn
saImeaq

suo)

sold

SISy

JOYOIRISY

sayoroidde uoneziio3ayes Arewwuns aAIsuayaIdwo) ¢ AqeL

pringer

Qs

J. Uddin et al.

170

sauoysodar 1oyjo
[emxay, uo parjdde j1 L1eA Aew synsaz Yy,
n
Suraoxdwir Jo peojsur uoneOYISSe[o
JO AoBINOJE 9y} 99NPaI 0] pud}
SJUQWUIOD SUWIOS S "PAIAIUD ISIY
ST UOTJRULIOJUT AU} Jo)Je pasueyd dq

s3nq jo uonuaaaid 10j sisAjeue

wanounsod Sutop ‘radojaasp areridoidde

Sunorpaid ‘Kyuonrd pue £11oads Jurugisse
ur djay [1m s3nq Surziogaied 10 Surjeqe|

AAT-AL SuIsn pajornXa SULI) AY) YPIM
uonounfuod ur Surxepuy dSHUBWIS JUAL|
WOIj PAUTLIQO SPIOM JB[IWIS A[[EOTJUBIIAS
JO uonIppe oY) YIIMm $)[NSaI ur juswaAoidur (#102) ysurs
SI 2191} Jey) Smoys Apms [ejuawinradxyg pue epmey)

VAT + seuiyoejy 103094 1oddng

pue JAIA.L + SQUIYoRA 10109A }oddng

Uey) JUI)SISUOD 9IOW JOUITIJAIP I9[qIo]
S[PrqIU3] + UOHEBIO[[Y I9[YIHI U]

jouued yorym 1odar 3nq e[izSng ‘(1921 Y31y 9ARY UONBIO[[Y I[YIUI (2102)
® UL P[OY UOISSNOSIP ULIOJ-391) Paz11039)ed 9q Jsnw s3nq YIIyM JUAJE'T + SOUTYIRA] 10J03A J1oddng Aydmyy
[emixay, SI Jey) pue pasn aIMedy 1x9) A[uQ 10§ spuauodwiod [[e SS0Ioe AJUI)SISU0D 19Ag pue JIQLIL + SeuryorA 10J09A 1oddng pue unsewos
pasn
SAINJE,] Nite) solq Synsay IOUIIBASY

panunuod ¢ JqeL,

pringer

Ns

A survey on bug prioritization 171

data of bug reports improves prediction models. Assignee, reporter, and monthOpened are
the attributes that have the strongest influence on the fix-time of bugs.

Tian et al. (2013) proposed an automated approach DRONE (PreDicting PRiority via
Multi-Faceted FactOr ANalysEs) which enhances linear regression with their threshold
approach to handle imbalanced bug report data. Based on machine learning that would rec-
ommend a priority level using information available in bug reports. Their approach considers
multiple factors, temporal, textual, author, related-report, severity, and product, that poten-
tially affect the priority level of a bug report. They investigated the an open bug repository
and for comparison they experiment with several other classification algorithms. The result
on a data set consisting of more than 100,000 bug reports from Eclipse shows that proposed
approach outperforms the baseline approaches in terms of average F-measure.

Similarly, Saha et al. (2014) analyzed long lived bugs with five different perspectives: their
proportion, severity, assignment, reasons, as well as the nature of fixes. Authors pointed out
that analyzing entire bug data sets using various machine learning or data mining techniques is
not sufficient in understanding long lived bugs due to the imbalanced data set, i.e., containing
relatively low proportion of long lived bugs compared to others. They showed that although
the software development and maintenance processes have advanced a lot, but there are still
a significant number of bugs in each project that survive for more than a year. Study on four
open-source Eclipse projects showed that there were a considerable number of long lived
bugs in each system and over 90 % of them adversely affect the users experience. Authors
concluded that the reasons of these long lived bugs are diverse including long assignment
time and not understanding their importance in advance.

The empirical study on bug report field reassignments in open-source software projects
is performed by Xia et al. (2014). To better understand why bug report fields are reassigned,
authors manually collected bug reports that had their fields reassigned. They emailed bug
reporters and developers asking why these fields got reassigned. Then, they performed a
large-scale empirical study on types of bug report field reassignments in 4 open-source
software projects. In particular, they investigated (1) number of bug reports whose fields
get reassigned, (2) the difference in bug fixing time between bug reports whose fields are
reassigned and not reassigned, (3) the duration a field gets reassigned, (4) the number of
fields that get reassigned, (5) the number of times a field gets reassigned, and (6) whether the
experience of bug reporters affect the reassignment of bug report field. Authors found that a
large number (approximately 80 %) of bug reports have their fields reassigned, and the bug
reports whose fields get reassigned require more time to be fixed than those without field
reassignments.

