
Artif Intell Rev (2016) 45:25–96
DOI 10.1007/s10462-015-9438-6

Artificial intelligence based cognitive routing
for cognitive radio networks

Junaid Qadir1

Published online: 3 September 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Cognitive radio networks (CRNs) are networks of nodes equipped with cognitive
radios that can optimize performance by adapting to network conditions. Although various
routing protocols incorporating varying degrees of adaptiveness and cognition have been
proposed for CRNs, these works have mostly been limited by their system-level focus (that
emphasizes optimization at the level of an individual cognitive radio system). The vision
of CRNs as cognitive networks, however, requires that the research focus progresses from
its current system-level fixation to the a network-wide optimization focus. This motivates
the development of cognitive routing protocols envisioned as routing protocols that fully
and seamlessly incorporate artificial intelligence (AI)-based techniques into their design. In
this paper, we provide a self-contained exposition of various decision-theoretic and learning
techniques from the field of AI and machine-learning that are relevant to the problem of
cognitive routing in CRNs. Apart from providing necessary background, we present for each
technique discussed in this paper their application in the context ofCRNs in general and for the
routing problem in particular. We also highlight challenges associated with these techniques
and commonpitfalls. Finally, open research issues and future directions ofwork are identified.

Keywords Routing · Cognitive networks · Artificial intelligence

1 Introduction

In cognitive radio networks (CRNs), nodes are equipped with cognitive radios (CRs) that
can sense, learn, and react to changes in network conditions. Joseph Mitola coined the term
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“cognitive radio” in 1999 anticipating an evolution of the concept of software defined radios
(SDRs) proposed also by Mitola in 1991. It was envisioned that incorporation of substantial
artificial intelligence (AI)—in the formofmachine learning, knowledge reasoning and natural
language processing—into SDRs will help realize intelligent radios that can autonomously
optimize its parameters (Mitola 2006). In a modern setting, this is achieved by incorporation
of a cognitive engine (CE) that employs various AI-based techniques to build a knowledge
base, based onwhich reasoning is performed tomake ‘optimal’ decisions. After SDR technol-
ogy, CRs represented the next big shift in the drive towards powerful programmable wireless
devices. CRs are viewed as an essential component of next-generation wireless networks
(Akyildiz et al. 2006; Haykin 2005), and have a wide range of applications including intel-
ligent transport systems, public safety systems, femtocells, cooperative networks, dynamic
spectrum access, and smart grid communications. CR can dramatically improve spectrum
access, capacity, and link performance while also incorporating the needs and the context of
the user.

Although cognitive behavior of CRNs can enable diverse applications, perhaps the most
cited application of CRNs is dynamic spectrum access (DSA).1 DSA is proposed as a solution
to the problem of artificial spectrum scarcity that results from static allocation of the available
wireless spectrum using the command-and-control licensing approach (Fette 2009). Under
this approach, licensed applications represented by primary users (PUs) are allocated exclu-
sive access to portions of the available wireless spectrum prohibiting other users from access
even when the spectrum is idle. With most of the radio spectrum already being licensed in
this fashion, innovation in wireless technology is constrained. The problem is compounded
by the observation, replicated in numerous measurement based studies world over, that the
licensed spectrum is grossly underutilized (Akyildiz et al. 2006; Fette 2009). The DSA par-
adigm proposes allowing secondary users (SUs), also called cognitive users, access to the
licensed spectrum subject to the condition that SUs do not interfere with the operations of
the primary network of incumbents.

While CRs have been defined differently (He et al. 2010), the following tasks are consid-
ered integral to them: (1) observation or awareness, (2) reconfiguration, and (3) cognition. In
this paper, wewill be occupiedmostly with cognition as we seek to build cognitive, AI-based,
routing protocols. Cognition subsumes both planning and learning with planning being the
process of finding the appropriate action for particular situations to meet some system target,
and learning being the process of accumulating knowledge based on the results of previous
actions (He et al. 2010; Gavrilovska et al. 2013). Generally speaking, cognition for a CR
entails understanding and reasoning about the radio environment so that informed decisions
may be taken in order to optimize the performance of the radio and of the overall network.
Both planning and learning are essential elements of cognition and a lot of research atten-
tion has rightly focused on incorporating cognition in CRs. Although, it is highly desirable
to incorporate learning and adaptiveness into CRs to develop device level intelligence, it is
important to point out that the larger vision of a ‘cognitive network’ will not be realized until
network layer functions seamlessly incorporate intelligence (Thomas et al. 2006).

Cognitive networking broadly encompasses models of cognition and learning that have
been defined for CRs while emphasizing an end-to-end network-wide scope. Such cognitive
networks can perceive current conditions to plan, decide and act while catering to the net-
work’s overall end-to-end goals (Thomas et al. 2007; Fortuna and Mohorcic 2009). Figure 1

1 DSA is such a dominantly cited application ofCRNs thatDSAandCRNare often assumed to be synonymous
incorrectly. CRNs, in fact, is a much broader concept allowing for diverse applications representing intelligent
behavior such as topology control, end-to-end routing, interference control, etc. (Fette 2009).
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Fig. 1 Cognitive wireless network (CWN)

serves to illustrate the vision of cognitive networks as a class of networks that can observe and
analyze the environment, and plan and decide to meet the policy constraints and objectives
and goals and then act on the decided policy; importantly, such networks also learn from past
interactions and the environment to improve performance over time.

To help CRNs become cognitive networks (CN), it is imperative that intelligence be
integrated into the fabric of CRN architecture and protocols across the stack. In previouswork
on cognitive networks,Mähönen et al. proposed a cognitive resourcemanager as a framework
for network-wide optimization of radio resources, and proposed utilizing machine-learning
techniques to manage cross-layer optimization (Mähönen et al. 2006; Mähönen 2004). Some
ten years ago, Clark et al. (2003) proposed that Internet must have a knowledge plane distinct
from the data and the control planes that will allow building up an intelligent network capable
of setting itself up given high level instructions, adapt itself to changing requirements,manage
itself to automatically discover anomalies, and automatically fix problems or explain why
it cannot do so. Clark et al. noted that building such a ‘cognitive network’ would require
AI-based cognitive techniques and not just incremental algorithmic techniques.

While AI and computational intelligence has been for management of networks for quite
some time (Sekercioğlu et al. 2001), the application of such techniques for routing is relatively
limited. In this paper, we focus on the particular application of AI-based cognitive routing
in CRNs. We will present decision-theoretic planning techniques and learning techniques
that can be used to embed powerful AI techniques into the design of routing protocols for
CRNs. While traditional wireless routing protocols do have some support for adapting to
dynamic network conditions, cognitive routing protocols will enable a powerful new vision
of adaptive network-wide intelligence that will facilitate dynamic optimization and will be
an important cog in the overall framework of cognitive networking.

