
Artif Intell Rev (2016) 45:405–446
DOI 10.1007/s10462-015-9451-9

Fuzzy Petri nets and industrial applications: a review

Kai-Qing Zhou1 · Azlan Mohd Zain1

Published online: 15 December 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Fuzzy Petri net (FPN) provides an extremely competent basis for the implemen-
tation of computing reasoning processes and the modeling of systems with uncertainty.
This paper reviews recent developments of the FPN and its industrial applications. Sev-
eral important aspects of FPN’s background, history and formalisms are discussed, including
the reasoning algorithm and relevant industrial applications; after which we present our con-
clusions and suggestions for future research.
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1 Introduction

Net theory was described as a net-like model applied to relevant research in the automated
communication field by Petri (1962). Petri nets (PNs) first mentioned in Petri’s 1965 talk
of “Fundamentals on the description of discrete processes” to instead of net theory at the
3rd Colloquium on Automata Theory in Hannover, 1966. A few years later, Holt and his
group have contributed to popularize Petri Net (Holt et al. 1970). With rapid development of
PNs and its applications, Plunnecke and Reisig (1991) undertook a difficult task to present a
bibliography which is related to all relevant publications on Petri Nets and Petri applications.
Brauer and Reisig reviewed Petri’s exceptional life and related work (Brauer and Reisig
2006). After half century of C. A. Petri’s Ph.D dissertation, Sliva systematical reviewed the
development of PN theory (Silva 2013).

As a graphicmathematicalmodeling tool, PNoffers a uniformenvironment for the descrip-
tion and analysis of inter-relations in discrete event systems such as process synchronization,
asynchronous events, concurrent operations and conflicts or resource sharing (Urawski and
Zhou 1994). Due to its remarkable advantages, PN and its application have attracted much
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Fig. 1 Development of the PN model family

research. In the past few decades, various high level PNs (HLPNs) have been presented for
different research applications including the stochastic Petri net (SPN) (Molloy 1982); the
colored Petri net (CPN) (Jensen 1981); the time Petri net (TPN) (Ramchandani 1974), etc.
These have been widely applied for problem solving in multiple fields including software
systems, communication protocols, workflow and manufacturing systems, batch processing,
scheduling problems, etc., (Aura and Lilius 2000; Co et al. 2012; Garg 1987; Fenton et al.
2007; Gua and Bahri 2002; Ha and Suh 2008; Hugo and Pedro 2012; Jung and Lee 2012;
Liu et al. 2002; Lee et al. 2004; Murata 1989; Pouyan et al. 2011; Pla et al. 2014; Shojafar
et al. 2013; Van der Aalst 1994; Van der Aalst and Hee 1996; Wang et al. 2015; Zhang and
Jiao 2009).

Although PN and HLPN research and applications have borne much fruit, a fatal flaw
remained, namely, they were unable to represent fuzzy data applied in knowledge-based
systems (KBS) or systems with uncertainty. To overcome this disadvantage, a novel HLPN
model called fuzzyPetri net (FPN)wasdevelopedbyLipp (1984). In short, FPN is a formalism
that models expert systems containing fuzzy data. The developmental track from PN to FPN
is illustrated in Fig. 1.

It has proven easy to discover the various high level FPNs (HLFPNs) that combine different
characteristics of HLPNs to overcome shortfalls based on unique applications from 1997
through 2009.

As an HLPN model, FPN inherited graphic descriptive and mathematical foundation
features from the PN model, after which FPN was applied to build, compute and reason
expert systems (Konar and Jain 2005). Based on the characteristics just cited, FPN provides
an extremely competent basis for the implementation of computing reasoning processes and
the modeling of systems with uncertainty. In recent years, FPN was consequently applied to
a variety of industrial fields. Nonetheless, we could find no prior survey of these industrial
applications. Hence, this paper reviews FPN development and its industrial applications with
the following goals:

1. To analyze FPN’s reasoning algorithm.
2. To summarize typical applications in different industrial sectors.

The organization of this paper is as follows: General definitions for FPN and high level FPNs
(HLFPNs) and related notions are discussed in Sect. 2. Section 3 summarizes and analyzes
the most recently utilized reasoning algorithms for FPN. Section 4 highlights industrial FPN
applications and discusses developmental trends. Section 5 presents conclusions along with
suggestions for future work.
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2 Fuzzy Petri net and high level fuzzy Petri nets

The process of industrial applications using FPN can be abstracted from the literature and
summarized in three phases:

Phase 1: Generate corresponding FPN models for KBS or systems with uncertainty.
Phase 2: Design a reasoning algorithm based on different application backgrounds.
Phase 3: Implement a reasoning algorithm with relevant parameters.

This section presents concepts related to an elementary net system, PN, FPN and HLFPNs
as illustrated in Fig. 1.

2.1 Petri net and elementary net system

Summarizing, PN formalism is six-tuple as illustrated in Definition 1.

Definition 1 (Petri net) PN is six-tuple:PN = {P, T, F, K ,W, M0}, where
1. P is a finite set of places: the place is represented by a circle in the PN model;
2. T is a finite set of transitions: the transition is represented by a rectangle in the PNmodel;
3. F ⊆ (P × T ) ∪ (T × P) is a finite set of arcs from ’place to transition’ or ’transition to

place’;
4. K = {1, 2, 3, . . .} is the capacity function of p. K (p) represents the number of resources

stored in place (p);
5. W :F → {1, 2, 3, . . .} is a weight function that represents the number of resources con-

sumed from a ’place to transition’ or created from a ’transition to place’;
6. M0:P → {0, 1, 2, . . .} is an initial marking (M0) that represents the distribution of

resources for each place in the initial statement of the PN model. Moreover, a resource
is called ’token’ in PN theory.

Furthermore, a modified PN is called an elementary net system (EN_ system) when a PN
model fulfills the following three conditions:

1. ∀s ∈ S, K (s) = 1 (In PN theory, the place is marked (s), and a set of places is marked
(S);

2. ∀(x, y) ∈ F,W (x, y) = 1;
3. ∀s ∈ S, M(s) = 1;

The EN_system is the most fundamental model of the PN family. In the EN_system, a
set of places is considered conditions, represented by B. A set of transitions is considered
events, represented by E (Thiagarajan 1987). EN_system formalism is given in Definition 2.

Definition 2 (EN_system)AnEN_system is a four-tupleEN_system = (B, E, F, c), where

1. B is a finite set of places;
2. E is a finite set of transitions;
3. F ⊆ (P × T ) ∪ (T × P) is a finite set of flow relations;
4. c ∈ B is an EN_system case.

The status of conditions for B is divided into two classes: True condition (M(s) = 1),
and false condition (M(s) = 0). On this basis, a subset of B (replaced by c) is used to
represent all ’true’ conditions. Figure 2 illustrates a turbine fault diagnosis system modeled
by an EN_system (in Fig. 2, each place only contains, at most, one token and each weight
value equals one). Table 1 lists meanings for each place.
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Fig. 2 Turbine fault diagnosis system modeled by an EN_system

Table 1 The meaning of each place in Fig. 2

Place Meaning Place Meaning

P1 Molecular pump is not in proper position P5 Cooling system failures

P2 Temperature of cooling water is high P6 Compressor is noisy

P3 Roller bearing wears P7 Temperature of bump is high

P4 Pressure exerted is too high P8 Blade of compressor is broken

2.2 Fuzzy Petri net

To model and analyze a system with uncertainty, Looney (1988) proposed a rough notion for
a fuzzy Petri net to execute approximate reasoning. Up to the present time, there is no unified
formalism for FPN (See Appendix 1: list of FPN definitions from 2000 through 2013). After
discussing and comparing sixteen formalisms from twenty-four articles for FPN in “Appendix
1”, a developmental track was clearly discerned comprising the following three points.

1. The importance of parameters was realized step-by-step. For example, Chen et al. (1990)
did not consider the influence of parameters in the reasoning process. The formalism
was enhanced to 9-tuple, which added a weight factor to the FPN (Chen 2002). During
the last five years, FPN formalism always included three main parameters: weight value,
threshold value, and a certainty factor.

2. With further in-depth research, each parameter was divided into multi-subclasses that
more accurately described FPRs in KBS. For instance, Wang et al. (2001) divided tran-
sitions into five types to control the scale of the FPN model and simplify the analytical
process. Gniewek (2013) classified the set of places into two types connected with either
process or resource modeling, which depend on place. A similar case was found by Liu
et al. (2013a) where places were classified into three different sets: starting places, inter-
mediate places, and terminating places. Liu et al. (2013b) divided the threshold into two
modules: input threshold and output threshold.

3. With increasing numbers of applications for FPN, different formalisms were proposed to
analyze and resolve issues of disassembly (Tang et al. 2006; Tang 2009). Cao and Chen
(2010) proposed extensive formalism for FPN to analyze the issue of computing with
words.

