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Abstract Daily large number of bug reports are received in large open and close source
bug tracking systems. Dealing with these reports manually utilizes time and resources which
leads to delaying the resolution of important bugs. As an important process in software main-
tenance, bug triaging process carefully analyze these bug reports to determine, for example,
whether the bugs are duplicate or unique, important or unimportant, and who will resolve
them. Assigning bug reports based on their priority or importance may play an important
role in enhancing the bug triaging process. The accurate and timely prioritization and hence
resolution of these bug reports not only improves the quality of software maintenance task but
also provides the basis to keep particular software alive. In the past decade, various studies
have been conducted to prioritize bug reports using data mining techniques like classifica-
tion, information retrieval and clustering that can overcome incorrect prioritization. Due to
their popularity and importance, we survey the automated bug prioritization processes in a
systematic way. In particular, this paper gives a small theoretical study for bug reports to
motivate the necessity for work on bug prioritization. The existing work on bug prioritization
and some possible problems in working with bug prioritization are summarized.

Keywords Survey - Bug report - Bug prioritization - Bug triaging - Classification -
Clustering
1 Introduction

In large software development systems, bug triaging is an important activity of software
testing. It helps in software bug management, while taking critical decisions related to the
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software bugs fixing. It involves process like assigning appropriate developer to the bug who
could fix it, analyzing which bug needs immediate attention and which one does not, and
finding duplicated ones. However, manual bug triaging becomes quite time consuming and
tedious because being a significant part of software development it takes up considerable
amount of time and resources. As of August 2009, the Mozilla bug database contains over
500,000 and the Eclipse bug database over 250,000 bug reports. On average, Mozilla received
170 and Eclipse 120 new bug reports on each day from January to July 2009 (Guo et al. 2010).
So, we can say that in case of large and open source software systems, large number of bugs
are reported per day, which ultimately increases the software maintenance time and cost.

In the process of bug triage, a triager takes a decision about the bugs entered in the bug
repository by analyzing them in two ways. In repository-oriented decisions, after verifies that
the reported bug is not a duplicate bug, the triager checked it for validity, i.e. is it a real bug
or not. The motivation behind these decisions is to remove the bug reports that do not need
to be resolved. Remaining bug reports are investigated for development-oriented decisions
where the triager examine severity and priority levels of the bugs. These levels are changed
by him if inappropriate, so that critical bugs will be given time and resources (Anvik and
Murphy 2011). After this, triager writes remarks for the bug and assigns this bug report to
the suitable developer to resolve the bug. Hence there arises a need to develop an automated
system for bug triaging so as to save developer’s time and efforts, ultimately leading to save
resources of the organization. Researchers addressed this problem by automating its various
aspects like identification of duplicate bugs in Jalbert and Weimer (2008) and Lazar et al.
(2014). Assigning a bug to an appropriate developer who could fix it in Cubranic (2004)
and Zhang and Lee (2013). Kremenek and Engler (2003), Jaweria Kanwal (2010) and Yang
et al. (2014) worked on classifying the priority of bugs. Similarly, severity of the bugs in
Jianhong et al. (2010), Chaturvedi and Singh (2012) and task of grouping similar bug reports
was performed in Anvik et al. (2005), Nagwani and Verma (2012).

As an essential part of bug triaging process the bug prioritization task becomes very impor-
tant for big size projects specially an open source project because the responsiveness of a
project is usually measured by the number of outstanding bug reports in the repository and
how quickly a bug report is addressed (Jaweria Kanwal 2010). Bug prioritization process usu-
ally performed manually which makes it error-prone and require intensive effort. It depends
massively on the triager perception and experience. Many bug reports may have been assigned
incorrect priority levels and many of them may usually left blank. Wrong assignments of
priority levels may result ineffective utilization of resources (for example time and efforts
need to fix unimportant bugs first) (Alenezi and Banitaan 2013). To prioritize bug reports
developers need an automated approach to solve the aforementioned problems. For achieving
these tasks, researchers have used several machine learning approaches such as Decision Tree
(DT) by Giger et al. (2010), Alenezi and Banitaan (2013), Garcia and Shihab (2014), Support
vector machine(SVM) classification algorithm by Jaweria Kanwal (2010), Chaturvedi and
Singh (2012), Naive Bayes (NB) classifier by Lamkanfi et al. (2010), Chaturvedi and Singh
(2012) and Random Forest (RF) by Alenezi and Banitaan (2013), Goyal et al. (2015). Sim-
ilarly, researchers have published surveys in this bug triaging field like Punitha and Chitra
(2013) and Zhang et al. (2015), where they have investigated bug report analysis and software
defects prediction using software metrics. Despite of reasonable work published on assign-
ing appropriate priority level to the reported bug, our research study particularly focuses on
a survey of bug prioritization. The main objectives of this research can be summarize as
follows,
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1. To review the existing literature for exploring what and how much work is published so
far.

To track the trends of research in this area,

To identify the significances of this field,

To identify the problems faced by researchers and

To present the impacts of automated bug prioritization

AR N

Kitchenham and Charters (2007) systematic literature survey approach has been adopted
for this survey to reduce the possibility of researcher bias. This paper reports our study plan in
the form of two survey protocols from year 2003 to 2015 using five online search engines and
the selected search terms. The rest of this paper is organized as follows. Section 2 presents
some terms mostly used in bug prioritization and bug triaging. Section 3 shows a comparative
study of existing surveys and our survey. Section 4 explains our research method. Section 5
reviews the result of our survey by exploring existing work on bug prioritization. Section 6
presents significance outcomes of this survey. Section 7 summarize some research gaps that
were explored during the survey, and finally, Sect. 8 concludes the paper.

2 Preliminary

This section, explains some basic concepts of bug prioritization method, life-cycle of bug
reports, useful attributes as well as terms related to bug triage system.

2.1 Software bug, bug reporting and bug tracking system

A defect or a flaw in the software is called a bug, it indicates the unexpected behavior of a
software system (Nagwani and Verma 2011). Mostly, bugs arise from mistakes made by the
development team in gathering requirements, designing or in coding and a few are caused
by compilers. A program with large number of bugs is known as buggy program (Nigam
et al. 2012). A bug report is a document that is submitted by a developer, tester, or end-user
of a system. It describes the defect(s) that occurred. Such documents generally describe the
situations in which the software does not behave as it is expected, i.e. fails to fulfill the
expected requirements.

This bug reporting and fixing is an important phase of software development, refinement
and maintenance for both open and close source projects. Various bug reporting systems have
been developed for submission or reporting of a bug and tracking their progress of fixing.
Bug reporting and tracking systems provide a platform to record the problems/failures faced
by the client or user of the software. Nowadays, users of software systems are encouraged
to report the bugs they encounter, using bug tracking systems such as Jira! and Bugzilla.?
These systems are designed for quality assurance and helps the programmers to keep track
of reported software bugs in their work. These reporting systems allow users to report, track,
describe, comment on and classify bug reports and feature requests. An example of bug
appear and detected in Mendeley® software is depicted in Fig. 1. While, Fig. 2 presents the
overview and content detail of a sample bug report taken from Eclipse bug repository.