Contributions of this paper In this paper, we weave together ideas from multiple dis-
ciplines (such as optimization theory, game theory, machine learning, control theory, and
artificial intelligence) to present a cogent and holistic overview of techniques that can be
useful for network-layer decision making in CRNs particularly for the task of routing. This
task has been non-trivial due to the multi-disciplinary nature of CRN research with different
fields using different terminology and notation for related ideas. While this paper attempts to
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be self-contained, exhaustive coverage of all related issues is not attempted due to the great
breadth of the subject area. We instead focus on providing sufficient background on common
AI techniques in the form of tutorial and then focus on discussing how these techniques may
be used in the context of AI-based routing in CRNs. Previous survey articles that are similar to
this work have focusedmainly on application of machine-learning andAI techniques to prob-
lems of spectrum sensing, power control, and adaptive modulation in CRNs (He et al. 2010;
Bkassiny et al. 2013). To the best of our knowledge, this is the first survey article that focuses
on the application of AI techniques to the problems of routing and forwarding in CRNs.

Organization of this paper The rest of the paper is organized as follows. We begin by
presenting an overview of traditional (non-AI-based) routing techniques in CRNs in Sect. 2.
It is shown that while these routing protocols do support certain adaptive features, more work
needs to be done to build AI-enabled cognitive routing protocols for CRNs. We list down
important cognitive routing tasks in CRNs in Sect. 3. We then provide a detailed exposition
of decision and planning techniques in Sect. 4. After providing necessary background of
machine learning in Sect. 5, we discuss learning techniques at length in Sect. 6 and document
their applications in CRNs and for routing. Open research directions are identified in Sect. 7.
Finally, the paper is concluded in Sect. 8.

2 Traditional routing in CRNs

While our focus is on surveying techniques useful for cognitive routing protocols in the con-
text of CRNs, it is also prudent to exploit and leverage the huge amount of previous work on
traditional (i.e., non-AI-based) routing protocols for wireless networks. While wireless net-
works include both wireless local area networks (WLANs) and multi-hop wireless networks,
our focus is going to be dominantly on multi-hop wireless networks such as mobile ad-hoc
networks, wireless mesh networks and CRNs. We focus on these networks to build upon the
insights that we can leverage for the design of effective cognitive routing protocols for CRNs.
Previous work on routing in multi-hop wireless networks can be noted for the most part for
the lack of learning from environment. Most of the classical wireless routing protocols do
not utilize environment history for learning and predicting future evolution of environmental
parameters and therefore cannot prioritize higher quality links over links of poor quality.

2.1 Traditional algorithmic routing approaches

Existing (non-AI-based) routing approaches have mostly relied on static graph-theoretic
optimization-based algorithms. In this section, we will provide a broad introduction to such
graph-theoretic algorithmswhile postponing a detailed discussion on optimization techniques
to Sect. 4.

Graph theoretic models and algorithms Graph theoretic techniques are widely used for
network routing problems both for wired and wireless networks. The first component of a
graph theoretic solution is to first formulate the problem in a graph model by the process of
graph abstraction. Thereafter, graph algorithms can operate on the abstract graph to solve
the problem at hand (which can include shortest path problems, flow problems, etc.). The
shortest path problems are especially relevant for routing since they aim to connect graph
nodes to each other via the shortest possible paths. Network flow problems, on the other hand,
typically aim tomaximize the feasible flow through a single-source single-sink flow network.

Many important graph-theoretic algorithms for solving networks problems (especially
the shortest path problems) are based on the technique of dynamic programming (Ahuja
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et al. 1993). The term ‘dynamic programming’2 was originally used in the 1940s by Richard
Bellman to describe the mathematical theory of optimal multi-stage decision processes in
which one needs to make the best decision one stage after another. Popular dynamic pro-
gramming algorithms for shortest path problems include the Bellman–Ford algorithm (for a
single source) and the Floyd–Warshall algorithm (for all-pairs).

A detailed description of graph-based algorithmic techniques used for routing in CRNs is
provided in Cesana et al. (2011). As can be seen in this paper, a host of techniques (such as
layered graphs, colored graphs, and conflict graphs) can be used as part of a graph-theoretic
routing solution. Since these approaches are mostly suited to static, or quasi-static, networks,
wewill not go into details of thesemethods here. The interested readers are referred to Cesana
et al. (2011) for more details on these techniques.

Pitfalls and challengesGraph theoretic techniques typically assume full spectrum knowl-
edge and static conditions. While full spectrum knowledge is a strong assumption, static
approaches based on this assumption are applicable when a centrally maintained spectrum
database (as proposed by FCC for opportunistic usage of white spaces in the spectrum below
900MHz and in the 3GHz range). However, in a more general setting, full spectrum knowl-
edge is mostly inaccessible thus limiting techniques based on it. CRNs are also extremely
dynamic in their conditions due to PU dynamics and are thus not well suited to static tech-
niques.

2.2 Routing metric based categorization

Various routing metrics have been devised in CRNs to gauge the routing performance quanti-
tatively (Youssef et al. 2014). A fundamental routing metric which intimately affects network
performance is delay which is the average time required to deliver a packet from the origin
to destination. The prime analytical framework used to analyze network delay is queueing
theory. The problem of minimum delay routing has a long history with Gallager proposing
a solution in 1977. Another fundamental routing metric is throughput which can be defined
both for the network and for individual flows. The design of wireless routing protocols has
to incorporate the (sometimes conflicting) requirements of minimum delay and throughput
optimality. As an example, backpressure routing schemes (Tassiulas and Ephremides 1992;
Dvir and Vasilakos 2011) are throughput optimal but are known to compromise on delay per-
formance. This relationship, where throughput increase can result in deterioration in delay
performance, can be seen in Fig. 2. The typical approach in networking is not to formulate
the routing problem as an optimization problem (which would restrict their applicability to
only static or quasi-static networks) but to compute a single shortest path from the origin
to the destination using some heuristic link-cost metric. Heuristic algorithms typically adapt
well to dynamic networks making them preferable for real networks. Apart from aiming to
minimize delay and maximize throughput, routing protocols have been proposed that aim
to maximize route stability and diversity, and minimize route-maintenance. In recent times,
wireless-specific routing metrics have been developed [such as those enlisted in Campista
et al. (2008) for wireless mesh networks].