123



Fuzzy Petri nets and industrial applications: a review 409

t2

t1

1

1 t3

t4

t5

t6

0.9 0.5 0.8 1

0.8 1 0.95 1

0.5

0.9

0.95

0.3

0.2

0.3

0.1

0.3

0.2

P1

P2

P3

P4 P6

P8

P5 P7

Fig. 3 The turbine fault diagnosis system modeled by FPN

2.2.1 The formal definition of FPN

Definition 3 illustrates a general FPN formalism.

Definition 3 (General formalism:) The general formalism of FPN is viewed as a 2-tuple
structure.

FPN = <N ,C>

N is the FPN’s basic structure as N = {P, T, M, I, O,W, μ,CF}, where
1. The declaration of P, T is same as Definition 1;
2. M = (m1,m2, . . . ,mn)

T is a vector of fuzzy marking; mi ∈ [0, 1] is the truth degree of
pi (i = 1, 2, . . . , n). The initial truth degree vector is denoted by M0;

3. I :P × T → {0, 1}is an n × m input matrix defining the directed arc from place to
transition:{
I (pi , t j ) = 1 if there is a directed arc from pi to tj
I (pi , t j ) = 0 else

(i = 1, 2, . . . , n; j = 1, 2, . . . ,m)

3. O:P × T → {0, 1} is an n × m output matrix defining the directed arc from transitions
to place:{
O(pi , t j ) = 1 if there is a directed arc from tj to pi
O(pi , t j ) = 0 else

(i = 1, 2, . . . , n; j = 1, 2, . . . ,m)

4. W (i, j) is the weight from pi to t j ;
5. μ:T → (0, 1] represents the threshold value of transition (ti );
6. CFji is the support strength from t j to pi , representing the credibility of post-condition(s)

from precondition(s);

C is the correspondence between KBS and FPN as C = (D, β), where

1. D is a finite set of propositions in the KBS. Moreover, P ∩ T ∩ D = ∅, |P| = |D|;
2. β:P → D is an association function that reveals the relationship between places and

propositions.

Figure 3 demonstrates the turbine fault diagnosis system as modeled by FPN.
The characteristics of the FPN illustrated in Fig. 3 are given as follows:

1. The capacity for each place is one and the value of each token will not exceed one. The
range of value for the token is [0–1];
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Table 2 Correspondence of
RS(Pi ) and IRS(Pi )

Pi IRS(Pi ) RS(Pi )

P1 {P4} {P4, P6, P8}
P2 {P5} {P5, P7, P8}
P3 {P6} {P6, P8}
P4 {P6} {P6, P8}
P5 {P7} {P7, P8}
P6 {P8} {P8}
P7 {P8} {P8}
P8 ∅ ∅

2. According to the FPN definition, it is easy to find that concurrence and conflict do not
exist in the FPN model;

3. The token for the proposition will not disappear after firing the rule,

2.2.2 Related notions of FPN

Other notions of FPN are given in Definitions 4 through 13.

Definition 4 (Pre-set and post-set:) For an FPN
∑ = {P, T, M, I, O,W, μ, λ}, •x =

{x |(x, y) ∈ F} is the pre-set or input set ofx , and x∗ = {x |(y, x) ∈ F} is the post-set
or output set of x(x, y ∈ P ∪ T ).

Definition 5 (Input Place and Output Place)

Input place: Pin = {p ∈ P|• p = ∅ ∧ p• �= ∅};
Output place: Pout = {p ∈ P|• p �= ∅ ∧ p• = ∅}.

Definition 6 (Enabled) For ∀t ∈ T, t is enabled if and only if ∀p ∈ • p; M(p) · w(i, j) ≥
μ(t), denoted by M[t >.

Definition 7 (Fired)A firing of an enabled transition ti removes token from each input place
of ti and adds a new token to each output place of ti . Value of the new token will be compute
based on mechanisms in fuzzy reasoning with different industrial applications.

Definition 8 (Immediate Reachability Set) The set of places that is immediately reachable
from place pi is called the immediate reachability set of pi , denoted I RS(pi ).

Definition 9 (Reachability Set) A set of places that is reachable from place pi is called the
reachability set of pi , denoted as RS(pi ).

Definitions 8 and 9 are widely employed to generate the reachability tree of FPNmodel to
implement reasoning operations. Table 2 shows the correspondence of RS(Pi ) and IRS(Pi )
for each place demonstrated in Fig. 3.

Definition 10 (FPN IncidenceMatrix) Incidencematrix H of a fuzzy Petri netN is defined as
an×mmatrix for recording theflow relationship betweenplaces and transitions. Furthermore,
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each row corresponds to a place and each column corresponds to a transition, respectively.
The incidence matrix H is defined as H = {hi j }(i = 1, 2, . . . , n; j = 1, 2, . . . ,m), where

hi j =
⎧⎨
⎩
1 i f (pi , t j ) ∈ F
−1 i f (t j , pi ) ∈ F
0 else

Definition 11 (Three Operators of Max Algebra) ⊕ : X ⊕ Y = Z , zi j = max{xi j , yi j }.
Where, X, Y and Zare n × m-dimensional matrices;

⊗ : X ⊗ Y = Z , zi j = max
1≤k≤p

{xik, yk j }. Where, X, Y and Z are n × p, p × m and

n × m-dimensional matrices, respectively;
� : � : X�Y = Z . If xi j ≥ yi j , zi j = xi j . Else, zi j = 0.

Definition 12 (Place Vector) X = (x1, x2, . . . , xn)T is place vector, where |X | = |P|. If pi
is the goal place or a place related to the goal place, xi = 1. Else, xi = 0.

Definition 13 (Transition Vector) Y = (y1, y2, . . . , ym)T is transition vector, where |Y | =
|T |. If t j is the transition related to the goal place, ti = 1. Else, ti = 0.

2.3 Colored Petri net (CPN) and fuzzy colored Petri net (FCPN)

Colored Petri net (CPN) is presented by Jensen (1981) to fold the net system by classifying
tokens as various types. In CPN, each token has attached a color for indicating the identity of
the token (Jensen 1983, 1987, 1992, 1995, 1997; Jensen and Kristensen 2009). In general,
CPN functions are:

1. To study, model and validate discrete-event systems.
2. To analyze and obtain structure and dynamic performance data for a modeled system.

The formal definition of a CPN is demonstrated below.

Definition 14 (Colored Petri net) CPN is a 6-tuple CPN = (P, T,C, I−, I+M0), where

1. The declaration of P, T, Mo is same as Definition 1
2. C is a color function that assigns a finite and non-empty set of colors to each place and

a finite and non-empty set of modes to each transition.
3. I− and I+ denote the backward and forward incidence functions defined by P ×T , such

that

I−(p, t), I+(p, t) ∈ [C(t) → C(p)MS],∀(p, t) ∈ P × T

Based on the notions of PN and CPN, Yeung et al. (1996) presented a kind of HLPNs,
called fuzzy colored Petri net (FCPN), which is demonstrated as follows:

Definition 15 (Fuzzy colored Petri net) FCPN is a twelve-tuple FCPN = (
∑

, P, T, D, A,

N ,C,G, E, β, f, I ), where

1.
∑ = {σ1, σ2, . . . , σl}(l ≥ 0) denotes a finite set of non-empty types, called color sets .

2. P = {PC , PF } denotes a finite set of places:
– PC = {pc1, pc2, . . . , pcm}(m ≥ 0) denotes a finite set of places that model the

dynamic control behavior of a system, and is called control places;
– PF = {p f1, p f2, . . . , p fn}(n ≥ 0) denotes a finite set of places that model the fuzzy

production rules, and is called fuzzy places, and PC ∩ PF = ∅.
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3. T = {TC , TF }denotes a finite set of transitions:
– TC = {tc1, tc2, . . . , tci }(i ≥ 0) denotes a finite set of transitions that are connected

to and from control places, and is called control transition;
– TC = {t f1, t f2, . . . , t f j }( j ≥ 0) denotes a finite set of transitions that are that are

connected to or from fuzzy places, and is called fuzzy transition, and TC ∩ TF = ∅;
4. D = {d1, d2, . . . , dh} denotes a finite set of propositions, |PF | = |D|;
5. A = {a1, a2, . . . , ak}(k ≥ 0) denotes a finite set of arcs, and P∩T = P∩A = T∩A = ∅;
6. N :A → P × T ∪ T × P denotes a node function, and it maps each arc to a pair, where

the first element is the source node and the second element is the destination node; the
two nodes have to be of different kinds;

– In: an input function that maps each node, x , to the set of nodes that are connected
by an input arc(x) → x ;

– Out: an output function that maps each node, x , to the set of its nodes that are
connected to x by output arc(x) → x .