A novel method for semi-automatic bug triage and severity prediction using topic model
and multi-feature is proposed by Yang et al. (2014). First, they extracted topic(s) from his-
torical bug reports in the bug repository and find bug reports related to each topic. Then
they utilize multi-feature to identify corresponding reports that have the same multi-feature
(e.g., component, product, priority and severity) with the new bug report. Thus, given a new
bug report, they are able to recommend the most appropriate developer to fix each bug and
predict its severity. To evaluate proposed approach, they not only measured the effectiveness
of their study by using 30,000 golden bug reports extracted from three open source projects
but also compared some related studies. These 30,000 bug reports were manually extracted
from all 16, 462, 18 bug reports and named as golden bugs because they contain much more
information.

An overview of above discussed researchers work in terms of techniques, evaluation
criteria and data sets utilized are presented in Table 10. While comprehensive summary which
includes features, results, pros and cons of the other approaches are shown in Table 11.

@ Springer

172

J. Uddin et al.

Table 10 Overview of other approaches

Researcher Proposed technique Compared Evaluation metrics Datasets
techniques
Kremenek and ~ Z-Ranking Randomized False positive rates, Linux, Company
Engler (2003) Ranking time and error rate X
Kim and Ernst Preliminary algorithm FindBugs, JLint, Lifetime Columba and jEdit
(2007a) and PMD
Kim and Ernst Prioritization FindBugs, JLint, Precision, Recall and Columba, Lucene,
(2007b) Algorithm and PMD False positive rate and Scarab
Giger et al. Decision Tree Random Precision, Recall, Eclipse, Mozilla,
(2010) Classification summary statistic Gnome
Tian et al. PreDicting PRiority Multi Class, Precision, recall, and Eclipse
(2013) via Multi-Faceted RIPPER, Naive F-measure
FactOrANalysEs- Bayes
DRONE(GRAY) Multinomial
Saha et al. Empirical Study - Time Eclipse product
(2014) Analysis (JDT, CDT,
PDE, Platform)
Xiaetal. (2014) Empirical Study - Mean, median, max Openoffice,
Analysis and min time Netbeans,
Eclipse, Mozilla
Yang et al. Topic Model, Navie Bayes, k Accuracy, Severity, Eclipse, Mozilla,
(2014) Multi-Feature Nearest Precision, Recall, Netbeans

Neighbors

F-measure and
MRR

To conclude, researchers have focused on automated approaches for prioritization of bug

reports. Mostly researchers have addressed bug prioritization issue using techniques of data
mining, like classification, information retrieval and text mining approaches. Few of them
used the idea which claim that when classification employed on the data which is previously
clustered; it gives significantly better results than using classification techniques alone (Goyal
et al. 2015). Also our findings reveal that the results of some classifiers [like, Support vector
Machine (SVM)] show better results for text features, whereas some [like, Naive Bayes (NB)]
for categorical features, but the performance can be better when categorical and text features
are combined (Kanwal and Magbool 2012).

6 Significant results

In this section we list the significant facts that were found in this survey. The significant facts
are prominent techniques, evaluation metrics, data sets, researchers and venues.

6.1 Significant techniques used
To resolve the issue of bug prioritization researchers used mostly the classification techniques

and the most prominent were Naive Bayes (NB), Support Vector Machine (SVM) and k-
Nearest Neighbors (kNN) as can be seen in Fig. 4. Researchers also used Decision Tree (DT),

@ Springer

173

A survey on bug prioritization

[eou031e)

[eou0391e)

[eou0391e)

[eor0391e)

J[qeuonsanb
ST SWAJISAS JOPUSUITIIOIT
parewoine Ajny dojoasp

0] s[opout asay) jo Anpiqesrddy

91qeidwod jou
QIe SUOISIAQI dwos pue dja[dwoour
st ejep xy 3ng -oanejuasaidar

9q jou JySru swrerSoad 109[qns Ay,

K1039180 Swes
Q) WOIJ SIOUR)SUT JUSIIFFIP OM)
0} sonIorid JUAIQHIP 9AIS JOU SQ0p 1]

doueuntojrad

SSUDjULI-Z UO 1099 JuedyIugIs

® oAey 03 steadde s1yJ, ‘ploy

0] J0u s1sayodAy Suons ay) sasned
IOAIMOY ‘SIOLID JO SULISN[O Y],

199(01d aremyjos e ur paznuoud a1 s3nq
Moy ur JySisur ue 9AIS Aoy) se s1opodax
3nq 10 s19do[oAdp MU 0] [NJAS() ST [OPOIN

Apueoyrugis s3ururem jo uorsroard

Q) S9SBAIOUT WYILIOT [UONBZNLIOL]