While primitive protocols such as AODV, DSDV, and DSR have typically relied on basic
metrics such as hop count or delay, other metrics were developed for wireless networks over
time such as those that targeted: maximizing throughput (Couto et al. 2005), minimizing
interference (Subramanian et al. 2006), load balancing (Raniwala and Chiueh 2005), and

2 The term ‘dynamic’ in ‘dynamic programming’ refers to the temporal aspect of multi-stage decision making
while ‘programming’ refers to optimization.
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Fig. 2 The relationship of throughput versus delay [adapted from Bertsekas et al. (1992)]

choosing more reliable links (Couto et al. 2005). Since metrics designed for traditional
wireless networks do not sufficiently capture the time-varying spectrum availability found
in CRNs, some recent works have proposed more nuanced spectrum aware routing metrics
(Pefkianakis et al. 2008; Huang et al. 2011; Zhu et al. 2008; Filippini et al. 2009; Caleffi et al.
2012). Many of these novel routing metrics are designed to be used with essentially ‘least-
used spectrum first’ algorithms. Pefkianakis et al. (2008) proposed the SAMER protocol that
proposed a new routing metric designed for CRNs that balances long-term route stability and
short-term opportunistic high-performance. In another work, Huang et al. (2011) proposed
new routing metrics incorporating spectrum temperature into routing which will favor the
‘coolest’ path which has seen the lowest spectrum utilization by the PUs. Zhu et al. (2008)
have also proposed a new metric to be used with their hybrid (proactive/reactive) routing
protocol that considers the PU activities as well as SU’s QoS requirements. Filippini et al.
(2009) have proposed another novel routing metric to cater to CRNs which considers the
maintenance cost of routes that incorporates information about links that must be switched
due to PU activity. Finally, Caleffi et al. (2012) have proposed a new routing metric OPERA
for CRNs that is optimal (when combined with Bellman–Ford and Dijkstra based routing
protocols) as well as accurate (since it measures the actual end-to-end delay of a route taking
in account characteristics unique to CRNs).

We have categorized existing CRN routing protocols according to the routingmetric being
optimized in Table 1with the categories being (1) throughputmaximizing protocols, (2) delay
minimizing protocols, (3) route-stability maximizing protocols, (4) route-maintenance mini-
mizing protocols, and (5) diversitymaximizing protocols. The reader is referred to Table 1 for
references to, and a brief description of, routing protocols falling in these routing categories.

2.3 Routing approaches

In this section, we are going to describe some of the varied approaches proposed for routing
in CRNs including a discussion on proactive versus reactive routing, opportunistic routing,
multipath routing, and geographical routing.

2.3.1 Proactive versus reactive routing

In proactive routing protocols, each node maintains routing information about all the other
nodes proactively so that a routing path is readily available when communication is needed.
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Table 1 Summary of representative CRN routing protocols categorized per routing metric

References Type PU awareness and model Comments

Throughput maximizing

Cacciapuoti et al.
(2012)

Reactive Markov ON–OFF process Reactive routing for mobile ad-hoc
CRNs

Ding et al. (2009) Not described Cross-layer routing and dynamic
spectrum allocation algorithm

SAMER (Pefkianakis
et al. 2008)

Reactive Bernoulli trial every t Routes with highest spectrum
availability (“least-used spectrum
first”)

SPEAR (Sampath
et al. 2008)

Reactive Not described Joint spectrum and route discovery
with distributed path reservations
to minimize inter- and intra-flow
interference

Delay minimizing

How et al. (2011) Reactive 2-State semi Markov model Multi-metric (delay and stability)
routing providing differentiated
service

SEARCH (Chowd-
hury and Felice
2009)

Reactive Not described Designed for mobile CRNs based on
geographic forwarding principles

CRP (Chowdhury and
Akyildiz 2011)

Reactive Markov ON–OFF process Distributed joint route and spectrum
selection protocol that explicitly
protects PU receivers, and allows
multiple classes of routes

Stability maximizing

Coolest-first (Huang
et al. 2011)

Reactive Markov ON–OFF process Proposed new routing metrics to
capture the time-varying effects of
spectrum availability

Tuggle (2010) Proactive Not considered Proposes proactive multi-path routing

Gymkhana (Abbag-
nale and Cuomo
2010)

Reactive Markov ON–OFF process Path connectivity based distributed
protocol that avoids poorly
connected zones

Maintenance minimizing

Zhu et al. (2008) Hybrid Not described Combines proactive routing and
on-demand route discovery

Filippini et al. (2009) Ergodic random binary
process

Optimal centralized, along with,
distributed algorithms proposed
both for exactly and statistically
known PU activity

Diversity maximizing

CAODV (Cacciapuoti
et al. 2010)

Reactive Markov ON–OFF process Proposed a ‘cognitive AODV’
(CAODV) protocol for jointly
exploiting path and spectrum
diversity utilizing global
information

D2CARP (Rahman
et al. 2012)

Reactive Markov ON–OFF process Proposed exploiting joint path and
spectrum diversity to counteract
effects of PU activity using
localized information
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Proactive routing typically entails exchange of control packets (conventionally known as the
HELLO packets) through which the current topological and routing information is periodi-
cally exchanged. Such an approach is appropriate when the number of network nodes are less
since the proactive approach entails significant control overhead. In reactive (also known as
on-demand) routing protocols, on the other hand, the routes are determined on demand by
sending route request messages when communication needs to take place. Such an approach
avoids the extra overhead associated with proactive routing at the cost of some extra delay
in computing routes at run-time. This approach is more appropriate for dynamic topologies
or for large topologies where the overhead of proactive routing would be prohibitive. As
seen in Table 1, an overwhelming majority of CRN routing protocols utilize some variant
of a reactive or an on-demand routing protocol to avoid the overhead of managing dynamic
topologies proactively.

2.3.2 Opportunistic routing

The conventional routing approach adopted on the Internet has been to compute a single
‘best’ path and to use this fixed path for forwarding. This approach to routing is primed
mainly towards wired networking, and is not well suited to wireless networking in which a
transmission is received not only by the intended receiver but also potentially by other nodes
in its vicinity due to the wireless broadcast advantage. In addition, the wireless medium
is considerably more unreliable and unpredictable compared to the wired medium. Oppor-
tunistic routing has been proposed to exploit the broadcast nature of wireless medium by not
pre-committing to a particular route before data transmission and by choosing the relaying
node opportunistically in run-time. In particular, after the sender has broadcasted the packet,
the node ‘closest’ to the destination can be selected to broadcast to opportunistically take
advantage of lucky transmissions that reach unexpectedly far. ExOR (Biswas and Morris
2005) was the seminal work in this domain in which an opportunistic routing protocol was
proposed for wireless mesh networks. Various other opportunistic protocols have been pro-
posed for wireless networks in general networks such as SOAR (Rozner et al. 2009) and
ROMER (Yuan et al. 2005) and for CRNs in particular such as the opportunistic cognitive
routing (OCR) protocol (Liu et al. 2012).