7. C :(P∪T ) → ∑
ss is a color function, whichmaps each place and transition to a super-set

of color sets.
8. G:T → expression which denotes a guard function:

∀t ∈ T :
[
T ype(G(t)) = Boolean ∧ T ype(Var(G(t))) ⊆

∑]
, where

T ype(Vars) denotes the set of types, {T ype(v)|v ∈ Vars}. Vars denotes the set of
variables, and Var(G(t)) denotes the set of variables used in G(t);

9. E :A → expression which denotes an arc expression function:

∀a ∈ A :
[
T ype(E(A)) = C(p(a))MS ∧ T ype(Var(E(a))) ⊆

∑]
, where

p(a) is a place in N (a), and MS stands for multi-set.
10. β:PE → D denotes a bijective mapping from fuzzy places to a proposition.
11. f :T → [0, 1] denotes an association function, which assigns a certainty value to each

color used in each fuzzy transition.
12. I : denotes an initialization of double(δ, α)

– δ : P →expression which denotes an initialization function:

∀p ∈ P : [T ype(δ(P)) = C(p)MS].
– α denotes an association function, which assigns a certainty value in the range [0, 1]

to each token in the fuzzy places.

In the existing literature, FCPN net structure is similar to the general FPN model (Fig. 3).
However, tokens are marked by different colors in the FCPN model.

2.4 Time Petri net (TPN) and fuzzy time Petri net (FTPN)

The earliest TPN formalismwas proposed to analyze the recoverability of a computer system
and communication protocol by Ramchandani (1974). Compared to the original PN, the TPN
transition was labeled with correspondence time intervals. These intervals represented upper
and lower limits of the time when a transition was enabled. TPN is a suitable technique to
model and analyze a system with imperfect timing. The TPN formalism is given as follows:
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Fig. 4 FTPN model for a Turbine fault diagnosis system

Definition 16 (Time Petri Net) A time Petri net is a five-tuple, T PN = (P, T, F, SI, M0),
where,

1. The declaration of P, T, F, M0 is same as Definition 1.
2. SI :T → R+ is a firing time function that assigns a positive real number to each transition

on the net.

Normally, a general FPN is difficult to represent, model and resolve its sharing of abnor-
mality propagation and temporal evolution. To overcome this shortage, Pedrycz andCamargo
(2003) systematic illustrated how to add the time factor as an integral part of the models of
transitions and place. A classical FTPN formalism was demonstrated as a 12- tuple by Defi-
nition 15 (Liu et al. 2011b).

Definition 17 (Fuzzy Time Petri Net)An FTPN is an 11- tuple FT PN = {P, T, E, I, O, f,
α, β, D, T S, M0}, where
1. The declaration of P, T, I, O, M0 is same as Definition 3.
2. E = {e1, e2, . . . , en} is a finite set of propositions where|P| = |E |;
3. f : T → [0, 1] is a relationship function with respect to transition t , representing a

mapping from t to a real number confined in [0, 1];
4. α : P → [0, 1] is a relationship function with respect to place p, representing a mapping

from p to a real number bound by [0, 1];
5. β : P → E is a relationship function with respect to place p, representing a bidirectional

mapping between p and the proposition set;
6. D = {d1, d2, . . . , dn},C(T ) → R+ is a time delay function associated with each tran-

sition;
7. T S is a finite set of transition states. ∀T Si ∈ T S, T Si = {0, 1}; T Si = 1 implies the

corresponding transition (ti ) that is fired; otherwise, T Si = 0 implies ti is not fired.

Figure 4 shows the FTPN model for a turbine fault diagnosis system. Compared with FPN
(Fig. 3), every transition of FTPN has two parameters (the threshold value and the time
delay). For example, the transition t1 Fig. 4 has two parameters 0.3(1). These two parameters
represent the threshold value of t1 is 0.3 and the time delay associated with the deduction of
transition t1 is 1.

2.5 Stochastic Petri net (SPN) and fuzzy stochastic Petri net (FSPN)

SPN is an advanced PN form that describes the dynamic behaviors of discrete dynamic
systems vis-à-vis isomorphic continuous-time Markov chains. A random variable, � : T →
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R+, is used to determine the probabilistic delay rate (Molloy 1982). A definition for SPN is
given below.

Definition 18 (Stochastic Petri net) An SPN is a six-tuple SPN = (P, T, I, O, M0,�),
where

1. The declaration of P, T, I, O, M0 is same as Definition 3.
2. � : T → R− is a firing function. Moreover, i th is the firing rate of the i th transition

where λi denotes the firing rate of (ti ) and R+ is the set of all positive real numbers.

In SPN, the description of uncertainty is based on the probability value. As it is not suitable
to represent, describe or analyze various uncertainties except in terms of randomness, the
concept of fuzzy mathematics was applied to SPN to improve its approach (Tuysuz and
Kahraman 2010). A general FSPN formalism is introduced by Yuan et al. (2007) as follows.

Definition 19 (Fuzzy Stochastic Petri Net) An FSPN is a six-tuple SPN = (P, T, I, O,

M0, λ̃), where

1. The declaration of P, T, I, O, M0 is the same as in Definition 3;
2. λ̃ = (λ̃1, λ̃2, . . . , λ̃m) is a fuzzy set of transition firing rates; λ̃i is a positive real number.

In the existing literature, FSPN net structure is similar to that of the general FPN model
(Fig. 3). However, the fuzzy set is used for the transition firing rate.

2.6 Intuitionstic fuzzy Petri net (IFPN)

IFPN is kind of HLFPNs by combing FPN and intuitionistic fuzzy set to over the limitation of
fuzzy Petri nets single membership (Shen et al. 2009). Compared with other traditional FPN,
intuitionistic fuzzy number is widely employed to represent confidence degree, threshold
and token value of each place in IFPN. A kind of general IFPN formalisms is introduced as
follows.

Definition 20 (Intuitionstic Fuzzy Petri Net) An IFPN model is defined as 6-tuple, as
(P, T, I, O, μ, θ), where

1. The declaration of P, T, μ is the same as in Definition 3;
2. I = {ai j } : P × T → [0, 1] is an n×m weighted input matrix defining the directed arcs

from places to transitions,
∑

0≤i≤n ai j = 1(i = 1, 2, . . . , n; j = 1, 2, . . . ,m). If there
is a directed arc from pi to t j , then ai j = wi j (wi j is the weight of pi to t j ). Otherwise,
ai j = 0.

3. O = {bi j } : P × T → [0, 1] is an n × m weighted input matrix defining the directed
arcs from transitions to places. If there is a directed arc from t j to pi , then bi j = c j .
Otherwise, bi j = (0, 1). Where, c j = (Cμ j ,Cγ j )(i = 1, 2, . . . , n; j = 1, 2, . . . ,m) is
an intuitionistic fuzzy number, Cμ j means the support degree of t j and Cγ j means the
nonsupport degree of t j .

4. θ : P → [0, 1] is the function which assigns a token value to each place, also means
fuzzy value of the proposition; the initial state vector θ

0 = {θ01 , θ02 , . . . , θ0n }

3 Reasoning algorithms using fuzzy Petri net

After generating the corresponding FPN for KBS, the relevant reasoning algorithm can be
implemented under the FPN framework. These inference algorithms have some characteris-
tics that include the reduction of searching steps; the improvement of search effectiveness;
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and their adaptation to real-time requirements. To give analysis and summary of existing
reasoning algorithms, forty-one published papers were selected as discussed below.

3.1 The proposed algorithm reasoning using FPN

Looney (1988) proposed the ideas of FPN and forward reasoning. However, the formal
definition of FPN was not presented. Based on Looney’s contribution, research in algorithm
reasoning using FPN sharply increased and focused on algorithm analytics for FPN, FCPN,
FTPN and IFPN.

3.1.1 Reasoning algorithms using FPN

Chen et al. (1990) built a corresponding FPN for each fuzzy production rule type and
utilizedI RS(pi ), RS(pi )with a sprouting tree to execute a forward reasoning algorithm.
However, this algorithm did not consider influences from parameters such as weight, thresh-
old and certainty in the inference process. Similarly, Chen (2000) developed a backward
reasoning method. Compared to his previous work, the truth degree of any proposition
was automatically evaluated by his novel algorithm which, however, was unable to per-
form weighted fuzzy reasoning. Meanwhile, certainty factors and true values were restricted
and represented by real values between [0, 1]. To avoid these disadvantages, Chen (2002).
proposed an improved weighted FPN and related reasoning algorithm. Compared to Chen’s
other works, the cited parameters were added and represented by fuzzy rather than real val-
ues. His case study illustrated that a reasoning process using the novel FPN performed and
informed more flexibly and with greater intelligence.

Based on Chen et al.’s work in (1990), Manoj et al. (1998) presented a modified form
of Chen et al.’s reasoning algorithm, and proposed a hierarchical FPN for all types of data
abstraction.

To cope with the FPN state explosion issue, Garg et al. (1991) proposed three reduction
rules to control the scale of FPNwhich improved both the FPNmodel and reasoning algorithm
by checking KBS consistency.

To calculate the accuracy value of atoken output place, two variables, global and local
fuzzy variables, were applied in the reasoning process by Tiehua and Sanderson (1993). This
reasoning algorithm’s key precedence relations were controlled by a global fuzzy variable
through sequence operations. Hence, vague data was described by a local fuzzy variable.