*$10110 0} $10dO[9ASD $10o1Ip A[OAT}ORJO
uoneznuond oyroads-weigord ‘mou siy,

s100) Surpuy 3nq Aue 0)
91qeoridde yoroidde uoneznuoud ouous3
® ST SIY], [NJsn 2I0W S[00] UOTIOAP
3nq oyew 03 djoy Aewr sownoJI| J1oy)
U0 paseq saL10391ed Jururem JuIZnLond

suoneuwrrxoxdde sisA[eue

Jo joedwir ay) jonuod 03 Aem odwrs

& sop1aold Sunjuel-Z ‘s[oo} SUn{odyd I0119
one)s Aued Ul [njasn 2q pnom Suryuer-Z

sfopour uono1pard

aaoxdwr 1oyuny ued yiuow [03 dn jo elep

j10dax Snq uorsstugns-jsod Jo uorsnjour

) 1B} MOYS OS[e AU, "UOTIBIYISSED)

wopuey UBY) [[BII pue DNV ‘uorsioard
ur 19132q Appueoyrusis wiograd 9a1 uoIseg

sagueyo xy-uou Junnp

paAowar are 1o weiSoxd oy ur urewor

sSururem Jo 95, 06 1AQ "A[eandadsar

9% L9 pue ‘gz ‘L1 03 uoistoaid Sururem
soaoxdur wiypLioge uoneznuord pesodoig

snoduagowoy

pue paurei3-auy A[eAne[al are

SO11059)8D O} UM 9ATIOIIIQ JSOUW oq [[IM

onbruyoa] "owNeI PIAIISqO SII UO PIseq

K103910 Suturem yoes jo uoneznuord

asodoxd pue swneyI SUO[B 9ARY SIOYIO

Q[IYM ‘QWNJI[JIOYS B 9ARY SILI0F)Ld

Sururem awos Jey) punoj pue ‘K10391e0
Sururem yoea Jo awnajif ay) payndwod AyJ,

pazA[eue A3y} S19¥09yd

ay) J0j Sunjuer wopuer Aq punoj s3nq Jo

IoquInu 9FeISAE 9Y) UBY) SINQ IOW SAUIT)

[—¢ punoj Suryuel-Z ‘Suryuel paziuopuer

uey) 19))2q opmusew Jo IpIo Uk 0}

dn sunioyrad 11 32y pue swaqoid Sunyoayd
wes3oud jo a3uel v 03 sarjdde Supjuel-z

(0100)
‘I8 12 131D

(9L002)
JSuIg pue wryf

(L002)
JSuIg pue wryf

(€007) 1013ug
pue youawary]

pasn
SoIMEBa,]

Nite)

soIq

Synsay

IOUDIBISY

sayoeoidde 1oyjo Jo Arewrwins darsuoyardwo) [T dqel

pringer

Qs

J. Uddin et al.

174

ed
11039180
pue [emyxay,

ed
-1103918D)
pue [emyxay,

[eou081e)

[emxa,
pue
[eou0391e)

synsal
) paoayye ey Aewr (syrodax
3nq ayey 3-9) astou awog ‘syoafoxd
[RIOIOUWILIOD UT 9ATOILJ OS[e
st yoeoidde no jey) ains jou are Aoy,

Xy 3nq oy ur
A®[op B 9SNED P[NOJ SJUAWUTISSBAT
PIoy 11oda1 Sng JudwuSIssear
pIey 1odar Snq ay) 109)je

Juar] ppnod sisyiodar jo souarradxyg

91qezi[e1auas 2q jou Kew sSuIpulj
"UONEOYLIOA [enuew 9y} Surnp
suonejaIdioyuIsTur [euonuUAUIUN
QWS U2q dARY JYITUI
QI [, dreandoe A[91e[dwod aq

j0u KB SWRISAS 9SAY) UT UOTIBUWIOJU]

ANOYJ JO I[nsal [euly 3y} uo
$$9001d P[OYSAIY) AY) UT SALORINOIBU]

S9IpN}S 19730 0] paredwod
uonoipaid £)110Ads pue douewioyred a3ewn
3nq paaoidur A2y} ‘)[nsar uonNeN[BA J1Y) U]

JuoWuSISSLAI P[oY
110dax Snq puejsiopun AoArsueyarduwod
s1adofaaap djoy pinoo Apms siyJ,

s3nq Surznuoud 10§ soyoeoidde

[eonAeue arednsoaur pue ‘ssadoid Jurxy

3nq [[e1oA0 o3 2a01dwir ‘sAe[op puryaq

SI10JOBJ PUBISIOPUN 19)Jq 0] SIAYOILISAI
pue s1odoeaap yroq djoy [[1a sjnsay

suodar

3nq Ul 9[qR[IBAR UONBULIOJUT UO PISeq [IAJ]