2.3.3 Multipath routing

Traditional routing protocols have focused on computing a single path according to the
optimizationmetric used. Such protocols are not optimized for networkswith highly dynamic
topologies such as mobile ad-hoc networks (MANETs) and CRNs since the computed path
may become unavailable as the topology changes due to mobility of nodes or spectrum
non-availability.Multipath routing protocols aim to redress this issue by computing multiple
alternative paths. Multipath routing protocols provide extra reliability, fault-tolerance, load
balancing, and in the specific case of CRNs, the ability to maintain communication with
minimal disruption in the face of topology change due to PU arrivals. Various multipath
routing protocols have been proposed for wireless networks including work for MANETs
(Nasipuri and Das 1999), wireless sensor networks (WSNs) (Ganesan et al. 2001) as well as
for CRNs (Beltagy et al. 2011).
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2.3.4 Geographical routing

Geographic routing is an approach used for routing in networks (especially in wireless net-
works) in which packets are routed to the destination based on the geographical position of
the destination (Cadger et al. 2013). This approach uses the location/position information
to obviate the dependence on network topology and thus the requirement to share topolog-
ical information either periodically (as in proactive protocols) or on-demand (as in reactive
protocols). This helps in reducing the overhead associated with exchange of topological
information. Various geographical routing protocols have been proposed for wireless net-
works (Zorzi and Rao 2003; Jain et al. 2001) including work proposed for CRNs such as the
SEARCH protocol (Chowdhury and Felice 2009).

2.4 CRN routing protocols

A wide variety of routing protocols have been proposed for CRNs and a representative
summary can be seen at Table 1. In this section, we will focus on a broad categorization of
routing protocols that have been proposed for CRNs on the basis of addressing scope and PU
awareness. Lastly, we will provide a comparison of CRN routing protocols representative of
the current state-of-the-art.

2.4.1 Addressing scope of routing

Most of the routing protocols in CRNs have addressed the scope of unicast routing with rel-
atively few studies in the literature addressing the broadcast and multicast routing problems
in CRNs.

The problemof broadcast routing inCRNs is challenging as noted inAkyildiz et al. (2006).
In CRNs, channel heterogeneity of channels, intermittent connectivity, and lack of a common
control channel can constrain the ability to perform effective broadcast routing (Akyildiz
et al. 2006). Recently, a work has been proposed for fully distributed broadcast routing
in CRNs without requiring a common control channel (Song and Xie 2012). An adaptive
channel assignment scheme that modifies the assignment to suit broadcast routing when the
broadcasting traffic volume is significant is presented in Mir et al. (2012). Some other works
that have addressed the problem of broadcasting in CRNs include Htike and Hong (2013)
and Fahad et al. (2010).

The problem of multicast routing can be considered as a generalization of both unicast
and broadcast routing as unicast and broadcast are special cases of multicast (in which the
receiver group goes from the one extreme of a single receiver to the other extreme of all
the network nodes as receivers). Various approaches have been proposed for multicasting
including those based in optimization theory, heuristic algorithms, and network coding (Li
et al. 2012). Kim et al. (2009) have proposed a multicast routing protocol (COCAST) for
mobile ad-hoc networks with nodes equipped with CRs. Their work aimed at improving the
scalability of the traditional ‘on-demand multicast routing protocol’ (ODMRP) multicasting
protocol in an environment using CRs. In another work, Almasaeid and Kamal (2013) have
addressed the problem of assisted multicast scheduling in cognitive wireless mesh networks,
and have proposed two approaches for cooperative multicasting: the first depending on the
assistance of multicast receivers in delivering multicast data to other receivers, while the
second is network-coding based. Some other works that have addressed the joint problems
of routing, channel assignment, and scheduling for multicast communication in multihop
CRNs have also been proposed (Almasaeid et al. 2010; Ren et al. 2009; Gao et al. 2011).
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The interested reader is referred to a dedicated survey on the topic of multicasting protocols
for CRNs for more details Qadir et al. (2014).

2.4.2 PU awareness and modeling

With dynamic spectrum access (DSA) being envisioned as a prime application of CRNs,
it is important for routing protocols for CRNs to incorporate PU traffic dynamics into its
design. Some of the CRN routing protocols have conspicuously not catered to PU dynamics
in their design (Chowdhury and Felice 2009; Cacciapuoti et al. 2012; Sampath et al. 2008;
Yang et al. 2008; Deng et al. 2007), although more recent work Pefkianakis et al. (2008),
Filippini et al. (2009), How et al. (2011) and Ding et al. (2010) have importantly incor-
porated PU awareness. We will later describe issues relating to PU modeling in detail in
Sect. 6.9.

2.4.3 Comparison of CRN routing protocols

Sun et al. (2013) have conducted a detailed performance evaluation of three representa-
tive CRN routing protocols: SAMER (Pefkianakis et al. 2008), Coolest Path (Huang et al.
2011), and CRP (Chowdhury and Akyildiz 2011) using both simulations (on the NS2
simulator) and an empirical evaluation (on a testbed of 6 node testbed based on USRP2
platform). The three protocols evaluated SAMER (Pefkianakis et al. 2008), Coolest Path
(Huang et al. 2011), and CRP (Chowdhury and Akyildiz 2011) all have different design
objectives. SAMER aims mainly at finding the highest throughput path while considering
both the PU/SU activities and the link quality. Coolest Path is designed to prefer paths
that are more stable since it prefers path with the highest spectrum availability. CRP is
designed to either find a path with minimum end-to-end delay along with satisfactory PU
protection, or to offer more complete protection to PU receivers at the cost of some per-
formance degradation to SUs. It has been shown in their simulation and testbed results that
SAMER provides the highest throughput under low PU activity (since SAMER aims to
calculate throughput maximizing paths explicitly) and is also shown to be robust to packet
loss; however, its performance under high PU activity deteriorates, particularly in the sim-
ulation results. Sun et al. also provide qualitative insights into the design of CRN routing
protocols. Their findings suggest that taking link-quality and interference between SUs into
account can greatly improve routing performance particularly under low PU activity. For
high PU activity, however, path stability and path length become more important. Another
important finding is that estimating spectrum availability based only on local observations
cannot guarantee path stability therefore suggesting improvements can be made through
cooperation.