Srinivasan and Gracanin (1993) proposed a novel fuzzy reasoning algorithm using ’fuzzy
theory’. In this algorithm, the tokenwas replaced by amembership function and the transition
represented the distance the model could be fired.

Chun and Bien (1993) applied FPN asa rule-based decision support system. Their design’s
inference approach comprised two phases: a forward strategy and a backward algorithm.Most
importantly, an algebraic format was used to describe the state equation for the first time.

Yeung and Tsang (1994) discussed algorithm use to build reachability sets and sets of
adjacent places by proposing an extended reasoning algorithm using Chen’s algorithm. In
1998, the same authors presented an expanded FPN that considered weight factors. Yeung
and Tsang (1998) introduced a multilevel weighted reasoning strategy using the expanded
model. Tsang et al. (1999) applied a learning algorithm with an artificial neural network
(ANN) to the FPN framework. Their comparison and simulation demonstrated that some
ANN theories and algorithms (such as learning algorithms and optimization strategies) also
can be implemented in FPN.
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Bugarin and Barro (1994a) focused on a series of reasoning algorithms and presented
an enhanced FPN to describe KBS by using rule chaining and a data driven strategy that
employed a sup-min compositional rule. Their computational complexity of the data driven
strategy included the following equations and is worth a quick review:

O

((
C

2
+ M + N

)
R2

)
and also O((M + N )R2) and O(2(M + N )R2).

where

1. R denotes number of fuzzy conditional statements in KBS;
2. M, N denote maximum numbers of antecedents and consequences, respectively;
3. C denotes the amount of chaining transitions in KBS.

Another reasoning algorithmusingaGoal-Drivenmechanismwas reported byBugarin and
Barro (1994b). This algorithmwas implementedwhen chaining transitions in each production
were incomplete. Bugarin et al. (1996) proposed an improved reasoning strategy based on
their previous work to ensure the correct implementation of the reasoning algorithm under
unknown situations. This proposed algorithm effectively executed inferencewhen someKBS
variables remained unknown.

Scarpelli and Gomide (1994) presented an integrity checking strategy using HLFPN and
also proposed other algorithms capable of discerning inconsistencies at local and global
levels. Their case study illustrated an automatic implementation of the verification process
by their proposed algorithms. Scarpelli et al. (1996) introduced anovel structure that described
HLFPN using a new variable (V). The major contribution of this proposed algorithm was
that it implemented a specific process in answer to a specific query.

Yu (1995) presented an improved FPN to extend the representation range from preposi-
tional logic to first-order predicate logic by using Pr/T net. The proposed mechanism was a
profitable development of the reasoning in H-net.

After providing an analysis of the forward and backward reasoning mechanisms, Zhou
and Wu (1996) proposed NNF and NNPrF, combined with FPN, ANN and the learning
mechanism. Their case study demonstrated that NNF and NNPrF have learning abilities
similar to ANN.

A new FPN model, the Adaptive weights FPN (AFPN), was proposed by Li and Lara-
Rosano (1999) that explored the adjustment learning mechanism of FPN. AFPN applied a
weight value that represented contributions from antecedent propositions and consequent
propositions. They also considered a negative weight for AFPN along with a modified token
transfer rule to train AFPN as an ANN. Li et al. (2000) extended their work and proposed
a modified back propagation learning algorithm using AFPN. The convergence of weights
was highlighted in their modified algorithm.

Wang andWu (1999) presented a fuzzy reasoning technique to obtain potential conclusions
for KBS with incomplete original data. A reachability set and a fuzzy backward reasoning
algorithm were both utilized. Their simulation results showed that the reasoning conclusions
protected maximized consistency with KBS under certain situations.

Gao et al. (2000) exploitedmaximum reasoning abilities by proposing a parallel reasoning
algorithm based on max-algebra and the fuzzy reasoning Petri net (FRPN). The prominent
feature of their proposed algorithm exploited potential maximum parallel reasoning by using
a matrix equation expression as the traditional PN theory. An improved FRPN model and
related reasoning algorithm were also proposed by Gao et al. (2003) and then implemented
when the KBS contained negative literals.
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Concentrating on large-scale systems, Wang et al. (2001) proposed an improved FPN
model and related reasoning patterns using generating rules and PN descriptive semantics.
The two patterns were applied in different situations. A forward reasoning algorithm was
used in circumstances where the belief strength of an initial proposition was known and the
belief strength of a non-initial propositions required computation. A backward reasoning
algorithm was used in circumstances where the belief strength of a preliminary proposition
was known and the belief strength of a goal proposition required computation.

To improve theflexibility of the inferenceprocess,Yanget al. (2002) proposed an algorithm
that performed fuzzy inference inKBSusingFPN.This algorithmautomatically simulated the
reasoning process from initial propositions to goal propositions.Moreover, structured formats
for the improved FPN were more generalized and complex and better fit the requirements of
expert systems.

To obtain more accurate reasoning results, Shen (2003) proposed a reinforced learning
approach that simultaneously executed structure and parameter learning while introducing a
high level fuzzy Petri net (HLFPN) structure. This HLFPN generated a corresponding model
for KBSwhich had IF–THENand IF–THEN–ELSE rules.Moreover, multiple heterogeneous
output places also allowed appearances even though the data structure of this model wasmore
compact. In 2006, an enhanced HLFPN model and corresponding reasoning algorithm were
proposed by Shen (2006) that offered a more universal rule chaining technique. Related
algorithms automatically implemented a reasoning process when data was imprecise, vague
or ’fuzzy’. To study the supervised and unsupervised learning ability of FPN, Shih et al.
(2010) presented a machine learning Petri net (MLPN) with related learning algorithms.
Some properties of the proposed algorithms were discussed such as complexity, accuracy
of learning consequences between two approaches, as well as the reachable property and
convergences. Shen et al. (2012) carried out a novel learning evaluation model based on
high-level fuzzy Petri net (HLFPN) and relevant fuzzy reasoning method to test educational
grading system.

Hu et al. (2003) presented a reasoning algorithm that implemented the inference process
using a modified FPN. This modified FPN performed inference when the inherent firing
mechanism lacked an additional control mechanism. In addition, power and module replace-
ment mechanisms enhanced the proposed model’s reasoning performance under difficult
situations such as reasoning uncertainty and structure conflict.

Konar et al. (2005) proposed a supervised learning mechanism by FPN that allowed
for the analysis of semantic justification in hidden layers with correspondence predecessor
and successor layers. The proposed algorithm executed reasoning and learning processes
in instances of noisy training. Convergence was also discussed in the process of training a
feed-forward FPN.

Wang et al. (2005) reported an Interactive Weighted Fuzzy Petri net (IWFPN) and rel-
evant reasoning algorithm. In this algorithm, fuzzy numbers were used to represent local
weights. More importantly, the fuzzy number-valued fuzzy integral was utilized to describe a
reasoning result in two instances. The fuzzy measure was replaced by a fuzzy number using
the extended gλ measure, considered a non-additive, non-negative fuzzy number-valued set
function specified by a domain expert.

For consequences from two or more propositions connected by “AND” or “OR” types in
KBS, Ha et al. (2005) proposed a 17-tuple formal definition for a generalized fuzzy Petri
net (GFPN). In GFPN, weights were classified as two types, input and output. Their case
study demonstrated that the approach efficiently deduced synchronization. A GFPN was
extended to 18-tuple by Ha et al. (2007) whose results showed that certainty factors and
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related inference results from their innovation were more accurate and reasonable compared
to the pervious algorithm.

Yuan et al. (2008) proposed a backward concurrent reasoning algorithm to control the
scale of the FPN model. A vector-computation approach was used that identified interme-
diate places. Man-machine interaction was applied to the inference process to reduce FPN
complexity and scale. Compared to similar algorithms, theirs proved more efficient and less
costly.

Zhang and Cui (2008) proposed a parallel backward reasoning algorithm to exploit multi-
parallel reasoning. Their new algorithm included two steps: first, an AND-OR graph of goal
places was introduced based on the FPN data table; second, their method for calculating the
degree of truth value for the least solution place was based on four different scenarios.

Xu (2009) introduced an InteractiveWeightedFuzzyPetri net (IWFPN) and related reason-
ing algorithm to improve the efficiency of the multilevel weighted fuzzy reasoning algorithm.
In their proposed algorithm, local weights in the antecedents of the rule were represented by
fuzzy numbers. This algorithm also automatically calculated conclusions for fuzzy sets and
related certainty factor values.

Yuan (2009) proposed a learning algorithm by using a taboo algorithm to optimize FPN
parameters in which several fuzzy reasoning functions generated a corresponding FPN. The
proposed model had self-adaptability and a strong generalization capability. Moreover, it
proved to be an obvious improvement on accuracy of reasoning results after implementing
the learning algorithm.