! www.atlassian.com/software/jira.

B www.bugzilla.org.

3 www.mendeley.com.
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AR MENDELEY

Our server has caught a bug...

Mendeley is a huge system and although we try to make sure that all our code
works seamlessly together, sometimes a bug or two can slip through.

We apologize and hope this has not ruined your experience. In fact, please help
us to make the site better by visiting our feedback forum.

We have already sent an error report to ourselves, and we will be fixing this bug
as soon as possible. Nevertheless, you can help us by contacting support about
what you were doing before this page appeared — this allows us to fix things even
quicker, and you can even check back to see how we are getting along. Please
quote EID "merr-5456db7b3cd8a" when doing so.

Thank you,

The Developers

Date: 3/11/14, 9.36am

Fig. 1 Bug caught in Mendeley

» . .
eclipse Eclipse bugs
Bugzilla Bug 193787 Unecessary scrollbars in preferences Last modified 2007-06-25 14:30.52
Bug List: (This bug is not in your last search results) Show last searchresults  Searchpage  Enter new buy
[Eclipse] Bug#: 193787 Hardware: [PC | Reporter: = = 3
;: >C: |
Broduct [Fisforn. . _ 0S: [Windows 3P Add CC: L
('omgonenll V] (Choose Subcomponent) Version: [33_5] R ded = —
- — = e —
Stams: TEW Prioritv: [P35 | =—— |
i g 2 C——
Resolution: Severity: [romel | c————— |
Assigned To: Platform-Ul-Inbox <Platform-Ul-Inbox@ectpse. o8> Tayget Milestone E_ 18 I‘b—:_——— )
S ————
e d

CC:
@ Leave as NEW
© Accept bug (change status to ASSIGNED)
© Resolve bug, changing resolution  [FIED

© Resolve bug. mak 23 dyglicated ‘g #
© Reassign bug ql (Choose Developer) latiorm-UHnbox@edlipse.org |

O Reassign bug to default assignee and QA contact of selected component
Comm

View Bug Activity | Fonmat For Printing | XML | Clone This Bug

Description: [seply) Opened: 2007-06-21 1251

I've noticed vhen I click through the preferences pages, sometimes pages have
vertical scrollbars even though they don't need one. The extra scroll bar isn't
too bad, but it also puts the Restore and Apply buttons off the bottom of the
page (requiring a scroll), even though there is usually plenty of room.

The easiest vay to reproduce is to click quickly back and forth among the

Fig. 2 Bug report sample from Anvik and Murphy (2011)

2.2 Bug repository

A bug repository is one of the most important software repositories, which is considered as a
vital data base in modern software developments. Both users and developers can report bugs
to bug repositories supported by software development projects. These projects are burdened
by the rate at which new bug reports appear in the bug repository. One potential advantage of
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an open bug repository is that it may allow more bugs to be identified and solved, improving
the quality of the software.

The widely available bug repositories have provided an important platform for investi-
gating the quality of software. With the growth in scale, developers in large projects must
handle a large number of bugs in bug repositories. For example, from Oct. 2001 to Dec.
2010, the bug repository of an open source project, Eclipse has recorded 333371 bugs (Xuan
et al. 2012). There are at least two important advantages of such type of a bug repository.
First, the bug repository allows users all around the world to be testers of the software, so it
can increase the possibility of revealing defects and thus increase the quality of the software.
Second, it helps the software evolve according to users requests, and meet the requirements
of more users.

2.3 Bug attributes

A software bug reports have many attributes, some of which are filled at the time of reporting
and others are filled during the process of fixing. Some attributes are qualitative in nature
but some are quantitative. A clear understanding of bug attributes, their interdependence
and their contribution in predicting the other attributes will help in improving the quality of
software. Table 1 presents an example of bug repository which shows bug report features
and class taken from Eclipse bugs data set. Some attributes are categorical such as bug-id,
date of submission, component, product, resolution, status, severity (how serious bug is),
priority (how important bug is, represented normally as levels P1-P5 with P1 being most
important), platform, operating system, reporter, assignee, cc-list, and some are text fields
such as summary and long description. Some of the categorical fields are fixed at the time of
report submission, e.g. bug id, report submission time and reporter name. Some fields such
as product, component, severity, priority, version, platform and operating system are entered
by the reporter but may be changed by the triager or developer if needed (Jaweria Kanwal
2010). Bug attributes also comprises of developer who resolves the bug, list of people who
are interested in bug resolution, bug-status, and resolution, change throughout bug life time.
The free form text includes the title of report, a full description of the bug, and additional
comments. The full description typically contains an elaborated description of the effects of
the bug and any necessary information for a developer to handle bug report. The additional
comments include discussions about possible approaches to fixing the bug, and pointers to
other bugs that contain additional information about the problem or that appear to be duplicate
reports. Reporters and developers may provide attachments to reports to provide non-textual
additional information, such as a screen shot of erroneous behavior (Anvik et al. 2006).

2.4 Interactions with bug report

People play different roles as they interact with reports in a bug repository. The person who
submits the report is known as reporter or the submitter of the report. The triager is the
person who decides if the report is meaningful and who assigns responsibility of the report
to a developer. The one that resolves the report is the resolver. A person that contributes a
fix for a bug is called a contributor. A contributor may also contribute comments about how
to resolve a bug or additional information that leads to the resolution of a report. A person
may assume any one of these roles at any time. For example, a triager may resolve a report
as the duplicate of an existing report. Alternatively, a developer may submit a report, assign
it to himself, contribute a fix, and then resolve the report. For that report, a single person has
fulfilled all the roles (Anvik et al. 2006).
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Table 1 Bug repository: bug report features and class label

Bug ID Product Component Summary Opened oS Class

9649 IDT Debug Can’t rebuild all, 2/13/2002 11:01 Linux-Motif P1
never returns

80406 Platform Ul [DynamicUI] 12/7/2004 14:24 Windows XP P1
NPE trying to
open GIF file

6582 DT Debug VM Preference 12/5/2001 7:17 All P1
Page, Checkbox
Table Viewer
has no columns
anymore

40673 DT Debug Detected JRE not 7/23/2003 13:50  Linux P1
set correctly

77462 Platform Debug CVS Plug-in fails 11/2/2004 6:40 Windows XP Pl
to start

2.5 Bug triaging system

According to Hooimeijer and Weimer (2007), triage is the act of inspecting a bug report,
understanding its contents, and making the initial decision regarding how to address the
report. In the normal flow of the bug process, someone discovers a bug and creates the
respective bug report, then the bug is assigned to a developer who is responsible for fixing it
and finally, once it is resolved, another developer verifies the fix and closes the bug report.
Bug triaging is analyzing these bug reports to determine, for example, duplicate or unique,
important or unimportant, and who will resolve them. It is one of the important software
maintenance activities. The task of triaging becomes very important for software projects
because the responsiveness of a project is usually measured by the number of outstanding
bug reports in the repository and how quickly a bug report is addressed (Jaweria Kanwal
2010).