In this section, we have not attempted an exhaustive survey of all existing CRN routing
protocols, and instead have focused on presenting a representative overview of traditional
(non-AI-based) wireless routing protocols. These protocols can be noted for their lack of
incorporation of AI-methods for providing enhanced adaptive features. In the remainder
of the paper, we will discuss various AI-based techniques, along with their applications
in CRNs and routing, which can be used to construct future cognitive routing protocols.
Interested readers are referred to the following survey papers on routing in CRNs and the
references therein to find more information about the various routing protocols proposed for
CRNs (Cesana et al. 2011; Al-Rawi and Yau 2013).
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3 Cognitive routing tasks in CRNs

As noted earlier, although CRN routing protocols do mostly incorporate spectrum-awareness
into their design, future cognitive networks will require greater architectural support from
fully ‘cognitive routing protocols’ that will seamlessly incorporate AI-based techniques such
as learning, planning, and reasoning in their design. Some of the important tasks that future
cognitive routing should incorporate include:

T1. Optimal decision making Optimization may entail optimal configuration of a single
parameter (e.g., deciding at a node the spectrum in a spectrum decision problem, or the
next-hop for a routing problem) or of multiple parameters (e.g., interference control
involving choice of multiple parameters such as transmission power, spectrum, etc.).
Optimization in the setting of multiple agents must also support interactive decision
making and incorporate not only the environment but also the decision of other agents in
the decision making (e.g., two CRs operating in the same environment and attempting
to maximize the throughput by choosing the transmission waveform).

T2. Network-wide optimization Cognitive routing protocols must support cognitive net-
working functionality with the network displaying intelligent behavior.

T3. Adaptive behavior to accommodate network dynamics to ensure that the network adapts
to the continuously changing network environment and optimizes autonomously. Future
cognitive routing protocols should provide native support for dynamic spectrum access
(DSA) which is a cornerstone of modern CRNs.

T4. Learning from experience for an entity to display cognitive behavior, it is important
that the entity supports learning from experience.3

T5. Reasoning from learned knowledge The intelligent entity must store its knowledge in a
knowledge base and then support reasoning and inferencing to make optimal decisions.
This step should be able to support any policy that needs to be supported.

T6. Inference of future network dynamics an intelligent cognitive routing framework can
be more proactive in its decision making by inductively predicting future network
dynamics and reacting accordingly.

3.1 Challenges in performing cognitive routing

Some challenges for effective cognitive routing in CRNs include (1) intermittent connectivity
with neighbors in DSA networks causing a highly dynamic topology, (2) heterogeneous
channels with diverse channel properties whose availability is time-varying (Akyildiz et al.
2006), (3) potential non-availability of common control channel (Lo 2011), (4) unknown,
or incompletely known, environments, (5) ensuring intelligent network-wide behavior when
multiple distributed agents interact selfishly with limited local knowledge, (6) unreliable
spectrum sensing, and (7) limited signaling (or communication) between SU nodes (if any).
These significant challenges complicate the problem of cognitive routing in CRNs. Various
approaches tackle these challenges differently as we shall see when study decision making,
planning techniques (Sect. 4) and learning techniques (Sect. 6.8) later on.

3 While purely adaptive technology such as policy programmed expert systems can make radios increasingly
aware, it is widely held that a radio must incorporate elements of learning to be deemed cognitive (Mitola
2006).
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3.2 AI-based techniques for cognitive routing

Themajor focus of this paper is onAI based techniques that can be useful for routing inCRNs.
Broadly speaking, AI based techniques comprise both decision making/planning techniques
and machine learning techniques. Various decision making/planning AI techniques have
been proposed in literature with optimization theory, Markov decision processes, and game
theory being most relevant for the task of routing. We will provide a detailed exposition of
concepts and applications of these techniques in Sect. 4. These decision-making and planning
techniques addressing the tasks T1, T2, and T3 listed above. It is noted here that while
most of the proposed routing protocols do include certain adaptive decision making features,
relatively little work has been done to integrate AI-based learning techniques into the routing
solutions for CRNs. This is a promising new sub-field ripe for future research exploration.
We will provide necessary background and discuss cognitive routing applications of learning
techniques (such as hidden Markov models, reinforcement learning, learning with game
theory, online learning, artificial neural networks, learning with metaheuristic algorithms,
and Bayesian learning) in Sect. 6.9. These learning, reasoning, and inferencing techniques
address the tasks T4, T5, and T6 techniques.

4 Deciding, planning, and optimization

At the outset of this section, we will discuss some important decision, planning, and opti-
mization cognitive routing tasks. These decision, planning, and optimization techniques are
needed in the context of cognitive networks to address tasks T1 and T2 described in Sect. 3.
In the remainder of this section, we will discuss major decision making/decision planning
frameworks that have been widely applied to CRNs. Specifically, we shall be studying opti-
mization theory, Markov decision processes and game theory. The cognitive cycle which
epitomizes the essence of a cognitive radio is based on a cognitive radio’s ability to: (1)
observe its operating environment, decide on how to (2) best adapt to the environment, and
then as the cycle repeats, to (3) reason and (4) learn from past actions and observations
(Gavrilovska et al. 2013). The term planning, for the purpose of our discussion, refers to any
computational process that produces (or improves) a decision policy of how to interact with
the environment given a model of the environment. Planning is sometimes often referred to
as a search task, since we are essentially searching through the space of all possible plans
(Mitchell 1997; Sutton and Barto 1998).

4.1 Optimization theory

Optimization theory is a richly developed theory comprising tools and techniques for deter-
mining “optimal” decisions in scenarios which may also incorporate certain constraints
(Keshav 2012; Hillier and Lieberman 2001). Optimization theory is directly applicable where
the decision agent interactswith a static network topology and known radio environment (with
full spectrum knowledge). While this strong assumption is not always satisfied, optimization
techniques are important for all scenarios where the SUs have access to static databases
storing the spectrummaps as propounded recently by Federal Communications Commission
(FCC). Optimization techniques have also been leveraged extensively for CRNs with the
assumption that PU dynamics are negligible allowing static design of channel assignment
and the routing among SUs. It must be noted that optimization theory does not directly model
interactions of the decision agent with other self-optimizing decision agents; Such interac-
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tive optimization/decision making is the subject of the field of game theory (to be studied in
Sect. 4.3).