Kyuond B puawwiosar pjnom Jey) Surured|
quIyoewW Uo paseq yoroidde pajewoine uy

Pasn SOLOW UOTJEN[BAD JO SWLIA) UT oY
sayoroidde 1oyjo suojradino yororddy
[oaou pasodoid “A111a4as)1 3o1paid pue
3nq uoaI3 oy xy 03 1odofaadp areudordde
AU} PUSWITLIOII A[QAIIOJJQ 03 A[YI]

st yoeoidde pasodoid yeyy moys synsaz ayJ,
sjuaWIUSISSBAI

PIOY INOYIIM 3SOY) UBY) POXY 2q O} dwn)
Qrow 21mbax paugissear jo3 spioy asoym

sy10da1 3nq oy pue ‘paudissear sp[ay Iy}

aaey suodar 8nq Jo (9, 08 A[erewrxoldde)
Joquinu a31e| ® Jey) puy ASyJ,

WY} WOIJ SIJOUdq MIJ ATOA

9ziear o3 readde Aoy Surxy pue Suidewn

3nq Suntoddns 10§ $]00} JO JoqUINU B I8

319Y) ySnoyje 1ey))edIpul Os[e SSuIpuI]

‘uonjeznuionid [njaIed ySnoIy) peonpar oq

ued s3nq paAl] SUO[‘[[10U JI ‘AU JO w1}

Surxy Snq [[eI0A0 o) JBY) 91edIPUI SINSAY
% 19°8S Jo Juowroiduwir aanear e Aq

QInseauw-J AFeIdAR JO swId) ul sayoeordde

aurpeseq uogrodino ued gNOYC eyl
moys asdijog woiy suodar Snq spuesnoy
palpuny B uBy) 2I0W Uo syuowrredxq

(¥100)
‘Te 30 Suex

(#107) "Te 19 Brx

(#102)
‘Te 19 eyes

(€100)
‘Te 19 uel],

pasn
saImeaq

suo)

solq

Synsay

IOUDIBISY

penunuod |y dqel,

pringer

Ns

—_
~
W

A survey on bug prioritization

Fig. 4 Significant technique 148

used
RIPPER

Artificial Neural Networks
Random Forest

Decision Tree

K Nearest Neighbor
SupportVector Machine

Navie Bayes

o
w
oy
o
=
w
[d
o

No. of Papers

Fig. 5 Significant evaluation

; Precision
metrics used

Recall
F-measure
Accuracy
Time

Nearest False rate

o
(O]
[y
o
=
(]
N
o
N
wm

No. of Papers

Random Forests (RT), Artificial Neural Network (ANN), Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) and J48 (Java Implementation of C4.5) classifiers.

6.2 Significant evaluation metrics used

Figure 5 presents the top six evaluation metrics used by researchers to validate their results.
Which shows that precision and recall have used highest number of times. Other evaluation
criteria were F-measure, accuracy, time and false positive rate.

6.3 Significant data set used

The commonly used data sets that researchers used for purpose of bug prioritization can be
seen in Fig. 6. We can see that most significant data sets were Eclipse and Mozilla repositories.
Whereas as other researchers used Gnome, Net beans and Open office etc. It has also explored
that almost all data sets are taken from open source repositories.

6.4 Significant venues

Figure 7 shows a pie chart that presents the number of publications published in different
venues. According to our survey, only IEEE and ACM have published significant work on bug
prioritization. Whereas venues like Science Direct, Wiley, IET that were considered in the
start of systematic literature survey but to the best of our knowledge no work so far had been
published by them. Remaining work on bug prioritization that published on other venues like
Springer, book chapters and other conference proceedings were collected by using Google
scholar and included in category of others.

@ Springer

176 J. Uddin et al.

Eclipse

Mozilla

Open office
Netbeans
Gnome

NASA Projects
Lucene
MysaL

Jboss
Columba

o
w

10 15 20
No. of Papers

Fig. 6 Significant data set used

Fig. 7 Significant venues

Fig. 8 Significant researchers

|

Tian

Nagwani

Lamkanfi

Kanwal
Kim

o
oy
I
w

No. of Papers

6.5 Significant researchers

Kim, Lamkamfi, Kanwal, Nagwani and Tian contributed equally to enrich this field. So, they
are considered as prominent researchers who worked on bug prioritization as can be seen in
Fig. 8.

7 Discussion-gaps

Many studies about bug prioritization receive attention of the researchers. Although, many

success have been achieved, however, there are still missing gaps that need to be filled. We
summarize some of the gaps about bug prioritization process, as follows:

@ Springer

A survey on bug prioritization 177

1. Many researchers have focused on automated bug-report triage using machine learning
methods. The problem with traditional supervised machine learning methods is that these
methods require large amount of labeled data for training the classifier. Since labeled data
is difficult to obtain, so, need extensive effort and expensive to process (Nigam et al. 2012).