2.6 Life cycle of bug fixing

In IEEE Standard 1219 (Bennett and Rajlich 1999), the software maintenance is defined as,
“The modification of a software product after delivery to correct faults, to improve perfor-
mance or other attributes, or to adapt the product to a modified environment”. Among the types
of software maintenance, the corrective and adaptive get the most attention (Chapin 2000).
During corrective maintenance, the programmer has to understand the software enough to
analyze a problem, locate the bug and determine how it should best be fixed without breaking
anything (VANS 1999). There are different states in which a bug report can experience in
its life-cycle. Figure 3 depicts the life-cycle of bugs in Bugzilla-based projects. When a new
bug report is filed, it is assigned a NEW state. Once it has been triaged and assigned to a
developer, its state is then changed to ASSIGNED. After closing this bug, its state is set
to RESOLVED, VERIFIED or CLOSED. The resolution to this bug is marked in several
ways; the resolution status in the report is used to record how the report was resolved. If
the resolution results in changing code base, this bug is marked as FIXED. When a bug is
considered as a duplicate to other bugs, it is set to DUPLICATE. If a bug will not be fixed,
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——‘[ UNCONFIRMED ]

Indeed a bug
v
| NEW
4 developer Deehefstug
changed
Developer has takes_
solved the bug POSSESSIOn
of the bug
v
Resolutions of status [ ASSIGNED  je dev;?oper
RESOLVED The bug takes
FIXED has been Solution possession
WONTFIX resolved is not of the bug
WORKSFORME satisfied

DUPLICATE 'I RESOLVED ]—’[ REOPEN ]

INVALID 7 Y )
Solution worked
Bug is reopened
[ VERIFIED |
No occurrence of the bug is reopened
Bug is reopened
[ CLOSED ]

Fig. 3 Bug report life cycle (Zhang et al. 2015)

or it is not an actual bug, it will be set to WONTFIX or INVALID respectively. If a bug was
resolved but has been reopened, it is marked as REOPENED (Alenezi and Banitaan 2013).

2.7 Why bug prioritization?

Software developers spend a significant portion of their resources handling user-submitted
bug reports. For a software that is widely deployed, the number of bug reports typically
outstrips the resources available to triage them. As a result, some bug reports may be dealt
with too slowly or not at all. Boehmand Basili claims that maintenance consumes over 70 %
of the total life cycle cost of a software product (Hooimeijer and Weimer 2007). In Anvik
et al. (2000) article on page 361, it is mentioned that “Consider the case of the Eclipse open
source project over a four month period (January 1, 2005 to April 30, 2005) when 3426
reports were filed, averaging 29 reports per day. Assuming that a triager takes approximately
five minutes to read and handle each report, two person-hours per day is to be spent on this
activity. If all of these bugs led to improvements in the code, this might be an acceptable cost
to the project”. Main aim of automated bug prioritization is reducing the time spent triaging.

Bug tracking systems allow users to select a severity for the bug they have found. Users
assign severity, and developers give priority to the reports depending on their severity. One
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of the major problems when assigning severity to a bug is that a reporter might not be the best
qualified to determine exactly what type the defect falls into. Another issue is that to submit
a report it is required to know the precise difference between the categories, and this is not
always the case (Herraiz et al. 2008). Developers are usually unable to cope with all the bugs
that are notified as they are submitted. They need to prioritize them. They need to determine,
for any particular bug, how important it is, and allocate their time and resources according to
such prioritization. Correct prioritization of bugs helps in bug fix scheduling/assignment and
resource allocation. Failure of this will result in delay of resolving important bugs (Sharma
et al. 2012).

2.8 Prioritization levels of bug

During bug triaging, a software development team decide how soon bugs needs to be fixed,
using different categories. For example, researchers like Yu et al. (2010) and Lamkanfi et al.
(2011) used four priority categories that are (P1) as soon as possible; (P2) before the next
product release; (P3) may be postponed; (P4) bugs never to be fixed. Five category priority
level scheme (thatis P1, P2, P3, P4, and P5) adopted by most researchers for example Kanwal
and Magbool (2012) and Garcia and Shihab (2014). Also, in Bugzilla there are same 5 priority
levels:P1 is the highest priority and often the software system can only be shipped if these
high priority bugs are fixed. P5 on the other hand is the lowest priority and bugs assigned this
priority might remain unfixed for a long period of time (Tian et al. 2013). If the bug triager
is uncertain about the priority of a bug or it is actually a normal bug, she can set P3 priority
which is the default priority (Saha et al. 2014). Then the assigned developer can adjust it if
appropriate.

3 Related work

Researchers have been studying on bug report prioritization, detecting duplicate bugs and
developer assignment. In addition, there are a number of studies compiling up-to-date devel-
opments in this field. In other words, some researchers focus on surveying about bug reports
and their triaging.

Punitha and Chitra (2013) presented a survey on software defect prediction using software
metrics. They focuses in identifying defective modules and the scope of software that needs
to be examined for defects can be prioritized. The goal of their research is to help developers
identify defects based on existing software metrics using data mining techniques and thereby
improve software quality which ultimately leads to reducing the software development cost
in the development and maintenance phase.

A survey on clustering techniques in data mining for software engineering was conducted
by Kaur and Garg (2014). They explore the useful data mining techniques for software
engineering tasks of programming, testing, bug detection, debugging and maintenance. In
their survey they provide the discussion of data mining specifically clustering techniques.
They concluded that every technique has to solve different problems and have their own
advantages and disadvantages. There is no such clustering technique and algorithm exists
that is used to solve all the problems and is a best fit for all applications.

Mishra and Kumar (2015) presented survey on types of bug reports and general clas-
sification techniques in data mining. Their study shows types of bug reports and various
classification techniques widely used in data mining like statistical and soft computing
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approaches. Their work shows importance of classification techniques in data mining process
especially when dealing with bug reports.

To review the work on bug-report analysis, Zhang et al. (2015) presented an exhaustive
survey on the existing work on bug-report analysis. After introducing some preliminaries, they
presented some statistics on practical bug reports to show that ensuring bug reports quality,
automating bug reports triage and localization are indeed urgent to be solved. Then they
conducted a rather thorough survey on existing bug-report analysis work, mainly including
bug-report optimization, bug-report triage, and bug fixing. They concluded that among the
work in bug-report analysis, machine learning and information retrieval are main techniques
widely used. Also, researchers need to improve the accuracy of existing automatic approaches.