Formally, a mathematical optimization problem has the following form: minimize f0(x)
subject to fi (x) ≤ bi . Here the vector x = (x1, . . . , xn) is called the optimization variable,
and the function ( f0: Rn → R) of the optimization variable, that we have the objective of
minimizing, is known as the objective function. The functions fi : Rn → R, i = 1, . . . ,m are
the (inequality) constraint functions, and the constants b1, . . . , bm are the limits, or bounds,
for the constraints. A vector x∗ “solves” the optimization problem, or is deemed optimal, if it
has the smallest objective function value among all vectors that satisfy the constraints defined.
There are various classes of optimization problems generally characterized on the basis of
the form of the objective and the constraint functions. In particular, for linear program, the
objective function f0 and the m constraint functions f1, . . . , fm are all linear: i.e., fi (αx +
βy) = α fi (x) + β fi (y)). If the optimization problem is not linear, it is called a nonlinear
optimization problem. The class of convex optimization, which includes linear optimization
as a special case, the objective function f0 and the m constraint functions f1, . . . , fm are
all convex: i.e., fi (αx + βy) ≤ α fi (x) + β fi (y)). Due to the inequality in the preceding
constraint function, convex programming can be of both linear and nonlinear types.

In this paper, we will be mostly interested in discrete optimization, also called combi-
natorial optimization in which either the constraint set is finite or it has a discrete nature.
Informally speaking, combinatorial algorithms are techniques for high speed manipulation
of combinatorial objects such as permutations, graphs, and networks (Knuth 2006; Papadim-
itriou and Steiglitz 1998). The three most important combinatorial optimization techniques
are linear programming, integer programming, and convex programming.

4.1.1 Linear programming

(LP) is commonly applied in these fields to realize “optimal” logistical planning and schedul-
ing. An application area of LP, much closer to our subject, is in network optimization. Typical
network optimization problems, that may be formulated as linear programming problems,
are the shortest path problem, the min-cut max-flow problem, and the minimum cost-flow
problem (Ahuja et al. 1993).

4.1.2 Integer programming

(IP) is relevant for those optimization problem in which it only makes sense for certain opti-
mization variables to take on integer values (e.g., in a networking context, the number of
packets, flows, etc. generally make sense only with integral values). If in an optimization
model, certain optimization variables can only take on integer values while other can take
real values, the class of optimization model is known as amixed integer programming (MIP)
model. In general, IP and MIP problems can belong to either of the linear or the nonlinear
class. An IP optimization problem that belongs to the linear class—i.e., whose objective and
constraint functions are both linear—is said to belong to the class of integer linear program-
ming (ILP); Analogously, the linear MIP optimization model is referred to as mixed integer
linear programming (MILP). IP techniques are useful in communication networks for syn-
thesis, assignment and scheduling problems (Resende and Pardalos 2006). MILP provides
a very general framework for addressing problems with discrete decisions and continuous
variables and are widely applied. While LP problems generally entertain polynomial-time
solutions, IP programs are more complex to solve and typically are in the class of non-
deterministic polynomial-time (NP). Since IP problems are computationally intractable (i.e.,
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they are NP-complete or NP-hard), various relaxation techniques have been used for pro-
ducing approximate solutions. IP models can be solved more efficiently if the problem has
network substructure in which case Lagrangian relaxation can be used to decompose the
IP. Other solution concepts for IP include branch-and-bound and branch-and-cut. The most
common relaxation method used for solving IP, though, is the linear programming relaxation
through the restriction of optimization variables taking integer values is relaxed.

4.1.3 Convex optimization

Convex optimization is a general class of optimization problems subsuming the least-square,
linear-optimization, conic programming (Nemirovski 2006), and geometric programming
(Chiang 2005) classes of optimization (Boyd and Vandenberghe 2004). Interest in convex
optimization has been reinvigorated by a few notable recent discoveries. It has been shown
that interior-points methods developed for solving linear programming problems are useful
for solving a broader much wider class of convex optimization problems. Secondly, it is
now realized that convex optimization problems (beyond least-square and linear optimization
problems) are much more prevalent than previously thought (Boyd and Vandenberghe 2004).
Indeed, it is now believed that convexity, and not linearity, defines the demarcation, or the
“watershed”, between tractable and intractable problems (Chiang et al. 2007). Many routing
problems can be formulated as a convex optimization problem—e.g., the optimal minimum-
delay routing problem (Gallager 1977) is an alias for the classic convex optimization problem
of minimum-cost multi-commodity flow problem.

4.1.4 Distributed optimization

Distributed optimization is distinct from game theory which also performs optimization in a
distributed fashion but for interactive environments in which each player is interested in its
personal utility. In distributed optimization, all the distributed agents are trying to essentially
jointly solve the same problem and do not have conflicting interest between personal utility
and network.Decomposability techniques have been extensively used in optimization to lead
to distributed (and often iterative) algorithms that converge to the global optimum. Inwireless
networks, distributed solutions are particularly attractive as a centralized solutionmay be non-
scalable, too costly or fragile (Chiang et al. 2007). Decomposition theory naturally provides
the mathematical language to build an analytic foundation for the design of modularized
and distributed control of networks (Chiang et al. 2007). The method of decomposition is
considered an extremely important versatile tool vital for practical distributed solutions of
optimization problems. It has been stressed in Chiang et al. (2007) that the importance of
“decomposability” to distributed solutions is akin to the importance of “convexity” in efficient
computation of global optimum.

4.1.5 Multi-objective optimization

While most optimization problems aim to optimize for one explicit parameter, there is often a
need in CRNs, where numerous design variables are controllable, to simultaneously optimize
for multiple optimization variables (such as throughput, delay, energy, etc.). A key aspect of
multi-object optimization that various objectives typically compete for dominance: e.g., it is
impossible to jointly minimize both bit error rate (BER) and transmit power simultaneously
(Rondeau and Bostian 2009). One approach to solving such a problem is to look for a solution
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on the so called ‘Pareto Frontier’ that defines the set of input parameters that define non-
dominated solutions in any dimension. Jie and Kamal (2014) have recently proposed two
multi-objective optimization algorithms to find multicast trees that minimize the worst-case
delay and the number of transmission links while simultaneously maximize the multicast
rate with their proposed algorithms able to find over 60% of the approximate Pareto front.

4.1.6 Application of optimization theory to CRNs

Common applications of combinatorial optimization techniques (such as linear, convex, and
integer programming) include scheduling, assignment, route planning, set covering, etc. Inte-
ger programming (and mixed integer/linear programming) techniques are especially useful
for a wide variety of assignment, scheduling, and resource allocation problems (Resende
and Pardalos 2006). Optimization techniques have also been used in concert with signal
processing techniques (such as compressed sensing) in previous work (Xiang et al. 2011).
One of the pioneering applications of optimization theory in the context of CRNs was the
work of Hou et al. (2008) that addressed the problem of optimal spectrum sharing for multi-
hop networking. In particular, their work addressed the cross-layer optimization problem of
minimizing the requirements of network-wide radio spectrum resources to support a given
number of user sessions characterized in terms of source-destination pairs with given rate
requirement. The problem formulation was a mixed-integer non-linear program (MINLP)
and a near optimal solution based on a sequential fixing solution. In another work, Shi et al.
(2008) have proposed a distributed optimization algorithm for multi-hop CRNs for cross-
layer optimization that jointly considers power-control, scheduling, and routing. In recent
times, there have been efforts in designing optimizable networks (Chiang et al. 2007; Palomar
and Chiang 2006) and protocol design for communication networks as a distributed resource
allocation problem (Shakkottai et al. 2008). The interested reader is referred to the handbook
(Resende and Pardalos 2006) in which the various applications of optimization techniques
to telecommunications are surveyed in detail.