2. Though, classifiers performance is improved when it is applied on clustered bug data
sets but the issues with this approach are (1) Goyal et al. (2015) have considered only
single feature for validation, (2) Also, accuracy concern (Nagwani and Verma 2012),
and (3) Cluster purity for large data set (Nagwani and Verma 2011) need to be further
investigated. For that, Karaboga and Ozturk (2011), Naseem et al. (2013) claims meta
heuristics and cooperative clustering approaches can be better alternative for clustering
and classification approaches.

3. Appropriate feature selection is baseline for classification task. Bug classifiers perfor-
mance vary for textual, categorical or combination of both features (Kanwal and Magbool
2012). Thus, more work should be conducted to develop more general appropriate feature
selection to aid bug prioritization. To resolve the issue of vagueness and uncertainty in
bug data one can use mathematical tool like Rough set theory which is considered as best
for such issues (Pawlak et al. 1995).

4. In software development, one cannot afford to provide incorrect priority to the bugs.
Although, using proposed machine learning techniques have provided good results, but
still there is a scope for improvement in terms of accuracy, precision, recall and F-measure.
This is because, researchers on bug-report triage may focus on improving the accuracy of
bug-report triage by using some new clustering with classification approaches to improve
the performance of bug classifiers (Goyal et al. 2015). None of the existing approach has
achieved satisfactory accuracy (e.g., more than 95 %) (Zhang et al. 2015). Due to the
accuracy concern, it is hard to apply existing automatic bug-report triage approaches
in practice. Machine learning and tossing graphs can be tried for bug prioritization as
they have proven to be promising for automated developer assigning for bug reports
Bhattacharya et al. (2012) and Jeong et al. (2009).

5. Research is also needed to investigate the industrial case studies or close source projects
and to apply the existing approaches on comparatively larger data sets (Alenezi and
Banitaan 2013). And also there is need to refine the evaluation criteria to obtain better
picture of strength and weakness of various techniques.

8 Conclusion and future work

When a bug tracking system receives a new filed bug report, the triager makes decisions about
several characteristics of bug reports such as priority and severity levels. The bug priority
level indicates the importance of that bug from business perspective. It gives an indication
of the order in which bug reports should be fixed. Handling these reports manually is time
consuming, and often results in delaying the resolution of important bugs. To address this
issue, a recommender may be developed which automatically prioritizes the new bug reports
with high accuracy. There is reasonable volume of research on bug-report prioritization.
This paper summaries the existing literature which covers a range of work in the field
of bug triaging that specifically deal with bug prioritization. In this survey, we first briefly
discussed some preliminaries. Second, we discussed the related surveys about bug reports
to compare our survey. Third, through systematic literature survey method some statistics
on bug prioritization research to show the amount of work on it was presented. Fourth, a

@ Springer

178 J. Uddin et al.

rather thorough survey on existing bug-report prioritization work was conducted and each
researcher work was explained in detail with pros and cons of all approaches. Fifth, different
types of significant outcomes of our survey were presented. We finally discussed some gaps
and questions that should be completed for further research.

This study focus on bug prioritization however, our future plan is to explore new strategies
and algorithms to improve bug triaging system. Moreover, research gaps presented in the study
is the evidence of research need to enhance the performance of well-known classification
algorithms.

Author contributions Authors whose names appear on the submission have contributed sufficiently to the
scientific work and therefore share collective responsibility and accountability for the results.

Compliance with ethical standards

Informed consent Consent to submit has been received explicitly from all co-authors, as well as from the
responsible authorities—tacitly or explicitly—at the institute/organization where the work has been carried
out, before the work is submitted.

References

Abdelmoez W et al (2012) Bug fix-time prediction model using Naive Bayes classifier. In: 22nd International
conference on computer theory and applications, IEEE, October, pp 167-172. doi:10.1109/ICCTA.2012.
6523564

Alenezi M, Banitaan S (2013) Bug reports prioritization: which features and classifier to use? In: 12th Interna-
tional conference on machine learning and applications, IEEE, pp 112—116. doi:10.1109/ICMLA.2013.
114

Anvik J et al (2005) Coping with an open bug repository technical report UBC-CS-TR-2005-20. In: Proceedings
of the OOPSLA workshop on eclipse technology eXchange. ACM, pp 1-5

Anvik J et al (2006) Who should fix this bug? In: Proceedings of the 28th international conference on software
engineering, pp 361-370

Anvik J, Murphy GC (2011) Reducing the effort of bug report triage. ACM Trans Softw Eng Methodol
20(3):1-35. doi:10.1145/2000791.2000794

