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Abstract Improving the performance of optimization algorithms is a trend with a continu-
ous growth, powerful and stable algorithms being always in demand, especially nowadays
when in the majority of cases, the computational power is not an issue. In this context,
differential evolution (DE) is optimized by employing different approaches belonging to dif-
ferent research directions. The focus of the current review is on two main directions: (a) the
replacement of manual control parameter setting with adaptive and self-adaptive methods;
and (b) hybridization with other algorithms. The control parameters have a big influence
on the algorithms performance, their correct setting being a crucial aspect when striving to
obtain optimal solutions. Since their values are problem dependent, setting them is not an
easy task. The trial and error method initially used is time and resource consuming, and in the
same time, does not guarantee optimal results. Therefore, new approaches were proposed,
the automatic control being one of the best solution developed by researchers. Concerning
hybridization, the scope was to combine two or more algorithms in order to eliminate or to
reduce the drawbacks of each individual algorithm. In this manner, different combinations
at different levels were proposed. This work presents the main approaches mixing DE with
global algorithms, DE with local algorithms and DE with global and local algorithms. In
addition, a special attention was given to the situations in which DE is employed as a local
search procedure or DE principles are included in other global search methods.
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1 Introduction

In the context of maximizing efficiency and reducing the resources needed, optimization
plays a key role, all the manufacturing and engineering processes being influenced in a pos-
itive manner. Optimization is a dynamic process that implies finding the best-suited solution
to a problem and maintaining the given constraints (Das and Suganthan 2011; Fister et al.
2011). The characteristics of the problem being solved (such as: types and complexity of the
relations between objectives, constraints and decision variables) influence the optimization
difficulty. Therefore, the classification of the methodologies used are organized into different
classes (based on the characteristics taken into consideration). For example, when the crite-
rion employed is the type of solution, two classes are encountered: global and local (Nocedal
and Wright 2006). If the criterion applied is the type of model, then optimization can be
deterministic or stochastic (Nocedal and Wright 2006). In this work, a specific optimization
algorithm belonging to the global and stochastic classes is studied. It is represented by differ-
ential evolution (DE), a population based stochastic metaheuristic (Zaharie 2009) developed
by Storn and Price (1995) in order to solve the Chebychev Polynomial fitting problem.

All the developments performed in the area of DE have the role of improving it and mak-
ing it more flexible for theoretical and real-life applications. Although it performs well on a
wide variety of problems, DE has a series of problems related to: stagnation, premature con-
vergence, sensitivity/insensitivity to control parameters (Das et al. 2007; Das and Suganthan
2011; Lu et al. 2010a; Mohamed et al. 2013).

Stagnation is the undesirable situation in which a population-based algorithm does not
converge even to a suboptimal solution, while the population diversity is still high (Neri and
Tirronen 2010). As the population does not improve over a period of generations, the algo-
rithm is not able to determine a new search space for finding the optimal solution (Davendra
and Onwubolu 2009). The persistence of a fit individual for a number of generations does
not necessarily imply poor performance, but it may indicate a natural stage of the algorithm
in which the other individuals are still updated (Neri and Tirronen 2008). Various factors can
induce stagnation, the most influential being represented by the use of bad choices for the
control parameters (CPs) and the dimensionality of the decision space (Neri and Tirronen
2010; Salman et al. 2007). For example, in the endeavor to obtain fast convergence, low val-
ues for population dimension (Np) are used, but this leads to smaller perturbation possibilities
and therefore to limited power to find new regions for improvement (Storn 2008).

Premature convergence is the situation when the characteristics of some highly rated
individuals dominate the population, determining a convergence to a local optimumwhere no
more descendants better than the parents can be produced (Nicoara 2009). In DE, three types
of convergence can be encountered: (a) good (the global optimum is reached in a reasonable
amount of generations, obtaining a good trade-off between exploration and exploitation); (b)
premature; and (c) slow (the optimum is not reached in a reasonable amount of generation, the
perturbation overwhelming the selection process) (Zaharie 2002b). Related to convergence,
two imperatives are considered: (a) identification of occurrence and (b) evaluation of its extent
(Nicoara 2009). Concerning identification of different measures (that are in fact measures
for the level of population degeneration), the difference between the best and average fitness,
or Hamming distance between individuals and the variance of the Hamming distances, can
be employed (Nicoara 2009). Other measures of convergence are the Q-measure (combines
convergence with the probability to converge and it serves to compare the objective function
convergence of different evolutionary algorithms) and the P-measure (analyses convergence
from the population point of view) (Feoktistov 2006).
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Sensitivity or insensitivity to CPs is another DE drawback. Empirical studies showed that
the more sensitive a strategy is, the better the solution that can be achieved (Feoktistov 2006).
This is because the effectiveness, efficiency, and robustness of the algorithm are dependent
on the CPs values, their best settings being related to the function and requirements for time
and accuracy (Brest 2009).

Along with the drawbacks mentioned earlier, another aspect that must be taken into con-
sideration when using DE is the lack of mechanisms for handling constraint problems. This
is often encountered in real-life optimization procedures, and therefore, various researchers
focused on this aspect.

In order to overcome some of these problems, new variants (based on twisting and turning
of the various DE constituents) were proposed (Peng andWang 2010; Storn 2008). Although
the No Free Lunch Theorem suggested that no panacea could exist, the scope was to make
DE a fool proof and fast optimization method for any kind of objective function (Storn 2008).
All these modifications followed three main directions (Brest et al. 2011): (a) replacing the
hand tuning of control parameters with adaptive or self-adaptivemechanisms; (b) hybridizing
DE by combining it with other optimization techniques; and (c) Introducing more mutation
strategies during the optimization process.

In this work, the problems of hand-tuning replacement and hybridization are tackled in
detail. The introduction of new mutation strategies is not discussed in this review because
the authors considered that it would be better presented in the context of all the steps of DE
algorithm, fact that will be the subject of a future work.

2 Parameter control

The role ofCPs (F =mutation factor,Cr=crossover probability andNp=population dimen-
sion) is to keep the exploration/exploitation balance (Feoktistov 2006). Exploration is related
to the discovery of new solutions and the exploitation is related to the search near new good
solutions, both interweaving each other in the evolutionary search (Fister et al. 2011).

Each parameter influences specific aspects of the algorithm, the DE effectiveness,
efficiency, and robustness being dependent on their correct values (Brest 2009). The determi-
nation of theCPs (as their optimal values are problem specific, varying for different functions
or for functions with different requirements) is a difficult task, especially when a balance
between reliability and efficiency is desired (Hu and Yan 2009b). In the early days, when
DE was still in its infancy, empirical rules were laid down (Gamperle et al. 2002; Storn
1996; Storn and Price 1997). Unfortunately, these were sometimes contradictory and lead
to confusion (Das and Suganthan 2011). In addition to these rules, the standard attempt to
set up the CPs was represented by the trial-and-error approach that was not only time con-
suming, but it lacked efficiency and reliability (Tvrdik 2009). As time passed, researchers
focused on the diversity of population estimation, taking into consideration the fact that
the ability of an evolutionary algorithm (EA) to find optimal solutions is dependent on the
exploration–exploitation relation (Feoktistov 2006).