Qiao et al. (2011) proposed a fuzzy Petri net model for rescheduling (FPN-R) and related
reasoning mechanism to overcome the uncertain production disturbances in rescheduling
research. Case study revealed that the proposed formalism and reasoning algorithm paved a
practicable way for discussing unstructured scheduling problems.

Hu et al. (2011) proposed a kind of backward reasoning strategies with reversed FPN to
reduce the consequence-antecedent relationship between their manifestation and antecedent
using max-algebra in fault diagnosis process of manufacturing.

To improve the feasibly of exception handling in workflow management, Ye et al.
(2011) proposed two extended knowledge models, generalized fuzzy event-condition-action
(GFECA) rule and typed fuzzy Petri net extended knowledge (TFPN-PK), to execute inte-
graded representation and reasoning for both fuzzy knowledge and non-fuzzy knowledge for
dynamic workflow management. Furthermore, a weighted reasoning algorithm combining
forward and backward reasoning strategies was employed to solve two kinds of reason-
ing cases in workflow management, which are uncertain goal propositions and known goal
concepts of exception handing.

To improve the capability of capturing the dynamic nature of fuzzy knowledge, Liu et al.
(2013a) proposed a novel dynamic adaptive fuzzy Petri net to represent fuzzy information
accurately and a max-algebra based parallel reasoning algorithm. Case study demonstrated
that the proposed model has ability to depict the expert’s diverse knowledge accurately and
the proposed reasoning algorithm can implement approximate reasoning dynamically. In the
same year, Liu et al. (2013b) proposed a new KA& R approach using the fuzzy evidential
reasoning (FER) approach andDAFPNs to execute knowledge acquisition and representation.
Liu et al. (2013c) also proposed Fault diagnosis and cause analysis (FDCA)model to perform
a bi-directional reasoning using forward fault diagnosis strategy and backward cause analysis
method.

An and Liang (2013) proposed a novel fuzzy Petri net for unobservable systemmulti-fault
diagnosis. In this formalism, fault class is determined by an unobservable transitions subset,
and certain factor values of diagnosis results are defined by two fuzzy operators. Meanwhile,
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a bi-directional reasoning approach is also presented by combing forward reasoning and
backward reasoning.

Amin and Shebl (2014) presented adaptive fuzzy high order Petri net based on considering
the changes of weight of arc in the dynamic reasoning process and algorithm to automatically
learn theweight.Meanwhile, a reasoning algorithm using algebraic formswere also proposed
and applied into a weather forecast issue.

Zhao et al. (2014) proposed a decision-making model of product disassembly sequence
with FPN and presented a reasoning mechanism using matrix operation for the end-of-life
product recycling and remanufacturing. Results of case study illustrated that the proposed
model and related reasoning algorithm owns some characteristics, such as parallel operation,
intelligent decisions functions, and automatic clustering identification ability.

3.1.2 Reasoning algorithms using HLPN

Ouchi and Tazaki (1997) focused on large-scale systems and proposed learning and reasoning
mechanisms using the fuzzy colored Petri net (FCPN). This was a useful attempt to combine
highlights from FPN and other HLPNs. FCPN increased the ability to generate a large scale
model and solve for uncertain factors in a complex system. Lee and Seong (2004) proposed
employed fuzzy colored Petri net to enhance automated operating system for nuclear power
plants. Yuan et al. (2010) also proposed a fuzzy colored Petri net (FCPN) with a related
forward concurrent reasoning algorithm where the conformal partitioned matrix theory was
integrated with the process of forward concurrent inference.

Fuzzy time Petri net (FTPN) was proposed to represent and decode various temporal data
in KBS (Ribarik et al. 1999). The FTPN extended the application field for FPNwith its ability
to analyze and solve for temporal knowledge.

Shen et al. (2009) presented another HLFPN type called intuitionistic FPN (IFPN) and
related algorithms. Compared to other FPN models, IFPN used a fuzzy member to replace
both the confidence degree and threshold of the transition. Moreover, asymmetrical weight
was mapped to one transition of a weighted parameter. The confidence degree was added
to the output matrix and they reported that reasoning results from their proposed algorithm
were more persuasive and precise than the non-membership parameter.

Table 3 summarizes the FPN reasoning algorithms used in the cited studies. The last
column indicates reasoning strategies of three types:

– A: Reachability tree (also known as sprouting tree in some scholars’ work.);
– B: Algebraic form;
– C: HLFPN.

3.2 Analysis of reasoning algorithms

From the above analysis of the existing research result of reasoning algorithm using FPN,
term “fuzziness in FPNs” could be understood from two viewpoints. At first, in a narrower
sense, fuzzy logic is seen as a multi-valued logic, and a marking of the FPNs is illustrated by
numbers from the interval [0,1]. More importantly, in a boarder sense, “fuzziness in FPNs”
means the same as the fuzzy sets theory proposed in 1965 by L. Zadeh. Obviously, the
narrower sense of this term is a special case of the fuzzy set theory (Cardoso 1999).

After understanding the fuzziness in FPN, the inference mechanisms are classified as
three types: reasoning using the reachability tree (utilizing FPN’s graphic ability), reasoning
using the algebraic form (utilizing FPN’s mathematical analytic ability); and reasoning using
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Reasoning Algorithm
Using Algebra Form

Reasoning Algorithm
by Using FPN

Reasoning Algorithm
Using Reachability Tree

Backward mechanism

Forward mechanism

Di-direction mechanism

Reasoning Algorithm
Using HLFPN

Combined with Artificial
Neural Network

Combined with
other HLPNS

FTPN
FSPN
FCPN
IFPN

Fig. 5 Classification of existing reasoning algorithms

HLFPN (combined facilities of FPN and other HLPNs). This classification is illustrated in
Fig. 5.

Figure 5 indicates that reasoning algorithms using FPN enable full advantages for the PN
model such as graphical description, parallel operations by algebraic theory, and extensive
capabilities offered by ANN and other HLPNs. Details for each type of reasoning algorithm
are summarized in the next sections.

3.2.1 Reasoning algorithm using the reachability tree

The main objective of the reachability tree is to implement the inference process using FPN
’s capability for graphic description. This approach was discussed and applied widely during
the 20th century. The complete mechanism comprises the following two phases.

Phase 1: Generate the reachability tree for FPN based on RS(Pi ) and I RS(Pi ).
Phase 2: Implement different reasoning strategies within the reachability tree.

Figure 6 demonstrated amodified algorithm to generate reachability tree using RS(Pi )and
I RS(Pi ) based onMonaj et al.’s work (1998). Figure 7 shows the complete reasoning process
using the reachability tree’s division into three phases.

Advantages and disadvantages of the reachability tree are summarized in Table 4.

3.2.2 Reasoning algorithm using the algebraic format

The algebraic reasoning algorithm was proposed for parallel operations utilizing algebraic
representation. In this algorithm, all data is stored in differentmatrices and the core operational
goal is to generate the incidence matrix. Based on Fig. 3, the incidence matrix is attained as
follows.
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//Lower case letters stand for places 

//upper case letters stand for related nodes in sprouting tree 

//ps is starting place, pj is goal place. 

Initial state: Ps is Non-Terminal 

For each Non-Terminal Pi do 

Begin 

If i jp p= mark iP Success; 

else if ( )j ip RS p∉  make iP  Terminal; 

else for all ( )k ip IRS p∈   do 

    begin 

            if ( ( )j kp RS p∈ ) or ( k jp p= ) 

            begin  

                   if ( ikAP = ∅  ) and transition is enabled and now backward arcs 

                      create kp , Non-Terminal; 

                   else get truth values of adjacent places; 

                            if transition enabled and no backward arcs 

                                     create kp , Non-Terminal; 

             end 

     end 

     make ip  Terminal; 

end if 

return maximum of truth values of Success nodes 

end 

Fig. 6 Monaj et al. proposed modified algorithm (1998)

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
0 0 0 0 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Begin

End

Create the reachability tree using IRS(pi), RS(pi), APij for FPN

Select input place and mark as p0

Seek the succeed place pi for current place using different reasoning strategy in the reachability tree

Pi is the goal output place?No

Compute and output the truth degree of the goal output place pi

Yes

Fig. 7 Flowchart for reasoning algorithm using the reachability tree

Table 4 Advantages and
disadvantages of reachability tree

Advantages Disadvantages

1. Easy to understand and realize 1. Complex data structure

2. Easy to find inference path 2. Slow reasoning speed

The incidencematrix is an important tool that records flow relationships in the FPN. It records
transitions defined in Fig. 3. For example, there are two elements marked (1) in column 3.
This indicates two arcs from place 3 and place 4 to transition 3, respectively. The incidence
matrix is subsequently used to fire related transitions, step-by-step.

These algebraic algorithms are classified as three types: forward, backward and bi-
directional. Details for each mechanism are given in Table 5.

General flowcharts for the forward and backward mechanisms are shown in Figs. 8 and 9,
respectively. Figure 8 demonstrates a general flowchart for theFPN forward reasoning facility.
Its core operational goal is to repeatedly compute the truth degree for each place until all
related transitions are fired. This process depends on individual strategies based on the three
main operations of Max Algebra (See: Definition 11) and the meaning of each symbol as
stated in Definition 3.