Behl D et al (2014) A bug mining tool to identify and analyze security bugs using Naive Bayes and TF-IDF.
In: International conference on reliability optimization and information technology, IEEE, pp 294-299.
doi:10.1109/ICROIT.2014.6798341

Bennett K, Rajlich V (1999) Software maintenance and evolution: a roadmap. In: Proceeding ICSE’00 pro-
ceedings of the conference on the future of software engineering, pp 73-87

Bhattacharya P, Neamtiu I, Shelton CR (2012) Automated, highly-accurate, bug assignment using machine
learning and tossing graphs. J Syst Softw 85(10):2275-2292. doi:10.1016/j.jss.2012.04.053

Brereton P et al (2007) Lessons from applying the systematic literature review process within the software
engineering domain. J Syst Softw 80:571-583. doi:10.1016/j.jss.2006.07.009

Chapin N (2000) Software maintenance Types-A fresh view. In: International conference on software main-
tenance, pp 247-252. doi:10.1109/ICSM.2000.883056

Chaturvedi KK, Singh VB (2012) Determining bug severity using machine learning techniques. In: CSI sixth
international conference on software engineering, IEEE, pp 1-6. doi:10.1109/CONSEG.2012.6349519

Chawla I, Singh SK (2014) Automatic bug labeling using semantic information from LSI. In: Seventh inter-
national conference on contemporary computing, IEEE, pp 376-381. doi:10.1109/1C3.2014.6897203

Cubranic M (2004) Automatic bug triage using text categorization. In: International conference of software
engineering and knowledge engineering, pp 1-6

Dommati SJ et al (2012) Bug classification: feature extraction and comparison of event model using Naive
Bayes approach. In: International conference on recent trends in computer and information engineering,
pp 8-12

Garcia HV, Shihab E (2014) Characterizing and predicting blocking bugs in open source projects categories
and subject descriptors. In: Proceedings of the 11th working conference on mining software repositories,
pp 72-81

@ Springer

http://dx.doi.org/10.1109/ICCTA.2012.6523564
http://dx.doi.org/10.1109/ICCTA.2012.6523564
http://dx.doi.org/10.1109/ICMLA.2013.114
http://dx.doi.org/10.1109/ICMLA.2013.114
http://dx.doi.org/10.1145/2000791.2000794
http://dx.doi.org/10.1109/ICROIT.2014.6798341
http://dx.doi.org/10.1016/j.jss.2012.04.053
http://dx.doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/10.1109/ICSM.2000.883056
http://dx.doi.org/10.1109/CONSEG.2012.6349519
http://dx.doi.org/10.1109/IC3.2014.6897203

A survey on bug prioritization 179

Giger E et al (2010) Predicting the fix time of bugs. In: Proceedings of the 2nd international workshop on
recommendation systems for software engineering—RSSE. ACM Press, New York, NY, USA, pp 52-56.
doi:10.1145/1808920.1808933

Goyal N et al (2015) Advances in intelligent informatics, advances in intelligent systems and computing, vol
320. Springer International Publishing, Cham. doi:10.1007/978-3-319-11218-3

Guo PJ et al (2010) Characterizing and predicting which bugs get fixed: an empirical study of Microsoft
Windows. In: Proceedings of the 32nd ACM/IEEE international conference on software engineering, pp
495-504

Herraiz I et al (2008) Towards a simplification of the bug report form in eclipse. In: Proceedings of the
international working conference on mining software repositories, pp 145-148

Hooimeijer P, Weimer W (2007) Modeling bug report quality categories and subject descriptors. In: Proceed-
ings of the twenty-second IEEE/ACM international conference on automated software engineering, pp
34-43

Jalbert N, Weimer W (2008) Automated duplicate detection for bug tracking systems. In: IEEE international
conference on dependable systems and networks With FTCS and DCC (DSN) pp 52-61. doi:10.1109/
DSN.2008.4630070

Jaweria Kanwal OM (2010) Managing open bug repositories through bug report prioritization using SVMs.
In: Proceedings of the 4th international conference on open-source systems and technologies, ICOSST,
pp 1-7

Jeong G, Kim S, Zimmermann T (2009) Improving bug triage with bug tossing graphs. In: Proceedings of
the the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on the foundations of software engineering, pp 111-120

Jianhong Z et al (2010) A neural network based approach for modeling of severity of defects in function based
software systems. In: International conference on electronics and information engineering, vol 2(Iceie),
pp V2-568-V2-575. doi:10.1109/ICEIE.2010.5559743

Kanwal J, Magbool O (2012) Bug prioritization to facilitate bug report triage.] Comput Sci Technol 27(2):397-
412. doi:10.1007/s11390-012-1230-3