Cr and F affect the convergence speed and robustness of the search space, their optimal
values depending on the characteristics of the objective function and on Np (Ilonen et al.
2003). Cr controls the number of characteristics inherited from the mutant vector and thus, it
can be interpreted as a mutation probability, providing the means to exploit decomposability
(Price et al. 2005). Compared to F , Cr is more sensitive to the problems characteristics
(complexity, multi-modality and so on) (Qin and Suganthan 2005).
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On the other hand, F is more related to the convergence speed, influencing the size of
perturbation and ensuring the population diversity (Price 2008). Larger values of F imply a
larger exploration ability, but it was determined that smaller values than 1 are usually more
reliable (Ronkkonen et al. 2005). Some authors go even further and prove that F should be
larger in the first generations and smaller in the last ones, thus focusing on the local search
as a mean to ensure convergence (Li and Liu 2010).

In the context of DE scaling factor randomization, two new terms (jitter and dither) are
defined by Price et al. (2005). Jitter represents the procedure in which, for each parameter
of the individual, a different F value is generated and subscribed with the corresponding
index. Although jitter is not rotationally invariant, this approach seems to be effective for non-
deceivingobjective functions (whichpossess a strongglobal gradient information) (Price et al.
2005).Distinctively from the jitter case, dither represents the situation inwhich F is generated
for each individual and assigned to its corresponding index. In this case, each characteristic
of the same individual is evolved using the same scaling factor (Das and Suganthan 2011).
Although dither is rotationally invariant, when the level of variation is very small, the rotation
has small influence (Price et al. 2005). The application of these principles (dither and jitter)
is encountered in multiple studies. For example, in Kaelo and Ali (2007), F is generated for
each individual in the [0.4, 1] range, while Cr is chosen from the interval [0.5, 0.7] and is
fixed per iteration.

Concerning Np, when its value is too small, stagnation appears (as there is no sufficient
exploration), and when it is too big, the number of function evaluations rises, retarding the
convergence (Feoktistov 2006). Different researchers recommend different ranges included
in the interval [2D–40D], where D represents the problem dimensionality. In the case of high
D problems, using an Np value respecting this rule leads to a high computational time and
therefore the recommended interval is not always used by researchers. Depending on the
problem characteristics, different Np values are optimal. For example, separable and uni-
modal functions require low values, while parameter dependent and multimodal functions
require high values (Mallipeddi et al. 2011). In addition, a correlation between population
and F exists, a larger Np requiring a smaller F (Feoktistov 2006).

As it can be observed, due to different factors, setting the CPs is not a straightforward
process. When taking into consideration the ‘how’ aspect of the methods used for para-
meter determination, two classes are distinguished: parameter tuning and parameter control
(Eiben and Schut 2008). Parameter tuning consists in finding good values before running
the algorithm. The drawbacks of this approach are related to: (a) the impossibility of trying
all possible combinations; (b) the tuning process is time consuming; (c) even if the effort
made for setting the parameters is significant, the selected values for a given problem are not
necessarily optimal; (d) EAs are dynamic, adaptive processes and the use of rigid parameters
is in contrast to this idea (Eiben et al. 1999).

In case of parameter control, the values are changed dynamically during the run (Brest
et al. 2007), based on a set of defined rules. Based on the ‘how’ criterion of Eiben and Schut
(2008), four sub-classes are encountered: (a) deterministic control; (b) adaptive control; (c)
self-adaptive control and; (d) hybrid. On the other hand, in Takahama and Sakai (2012) the
methods for CPs control are classified into: (a) observation based (the proper parameter
values are inferred according to the observations); and (b) success based (the adjustments
are performed so that the success cases are frequently used). In Chiang et al. (2013), a new
taxonomy for classifying the algorithms according to the number of candidate parameter
values (continuous or discrete), number of parameters used in a single generation (one,
multiple, individual, variable) and source of considered information (random, population,
parent, individual) is proposed. This approach is applied only for F and Cr parameters.
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In case of deterministic control, theCPs are adapted using a deterministic law, without any
feedback information from the system (Feoktistov 2006). For example, in Michalski (2001),
the population is set to a higher value (50) in the first nine generations and then is reduced
to half in order to minimize the computational cost. In Zaharie (2002a) F is randomized,
the pool of potential trial vectors being enlarged without increasing the population size. Das
et al. (2005) proposed two DE variants in which F is modified randomly [DE with random
scale Factor (DERSF)] or linearly decreased with time [DE with time varying scale factor
(DETVSF)].

2.1 Adaptive control

In case of adaptive control, the direction and/or magnitude of the parameter change is deter-
mined using feedback information (Brest et al. 2007). Feoktistov (2006) identifies two classes
belonging to this group: refresh of population and parameter adaptation. When applying
refresh of population, the mechanisms consist in either replacing the bad individuals or
injecting new individuals in the population (Feoktistov 2006). In Zhang et al. (2011), two
approaches for changing the population size (lifetimemechanism and extinctionmechanism)
and two for inserting new individuals (clone good individuals and create a new population)
were employed for adapting the population size, according to the online progress of fit-
ness improvement. When adapting the parameters, the methods applied obey the state of
population.

Zaharie (2003) proposed a parameter adaptation based on the idea of controlling the
parameter diversity through population variance evolution. The algorithm was called ADE
and the feedback rule for adapting F was dependent on another parameter (ϒ) which must
be tuned. As the author points out, the initial problem of choosing suitable parameter values
seems to be replaced with the problem of choosingϒ , but the replacement is simpler because
there are no inter-related parameters.

Zhang and Sanderson (2009b) give a special attention to parameter adaptation, an entire
study being dedicated to the discussion of this problem. In addition, a new adaptive DE
version (JADE) based on a new mutation strategy (DE/current-to-pbest/1) was proposed.
For each individual, F and Cr are generated based on two additional parameters (μF and
μCr) which are adapted using the average value of the parameters that generate successful
individuals. Another adaptive DE variant is ADE, proposed by Hu and Yan (2009a). The
CPs were modified for each generation, using the current generation and fitness value. After
that, the individual’s F and Cr were selected based on the fitness values of current, worst,
and best individuals.

In Pant et al. (2009), F is randomly modified using a Laplace distribution. Laplace dis-
tribution is similar to the normal distribution, the difference consisting in its expressions:
absolute difference from the mean (Laplace) and squared difference from the mean (normal
distribution). Therefore, Laplace distribution has a fatter tail, which implies that it is able
to control more effectively the differential term, and thus prevent premature convergence.
The empirical results showed that the modified DE with Laplace distribution (MDE) has an
improved performance compared to the classical approach.