We summarize the above mentioned surveys and current survey with respect to contents
of several aspects of bug prioritization in Table 2. The “generally analyzed” are the topics
that are just defined or generally discussed. Whereas, “deeply analyzed” are those topics
that are discussed with more detail in concerned articles. It can be seen from this table
that our survey deeply analyzed the several contents of bug prioritization as compared to
other surveys. Though, Zhang et al. (2015) tried to cover wide range of work on bug report
thoroughly, but our survey will explore the field of bug prioritization specifically.

4 Method

We follow Kitchenham approach (Kitchenham and Charters 2007) for conducting this survey.
Kitchenham defines three main steps for a systematic review process: planning the review,
conducting the review, and reporting the review. He suggested that a pre-defined protocol
is necessary to reduce the possibility of researcher bias. We followed the guidelines for
conducting systemic literature review which have also been proposed in previous examples
Kitchenham and Charters (2007) and Brereton et al. (2007).

The collected articles are published during the years 2000 to 2015. Moreover, a Bib TeX
library using Mendeley is developed for managing the papers. In this survey, we reviewed 84
journal and conference papers. There was a two-step review process and protocol built for cut-
ting down the paper number to 32. Both qualitative (Sect. 5) and quantitative (Sect. 6)analysis
were conducted for the selected papers.

4.1 Review protocol Step 1 (84 papers)

For our survey, five search venues are targeted. They are:

Institute of Electrical and Electronics Engineers (IEEE Xplore )
Association for Computing Machinery (ACM Digital Library)
Science Direct

Wiley (Wiley Online Library)

The Institution of Engineering and Technology (IET)

IRl e

The related papers which were not found in the given 5 venues were downloaded by using
Google Scholar and are added in “Other” category. Our search terms help to determine the
scope of our definition of bugs prioritization since many of the terms include the word “Bugs”
such as; bugs classification, duplicate bugs, bug fixing, bug assignment, bug triaging, and
bug tracking system. The search conditions and terms that we used included terms for bugs
prioritization in conjunction with terms for possible outcomes, impacts or effects of bugs
prioritization process. Some of search terms are chosen from frequent key words in the bug
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Table 2 Comparison of previous surveys and current study

Comparison Survey papers
attributes
Zhang et al. Mishra and Kaur and Garg Punitha and Current
(2015) Kumar (2015) (2014) Chitra (2013) survey
Bug report
Preliminaries wk * * * H3k
Issues *% * * * Ee
Analysis *E - _ _ B
Bug prioritization approaches
Classification * K - # w5k
Information * * - _ EE
retrieval
Classification by * - ok — ok
clustering
Other techniques * * - - ok
Evaluation components
Data sets - * - - ke
Metrics - - - ok EE
Discussion - - - * *
Significance of survey
Systematic survey ~ * - - - ok
Significance ok - #* _ ok
findings
Future directions wE - * _ ok

—, not mentioned; *, generally analyzed; **, deeply analyzed

prioritization articles while, remaining search terms are selected manually that covers the

scope of bug prioritization. Search terms used for our survey are:

— Bug priority

Bug prioritization

Bug priority classification
Reported bug priority prediction
Bug report priority prediction

84 papers were found from academic journals, conference proceedings and book chapters
worldwide. Table 3 summarizes the total retrieved and filtered results.

4.2 Review protocol Step 2 (32 papers)

Step two reduces the number of research papers from 84 to 32, by applying the selection

criteria that is,

1. Removing the duplicate papers that is the papers that are retrieved by more than one

search terms.
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Table 3 Search terms retrieved and filtered results

Search terms IEEE ACM SD Wiley IET
R F R F R F R F R F

Bug priority 45 8 2659 20 544 0 3411 1 43 0
Bug prioritization 31 7 554 3 544 0 393 1 0
Bug priority classification 4 619 12 1487 1 1009 0 0
Reported bug priority prediction 7 6 272 12 767 0 746 0 8 0
Bug report priority prediction 7 5 358 4 948 0 746 0 8 0
Total 96 30 4462 51 4290 1 6305 2 6l 0
R retrieved, F filtered, SD Science Direct
:sgléat:p g :Z;EX fr r;)tocol Step 1 Step 1 filtration Step 2 filtration

IEEE 30 18

ACM 51 5

Science Direct 1 0

Wiley 2 0

IET 0 0

Others 0 9

Total 84 32

2. Selecting papers specifically dealing with bug prioritization process.
3. Removing papers that are dealing with other tasks of bug triaging system like developer
assigning, duplicate bug detection and bug report analysis.

Table 4 summarizes the review protocol Step 1 and Step 2 results. While Table 5 gives year
wise summary of final results. Based on this two-step review protocol, next section describes
and analyzes the collected data from the 32 chosen reviewed papers.

5 Literature review discussion

In this Sect. 32 papers of the researchers that worked on bug prioritization are reviewed.
Different data mining approaches like classification, information retrieval, classification by
clustering and categorization were adopted to prioritize bug reports. Studies about bug priori-
tization using data mining techniques can be grouped into three major classes. The first group
consists of studies focusing on main classification and information retrieval approaches. The
second group of researchers focuses on categorization bug reports in order of importance.
The last group of studies performs other novel approaches to deal with bug prioritization
issue. Each group will be discussed separately in subsequent subsections.

5.1 Classification and information retrieval techniques

Podgurski et al. (2003) proposed automated support for classifying reported software fail-
ures so as to facilitate prioritizing and diagnosing their causes. A classification strategy
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Table 5 Year wise summary of

filtered papers Year No. of filtered papers

2003 2
2007 2
2008 1
2009 1
2010 4
2011 2
2012 10
2013 2
2014 7
2015

Total 32

that involves the use of supervised and unsupervised pattern classification and multivariate
visualization is presented. The resulting classification is then used to assess the operational
frequency and severity of failures caused by particular defects and to diagnose those defects.
The methodology involved is subject programs inputs, feature selection, cluster analysis,
visualization and manual examination. With a relative simple type of classifier and with
coarse grained execution profiles the results proved it to be an effective strategy.

Artificial Neural Network(ANN) technique was used to predict defect priorities by Yu
et al. (2010). They improved the efficiency of troubleshooting, by proposing to employ
neural network technique to predict the priorities of defects, adopt evolutionary training. A
framework is built up for the model evaluation, and a series of experiments on five different
software products of an international healthcare company to demonstrate the feasibility and
effectiveness. The threefold cross-test in both the closed test and opening test ways were
executed. Compared with Bayes algorithm, the ANN model showed better qualification in
terms of recall, precision and F-measure. The comparison was carried on the RIS2.0 software
project with sample size about 2000 bug reports.