Karaboga D, Ozturk C (2011) A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl Soft
Comput 11(1):652-657. doi:10.1016/j.as0c.2009.12.025

Kaur M, Garg SK (2014) Survey on clustering techniques in data mining for software engineering. Int J Adv
Innov Res 3(4):238-243

Kim S, Ernst MD (2007a) Prioritizing warning categories by analyzing software history. In: Fourth international
workshop on mining software repositories, pp 27-27. doi:10.1109/MSR.2007.26

Kim S, Ernst MD (2007b) Which warnings should I fix first? Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on the foundations of
software engineering—ESEC-FSE, p 45. doi:10.1145/1287624.1287633

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engi-
neering. Engineering 2:1051. doi:10.1145/1134285.1134500

Kremenek T, Engler D (2003) Z-ranking: using statistical analysis to counter the impact of static analysis
approximations. In: Static analysis. doi:10.1007/3-540-44898-5_16

Lamkanfi A et al (2010) Predicting the severity of a reported bug. In: 7th IEEE working conference on mining
software repositories, IEEE, pp 1-10. doi:10.1109/MSR.2010.5463284

Lamkanfi A et al (2011) Comparing mining algorithms for predicting the severity of a reported bug. In: 15th
European conference on software maintenance and reengineering, pp 249-258. doi:10.1109/CSMR.
2011.31

Lazar A et al (2014) Generating duplicate bug datasets. In: Proceedings of the 11th working conference on
mining software repositories, pp 392-395. doi:10.1145/2597073.2597128

Menzies T, Marcus A (2008) Automated severity assessment of software defect reports. In: IEEE international
conference on software maintenance, pp 346-355. doi:10.1109/ICSM.2008.4658083

Mishra S, Kumar S (2015) Survey on types of bug reports and general classification techniques in data mining.
Int J Comput Sci Inf Technol 6(2):1578-1583

Nagwani NK, Verma S (2011) Software bug classification using suffix tree clustering (STC) algorithm. Int J
Comput Sci Technol 4333:36-41

Nagwani NK, Verma S (2012) CLUBAS: an algorithm and Java based tool for software bug classification
using bug attributes similarities. J Softw Eng Appl 5(6):436-447. doi:10.4236/jsea.2012.56050

Naseem R et al (2013) Cooperative clustering for software modularization. J Syst Softw 86(8):2045-2062.
doi:10.1016/].s8.2013.03.080

Nigam A et al (2012) Classifying the bugs using multi-class semi supervised support vector machine. In: Inter-
national conference on pattern recognition, informatics and medical engineering, pp 393-397. doi:10.
1109/ICPRIME.2012.6208378

@ Springer

http://dx.doi.org/10.1145/1808920.1808933
http://dx.doi.org/10.1007/978-3-319-11218-3
http://dx.doi.org/10.1109/DSN.2008.4630070
http://dx.doi.org/10.1109/DSN.2008.4630070
http://dx.doi.org/10.1109/ICEIE.2010.5559743
http://dx.doi.org/10.1007/s11390-012-1230-3
http://dx.doi.org/10.1016/j.asoc.2009.12.025
http://dx.doi.org/10.1109/MSR.2007.26
http://dx.doi.org/10.1145/1287624.1287633
http://dx.doi.org/10.1145/1134285.1134500
http://dx.doi.org/10.1007/3-540-44898-5_16
http://dx.doi.org/10.1109/MSR.2010.5463284
http://dx.doi.org/10.1109/CSMR.2011.31
http://dx.doi.org/10.1109/CSMR.2011.31
http://dx.doi.org/10.1145/2597073.2597128
http://dx.doi.org/10.1109/ICSM.2008.4658083
http://dx.doi.org/10.4236/jsea.2012.56050
http://dx.doi.org/10.1016/j.jss.2013.03.080
http://dx.doi.org/10.1109/ICPRIME.2012.6208378
http://dx.doi.org/10.1109/ICPRIME.2012.6208378

180 J. Uddin et al.

Pawlak Z et al (1995) Rough sets. Commun ACM 38(11):88-95. doi:10.1145/219717.219791

Podgurski A et al (2003) Automated support for classifying software failure reports. In: Proceedings of 25th
international conference on software engineering, vol 6, pp 465-475. doi:10.1109/ICSE.2003.1201224

Punitha K, Chitra S (2013) Software defect prediction using software metrics—a survey. In: International
conference on information communication and embedded systems, pp 2-5

Rus V et al (2009) Towards architecture-centric collaborative software development. In: Zhurnal Eksperimen-
tal’noi i Teoreticheskoi Fiziki