Thangaraj et al. (2009a) changed F and Cr used in each generation by applying simple
rules. Although the authors called the method adaptive in the sense that the CPs are changed
every generation, the rules used do not depend on a feedback information from the system
(Eqs. 1, 2):
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Fg+1 =
{
Fl + rand1 ·

√
Grand21 + Grand22 , i f PF < rand2

F0, otherwise
(1)

Crg+1 =
{
Crl · rand3, i f PCr < rand4
Cr0 otherwise

(2)

whereGrand1 andGrand2 areGaussiandistributed randomnumberswith standarddeviation
1 and mean 0, randi , i = {1, 2, 3} is a uniform random number, PF and PCr are probabilities
to adjust the F andCr parameters (fixed and equal to 0.5), Fl andCrl are the lowest boundaries
of the F and Cr, respectively, and F0 = Cr0 = 0.5 are constant values.

In order to balance the local and the global search, Lu et al. (2010a, b) proposed a rule of
adapting Cr based on the current generation:

Cr = Cr0 · 2e
(
1− G

Gcurrent+1

)
(3)

where Cr0 is a user chosen value.
Bhowmik et al. (2010) proposed an adaptive selection of F , the main idea consisting in

generating a population of F parameters around a Fmean value, one for each individual. At
the end of generation, Fmean is updated based on the individual F .

Taking into consideration the optimization state (computed based on the population dis-
tribution), Yu and Zhang (2012) changed the strategy of adjusting F and Cr in the following
way: when the system is in exploration state F is increased and Cr is decreased; and when
the system is in exploitation state F is decreased and Cr increased.

In Islam et al. (2012), a similar adaptive approach to the one used in JADE (Zhang and
Sanderson 2009b) calledMDE_pBXwas proposed. F andCrwere generated using a Cauchy
distribution with a location parameter, which is adapted, based on the power mean of all F/Cr
generating successful individuals.

Alguliev et al. (2012) adapted F using an affinity index (Afi), computed using the fitness
information of the individual and of the system. A small Afi indicates that the individual is
far away from the global best solution and therefore a strong global exploration is required.
The adaptation formula is the following:

Fi (g) = 1

1 + tanh (2A fi (g))
(4)

where tanh represents the hyperbolic tangent function.
Another approach used for adapting the CPs is represented by the Levy distribution.

He and Yang (2012) proposed a DE version in which, for every mutation in each generation,
F and Cr are adapted using one of the four pre-defined Levy distributions. In order to
determine which distribution to employ, probability parameters (adaptively updated based on
the historical performance) were introduced. The historical performance is retained by using
fitness improvement memories that store the difference between the fitness of an individual
and its offspring for a fixed number of generations, named learning period. The larger the
fitness improvement, the larger the probability of applying the strategy for determining F
corresponding to the current generation.

In Asafuddoula et al. (2014), a roulette wheel based Cr selection scheme was employed.
Initially the Cr values were mapped to continuous segments. From these sets, a Cr value was
considered using a selection value and then updated based on the success or failure of the
individual generated.

In the case of multi-objective problems, two different directions related to adaptation and
self-adaptation can be encountered: (a) adaptation of the strategies developed for single-
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objective cases; and (b) development of new specific approaches. For example, in order
to extend the application of ADE to multi-objective problems, Zaharie and Petcu (2004)
designed an adaptive Paretto DE (APDE).

As it is pointed out by numerous studies, the adaptive approaches are more effective
than the classical versions. The added complexity and computational costs translate into
performance improvement, fact that encouraged researchers to continue their work and to
test the effectiveness of these approaches on different synthetic and real-life problems.

2.2 Self-adaptive control

In the case of self-adaptive control, the parameters are encoded into the algorithm itself
(Feoktistov 2006). The concept of co-evolution (which is an effective approach to decompose
complex structures and to achieve better performance) can be used to select the CPs, the
user being relieved from the trouble of performing this task (Hu and Yan 2009b; Thangaraj
et al. 2009a). By reconfiguring itself, the evolutionary strategy is fit to any general class of
problems, the generality of the algorithm being extended (Brest et al. 2007). In addition,
the convergence rate can be improved (Zhang and Sanderson 2009a). On the other hand,
due to the randomness involved, the proof of convergence in self-adaptive EAs is difficult to
determine (Brest et al. 2006).

An alternative to modifying the CPs at each generation is to gradually self-adapt, based
on the success rate. Qin and Suganthan (2005), in SaDE, applied this principle to evolve
the CPs, the strategies for generating the trial vectors and their associated parameters. In
Yang et al. (2008a) SaDE is improved, a new algorithm (SaNSDE) being proposed. Three
self-adaptivemechanismswere employed: (a) the candidate mutation adaptation was adapted
with the strategy found in SaDE; (b) F was adjusted separately; and (c) theCr self-adaptation
of SaDE was enhanced with weighting.

Brest et al. (2006) proposed a self-adaptive algorithm (jDE) in which, for each individual
in the new generation, the F and Cr parameters were computed as:

Fi,G+1 =
{
Fl + rand1 · Fu, i f rand2 < τ1
Fi,G , otherwise

(5)

Cri,G+1 =
{
rand3, i f rand4 < τ2
Cri,G otherwise

(6)

where Fl , Fu are the lower and upper limits of the F parameter, τ1 and τ2 are the probabilities
to adjust F and Cr.

In addition to F and Cr, Teo (2006) included the population size into the self-adaptive
procedure. The algorithm, called DESAP, had two versions, one using an absolute encoding
methodology for the population size (DESAP-Abs) and one a relative encoding (DESAP-
Rel). Another difference between the two versions consists in the manner in which Np is
initialized.

The same principle of self-adaption encountered in Brest et al. (2006) is also employed
by Neru and Tirronen in their hybrid version called scale factor local search differential
evolution (SFLSDE) (Neri and Tirronen 2009). In addition, the evolution of F is improved
by including a local search based on Golden selection search or hill-climb.

The self-adapting control parameter modified DE (SAPMDE) algorithm contains a mod-
ified mutation and a self-adaptive procedure in which F and Cr are changed using the
information fitness of some of the individuals participating in the mutation phase (Wu et al.
2007). In Nobakhti andWang (2008), a randomized approach is applied to self-adapt F based
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on two new parameters (adaptation update interval and diversity value) and a set of upper
and lower limits.

Zhang et al. (2010) proposed a novel self-adaptive differential evolution algorithm
(DMSDE) in which the population was divided into multi-groups individuals. The differ-
ence between the objective function of individuals from the current group influences F and
Cr, the strategy being constructed based on Eqs. 7 and 8.

Ft
gi = Fl + (Fu − Fl) · f tg middle − f tg best

f tg worst − f tg best
(7)

where Ft
gi is the scaling factor of the i th vector of gth group from the current generation t,

Fl and Fu are the lower and upper limits of the F parameter, f tg best , f tg middle, f tgworst are
the best, middle and worst fitness functions of the three randomly selected vectors from the
g group, in the generation t .