Meanwhile a classification-based approach to create a bug priority recommender was
presented by Jaweria Kanwal (2010), which assigns a priority level to new bug reports in a
bug repository. Priority assignment assists triager in resolving the important bugs first. The
main contributions were proposing the machine learning based approach SVM for automatic
assignment of bug priority to new bug reports in open source bug repository, exploring the bug
report attributes that contribute more towards determining the priority of a bug and evaluating
the affect of training data set size on the accuracy of bug priority recommender. Experimental
evaluation of their recommender using precision and recall measures reveal the feasibility of
their approach for automatic bug priority assignment.

Lamkanfi et al. (2010) in the first stage investigated whether they can accurately predict
the severity of a reported bug by analyzing its textual description using text mining algorithm
Naive Bayes classifier. They evaluated the performance of predictions based on three cases
drawn from the open-source community. This study motivates researchers to implement a
more automated and more efficient bug triaging process. They investigated whether the longer
description included in a bug report would result in a better predictor. Performance of their
approach stabilizes in terms of precision and recall for GNOME as compared to Mozilla and
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Eclipse. They concluded that how soon a reported bug needs to be fixed partly depends on
its severity.

In the second stage Lamkanfi et al. (2011), reported on a follow-up study where they
compare four well-known text mining algorithms with respect to accuracy and training set
size. They discovered that for the cases under investigation of two open source systems which
algorithm performs superior compared to the other proposed algorithms. Steps involved in
their approach are extract and organize and preprocessing the bug reports, training of the
predictor, predicting the severity and hence concluding that Naive Bayes Multinomial is
best suited for the purpose of classifying bug reports. They also deduce from the resulting
classifiers, that the terms indicating the severity of a bug report are component dependent.
Their work contributed well in a way that current research can be combined with this approach
to improve the overall reliability of more automated bug triaging process.

To demonstrate the applicability of various machine learning algorithms in determining
the class of bug severity based on the textual summary of the bug report Chaturvedi and Singh
(2012) made an attempt. The applicability of algorithm in determining the various levels of
bug severity for bug repositories has been validated using various performance measures by
applying fivefold cross validation. They observed that the performance of machine learning
techniques stabilizes as we increase the number of terms. F-measures of the data sets for
severity level 2, 3 and 4 are more than 80 and 90 % for all most all the techniques. Based on
the models developed, the severity level for the newly submitted bug reports can be predicted
which will be helpful in automatic determination of severity level.

Abdelmoez et al. (2012) used Naive Bayes (NB) classifier to compute prediction model
that will distinguish the very fast and the very slow bugs in order to prioritize which bugs to
start with and which to exclude at the mean time respectively. They take into consideration
the development effort coordination and addressed two questions that are which bug to fix
first and how long it will take to fix. They gathered data from four software systems, using 17
attributes only from every bug report of the chosen systems, as they are the most commonly
used attributes. Procedure of their work is they first obtain bug report information and than
compute using NB algorithm. NB shows with better prediction performance.

Meanwhile, Dommati et al. (2012) focuses on the feature extraction, noise reduction in
data and classification of network bugs using probabilistic Naive Bayes approach’s different
event models like Bernoulli and Multinomial on the extracted features. New unseen bugs are
given as input to the algorithms, the performance comparison of different algorithms is done
on the basis of accuracy and recall parameters. They concluded from the results that there is
need to go into semantics of bug information. They had successfully extracted some of the
bug specific features. By analyzing and depending on the static analysis of the bug reports,
the feature extraction and selection has been performed.

This time in the next part of their work, Kanwal and Magbool (2012) proposed and
evaluated a classification based approach to build bug priority recommender. They used two
classifiers, and presented a comparison to evaluate which classifier performs better in terms
of accuracy. Another evaluation that they performed was to determine the combination of
features that better determines the priority of a bug. They also proposed two new measures,
Nearest False Negatives (NFN) and Nearest False Positives (NFP), which provide insight
into the results produced by precision and recall. The main contributions were proposing and
evaluating a classification based approach for automatic bug priority prediction, exploring
different features, defining new measures for the evaluation of bug priority recommender.
The highest accuracy is achieved with SVM when categorical and text features are combined
for training.
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Sharma et al. (2012) evaluated the performance of different machine learning techniques
in predicting the priority of the newly coming reports on the basis of different performance
measures. They use summary feature of bug report to predict the priority of newly coming
bug report. Also, they used series of operators in Rapid Miner for pre-processing of the bug
reports like stop words removal and tokenization. Evaluation of model has been done by
applying cross project validation for 76 cases of five data sets of Open office and Eclipse
projects. The accuracy of different machine learning techniques in predicting the priority of
a bug report with in and across project is found better except Naive Bayes.

Thung et al. (2012) analyzed bugs from three Java software systems. They extracted
bug reporting data from version control repositories and bug tracking systems, identify bug
locations based on bug fixes, and back-trace bug introducing time based on change histories of
the buggy code. Also, they removed nonessential changes, and most importantly, recover root
causes of bugs from their treatments/fixes. Then they calculated the bug reporting latencies,
and found that bugs have diverse reporting latencies. Based on the calculated reporting
latencies and features they extracted from bugs, they build classification models that can
predict whether a bug would be reported early (within 30 days) or later, which may be helpful
for prioritizing bug fixing activities. Their evaluation on the three software systems shows
that their proposed bug reporting latency prediction models could achieve an AUC (Area
Under the Receiving Operating Characteristics Curve) of 70.869 %.

To automatically predict the severity of bug reports a new approach leveraging information
retrieval based nearest neighbors in particular BM25-based document similarity function was
proposed by Tian et al. (2012). Their approach automatically analyzes bug reports reported
in the past along with their assigned severity labels, and recommends severity labels to newly
reported bug. They focused on predicting fine-grained severity labels, namely the different
severity labels of Bugzilla including: blocker, critical, major, minor, and trivial. Compared to
the existing state of the art study on fine-grained severity prediction, the proposed approach
brings significant improvement.

Xuan et al. (2012) have addressed the problem of the developer prioritization, which
aims to rank the contributions of developers. They mainly explored two aspects, namely
modeling the developer prioritization in a bug repository and assisting predictive tasks with
their model. First, they modeled how to assign the priorities of developers based on a social
network technique. Second, they consider leveraging the developer prioritization to improve
three predicted tasks in bug repositories, i.e., bug triage, severity identification, and reopened
bug prediction. Three problems are investigated, including the developer rankings in products,
the evolution over time, and the tolerance of noisy comments. They empirically investigate
the performance of proposed model and its applications in two bug repositories. The results
indicate that the developer prioritization can provide the knowledge of developer priorities
to assist software tasks, especially the task of bug triage.