4.1.7 Application of optimization theory to routing

The application of optimization techniques such as linear programming, constrained and iter-
ative optimization, dynamic programming is discussed in an old survey paper of Ephremides
and Verdu (1989) with a specific description of application of optimization techniques to
the area of network routing. The seminal work focused on optimal routing was Gallager’s
work in 1977 which formulated the minimum delay routing problem and proposed a solu-
tion which only required distributed computation and simple periodic information exchange
with its neighbors. This work, and follow up works on minimum-delay routing, required
the input traffic and network topology to be static or quasi-static (changing very slowly)
and also required knowledge of global constants to ensure convergence which made such
optimal routing impractical for real networks. It was later realized that Gallager’s algorithm
was an in fact a solution to a special case of known convex optimization problems (Bertsekas
1979). Gallager’s algorithm is in fact compatible with the class of distributed Bellman–Ford
type algorithms (Ephremides and Hajek 1998). Optimization based routing solutions gener-
ally make the strong assumption of availability of full spectrum knowledge. Full spectrum
knowledge is not always available which limits the scope of the applicability of optimiza-
tion techniques in CRNs. However, the use of optimization techniques is justified where this
assumption is justified (an example scenario being TVbandwhitespace networkingwhere the

123



40 J. Qadir

Fig. 3 The sequential decision making nature of MDP

SUs can query databases storing the spectrummap) and optimization based routing solutions
(e.g., Shi et al. 2008; Ma and Tsang 2008) have been proposed for CRNs in such settings.

4.1.8 Pitfalls and challenges

Traditional optimization algorithms are designed for static environments with fully known
characteristics. In CRNs, however, it is common for the environment to change rapidly and
for only partial information to be available. The use of optimization theory in CRNs is also
complicated by the fact that there is a high likelihood of the optimal point shifting due to
the non-stationarity of the environment before the optimization solution converges. In such
scenarios, the use of approximate, or near-optimal heuristic solutions may be warranted.
Another motivation for the use of approximation algorithms is that most interesting opti-
mization problems in CRNs are complex, typically NP-hard, and thus efficient practical
solutions require some simplification/approximation to be made.

4.2 Markov decision processes

Markov decision processes (MDPs) is a widely used mathematical framework for sequential
planning, or control, of a randomly evolving dynamical system. MDPs can be used to model
the decision making of an agent in real-life stochastic situations where the outcome does not
follow deterministically from actions (Puterman 2009). In such cases, the output (also, called
the reward) is specified by a probability distribution that depends on the action adopted in a
particular state. MDP can be envisioned as a discrete time stochastic optimal control process
since it approaches the multi-stage decision-making process as an ‘optimal’ control problem
in which the aim is to select actions that maximize some measure of long-term reward.4

MDPs differ from classical deterministic AI planning algorithms in that its action model is
stochastic (i.e., the outcome does not follow deterministically from the action chosen). A
model of the sequential decision making nature of MDP can be seen in Fig. 3 in which it is
illustrated that in MDPs an action is taken in each state corresponding to a decision epoch
which returns a reward and changes the state of the system.

More formally, an MDP is a which can be defined as 5-tuple (S, A, P, R, γ ) where S is
a finite set of states, A is a finite set of actions, P is the transition function with Pa(s, s′)

4 Please see Fig. 4 to see how MDPs relate to other techniques and AI related fields.
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representing the next-state distribution after adopting action a in state s and γ ∈ [0, 1] is a
discount factor. Every time step, the process is in some state s ∈ S, and the decision maker
has to choose some action a ∈ A from amongst the actions available in that state A(s). After
taking the action, the process will move randomly to some new state s′, with the decision
maker obtaining a corresponding reward Ra(s, s′). We note here that the reward is used in a
neutral sense: it can imply both a positive reward or a negative reinforcement (i.e., a penalty).
The choice of action a in state s influences the probability that the process will move to some
new state s′. This probability (of going from state s to s′ by taking actiona) is given by the state
transition function Pa(s, s′). The next state s′, therefore, depends stochastically on current
state s and the action a taken therein by the decision maker. In MDPs, an extra condition
holds crucially: given s and a, the Pa(s, s′) is conditionally independent of all previous states
and actions. This condition is known as the Markov property and this condition is critical
for keeping MDP analysis tractable. In order to express preference for short-term rewards as
compared to long-term rewards, a discount factor γ is often used which works by reducing
future rewards by a factor of γ (chosen such that 0 ≤ γ < 1) for every future time step. If γ

is chosen to be 0, the agent will become short sighted or ‘myopic’ and will consider current
rewards only. As γ approaches 1, the agent will become long-sighted and it will strive for
long-term rewards.

Solving an MDP The core problem in MDPs is to determine an optimal ‘policy’ for the
decision maker which is defined to be a function π that maps a state s to an action π(s). The
roots of such problems can be traced to the work of Bellman (1957) who showed that the
computational burden of solving an MDP can be reduced quite dramatically via techniques
that are now referred to as dynamic programming (DP). Intuitively, the policy π specifies
what action must the agent perform when in various states so that the long-term rewards are
maximized. In a potentially infinite horizon environment, with continuous decision making
which goes on forever, to reason about the various different possible policies, it is important
that the reward function be finite. This is usually accomplished through discounting through
which the preference of immediate rewards over delayed rewards may be quantified. To
ensure that action values do not diverge, the discount factor should not be equal to, or exceed,
1. Solving an MDP now entails determining the policy π that maximizes the cumulative
discounted reward function over a potentially infinite horizon:

∑∞
t=0 γ t Rat (st , st+1) where

we choose at = π(st ), γ is the discount factor, and the subscript t refers to the time-step.
MDPs are sometimes referred to as controlled Markov chains. This, and the relation-

ship of various Markov models and games that we will develop later in this paper, can
be seen graphically in Fig. 4. To put MDPs into perspective, we note here that they are
a generalization of Markov chains. The difference is that MDPs incorporate actions and
rewards in the model while Markov chains do not. Conversely, the special case of MDPs
with only one action available for each state and with identical rewards (e.g., zero) is in fact
a Markov chain. It may be noted that once the MDP is specified with a policy, the action
at various states is fixed, and the resulting MDP effectively behaves like a regular Markov
chain.