Crtgi =
⎧⎨
⎩
Crtgi , f tgi < f tg

Crl + (Cru − Crl) · f tgi− f tgmin

f tgmax− f tgmin
, f tgi ≥ f tg

(8)

whereCrtgi is the crossover of the individual i from the g group in the t generation,Cru is the
upper limit andCrl is the lower limit of theCr parameter; f tgmax, f tgmin are themaximum and
minimum values of the fitness functions of all the individuals in the g group at t generation,
f tgi is the fitness of the i individual from the g group, and f tg is the average value of the fitness
of all individuals in the g group.

Recently, Pan et al. (2011) created a new DE algorithm (SspDE) with self-adaptive trial
vector generation strategy andCPs. Three lists were used: strategy list (SL), mutation scaling
factor list (FL), and crossover list (CRL). Trial individuals were created during each genera-
tion by applying the standard mutation and crossover steps, which use the parameters in the
target-associated lists. If the trial was better than the target, the parameters were then inserted
in the winning strategy list (wSL), winning F list (wFL), and winning Cr list (wCRL). After
a predefined number of iterations, SL, FL and CRL were refilled with a great probability
from the wining lists or with randomly generated values. In this manner, the self-adaptation
of the parameters followed the different phases of the evolution.

In the improved self-adaptive differential evolution with multiple strategies (ISDEMS)
algorithm, Deng et al. (2013) mentions that it employs for F (Eq. 9) the same adapting rule
as in SACPMDE (Eq. 10) (Wu et al. 2007). However, when comparing the relations, it is
clear that there is a big difference between the two.

F(g) = Fmin

1 +
(

Fmin
Fmax

− 1
)
e−αg

(9)

where α is the initial decay rate, g is the current generation and Fmin , Fmax are the minimum
and the maximum values of F .

Fi = Fl + (Fu − Fl)
ftm − ftb
ftw − ftb

(10)

where ftb, ftm and ftw are the fitness functions of the base vector applied for generating the
mutation vector corresponding to the ith individual, of the best and worst individuals in the
current generation.

In another work (Wang and Gao 2014), the adaptation of F andCr based on the principles
used in jDE (Brest et al. 2006) is extended using a dynamic population size. The main
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characteristics of the algorithm are: (a) it follows the inspiration of the original DE selection
operator; (b) it requires few additional operations; and (c) it can be efficiently implemented.
In addition, the new algorithm (called jDEdynNP-F), uses a changing sign mechanism for
F .

In Huang et al. (2007) the SaDE algorithm was extended to solve numerical optimization
problems with multiple conflicting objectives. The difference between SaDE and the new
algorithm (called MOSaDE) consists in the evaluation criteria of promising or inferior indi-
viduals. MOSaDE is further improved, resulting in a multiobjective self-adaptive differential
evolution with objective-wise learning strategies (OW-MOSaDE) where Cr and mutation
strategies specific for each objective are separately evolved (Huang et al. 2009).

Jingqiao andSanderson (2008) proposed a self-adaptivemulti-objectiveDEcalled JADE2,
in which an archive was used to store the recently explored inferior solutions. The difference
between the individuals from the archive and the current population is utilized as a direc-
tional information about the optimum. A similar idea was employed by Wang et al. (2010c),
an external elitist archive being used to retain the non-dominated solution. In addition, a
crowding entropy diversity measure is used to preserve the Pareto optimality. If the CPs do
not produce better trial vectors over a pre-specified number of generations, then they are
replaced by adding to the lower limit a randomly scaled difference between the upper and
the lower limit. The results showed that the algorithm, called MOSADE, was able to find
better spread solutions with better convergence.

In recent years, some researchers claimed that no significant advantages are obtained
when using self-adaptation to guide the CPs, but it was shown that there is a relationship
between the schemes effectiveness and the balance between exploration and exploitation
(Segura et al. 2015). In the majority of cases, the self-adaptive procedures tend to be more
efficient than adaptive or deterministic approaches, a high number of works encountered in
literature employing self-adaptation as an improvement technique.

2.3 Hybrid control

In this case, the parameters are modified using combined techniques from deterministic,
adaptive, and self-adaptive control groups or other algorithms and principles. For example,
Mezura-Montes and Palomeque-Ortiz (2009) proposed a modified version of DE in which
a mechanism of deterministic and self-adaptive parameter control is used. In Hu and Yan
(2009b) the Immune System algorithm was employed to perform the search in the control
parameter space, while DE searched the solution space.

One approach for evolving the CPs is represented by fuzzy logic. One of the first works
in which this direction was applied is represented by Liu and Lampinen (2005) where F
and Cr are adapted using fuzzy logic. The parameters of the new DE variant (called FADE)
responded to the population information. The algorithm convergence was much better than
the classical variant, especially when high dimensionality problems were solved. In Xue
et al. (2005), fuzzy logic was applied to dynamically adapt the perturbation factor of the
reproduction operator and the greediness (a specific parameter of the multi-objective DE
version employed). Two state variables (population diversity and generation percentage)
were considered as inputs for the fuzzy logic controller. Zade et al. (2011) applied the fuzzy
control logic to adapt F of a DE version used for a series of economic load dispatch problems.

Another mechanism for modifying the CPs is to employ chaotic systems. For example,
dos Santos Coelho et al. (2009) and dos Santos Coelho and Mariani (2006) adapted the F
parameter using three chaotic sequences based on a logistic equation. An approach using
Lorzi’s map was employed in dos Santos Coelho (2009), the algorithm (called LDE) having
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a substantial potential for application in constrained optimization problems. Another work in
which, among other DE alterations (mutation operation considering equality constraints and
selection operation based on handling inequality constraints), the chaotic theory was applied
to adapt the CPs, is represented by Yuan et al. (2008). In dos Santos Coelho et al. (2014), F
and Cr are adapted using a Gaussian probability distribution and chaotic sequence based on
a logistic map, the new algorithm, called DECG, having superior features. Another chaotic
map used for setting the CPs is represented by the Ikeda map (dos Santos et al. 2012).

Lu et al. (2011) introduced the chaotic principle not only at parameter level, but also at
general level, a chaotic local search procedure being applied. In their work, three different
approaches combining DE with chaos principles were proposed. In the first version, called
“CDE method 1”, F and Cr are adapted based on the Tent equations. In the second version
(CDE method 2), a chaotic search procedure based on the same Tent equations is applied to
locally determine the global optimal solution. The third version (CDE method 3) combines
the two previous versions, resulting in a hybrid chaotic DE approach.

Althoughmore complex andmore difficult to apply than the other approaches it is based on,
the hybrid set-up of control parameters can lead to good results. In this case, the predominantly
used methods are represented by fuzzy logic and chaotic system, their efficiency when mixed
with DE proving that this research direction can generate useful approaches.

3 Hybridization

Hybridization is the process of combining the best features of two or more algorithms in
order to create a new algorithm that is expected to outperform the parents (Das and Suganthan
2011). It is believed that hybrids benefit from synergy, choosing adequate combinations of
algorithms being one of the keys for top performance (Blum et al. 2011).