An approach to predict the priority of a reported bug using different machine learning
algorithms presented by Alenezi and Banitaan (2013). Also, they investigated the effect
of using two feature sets (textual contents and meta data information of bug reports) on
the classification accuracy. They conduct experimental evaluation using two open-source
projects. The contributions of their work includes investigating the effectiveness of applying
several machine learning techniques, evaluating the impacts of using different feature sets to
build the predictive model and conduct experimental evaluation using two bug reports data
sets. They used the meta-data features like component, operating system and severity because
they contain useful information that may help in discriminating between priority levels.

Zanetti et al. (2013) proposed an efficient and practical method to identify valid bug reports
which (a) refer to an actual software bug, (b) are not duplicates and (c) contain enough infor-
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mation to be processed right away. Their classification is based on nine measures to quantify
the social embeddings of bug reporters in the collaboration network. They demonstrated its
applicability in a case study, using a comprehensive data set of more than 700,000 bug reports
obtained from the Bugzilla installation of four major OSS communities, for a period of more
than 10years. Based on this finding, they developed an automated bug report classification
mechanism. They used nine topological measures at the level of bug reporters.

For reducing human efforts, for analyzing bug reports and supporting bug tracking system,
Behl et al. (2014) presented an efficient bug classification tool in the process of identify-
ing bug reports as security or non-security. They focuses on security bug and presents a
bug mining system for the identification of security and non-security bugs using the term
frequency-inverse document frequency (TF-IDF) weights and Naive Bayes. They performed
experiments on bug report repositories of bug tracking systems. In a Probabilistic Naive Bayes
they used different models like Bernoulli or Multinomial event model for classification pur-
poses. Thereby, making TF-IDF based bug Mining tool feasible to use as a complimentary
tool in the bug tracking system.

Blocking bugs are software bugs that prevent other bugs from being fixed. These blocking
bugs may increase maintenance costs, reduce overall quality and delay the release of the
software systems. To deal with this, recently, Garcia and Shihab (2014) build prediction
models based on decision trees to predict whether a bug will be a blocking bug or not. As a
data set, authors used 14 factors extracted from the bug repositories of six large open source
projects. They analyzed these decision trees in order to determine which factor best indicates
these blocking bugs. The goal is to help developers identify these blocking bugs early on.
Their results show that proposed prediction models achieve better F-measures. They also
find that the most important factors in determining blocking bugs are the comment text,
comment size, the number of developers in the CC list of the bug report and the reporters
experience. They found that blocking bugs take approximately two to three times longer to
be fixed compared to non-blocked bugs. Their analysis shows that proposed models reduce
the median time to identify a blocking bug.

A novel way of assigning software bug priority using supervised classification on clus-
tered bugs data was presented by Goyal et al. (2015). Their work based on the study which
claims that when classification is done on the data which is previously clustered, it signif-
icantly improves its performance. It is being proposed, to cluster the software bugs based
on their similarity before directly applying classification algorithms on them. In this work,
this approach has been used for the first time for predicting the priority of the software bugs
to find if classifier performance improves when it is preceded with clustering. Using this
system, clustering was performed on problem title attribute of the bugs to group similar bugs
together using clustering algorithms. Classification was then applied to the clusters obtained,
to assign priority to the bugs based on their attributes severity or component using classi-
fication algorithms. It was then studied which combination of clustering and classification
algorithms used provided the best results. Overall, the best results were obtained with X
Means, when used with the Bayesian Networks classifier.

An overview of above discussed researchers work in terms of techniques, evaluation
criteria and data sets utilized is presented in Table 6. While comprehensive summary which
includes features, results, pros and cons of these classification and information retrieval
techniques are shown in Table 7.
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5.2 Categorization approaches

An automated method named SEVERIS (SEVERity ISsue assessment) algorithm presented
by Menzies and Marcus (2008) to assists the test engineer in assigning severity levels to defect
reports. SEVERIS always found good issue predictors with high f-measures. Their study
shows that unstructured text might be a better candidate for generating severity assessments
than the structured data. Steps taken for conversion of unstructured data to structural data
are tokenization, stop word removal, stemming, employing TF-IDF and InfoGain. The case
study results indicate that SEVERIS is a good predictor for issue severity levels, while it is
efficient easy to use.

Several solutions to the challenging task of clustering software defect reports was pre-
sented by Rus et al. (2009). Their work has been motivated by belief that the rich information
in software defect reports, which are generated during the testing phase in the form of textual
reports, can be of great value. They proposed advanced methods for clustering defect reports
that take advantage of the description and summary fields of the reports. The experiments on
defect reports from Mozillas Bugzilla and with three clustering algorithms showed that nor-
malized cut using a TF-IDF vectorial representation based on a combination of descriptions
and summaries of reports leads to better clustering than using the summary or the description
of defects alone.

As an example of classification by clustering Nagwani and Verma (2011) used Suffix Tree
Clustering(STC) algorithm for software bug classification. First clusters are created from the
bug repositories and then labels are assigned to the each cluster, which indicates the classes of
the clusters. Three software bug repositories are taken for experiment with different number of
software bug records. Here STC implementation is available as the part of Carrot2 framework
(component based framework for text clustering). They evaluated designed technique using
the common clustering parameters. STC appears to be an effective way of classifying the
software bug in just a small time, also cluster purity calculated is adoptable.

A software bug classification algorithm, CLUBAS (Classification of Software Bugs Using
Bug Attribute Similarity) which is another example of classification by clustering was pre-
sented by Nagwani and Verma (2012). The proposed algorithm works in three major steps
that are creation of text clusters, generation of cluster labels and mapping of the cluster labels
against the bug taxonomic terms to identify the appropriate categories of the bug clusters. The
designed algorithm is evaluated using the performance parameters that are then compared
with the standard classification techniques using clustering algorithms. A GUI (Graphical
User Interface) based tool is also developed in Java for the implementation of CLUBAS
algorithm.

Similarly, Somasun and Murphy (2012) investigated whether combining Latent Dirichlet
Allocation(LDA) with a machine learning approach could improve the consistency with
which component recommendation could be performed for bug reports. They considered
broadening the consistency of the recommendations produced by an automatic approach
by investigating three approaches to automating bug report categorization. They focused
on the use of the long free-form discussion portion of Bugzilla bugs for both the training
and testing of the classifiers. The experiments on three open source projects showed that an
approach which combines LDA with Kullbach-Leibler Divergence LDA-KL) can produce
recommendations with more consistency in recall values across all components of a system
than previous approaches.

An automated technique for bug labeling using Term Frequency-Inverse Document Fre-
quency (TF-IDF) and Latent Semantic Indexing (LSI) presented by Chawla and Singh (2014).
They suggest a method which takes semantic information present in the bug report into con-
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sideration. Experimental study shows that there is improvement in results with the addition
of semantically similar words obtained from LSI in conjunction with the terms extracted
using TF-IDF. Main steps in the proposed procedures are selection, preprocessing, training
and testing data. Using LSI along with TF-IDF, they achieved better accuracy for the polish
bug reports and for security bug reports as compared to using TF-IDF alone. This work has
shown improvement in automatic bug labeling by addition of semantically similar words.