Figure 9 illustrates the general idea of the backward reasoning mechanism. This facility
is suitable for implementing the reasoning process when a goal output place is given. It is
divided into two parts: (i) obtain the reasoning path for the goal output place; (ii) compute
the truth degree for the goal output place.

3.2.3 Reasoning algorithm using HLFPNs

Various HLFPNs have been proposed to enhance the original FPN. Extensive ideas for this
mechanism are based on two positions. First, the structure of FPN and ANN are similar
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Table 5 Summary of algebraic reasoning mechanisms

Algorithm’s principle Advantages Disadvantages

Forward
Mechanism

Mechanism’s basis is
data-driven

Data is easy to store.
Algorithm is easy to
realize by program

Algorithm complexity
increases as dimensions
of related matrices
increase

Backward
Mechanism

Mechanism’s basis is
goal-driven

Fits question when result
is obtained but
reasoning remains
unknown

Complexity of the
implementation
depends on numbers of
related places and
transitions

Bi-directional
Mechanism

Mix of parallel ability and
real-time property of
both the above

Encompasses dimensions
of related matrices and
reduces algorithm
complexity

Data structure and
reasoning process are
more complex

Begin

Initialize I, O, H, M0, W, µ, CF

Make k=1

Compute the truth degree of each place based on different reasoning strategy

Mk=Mk-1

The forward reasoning algorithm is over

End

k=k+1 NO

YES

Fig. 8 Flowchart of forward mechanism

and some ANN techniques were applied to the FPN model to improve properties such as
self-adaption and generalization capability. Second, other HLFPNs were proposed to solve
aspecific problem by combining FPN and HLPN. Moreover, the FTPN was also proposed to
represent temporal data. The advantages and disadvantages of HLFPN algorithms are listed
in Table 6.
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Begin

Calculate the vector of places and transitions respectively

The value of each vector is changed?

Calculate the truth degree of token for each place

No

The value of token of each place is changed?

Output the reasoning result

No

End

Yes

Yes

Fig. 9 Flowchart of backward mechanism

Table 6 Summary of HLFPN reasoning algorithms

Algorithm’s principle Advantages Disadvantages

FPN combined with
ANN

Combines advantages of
FPN and ANN due to
similar structures

Improved FPN has
self-adaption and
generalization
capabilities

Data structure is complex
Easily causes state
explosion problem

FPN combined with
other HLPN

Solves some special
problems; HLFPNs
proposals based on FPN
and other HLPNs

Extends the application
field of FPN theory

4 Fuzzy Petri net and industrial applications

During this period, FPN received increasing attention from researchers in various fields. This
section addresses recent developments in fuzzy Petri net (FPN) applications in various indus-
trial sectors. Forty journal articles are reviewed and discussed in the following subsections.

4.1 Several areas of industrial applications for FPN

In the robotic engineering sector, Wai and Liu (2009) developed a dynamic Petri recurrent
fuzzy neural network to cope with a path-tracking control problem for a non-holonomic
mobile robot. Tont et al. (2010) proposed a stochastic model to execute adaptive task assign-
ment in non-stationary environments by using the non-homogeneous Markov chain and
Fuzzy Petri net. Sharma et al. (2010) established an improved method for calculating fuzzy
conflicting data using fuzzy Lambda-Tau methodology. Wai et al. (2010) proved that a Petri
recurrent fuzzy neural network (DPRFNN) increased the accuracy of a robust path tracking
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control on a mobile robot model. Parhi and Mohanta (2011) applied a Petri-potential-fuzzy
hybrid controller to implement a navigational control for mobile robotic agents. Sharma et al.
(2012) proposed a novel method to compute reliability parameters for a multi-robotic system
by using a genetic algorithm: PN and Fuzzy Lambda-Taumethodology. Table 7 summarizes
FPN applications for robotic engineering.

In the power engineering sector, Luo and Kezunovic (2008) applied the FPN to imple-
ment fault estimation in a power system. Abdulkareem et al. (2011) proposed an artificial
intelligence (AI) system by using Neural Net (NN), Fuzzy Neural Net (FNN), and Fuzzy
Neural PetriNet (FNPN) to analyze fault detection in transmission lines. Pamuk andUyaroglu
(2012) presented an improved fault diagnosis mechanism using FPN to shorten the reasoning
task for fault diagnosis in a complicated power system. He et al. (2014) proposed a estima-

Table 7 FPN applications in robotic engineering

References Application field Highlights

Wai and Liu (2009) Part-tracking Control Function of internal-feedback loops considered
in novel formalism of dynamic Petri recurrent
fuzzy neural network (DPRFNN)

Online training algorithms for DPRFNN applied
to ensure convergence of case study

Different moving paths applied to train DPRFN
control system

Self-recurrent structure of DPRFNN used to
simplify control process

Tont et al. (2010) Adaptive task assignment Probabilities’ absolute values represent relative
rates for different conditions

Fuzzy net supplied promising solution for
dynamically discreet or stochastic system
events

PN used to describe and model details

Sharma et al. (2010) Multi-robot system PN used to analyze asynchronous and
concurrent processing of multi-robot system.

Fuzzy arithmetic applied in PN to increase
flexibility

Parameters calculated by fuzzy Lambda-Tau
methodology

Wai et al. (2010) Robust path tracking control Proposed Petri recurrent fuzzy neural network
(DPRFNN)

Proposed model that reduced duration for
parameter optimization and enhanced dynamic
mapping ability

Projection algorithm and Lyapunov stability
theorem applied in DPRFNN to control
convergence

Parhi and Mohanta (2011) Mobile robotic agents Numerous factors represented as input data for
the proposed controller

Array of on-board ultrasonic sensors used to
obtain requisite data

FPN used to avoid collision
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Table 7 continued

References Application field Highlights

Sharma et al. (2012) Multi-robotic system Optimized values for mean time between failure
(MTBF) and repair (MTTR); obtained using
Gas

Interactions for each component represented by
PN

Fuzzy arithmetic applied in PN model to
increase flexibility

Table 8 FPN applications in the power engineering Sector

References Application field Highlights

Luo and Kezunovic (2008) Power system Alter and optimize model structure to reduce
matrix scale

Utilize all types of fuzzy logic parameters to
overcome uncertainties

Implement matrix execution algorithm to
achieve parallel reasoning and adaptation

Integrate more reliable and logical input data
to improve accuracy of estimated results

Abdulkareem et al. (2011) Transmission lines Proposed model combined advantages of
Neural Net (NN), Fuzzy Neural Net (FNN)
and Fuzzy Neural Petri Net (FNPN)

Proposed systems simulated by Matlab
toolbox to implement fault analysis under
different situations (20, 80 and 100% of
TL length)

Pamuk and Uyaroglu (2012) Complicated power system FPN used to implement accurate fault
diagnosis with fuzzy knowledge

Proposed approach self-adapts to analyze
different power system networks

He et al. (2014) Power systems Dynamic fault diagnosis fuzzy reasoning
model is generated by using an adaptive
FPN

–Weight is decided by the incomplete and
uncertain alarm information of protective
relays and circuit breakers in the reasoning
process

tion method using adaptive FPN to solve the complex power system fault-section estimation
problem. Table 8 summarizes the applications of FPN in the power engineering sector.

In traffic engineering, Cheng and Yang (2009) used FPN to simulate a decision-making
process for dispatchers. Their results provided calculations that validated dispatch options
regarding train delays. Lee et al. (2009) proposed a hybrid artificial intelligent control scheme
that optimized parking using a genetic algorithm (GA), PN, and fuzzy logic control. Asthana
et al. (2011) proposed a real time traffic control mechanism using a Neural PN and Fuzzy
Logic. Khan et al. (2011) presented an improved FPN and reachability graph to model and
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Table 9 FPN applications in traffic engineering

References Application field Highlights

Cheng and Yang (2009) Railway traffic control Authors transformed train dispatch decision-making
to a more logical rule-based system

FPN used to model decision-making processes for
train dispatchers

In-depth analysis via discussion with groups of
dispatch experts; used FPN and relevant
calculations

Lee et al. (2009) Optimized parking system Genetic algorithm used to determine parking
solutions

PN used to select alternative parking routes

Fuzzy logic control used to guide vehicles to
optimal parking slots

Asthana et al. (2011) Urban traffic management PN used to generate a real time traffic control model
Fuzzy logic used to analyze uncertainties in real
environment

Proposed model implemented by MATLAB

Khan et al. (2011) Railway crossing Train safety requirements modeled by PN

Fuzzy inference system used to compute required
braking strength

Reachability graph (RG) used to analyze
corresponding crossing system with PN
representation

Barzegar et al. (2011) Traffic signals Proposed hybrid adaptive model using CPN, fuzzy
logic and automatic learning

Combined algorithm controlled traffic signals and
avoided unnecessary delays

Rajpurohit and Pai (2012) Dynamic navigational
environment

- Proven robust algorithm for handling uncertain
data in real-life situations

Real-life bench-marked data sets used to test
feasibility of proposed algorithm

analyze railway crossings in a complicated environment. Barzegar et al. (2011) used a hybrid
adaptive FCPN model to more efficiently and intelligently control traffic signals. Rajpurohit
andPai (2012) developed anFPN fuzzy rule–basedmotion prediction algorithm that predicted
the next position instance of a moving object in a dynamic navigation environment. Table 9
summarizes FPN applications in the field of traffic engineering.