In the field of combinatorial optimization, the algorithms undergoing this process are
also encountered under the name of hybrid metaheuristics (Xin et al. 2012). In literature,
various optimization methods can be encountered, their performance depending on dif-
ferent aspects belonging to the problem domain characteristics (time variance, parameter
dependence, dimensionality, objectives, constraints, etc.) and to the algorithm characteristics
(convergence speed, type of search, etc.). In this context, each methodology has its strong
points and weaknesses and, by combining different features from different algorithms, a
new and improved methodology (that avoids if not all the problems but a majority of them)
is created. By incorporating problem specific knowledge into an EAs, the No Free Lunch
Theorem can be circumvented (Fister et al. 2011).

Depending on the type of algorithm the DE can be hybridized with, three situations are
encountered: (a) DE and other global optimization algorithms; (b) DE with local search
(LS) methods; and (c) DE with global optimization and LS methods. However, this is just
one aspect in which hybridization can be organized. In Raidl (2006) an overview of hybrid
metaheuristics is performed and a new categorization tree emerged. If the aspect of what is
hybridized is considered, then three classes are encountered: (a) metaheuristics with meta-
heuristics; (b) metaheuristics with problem-specific algorithms; (c) metaheuristics with other
operations research or artificial intelligence (which, in their turn can be: exact techniques, or
other heuristics or soft computing methods). Concerning the level of hybridization, two cases
are encountered: (a) high-level, weak coupling (the algorithms retain their own identities) and
(b) low-level, strong coupling (individual components are exchanged). When order of exe-
cution is taken into account, the hybridization can be: (a) batch (sequential); (b) interleaved;
and (c) parallel (from architecture, granularity, hardware, memory, task, and data allocation
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or synchronization points of view). Concerning control strategy, two cases of hybridization
are encountered: integrative and collaborative.

In an effort to characterize the hybridization based on the level of interaction at which
the hybridization can be settled, Feoktistov (2006) distinguished four distinct situations:
(a) Individual level or search exploration level For example, in Zhang and Xie (2003) the
individuals of the PSO algorithm are mutated using alternatively the DE and PSO operator,
resulting in a methodology called DEPSO. In Bandurski and Kwedlo (2010), the conjugate
gradients (CG) algorithm was used to improve the individuals using two different strategies.
In the first one, the candidates were fine-tuned, while in the second approach, the main
populationwas improved after the selection step; (b)Population levelThis level represents the
dynamic of a population or subpopulation. In order to eliminate the bad individuals from the
population, Feoktistov and Janaqi (2006) proposed adding an energetic filter through which
only individuals with lower fitness can pass; (c) External level that provides interaction with
other methods. Keeping DE unchanged, Feoktistov and Janaqi (2004) add the least-square
support vector machine approximation at the end of each cycle in order to improve the
convergence algorithm. The method proposed in Ali and Torn (2002) and described below in
Sect. 3.2 is also included in this class; (d) Meta level At this level, a superior meta-heuristic
includes the algorithm as one of its strategy (Feoktistov 2006). DE algorithm was integrated
into a set of competing heuristicswhere each heuristicwas used based on a certain probability,
depending on the success of heuristic in the previous step (Islam and Yao 2008).

3.1 DE with other global optimization techniques (global–global)

In this class, different global approaches are combined with DE in order to create a “super-
algorithm” with extensive search capabilities. Depending on the situation, the combination
can be performed in parallel or sequential, it can share the same population or work with
separate populations.

3.1.1 DE and swarm intelligence

For hybridizing DE algorithm, the most commonly used global optimization technique is
particle swarm optimization (PSO). PSO is inspired from swarm theory (bird flocking, fish
schooling) and it is related to EAs, the adjustment to the best solution being conceptually
similar to the crossover operation. Hendtlass (2001) realized the first combination of DE
and PSO. In his algorithm (SDEA), the individuals obey the swarm principles. At random
generations, DE is applied to move the individuals from the poorer area to a better one.
Zhang and Xie (2003) use the same principle of updating the PSO individuals with DE in
their DEPSO methodology.

Liu et al. (2010) proposed an integration of PSO with DE in a two-population method,
applied for solving constraint numerical optimization problems. At each generation, three
mutation strategies of DE (DE/rand/1, DE/current_to_best/1, and DE/rand/2) were used to
update the previous best particles. Dulikravich et al. (2005) created a hybrid multi-objective,
multi variable optimizer by combining the non-dominated sorting differential evolution
(NSDE) with strength pareto evolutionary algorithm (SPEA) and multi-objective particle
swarm (MOPSO). The methodology uses these algorithms alternatively based on a switch
criterion, considering five different aspects of successive Pareto approximations and popu-
lation generation.

In a review related to the combination of DE with PSO, Xin et al. (2012) introduced a new
term to describe the combination of two global optimizers: collaboration. In this context, the
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authors pointed out that it is difficult to separate the influence of each algorithm on the fitness
function. In addition, an impressive list of DE–PSO combinations was presented. Another
example of collaboration between PSO and DE is presented in Xu et al. (2012) where a new
PSO-DE-least squares support vector regression combination is proposed for modelling the
ammonia conversion rate in ammonia synthesis production. In Epitropakis et al. (2012) after
each PSO step, the social and cognitive experience of the swarm is evolved using DE. The
proposed framework is very flexible, different variants of PSO [bare bones PSO (BBPSO),
dynamic multi swarm PSO (DMPSO), fully informed PSO (FIPS), unified PSO (UPSO)
and comprehensive learning PSO (CLPSO)] incorporating different DE mutation strategies
(DE/rand/1, DE/rand/2 and trigonometric) or variants (jDE Brest et al. 2006, JADE Zhang
and Sanderson 2009b, SaDE Qin and Suganthan 2005 and DEGL Das et al. 2009).

The latest DE-PSO combination proposed are: HPSO-DE (in which DE or PSO is ran-
domly chosen to be applied to a common population) (Yu et al. 2014) and PSODE (where a
serial approach is used together with a set of improvements, including hybrid inertia weight
strategy, time-varying acceleration coefficients and random scaling factor strategy) (Pandi-
arajan and Babulal 2014).

Ji-Pyng et al. (2004) used the concept of ant colony optimizer (ACO) to search for the
propermutation operator, in order to accelerate the search for the global solution. Vaisakh and
Srinivas (2011) proposed an evolving ant direction differential evolution (EADDE) algorithm
inwhich the ant colony search systems are used to find the propermutation operator according
to heuristic information and pheromone information. In order to properly set the parameters
of ant search, a GA version that includes reproduction by Roulette-wheel selection and single
point crossover is applied. Other algorithms in which DE is combined with ACO include:
DEACO (Xiangyin et al. 2008; Yulin et al. 2010), ACDE (Ali et al. 2009), MACO (dos
Santos Coelho and de Andrade Bernert 2010).