An overview of above discussed researchers work in terms of techniques, evaluation
criteria and data sets utilized is presented in Table 8. While comprehensive summary which
includes features, results, pros and cons of the classification by clustering approaches are
shown in Table 9.

5.3 Other approaches

A technique to rank error reports emitted by static program checking analysis tools was
explored by Kremenek and Engler (2003). They developed the idea of z-ranking that uses
frequency counts of successful and failed checks to rank error messages from most to least
probable. Z-ranking employs a simple statistical model to rank those error messages most
likely to be true errors over those that are least likely. They demonstrated that z-ranking applies
to a range of program checking problems and that it performs up to an order of magnitude
better than randomized ranking. Further, it has transformed previously unusable analysis
tools into effective program error finders. The authors explored the hypotheses comprise of
probable and improbable error reports.

Meanwhile, Kim and Ernst (2007a) prioritized warning categories by analyzing the soft-
ware change history. The underlying intuition is that if warnings from a category are resolved
quickly by developers, the warnings in the category are important. The work aggregates prop-
erties of warning instances to prioritize warning categories. They suggest that their technique
will be most effective when the categories are relatively fine-grained and homogeneous. They
ran bug finding tools on each development transaction of open source projects. Results indi-
cate that different warning categories have very different lifetimes. Based on that observation,
they proposed a preliminary algorithm for warning category prioritizing.

Proceeding further in their work this time Kim and Ernst (2007b) observed the warnings
output by bug-finding tools for three subject programs. They proposed an automated history-
based warning prioritization (HWP) algorithm that mines previous fix and warning removal
experience that is stored in the software change history. The underlying intuition is that if
warnings from a category are eliminated by fix-changes, the warnings are important. Their
prioritization algorithm improved warning precision. They extended the previous work as
they incorporate information regarding bug fixes instead of warning lifetime, proposed a
prioritization algorithm rather than merely observing the varying lifetimes of warnings and
evaluation by using the software change history.

In the same year, Giger et al. (2010), computed prediction models in a series of experi-
ments with initial bug report data as well as post-submission information from three active
open source projects. They investigated empirically the relationships between bug report
attributes and the time to fix. Their objective is to compute prediction models that can be
used to recommend whether a new bug should and will be fixed fast or will take more time
for resolution. They examined in detail if attributes of a bug report can be used to build
such a recommender system. They used decision tree analysis to compute and tenfold cross
validation to test prediction models and explore prediction models in a series of empirical
studies with bug report data of six systems of the three open source projects. Their study
shows that incoming bug reports can be classified into fast and slowly fixed, post-submission
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data of bug reports improves prediction models. Assignee, reporter, and monthOpened are
the attributes that have the strongest influence on the fix-time of bugs.

Tian et al. (2013) proposed an automated approach DRONE (PreDicting PRiority via
Multi-Faceted FactOr ANalysEs) which enhances linear regression with their threshold
approach to handle imbalanced bug report data. Based on machine learning that would rec-
ommend a priority level using information available in bug reports. Their approach considers
multiple factors, temporal, textual, author, related-report, severity, and product, that poten-
tially affect the priority level of a bug report. They investigated the an open bug repository
and for comparison they experiment with several other classification algorithms. The result
on a data set consisting of more than 100,000 bug reports from Eclipse shows that proposed
approach outperforms the baseline approaches in terms of average F-measure.

Similarly, Saha et al. (2014) analyzed long lived bugs with five different perspectives: their
proportion, severity, assignment, reasons, as well as the nature of fixes. Authors pointed out
that analyzing entire bug data sets using various machine learning or data mining techniques is
not sufficient in understanding long lived bugs due to the imbalanced data set, i.e., containing
relatively low proportion of long lived bugs compared to others. They showed that although
the software development and maintenance processes have advanced a lot, but there are still
a significant number of bugs in each project that survive for more than a year. Study on four
open-source Eclipse projects showed that there were a considerable number of long lived
bugs in each system and over 90 % of them adversely affect the users experience. Authors
concluded that the reasons of these long lived bugs are diverse including long assignment
time and not understanding their importance in advance.

The empirical study on bug report field reassignments in open-source software projects
is performed by Xia et al. (2014). To better understand why bug report fields are reassigned,
authors manually collected bug reports that had their fields reassigned. They emailed bug
reporters and developers asking why these fields got reassigned. Then, they performed a
large-scale empirical study on types of bug report field reassignments in 4 open-source
software projects. In particular, they investigated (1) number of bug reports whose fields
get reassigned, (2) the difference in bug fixing time between bug reports whose fields are
reassigned and not reassigned, (3) the duration a field gets reassigned, (4) the number of
fields that get reassigned, (5) the number of times a field gets reassigned, and (6) whether the
experience of bug reporters affect the reassignment of bug report field. Authors found that a
large number (approximately 80 %) of bug reports have their fields reassigned, and the bug
reports whose fields get reassigned require more time to be fixed than those without field
reassignments.

A novel method for semi-automatic bug triage and severity prediction using topic model
and multi-feature is proposed by Yang et al. (2014). First, they extracted topic(s) from his-
torical bug reports in the bug repository and find bug reports related to each topic. Then
they utilize multi-feature to identify corresponding reports that have the same multi-feature
(e.g., component, product, priority and severity) with the new bug report. Thus, given a new
bug report, they are able to recommend the most appropriate developer to fix each bug and
predict its severity. To evaluate proposed approach, they not only measured the effectiveness
of their study by using 30,000 golden bug reports extracted from three open source projects
but also compared some related studies. These 30,000 bug reports were manually extracted
from all 16, 462, 18 bug reports and named as golden bugs because they contain much more
information.