In the field of systems engineering, Sharma et al. (2008) presented a structured framework
using fuzzy methodology and FPN to help maintenance engineers/managers/practitioners to
model, analyze and predict systems’ behaviors. Zhong (2008) developed a fuzzy Petri net
controller to solve for dead lock phenomenon in parallel and concurrent systems. Lee and
Lee (2012) proposed an hybrid algorithm based on electromagnetism-like mechanisms (EM)
and PSO to generate Petri recurrent fuzzy neural system (FLPRFNS) for nonlinear systems
control. Table 10 summarizes FPN applications in systems engineering.

In civil engineering, Zhang et al. (2011) used a fuzzy-timed place Petri net to model and
simulate the process of hull construction implementing a Triangular Fuzzy Number (TFN),
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Table 10 FPN applications in system engineering

References Application field Highlights

Sharma et al. (2008) Paper mill An approximation reasoning tool proposed to
resolve fuzzy data

PN used to model related components in a system
and various parameters were computed to quantify
uncertain behavior

A qualitative analysis of a unit was presented in
failure mode to affect analysis (FMEA); and a
decision support system, based on fuzzy set
theory, was developed to counter the limitations of
traditional FMEA

Zhong (2008) Concurrent system The author summed up the design of a controller as
a mathematical problem

Matrices used to describe and analyze the deadlock
issue

Lee and Lee (2012) Nonlinear system control Petri recurrent fuzzy neural system used to reduce
and delete redundant fuzzy rules as trained by the
proposed algorithm

Proposed hybrid algorithm had advantages such as
Multiple-agent-based searching, global
optimization and rapid convergence

Table 11 FPN application in civil engineering

References Application field Highlights

Zhang et al. (2011) Ship Hull Construction Fuzzy-timed place Petri net (P-FTPN) used to
model the process of hull construction

Triangular Fuzzy Number (TFN) applied to denote
uncertain duration

Table 12 FPN application in chemical engineering

References Application field Highlights

Liu et al. (2011b) Chemical process High level FPN- TFPN proposed

Two efficient algorithms for abnormal
prognostication and diagnosis presented using a
reachability graph

a setting dummy place, and a reformative Minkowski subtraction. Table 11 summarizes FPN
application use in civil engineering.

In chemical engineering, Liu et al. (2011b) used a timed fuzzy Petri net (TFPN) to monitor
abnormal events in a chemical process. Table 12 summarizes FPN application in chemical
engineering.

In the ecosystem products sector, Xu et al. (2011) designed an improved modular colored
fuzzy Petri net (MCFPN)model to capture causal relations between users’ affective responses
and cognitive processes. Zhou et al. (2012) presented a novel fuzzy reasoning PN to solve
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Table 13 Applications of FPN in the field of product ecosystem

References Application field Highlights

Xu et al. (2011) Product ecosystem Improved modular colored fuzzy Petri net proposed to
model and reason the ambiance of users’ experience

Proposed framework provided decision support for product
ecosystem

Zhou et al. (2012) Product ecosystem Fuzzy reasoning mechanism proposed to implement parallel
inference by multi-criteria rules

Design process illustrated by subway station scenario

Table 14 FPN application in sensor engineering

References Application field Highlights

Yu et al. (2011) Wireless sensor Knowledge-based reasoning algorithm (FPN) proposed to select
cluster heads

Proposed inference method used to calculate degree of reliability

Table 15 FPN applications in medical engineering

References Application field Highlights

Pantelopoulos and
Bourbakis (2010)

Multi-sensor wearable
health-monitoring
system

Established operational framework for WHMS.
Fuzzy regular language used to create prognoses.
SPN applied to describe human-device interactions

Shih et al. (2010) Embedded mobile
ECG reasoning
system

Proposed system delivered faster treatment.
Accuracy of reasoning by proposed FPN model
increased from 90.8 to 97.8%.

Advantages of proposed system, such as mobility,
usability and performance etc., positively impacted
user’s attitude

Chen et al. (2014) A rule-based
decision-making
diagnosis system

FPN is used to realize rule-based decision-marking
diagnosis system.

The proposed diagnosis system is applied to evaluate
the degree of stenosis (DOS) in routine examinations

the UX model with fuzzy dynamics factors. Table 13 summarizes the application of FPN in
the ecosystem products sector.

Yu et al. (2011) proposed a multi-level routing algorithm using FPN for wireless sensor
networks. Table 14 summarizes FPN application use in sensor engineering.

In medical engineering, Pantelopoulos and Bourbakis (2010) presented a novel physio-
logical data fusion model for a multi-sensor, wearable Health-Monitoring System (WHMS)
using fuzzy regular language and an SPN model. Shih et al. (2010) improved an embedded
mobile ECG reasoning system using FPN to maintain the continual monitoring of vital signs
for elderly patients. Chen et al. (2014) utilized FPNs to design a rule-based decision-making
diagnosis system. This proposed diagnosis system is employed to monitor and evaluate the
arteriovenous shunt (AVS) stenosis for long-termhemodialysis treatment of patients. Table 15
summarizes FPN applications in medical engineering.
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Table 16 FPN applications in software engineering

References Application field Highlights

Ting et al. (2008) PC-controlled system Modeled two-level fuzzy decision tree in FRVPNs to
improve accurate reasoning results

Proposed FRVPNs and Mamdani fuzzy methods had the
same reasoning capability

Liu et al. (2010) Flight control software Knowledge-based system ability to update and add
inference rules to weighted FPN anytime

Reasoning results from implementing proposed
framework without experts was consistent with real
results

Wu and Hsieh (2012) Solar array Fuzzy reasoning Petri net (FRPN) and fuzzy
comprehensive evaluation method used to implement
more reliable panel distribution

Final truth degree applied to evaluate and compute key
reliability indices

Results showed that solar panels and hinges obtained
lowest reliability ratings

Wang et al. (2012) Software evolution Fuzzy theory combined with FPN to classify software
evolution components

Target parameters chosen before standardization;
clustering executed after generating correspondence
matrix

In soft engineering, Ting et al. (2008) established a fuzzy reasoning and verification Petri
net model (FRVPNs) that was implemented for fault diagnosis in a large-scale, complex,
fault-tolerant PC-controlled system. Liu et al. (2010) designed flight control software for an
unmanned aerial vehicle (UAV) using weighted FPN.Wu and Hsieh (2012) proposed a novel
approach utilizing fuzzy comprehensive evaluation and a fuzzy reasoning Petri net (FRPN)
to research reliability for the distribution of a solar array. Wang et al. (2012) proposed a
novel fuzzy technique to classify software evolution components using Petri Net. Table 16
summarizes FPN applications in software engineering.

In mechanical engineering, Wu et al. (2011) proposed a fuzzy reasoning Petri net (FRPN)
and fault tree analysis (FTA) to increase solar array reliability. Liu et al. (2011a) proposed
an improved weighted FPN strategy to develop a fault diagnosis model for a flight control
system. Shi (2012) proposed a target fusion recognition system with fuzzy sets and FPN to
execute target recognition tasks in a complex environment. Kumar et al. (2012) proposed a
novel combination of real coded genetic Algorithms with fuzzy lambda tau methodology to
analyze reliability analysis for a hazardous waste clean-up manipulator. Qiao et al. (2011)
proposed a fuzzy Petri net model for rescheduling (FPN-R) along with a related reasoning
algorithm to implement rescheduling decision-making. Table 17 summarizes FPN applica-
tions in mechanical engineering.