In the work of Chang et al. (2012) a serial combination is proposed, a dynamic DE version
being hybridized with a continuous ACO and then applied for wideband antenna design. In
another study, ACO is improved with DE and with the cloning principle of Artificial Immune
System. In the new algorithm (DEIANT), DE was applied to a duplication of the original
pheromone matrix. DEIANT was then used to solve the economic load dispatch problem
(Rahmat and Musirin 2013) and the weighted economic load dispatch problem (Rahmat
et al. 2014).

In combination with group search optimization (GSO), DEwas applied to find the optimal
operating conditions of a cracking furnace when variable feedstock properties are available
(Nian et al. 2013). In the algorithm (called DEGSO), DE is first applied to find the local
solution space and, when the change in fitness reaches a predefined value, the DE is stopped
and GSO is started.

3.1.2 DE and evolutionary algorithms

Yang et al. (2008b) generalized the common features of DE and evolutionary program-
ming (EP) into a unified framework and proposed NSDE (DE with neighborhood search) by
introducing Gaussian and Cauchy Neighborhood Search operators. Thangaraj et al. (2009b)
proposed two modifications of DE algorithms. First, DE was hybridized with EP and sec-
ond, different initialization techniques for generating random number (such as uniformly
distributed random numbers, Gaussian distributed random number, and quasi-random Sobol
sequence) were applied. The EP based mutation was used only when the DE mutation does
not generate a trial vector better than the current individual.
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A new algorithm called DE/BBO combining the exploration capabilities of DE with the
exploitation of biogeography-based optimization (BBO) is proposed in Gong et al. (2010). In
addition, a new hybrid migration operator based on two considerations was developed. First,
the good solutions are less often destroyed and the poor solution can accept a higher number
of features from the good solutions. Secondly, the DE mutation is capable of efficiently
exploring new search spaces and therefore, makes the hybrid more powerful.

An approach combining DE and GA was proposed in da Silva and Barbarosa (2010). In
every generation, one of the two algorithms is chosen based on productivity (an algorithm
being considered productive if it produces a new best). The probability of being selected is
redefined at every run using a reward index. In case of constraint problems, the reward is
obtained similar to the method of constraint handling. If both individuals are feasible, the
reward is equal to the fitness difference. In case just one individual is not feasible, then the
reward is represented by the sum of that individual’s constraints.

Another study in which DE and GA are mixed is represented by Meena et al. (2012).
Features from a discrete DE (DE) and GA (both with fixed CPs) were alternated based on
the current generation parity and then used to solve the text documents clustering problem.

3.1.3 Other algorithms

A combination involving coevolution of DE and harmony search (HS) is applied in the work
of Wang and Li (2012) where two populations evolve simultaneously. The algorithm, called
CDEHS, is applied to different engineering problems and, in order for the HS to handle
integer optimization, the search operator is modified to find only integers. In addition, the
pitch adjustment operation is modified to directly generate integer variables.

Inmost cases, the authors start from simpleDEvariants and combine themuntil a complex,
hybrid approach with improved performance is obtained. In Guo et al. (2013) another idea
is employed, in the SCE-UA (shuffled complex evolution), a replacement of the simple
search method with DE being realized. SCE-UA is a simple algorithm consisting of two
operations: multiple complex shuffling and competitive evolution. The new algorithm, called
MOSCDE has four main extensions: (a) strategy for sorting individuals of the population;
(b) achievement of sets and updating strategy (specific to a multi-objective problem); (c)
replacement of the simplex search with DE; and (d) extension of DE into a multi-objective
framework.

3.2 DE with local search methods (global–local)

The evolutionary algorithms that apply LS processes in order to improve performance and
to refine individuals are also called memetic algorithms (MA) (Liao 2010). This type of
hybridization is an integrative (coercive) approach as one algorithm is considered a subordi-
nate, being embedded in another algorithm (Raidl 2006).

Various studies showed that for some problems,MAs aremore efficient andmore effective
than the traditional EAs (Krasnogor and Smith 2005). Since DE can suffer from stagnation
problems, the role of the LS strategy is to compensate for this deficiency by refining the
individuals (Jia et al. 2011).

Rogalsky and Derksen (2000) combined downhill simplex (DS) with DE in order to
accelerate convergence,without getting trapped into localminima.TheDEbasedmechanisms
rely on mutation and crossover, DS relies on reflection, and the hybrid version denoted HDE
uses all three mechanisms. From the trial vectors generated by DE, n+1 are chosen to form
a simplex, which is modified through reflection, until one or more individuals are improved.
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In combination with rough sets, a modified DE was applied for multi-objective problems
(Hernandez-Diaz et al. 2006). The optimization process is split in two phases, in Phase I,
DE being used for 2000 fitness function evaluations. In the second phase, for 1000 fitness
evaluations, the population of non-dominated and dominated sets generated in the first step
are used to performa series of rough sets iterations.A similar approach is also used in Santana-
Quintero et al. (2010) where a new algorithm called DE for multi-objective optimization with
local search based on rough set theory (DEMORS) is proposed.

Inspired from the evolutionary programming neighborhood search strategy, Yang et al.
(2008b) introduced the concept of neighborhood into the DE algorithm. Experimental results
indicated that the evolutionary behavior of the DE algorithm is affected. For the 48 widely
used benchmarks, the performance of the improved version had significant advantages over
classical DE. After that, further improvements were added to the strategy by utilizing a self-
adaptive mechanism (Zhenyu et al. 2008). By incorporating the topological information into
DE and by using pre-calculated differentials, Ali and Torn (2002) created a very fast and
robust methodology.

Noman and Iba (2008) incorporated an adaptive hill climbing (HC) local search heuris-
tic (AHCXLS) resulting in a new DEahcSPX algorithm. In order to solve the middle-size
travelling salesman problem, a DE version with a position-ordering encoding (PODE) was
improved by including HC (Wang and Xu 2011). In the HC operator, the neighborhood of
the current solution is determined (by using swap, reverse edge, and insert operators) and
the best solution is preserved. Another work in which the best DE individuals are improved
by HC is (Hernandez et al. 2013). The HC implementation is a non-classical version, which
operates on more than one dimension at a time.

For solving single objective and multi-objective permutation flow shop scheduling prob-
lems, a series of alterations to DE (including a largest-order value rule for converting
continuous values to job permutations and a local search procedure designed according to the
problems landscape) were performed (Qian et al. 2008). Specific to the problems character-
istics, an insert-based LS (in which the parameters are randomly chosen, cycling is avoided
and the new solution is accepted only if it is better than the existing one) was chosen. Another
specific element is represented by the fact that LS is not applied to the individual, but to the
job permutation it represents. A similar LS variant is used in Wang et al. (2010b). Another
approach employed for solving the job-shop scheduling problem consisted in combining DE
with a tree search algorithm (Zhang and Wu 2011). A set of ideas from the filter and fan
algorithm were borrowed for a tree based local search that was carried out (immediately after
the selection phase) for the e% individuals from the population. In order to deal with the
parameters of the zero-wait scheduling of multiproduct batch plant with setup time (which
is formulated as an asymmetrical traveling salesman problem), a permutation based DE, in
combination with a fast complex heuristic local search scheme, is proposed in Dong and
Wang (2012).