An overview of above discussed researchers work in terms of techniques, evaluation
criteria and data sets utilized are presented in Table 10. While comprehensive summary which
includes features, results, pros and cons of the other approaches are shown in Table 11.
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Table 10 Overview of other approaches

Researcher Proposed technique Compared Evaluation metrics Datasets
techniques
Kremenek and ~ Z-Ranking Randomized False positive rates, Linux, Company
Engler (2003) Ranking time and error rate X
Kim and Ernst Preliminary algorithm FindBugs, JLint,  Lifetime Columba and jEdit
(2007a) and PMD
Kim and Ernst Prioritization FindBugs, JLint, Precision, Recall and  Columba, Lucene,
(2007b) Algorithm and PMD False positive rate and Scarab
Giger et al. Decision Tree Random Precision, Recall, Eclipse, Mozilla,
(2010) Classification summary statistic Gnome
Tian et al. PreDicting PRiority Multi Class, Precision, recall, and  Eclipse
(2013) via Multi-Faceted RIPPER, Naive F-measure
FactOrANalysEs- Bayes
DRONE(GRAY) Multinomial
Saha et al. Empirical Study - Time Eclipse product
(2014) Analysis (JDT, CDT,
PDE, Platform)
Xiaetal. (2014) Empirical Study - Mean, median, max Openoffice,
Analysis and min time Netbeans,
Eclipse, Mozilla
Yang et al. Topic Model, Navie Bayes, k Accuracy, Severity, Eclipse, Mozilla,
(2014) Multi-Feature Nearest Precision, Recall, Netbeans

Neighbors

F-measure and
MRR

To conclude, researchers have focused on automated approaches for prioritization of bug

reports. Mostly researchers have addressed bug prioritization issue using techniques of data
mining, like classification, information retrieval and text mining approaches. Few of them
used the idea which claim that when classification employed on the data which is previously
clustered; it gives significantly better results than using classification techniques alone (Goyal
et al. 2015). Also our findings reveal that the results of some classifiers [like, Support vector
Machine (SVM)] show better results for text features, whereas some [like, Naive Bayes (NB)]
for categorical features, but the performance can be better when categorical and text features
are combined (Kanwal and Magbool 2012).

6 Significant results

In this section we list the significant facts that were found in this survey. The significant facts
are prominent techniques, evaluation metrics, data sets, researchers and venues.

6.1 Significant techniques used
To resolve the issue of bug prioritization researchers used mostly the classification techniques

and the most prominent were Naive Bayes (NB), Support Vector Machine (SVM) and k-
Nearest Neighbors (kNN) as can be seen in Fig. 4. Researchers also used Decision Tree (DT),
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Random Forests (RT), Artificial Neural Network (ANN), Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) and J48 (Java Implementation of C4.5) classifiers.

6.2 Significant evaluation metrics used

Figure 5 presents the top six evaluation metrics used by researchers to validate their results.
Which shows that precision and recall have used highest number of times. Other evaluation
criteria were F-measure, accuracy, time and false positive rate.

6.3 Significant data set used

The commonly used data sets that researchers used for purpose of bug prioritization can be
seen in Fig. 6. We can see that most significant data sets were Eclipse and Mozilla repositories.
Whereas as other researchers used Gnome, Net beans and Open office etc. It has also explored
that almost all data sets are taken from open source repositories.

6.4 Significant venues

Figure 7 shows a pie chart that presents the number of publications published in different
venues. According to our survey, only IEEE and ACM have published significant work on bug
prioritization. Whereas venues like Science Direct, Wiley, IET that were considered in the
start of systematic literature survey but to the best of our knowledge no work so far had been
published by them. Remaining work on bug prioritization that published on other venues like
Springer, book chapters and other conference proceedings were collected by using Google
scholar and included in category of others.
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6.5 Significant researchers

Kim, Lamkamfi, Kanwal, Nagwani and Tian contributed equally to enrich this field. So, they
are considered as prominent researchers who worked on bug prioritization as can be seen in
Fig. 8.

7 Discussion-gaps

Many studies about bug prioritization receive attention of the researchers. Although, many

success have been achieved, however, there are still missing gaps that need to be filled. We
summarize some of the gaps about bug prioritization process, as follows:
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1. Many researchers have focused on automated bug-report triage using machine learning
methods. The problem with traditional supervised machine learning methods is that these
methods require large amount of labeled data for training the classifier. Since labeled data
is difficult to obtain, so, need extensive effort and expensive to process (Nigam et al. 2012).

2. Though, classifiers performance is improved when it is applied on clustered bug data
sets but the issues with this approach are (1) Goyal et al. (2015) have considered only
single feature for validation, (2) Also, accuracy concern (Nagwani and Verma 2012),
and (3) Cluster purity for large data set (Nagwani and Verma 2011) need to be further
investigated. For that, Karaboga and Ozturk (2011), Naseem et al. (2013) claims meta
heuristics and cooperative clustering approaches can be better alternative for clustering
and classification approaches.

3. Appropriate feature selection is baseline for classification task. Bug classifiers perfor-
mance vary for textual, categorical or combination of both features (Kanwal and Magbool
2012). Thus, more work should be conducted to develop more general appropriate feature
selection to aid bug prioritization. To resolve the issue of vagueness and uncertainty in
bug data one can use mathematical tool like Rough set theory which is considered as best
for such issues (Pawlak et al. 1995).

4. In software development, one cannot afford to provide incorrect priority to the bugs.
Although, using proposed machine learning techniques have provided good results, but
still there is a scope for improvement in terms of accuracy, precision, recall and F-measure.
This is because, researchers on bug-report triage may focus on improving the accuracy of
bug-report triage by using some new clustering with classification approaches to improve
the performance of bug classifiers (Goyal et al. 2015). None of the existing approach has
achieved satisfactory accuracy (e.g., more than 95 %) (Zhang et al. 2015). Due to the
accuracy concern, it is hard to apply existing automatic bug-report triage approaches
in practice. Machine learning and tossing graphs can be tried for bug prioritization as
they have proven to be promising for automated developer assigning for bug reports
Bhattacharya et al. (2012) and Jeong et al. (2009).

5. Research is also needed to investigate the industrial case studies or close source projects
and to apply the existing approaches on comparatively larger data sets (Alenezi and
Banitaan 2013). And also there is need to refine the evaluation criteria to obtain better
picture of strength and weakness of various techniques.

8 Conclusion and future work

When a bug tracking system receives a new filed bug report, the triager makes decisions about
several characteristics of bug reports such as priority and severity levels. The bug priority
level indicates the importance of that bug from business perspective. It gives an indication
of the order in which bug reports should be fixed. Handling these reports manually is time
consuming, and often results in delaying the resolution of important bugs. To address this
issue, a recommender may be developed which automatically prioritizes the new bug reports
with high accuracy. There is reasonable volume of research on bug-report prioritization.
This paper summaries the existing literature which covers a range of work in the field
of bug triaging that specifically deal with bug prioritization. In this survey, we first briefly
discussed some preliminaries. Second, we discussed the related surveys about bug reports
to compare our survey. Third, through systematic literature survey method some statistics
on bug prioritization research to show the amount of work on it was presented. Fourth, a
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rather thorough survey on existing bug-report prioritization work was conducted and each
researcher work was explained in detail with pros and cons of all approaches. Fifth, different
types of significant outcomes of our survey were presented. We finally discussed some gaps
and questions that should be completed for further research.

This study focus on bug prioritization however, our future plan is to explore new strategies
and algorithms to improve bug triaging system. Moreover, research gaps presented in the study
is the evidence of research need to enhance the performance of well-known classification
algorithms.
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