In manufacturing engineering, Peters and Tagg (2009) defined rough places, rough tokens
and rough transitions using rough theory to create an early warning system for workflow
with missing data. Ye et al. (2011) proposed a hybrid exception handling approach by using
the generalized fuzzy event–condition–action (GFECA) rule and a typed fuzzy Petri net
(extended by process knowledge: TFPN-PK) to analysis and resolve the issue of exception
handing in a dynamic workflow system. Hu et al. (2011) proposed an iterative reasoning
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Table 17 FPN applications in mechanical engineering

References Application field Highlights

Wu et al. (2011) Solar array reliability Fault tree analysis (FTA) transformed to fuzzy
reasoning Petri net

Importance and influence of different faults (solar array
anomalies) estimated by indexing final truth degree
(FTD) and cosine matching function (CMF)

Primary reason for using FTA → operates in an
extremely adverse environment

Liu et al. (2011a) Flight control system Weighted FPN used to represent a fault diagnosis
data-base

Able to update FPN model and related data-base
anytime

Shi (2012) Air defense system Target data analyzed and processed by fuzzy sets

Processed information and fuzzy recognition rule-base
modeled with FPN

Proposed reasoning algorithm based on FPN
implemented target recognition

Kumar et al. (2012) Waste clean-up manipulator Interactions for each component generated as PN model

Fuzzy arithmetic applied in PN model to increase
flexibility

Parameter types computed via Fuzzy Lambda Tau
methodology

Qiao et al. (2011) Rescheduling Novel FPN for rescheduling combined two types of
rescheduling: start-up decision and methodology
adoption

Reasoning algorithm using FPN-R for unstructured
rescheduling problem

Machine breakdown-triggered rescheduling problems
used to demonstrate implementation process

algorithm by using a reversed FPN and algebraic form to execute fault diagnosis in a man-
ufacturing system. Wu et al. (2012) proposed a real-time FPN framework to implement
progressive fault diagnosis for discrete manufacturing systems. Pan et al. (2012) proposed
a novel method to diagnose faults by using a neural network and weighted FPN. Gong and
Wang (2012) proposed a self-adaptive weighted fuzzy fault diagnosis approach using PN and
a fuzzy logical BP neural network to describe relationships between causes and phenomena
in a complicated flexible manufacturing system. Table 18 summarizes FPN applications in
manufacturing engineering.

4.2 Analysis of industrial applications

Based on the previous section’s review, Fig. 10 summarizes cited articles for FPN applications
in various fields.

Figure 10 shows the wide use of FPN in traditional industrial fields such as manufactur-
ing engineering, software engineering and mechanical engineering. FPN was also applied
in various complex systems such as medical engineering, traffic engineering, multi-robotic
engineering, chemical engineering, civil engineering and product ecosystem. According to
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Table 18 FPN applications in manufacturing engineering

References Application field Highlights

Peters and Tagg
(2009)

Workflow System Proposed rough Petri net based on rough theory and FPN.

Generated early warning system using rough PN to analyze
and solve workflow problems

Ye et al. (2011)
Exception Handling Proposed approach integrated the representation and

inference of fuzzy and non-fuzzy knowledge

Direct decisions and analysis-based decisions implemented
in proposed method

Weighted reasoning algorithm using proposed approach
executed under different conditions

Hu et al. (2011) Manufacturing
System

Data for fault diagnosis represented by FPN.
Iterative algorithm using max-algebra and reversed FPN
proposed to implement reasoning process

Wu et al. (2012) Discrete
Manufacturing
System

A novel mechanism including real-time PN and FPN
diagnosis proposed to replicate the plant and detect faults
in discrete manufacturing systems

Proposed algorithm had high accuracy when handling
uncertainties

Proposed method demonstrated a perfect performance in
intermittent fault diagnosis and hybrid systems

Pan et al. (2012) Flexible
Manufacturing
System

Novel method combined neural network, fuzzy logic and
traditional PN proposed to execute fault diagnosis.

Improved BP algorism used to train weight parameter for
model

Gong and Wang
(2012)

Flexible
Manufacturing
System

Self-adaptive weighted fuzzy fault diagnosis approach
proposed to implement fault diagnosis using PN and a
fuzzy logic BP neural network

Proposed algorithm was self-adapting

Fig. 10 Number of articles on FPN applications in various fields
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The value of weight is zero or one
The value of threshold is zero or one
The value of belief strength is zero or one

Combine with
CPN model

General FPN

EN_system

Petri recurrent fuzzy
neural network(PRFNN)

and similar models

FTPN FSPN FCPN

Combine with
ANN theory

Combine with
SPN model

Combine with
TPN model

Extended FPN

Focus on different application Fields

Fig. 11 Relationship between FPN model and other members of the PN family

Phase 1: Generate
the corresponding

FPN model

Phase 2: Control the
scale of FPN

Phase 3: Design the
reasoning algorithm

Phase 4: Applied the
proposed algorithm to

specific problem

Fig. 12 FPN application process for industry

different application backgrounds, the FPN model has been broadly expanded from its basic
formal definition. Figure 11 reveals the relationship between the FPNmodel and other mem-
bers of the PN family.

Figure 11 indicates that FPN is a bridge connecting each member of the PN family. FPN
was transformed to EN_system and applied in several corresponding fields. Moreover, the
FPN application process in various industrial fields involved four distinct phases as shown
in Fig. 12.

5 Conclusions

This detailed review of FPN’s industrial application(s) contributes the following considera-
tions to the literature. First, FPN general formalisms were obtained by analyzing different
formal definitions offered by researchers from 2000 through 2013. Next, reasoning algo-
rithms using FPN were discussed and a flowchart containing each reasoning mechanism was
provided. Finally, various industrial applications based on FPN in the recent five years were
presented and summarized.

Although FPN has made rapid progress over the last thirty years, issues requiring further
study are as follows:
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1. Compared to FPN application research, theoretical research lags far behind that of prac-
tice. For example, properties (especially dynamic properties) are not addressed in journals
or conferences.

2. With the rapid development ofmodern technology, the scale of FPN is sharply increasing.
Nevertheless, simplified or decomposed algorithms are not reported. A possible reason
for this is that it is hard to analyze the consistency of properties between the original FPN
model and a corresponding subnet due to a lack of research on dynamic properties such
as liveness, boundedness, safeness, and fairness.

3. Recent research on the reasoning algorithm and applications using FPN has focused on
the acyclic FPN model although the circle or loop structure is reflected in existing FPN
models. However, the recycle thinking model is presently in wide use in the real world.
Hence, research on how to analyze and reason using FPNwith a circular structure remains
a pressing need.
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Appendix 1: formal definitions of FPN (2000 to 2013)

Formalism Highlight

FPN = (P, T, D, I, O, f, α, β) (Chen 2000; Sun
et al. 2004; Shih et al. 2010)

(P,T,D,I,O) is the basic net structure of FPN;
(α, β)describes correspondence between KBS and
FPN

AFPN = (P, T, D, I, O, α, β, Th,W ) (Li et al.
2000)

Weight and threshold considered and added to
formalism

FPN = (P, T, F, M0, D, H, α, θ, λ) (Wang et al.
2001)

Transitions classified into five types:
t1,and t,or t,and , tor ; to control scale of FPN and
simplify analysis

WFPN = (P, T, D, I, O, f, α, β,W ) (Chen 2002) Chen considered the function of weight in his
research and enhanced the proposed formalism

HLFPN = (P, T, F,C, V, α, β, δ) (Shen 2003,
2006; Shih et al. 2010)

This formalism extended the description range for
FPN

FRPN = (P, R, I, O, H, θ, γ,C) (Gao et al. 2003,
2004; Luo and Kezunovic 2008; Zhou et al. 2012;
Guan and Kezunovic 2013)

This formalism used an algebraic form to explore
parallel operation ability and used I, O, H to
define relevance matrices

FPN = (P, R, D,G, R,�, �,�, M0) (Gniewek
and Kluska 2004)

This formalism focused on one-to-one
correspondence between KBS and FPN

FAPN = (P, T, I, O, M, τ, α, λ) (Tang et al. 2006) This formalism was based on the disassembly issue;
human factors were considered. For example,
places divided into two modules, one for operators,
another for product subassembly or component

IFPN = (P, T, D, I, O, μ, f, w, H, β) (Heng et al.
2006)

This formalism considered parameters and
correspondence between KBS and FPN.
Moreover, dynamic certainty given and marked by
f

APN = (P, T, S, D, �, �, I, O,C, α, β,W, Th)

(Shih et al. 2007)
This formalism derived from FPN. Compared with
above, a special element, ’square’, was added in
the APN model
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Formalism Highlight

FPN = (P, T, I, O, M, θ, α, δ, τ, λ) (Tang 2009) This formalism also focused on the disassembly
issue. Compared with the 8-tuple of FPN by Gao
et al. (2004), this formalism used 10-tuple to
describe the FPN

FPN = (P, T, I, O, α, β, M0) (Cao and Chen 2010) This formalism focused on computing with words,
weight value of one for every situation

FIPN = (P, T, �, �, R, �, K ,W, �, �, M0, e)
(Gniewek 2013)

This formalism proposed a strategy to settle conflict.
For instance, places were summarized in two
modules, one associated with modeling a
processes, another associated with modeling
resources

WFSN P system = (O, Np, Nr , syn, I N , OUT )

(Wang et al. 2013)
This formalism proposed to model weighted FPRs
and implement weighted reasoning based on the
SNP system model

DAFPN = (P; T ; I ; O; D; α; β;W ;U ; Th; M)

(Liu et al. 2013a)
This formalism proposed to overcome unreasonable
points in the defection of FPN

DAFPN =
(P; T ; I ; O; D; α; β;W ;U ; ThI ; ThO ; M) Liu
(2013b)

This formalism divided the threshold in two: input
and output values, respectively
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