In order to improve the performance of the algorithm when applied to the problem of
worst-case analysis of nonlinear control laws for hypersonic re-entry vehicles, a gradient-
based local optimization procedure is introduced into DE (Menon et al. 2008). Distinctively
from the majority of works in which the LS procedure is applied to the best individual, in
this work, when no improvement is obtained, LS is applied to a random individual, the aim
being to obtain local improvements in the search space. Trigonometric local search (TLS)
and interpolated local search (ILS) are other two local procedures that were combined with
DE in order to increase its efficiency (Ali et al. 2010). TSL is based on the trigonometric
mutation operator (Fan and Lampinen 2003), while ISL is based on Quadratic Interpolation,
being one of the oldest gradient-based methods used for optimization. In both cases, the
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combination with DE (called DETLS and DEILS respectively) implies the selection of the
best solution of two other random points for biasing the search in the neighborhood of
the best fitness individual. The LS procedure is applied until there is no improvement. In
another work, in two combinations [DE+LS(1), DE+LS(2)], ILS is applied to improve the
DE performance (Tardivo et al. 2012). The difference between the two variants consists in
the selection scheme applied to the LS procedure, in case of DE+LS(1) two individuals
being randomly selected and the third representing the best individual found. On the other
hand, in case of DE+LS(2), just one individual is randomly selected, the other two being
represented by the two best solutions. In Asafuddoula et al. (2014), another gradient based
search approach [sequential quadratic programming (SQP)] is applied to locally improve
the best solution of DE. A 10% of the total function evaluations are allocated to the search
procedure. When the LS fails to determine a better solution consuming a set of predefined
number of functions of evaluations, then it is initialized for the next best solution.

In the memetic differential evolution (MDE) (Neri and Tirronen 2008), Hooke–Jeeves
algorithm (HJA) and stochastic local search (SLS) are used to locally improve the initial
solution by exploring its neighborhood. Liao (2010) applied to a modified DE version a
random walk with direction exploitation (RWDE) in order to improve randomly selected
trial vectors. In this manner, the creation mechanism has more chances of generating better
individuals.

Wang et al. (2011) fused the search performed by DE with Nedler–Mead (NM) in a
NMDE algorithm applied to parameter identification of several chaotic systems. The current
population is improved by NM and, after that, it is taken over by the DE algorithm which
creates the next generation.

In the integrated strategies differential evolution with local search (ISDE-L) algorithm,
alongwith a series of improvements related to themutation strategies, a local search procedure
is applied to improve the performance (Elsayed et al. 2011). At each K generation, the 25%
best individuals are selected and, for each individual, a random variable is selected and then
modified by adding or subtracting a random Gaussian number.

Another approach often used as a local search method is represented by chaos theory. In
combination with DE, chaos was not only applied for improving good solutions but also for
adaptation of CPs. In dos Santos Coelho and Mariani (2008), the best solution generated
with DE is considered a starting point for the chaotic local search (CLS) approach. A similar
methodology is used in Lu et al. (2010b), the CLS procedure designed to solve the short-
term hydrothermal generation scheduling being based on the logistic equation. Since chaotic
search suffers from performance deterioration when exploring large search spaces, Jia et al.
(2011) introduced a shrinking strategy for the search space and, after that, applied the new
CLS to DE, the new algorithm (DECLS) being a promising tool for solving high dimensional
optimization problems. Deng et al. (2013) proposed a DE variant with multiple populations
(for solving high dimensional problems) in which a LS strategy in combination with the
Chaos search approach (one dimensional Logistic mapping), is applied to improve the best
solution obtained so far.

Another approach used to improve the performance of the algorithm is to apply the previ-
ous steps for generating better individuals. For example, Thangraj et al. (2010) used a Cauchy
mutation operator as LS procedure. At the end of each DE generation, the best solution is
mutated using the “best/1” strategy until nomore improvement is obtained. The sameCauchy
mutation operator is used in Ali and Pant 2011 to force the best individual to jump to a new
position when the new concept of failure counter (FC) reaches a predefined value. The role
of FC is scanning the individuals from each generation and keeping an account on the times
an individual failed to show improvement.
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In order to improve the MOEA/D-DE algorithm proposed in Li and Zhang (2009) for
solving multi-objective problems with complex Pareto sets, Tan et al. (2012) introduced: (a)
a uniform design method for generating aggregation coefficient vectors and (b) a three points
simplified quadratic approximation. The role of the design method is to uniformly distribute
the scalar optimization sub-problems and to allow a uniform exploration of the region of
interest. The quadratic approximation is applied to improve the local search ability of the
aggregation function. The experiments showed that the new algorithm (called UMODE/D)
outperforms MOEA/D-DE and NSGA-II, even when the number of generation is reduced to
half, compared with the other two algorithms.

Another approach used as a LS procedure for the DE algorithms is represented by the
Gauss–Newton method (Zhao et al. 2013). Similar to the other approaches presented in
this review, DE carries out the global search and the Gauss–Newton further explores the
promising regions. In addition, a collocation approach is used instead of the Renge–Kuta
method usually applied to solve the initial value problem for Gauss–Newton.

When used in combination with artificial neural networks (ANNs) specific training
approaches can be applied as LS procedures in order to improve specific solutions. This
mix of algorithms is possible because each DE individual is a numerical representation of an
ANN. One of the most used ANN training procedures employed in DE is represented by back
propagation (BP) algorithm, which is a gradient descent method. Examples of algorithms
containing DE-ANN-BK are: MPDENN (where a resilient BP with backtracking-iRprop+
variant is used as a LS) (Cruz-Ramirez et al. 2010), SADE-NN-2 (Dragoi et al. 2012),
DE-BP (Sarangi et al. 2013), hSADE-NN(that has a local search procedure based on a ran-
dom selection between BP and random search) (Curteanu et al. 2014). Another training
approach (Levenberg–Marquardt) was employed as LS procedure for DE by Subudhi and
Jena (2009a, b, 2011), all variants being applied for non-linear system identification.

3.3 DE with global optimization and local search methods (global–global–local)

In this case, multiple algorithms belonging to different classes and types of search are used
alternatively or concurrently for DE improvement, by locally and globally modifying the
individuals.

In Neri and Tirronen (2008), two versions of DE improvedwith both global and local algo-
rithm are proposed: enhanced memetic differential evolution (EMDE) and super-fit memetic
differential evolution (SFMDE). In EMDE [an improvement of Memetic DE (Tirronen et al.
2007)], based on a probabilistic scheme, Hooke–Jeeves algorithm, stochastic local searcher
and simulated annealing are applied to randomly selected individuals or to the best one. In
SFMDE, in order to be improved and to be included into the next generation, a series of
individuals of DE undergo a PSO procedure. Along with PSO, two other algorithms, Nelder
Mead algorithm (NMA) and Rosenbrock algorithm (RA), are used for improving a randomly
selected individual and the solution of the current population.