SahaRK et al (2014) An empirical study of long lived bugs. In: Software evolution week—IEEE conference on
software maintenance, reengineering, and reverse engineering, IEEE, pp 144-153. doi:10.1109/CSMR-
WCRE.2014.6747164

Sharma M et al (2012) Predicting the priority of a reported bug using machine learning techniques and
cross project validation. In: 12th International conference on intelligent systems design and applications
(ISDA), IEEE, pp 539-545. doi:10.1109/ISDA.2012.6416595

Somasun D, Murphy GC (2012) Automatic categorization of bug reports using latent Dirichlet allocation.
In: Proceedings of the 5th India software engineering conference, pp 125-130. doi:10.1145/2134254.
2134276

Thung F et al (2012) When would this bug get reported? In: 28th IEEE international conference on software
maintenance, IEEE, pp 420-429. doi:10.1109/ICSM.2012.6405302

Tian Y et al (2012) Information retrieval based nearest neighbor classification for fine-grained bug severity
prediction. In: 19th Working conference on reverse engineering, pp 215-224. doi:10.1109/WCRE.2012.
31

Tian Y etal (2013) DRONE: predicting priority of reported bugs by multi-factor analysis. In: IEEE International
conference on software maintenance, IEEE, pp 200-209. doi:10.1109/ICSM.2013.31

Vans AM (1999) Program understanding behavior during corrective maintenance of large-scale software. Int
J Hum Comput Stud 51:31-70

Xia X et al (2014) An empirical study of bug report field reassignment. In: Software evolution week—IEEE
conference on software maintenance, reengineering, and reverse engineering, IEEE, pp 174—183. doi:10.
1109/CSMR-WCRE.2014.6747167

Xuan J et al (2012) Developer prioritization in bug repositories. In: 34th International conference on software
engineering (ICSE), IEEE, pp 25-35. doi:10.1109/ICSE.2012.6227209

Yang G et al (2014) Towards Semi-automatic bug triage and severity prediction based on topic model and
multi-feature of bug reports. In: IEEE 38th annual computer software and applications conference, IEEE,
pp 97-106. doi:10.1109/COMPSAC.2014.16

Yu L et al (2010) Predicting defect priority based on neural networks. Adv Data Min Appl Lect Notes Comput
Sci 6441:356-367

Zanetti MS et al (2013) Categorizing bugs with social networks: a case study on four open source software
communities. In: 35th International conference on software engineering, IEEE, pp 1032-1041. doi:10.
1109/ICSE.2013.6606653

Zhang J et al (2015) A survey on bug-report analysis. Sci China Inf Sci 58(2):1-24. doi:10.1007/s11432-014-
5241-2

Zhang T, Lee B (2013) A hybrid bug triage algorithm for developer recommendation. In: Proceedings of the
28th annual ACM symposium on applied computing, p 1088. doi:10.1145/2480362.2480568

@ Springer

http://dx.doi.org/10.1145/219717.219791
http://dx.doi.org/10.1109/ICSE.2003.1201224
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747164
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747164
http://dx.doi.org/10.1109/ISDA.2012.6416595
http://dx.doi.org/10.1145/2134254.2134276
http://dx.doi.org/10.1145/2134254.2134276
http://dx.doi.org/10.1109/ICSM.2012.6405302
http://dx.doi.org/10.1109/WCRE.2012.31
http://dx.doi.org/10.1109/WCRE.2012.31
http://dx.doi.org/10.1109/ICSM.2013.31
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747167
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747167
http://dx.doi.org/10.1109/ICSE.2012.6227209
http://dx.doi.org/10.1109/COMPSAC.2014.16
http://dx.doi.org/10.1109/ICSE.2013.6606653
http://dx.doi.org/10.1109/ICSE.2013.6606653
http://dx.doi.org/10.1007/s11432-014-5241-2
http://dx.doi.org/10.1007/s11432-014-5241-2
http://dx.doi.org/10.1145/2480362.2480568

	A survey on bug prioritization
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Software bug, bug reporting and bug tracking system
	2.2 Bug repository
	2.3 Bug attributes
	2.4 Interactions with bug report
	2.5 Bug triaging system
	2.6 Life cycle of bug fixing
	2.7 Why bug prioritization?
	2.8 Prioritization levels of bug

	3 Related work
	4 Method
	4.1 Review protocol Step 1 (84 papers)
	4.2 Review protocol Step 2 (32 papers)

	5 Literature review discussion
	5.1 Classification and information retrieval techniques
	5.2 Categorization approaches
	5.3 Other approaches

	6 Significant results
	6.1 Significant techniques used
	6.2 Significant evaluation metrics used
	6.3 Significant data set used
	6.4 Significant venues
	6.5 Significant researchers

	7 Discussion-gaps
	8 Conclusion and future work
	Author contributions
	References