Wang et al. (2009) takes the concept of the ant direction hybrid differential evolution
(AHDE) of Ji-Pyng et al. (2004) further and adds an accelerated phase for faster convergence
and an operator for simultaneously handling integer and real variables.When the best solution
is not improved by the new individual creation mechanism, a gradient descent method is used
to push the individual to a better point.

Liao (2010) modified the methodology proposed in Angira and Babu (2006), in which
the current generation and the next generation are condensed into a single population of
potential solutions. The modifications include the Deb’s constraint handling method and the
generalized discrete variables handling methods. This new version is hybridized and two new
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algorithms are created by combining it with a LS operator and with another meta-heuristic
method. The meta-heuristics used is HS and has the role of cooperating with DE in order to
produce a desirable synergetic effect.

In Wang et al. (2010a), DE was combined with a new technique called generalized
opposition-based learning (GOBL). After the initialization was performed and the best solu-
tions (from the united population of randomly generated solutions and GOBL solutions) are
selected, at each iteration, based on a specific probability, GOBL or DE is applied to evolve
the population. The role of GOBL is to transform the current search space into a new search
space, providingmore opportunities for finding the global optimum. In addition, whenGOBL
strategy is not executed, a chaotic operator is applied to improve a set of the best individuals
in the population.

The strengths of EA, DE and sequential quadratic programming (SQP) are combined
in order to create a new powerful memetic algorithm (Singh and Ray 2011). Initially, the
population is generated using random samples of the solution space and then evolved by either
EA (including simulated binary crossover and polynomial mutation) or DE (Rand/1/exp).
For certain generations, or when the local procedure was unable to find an improvement
in the previous generation, SQP performs a local search, starting from a randomly selected
individual. Otherwise, the starting point is represented by the best solution. If for more than
a specified number of generations, the algorithm is not able to improve the objective value,
then the population is reinitialized, the best solution so far being preserved.

3.4 DE as a local search procedure

The idea of applying a global search approach that is further improved by a local procedure
is not new and it was used by various researchers for solving different types of problems.
Therefore, a special attention must be given to the local approach, as it is the one generating
the best solutions.

If in the previous sections the focus was on DE as a global search procedure that is
hybridized with other algorithms to improve its performance, in this section, DE is regarded
as LS, being applied to solve specific problems of other global methods. By limiting the new
solutions around a specific region, the global search approach of DE is turned into efficient
LS.

In combination with SQP, DE was employed to fine-tune the solutions found by GA
when applied for economic dispatch with valve-point effect problems (He et al. 2008). The
initial population of DE is randomly generated from the existing GA population, while SQP
starts from a single solution. In a study tacking the application of EAs for solving multi-
objective problems with complex Pareto sets, Li and Zhang (2009) modified the NSGA-II-
SBX algorithm by replacing the SBX operator with a DE operator, followed by a polynomial
mutation. A similar approach was used by Arabas et al. (2011) that introduced the differential
mutation into a simple EAs without crossover operator. Each reproduced chromosome is first
mutated by the DE scheme and after that, by the conventional Gaussian mutation scheme.
Results on the problems from the CEC2005 competition showed that the performance of this
new algorithm (DMEA) is comparable or better than other similar algorithms.

Liu et al. (2010) combined PSO with DE in order to solve numerical and engineering
optimization problems.AsPSO is prone to stagnation, the role ofDE is to update the identified
best positions of particles. Three mutation strategies (rand/1, current-to-best/1 and rand/2)
are employed to produce three offsprings and a rule for boundary violation is enforced. The
individual is replaced only if its offspring has a better fitness value and a lower degree of
constraint violation. A similar approach to the one from Zhenya et al. (1998) is proposed in

123



464 E.-N. Dragoi, V. Dafinescu

Zhang and Xie (2003), where a hybrid PSO (called DEPSO), with a bell-shaped mutation
and consensus in the population, is applied to a set a benchmark functions. Das et al. (2008)
performed a technical analysis of PSO and DE, and studied a PSO version proposed by
Zhenya et al. (1998). The main characteristic of the algorithm (PSO-DV) is represented by
the introduction of the differential operator of DE into the scheme used for velocity update.

In order to search for the optimal path, DE is merged with ACO, its role being to pro-
duce new individuals with a random deviance disturbance that translates into an appropriate
disturbance of pheromone quantity left by ants (Zhao et al. 2011).

In an attempt to improve the HS algorithm, Chakraborty et al. (2009) borrowed the muta-
tion principle of DE. A similar approach is used in Arul et al. (2013), where a chaotic
self-adaptive mutation operator replaced the pitch adjustment in order to enhance the HS
search performance.

Hybridizing DE is an effective technique to improve performance. However, the hybrids
are usually more complicated (Wenyin and Zhihua 2013) and therefore more expensive in
terms of consumed resources. When performance is taken into account, this aspect is not an
issue, as it can be observed from the multitude of combinations developed.

4 Conclusions

With a good performance and flexibility, DE is an algorithm that can be applied to solve
different types of problems from many areas. In an attempt to improve its characteristics, a
series of approaches are applied, the results demonstrating that it is an algorithm with a lot
of potential. In this work, two improvement techniques are studied and the main findings
reported in literature are listed in a chronological order. These techniques are represented by:
(a) replacement of manual parameter settings with adaptive or self-adaptive variants; and (b)
hybridization of DE with other algorithms.

Although initially considered as being easy to set up, numerous studies regarding the CPs
optimal identification demonstrated that this is not an easy task as their values are problem
dependent. Depending on when the setting is performed, two classes are encountered: tuning
(the CPs are set before the algorithm starts) and control (the CPs are set during the run). In
this work, the emphasis was on control and especially on self-adaptation, as this approach
was proven the most efficient.

On what concerns hybridization, over the years, different approaches were proposed, a
review of all possible combinations (at different levels and with all algorithms) being almost
impossible due to the high number of studies published or being published. In this review,
the focus was set on the main important publications from the last 5years. Depending on
the problem being solved and on the aspect being improved, the DE combinations can be
performed at global level or local level. At global level, all the algorithm have an equal
influence on the hybrid performance, the main classes of algorithms combined with DE
being represented by the swarm intelligence and evolutionary algorithms. At a local level
(also known as local search), DE can be improved not only with other heuristics, but also
with problem specific approaches. Hybridization can also be performed between multiple
algorithms. In this case, a third category is encountered: global–global–local. Although DE is
a global search approach, it can be used at a local level or its main principles can be borrowed
and introduced into other algorithms.

As it can be observed, DE has a complex dynamic with all the existing algorithms, its
study in the context of hybridization being an important aspect that can influence the decision
of choosing the appropriate method when solving difficult benchmark or real-life problems.
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