We can also define the value of a statewhich follows naturally from the concept of rewards.
Intuitively, the value of a state is a sum of discounted rewards that accrue from following the
optimal policy onwards from that state. More precisely, V (s) or the value of a state s will
contain the expected sum of discounted rewards to be earned (on average) by following the
policyπ from state s. A value function is a mapping from the states to their values or expected
upcoming cumulative reward. For compactness, we refer to Rat (st , st+1) where at = π(st ),
or the reward achieved in time t + 1 by following the optimal policy π at time t simply as
rt+1. The value function mapping is shown below.
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Fig. 4 Relationship between various Markov models, processes, and games

V (st ) = E
[
rt+1 + γ rt+2 + γ rt+3 + · · · ] (1)

It is worth emphasizing that the value abstraction is a key idea, and all efficient methods for
solving sequential decision problems estimate value functions as an intermediate step (Talk
on Deconstructing Reinforcement Learning’ by Richard Sutton at ICML 2013). Apart from
using the equation above (Eq. 1), another efficient, but remarkably simple, method can be
used for calculating the value function on the basis of bootstrapping. We will see this method
when we later will study Eq. 2 when the Bellman equation is introduced.

4.2.1 Dynamic programming solutions to MDPs

Assuming that wewish to calculate the policy that maximizes the expected discounted reward
given that the state transition function P and the reward function R are known (this assump-
tion is not always met, but we start with this simple case). The basic idea of the theory
underlying dynamic programming is refreshingly simple. Optimal policy should be viewed
as determining the decision required at each time in terms of the current state of the system.
Regardless of the initial state and decisions, the remaining decisions must constitute an opti-
mal policy π for the continuation process treating the current state as starting input. This is
known as the principle of optimality. This strikingly simple insight allows computation of
the optimal policy through backward induction starting at the terminal point. The concept
of value function V is related to this, and it captures the expected future utility at any node
of the decision tree, if we assume that an optimal policy will be followed in the future. The
naive approach to the problem of optimal sequential decision making would be to consider
the set of all feasible policies, compute the return for each, and then to choose the policy
providing the maximum return. This brute-force approach will not work except for the most
trivial problems and will be hopelessly inadequate for processes involving even a moderate
number of states and actions.

There are two main approaches to provide a dynamic programming based solution to
MDPs (value iteration and policy iteration) which we discuss next.

In value iteration, proposed by Bellman (1957), the policy function π is not used directly.
The value of π(s) is instead calculated indirectly within V (s) whenever it is needed. This
technique is also known by the name backward induction. Substituting the calculation of
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π(s) into the calculation of V (s) gives us the following Bellman equation for this problem.
The value iteration update works by iteratively calculating the values of V (s).

V (s) = max
a

{
∑

s′
Pa(s, s

′)
(
Ra(s, s

′) + γ V (s′)
)
}

(2)

It has been observed that it is possible to get an optimal policy even with inaccurate value
function estimate, or before the convergence of the value function, especially when one action
is clearly better than all others; in such a case, it becomes clear what action needs to be taken
even with imprecise estimates of the exact value magnitudes (Russell and Norvig 1995). This
insight can be exploited to devise a new strategy for calculating optimal policies called pol-
icy iteration which directly explores the policy space. Policy iterating algorithms begin from
some initial policyπ0 and thereafter alternates between policy evaluation and policy improve-
ment and terminates when the policy improvement step yields no change in the utilities. In
‘policy evaluation’,we are interested in calculatingVi = V πi whichprovides the valueof each
state if πi is to be executed for a given policy πi . In ‘policy improvement’, on the other hand,
we are interested in determining πi+1 using one step look ahead based on Vi for the given Vi .

The choice of the ideal solution method (value iteration or policy iteration) depends on
various factors. If there aremany actions, or if there exists already a fair policy, it is better to use
policy iteration. On the other hand, if there are few actions, and acyclic state transitions, then
value iteration is a better option. Interested readers are referred to texts with comprehensive
treatment of MDPs for a more thorough discussion of these solution methods (Puterman
2009; Russell and Norvig 1995).

4.2.2 Partially observed MDPs

AMDP in which the environment is only partially observable is known as a partially observ-
able MDP (POMDP). In the method discussed above for solving MDPs, it was assumed
that the state s is known when the action is performed. This assumption does not hold for
partially-observed MDPs in which the agent is unable to directly observe the state s but
can avail an observation O which is probabilistically dependent on s. POMDPs are able
to model the uncertain aspects of the environment such as the stochastic effects of actions,
incomplete information and noisy observations over the environment. Although POMDPs
have been known for decades, their widespread uptake is impeded for two main reasons:
(1) it is difficult to satisfactorily model the environment dynamics (such as probabilities of
action outcomes and the accuracy of data), and (2) it is difficult to solve the resulting model.

4.2.3 Decentralized MDPs

The cognitive routing task in CRNs involves multiple agents performing decision making
in a decentralized fashion. The class of MDPs that deal with decentralized setting with
multiple agents is known as DEC-MDP. DEC-MDP is a special case of POMDP in which the
observations made by the agents (i.e., the CRs) collectively defines the state of the system
with no individual agent having access to the complete set of observations. The general
case of DEC-MDP is NEXP-Hard (class of decision problems which can not be solved in
better than exponential time by non-deterministic Turing machines). Fortunately, in some
special cases [including the formulation of optimal routing as a DEC-MDP (Friend 2009)],
the problem can be polynomial-time solvable either for approximate or exact solution.
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4.2.4 Solutions for complex MDPs

While classical value iteration and policy iteration DP algorithms perform well for simple
and moderately complex MDPs, they break down for large-scale complex MDPs where the
cost of computing, storing, and manipulating the so-called transition probability matrices
becomes prohibitively high. In complex MDPs, two crippling problems arise: (1) the curse
of modeling, and, (2) the curse of dimensionality. In the former problem, it becomes very
difficult to compute the values of the transition probabilities while for the latter problem,
storing or manipulating the elements of the so-called value function needed in DP becomes
challenging due to the large dimensionality. Therefore, classical DP techniques are rather
ineffective at solving large-scale complex MDPs (Gosavi 2009). If the probabilities of MDP
are unknown, then the problem becomes a reinforcement learning (RL) task. We will see
later that in RL we aim to determine for an agent what actions it should take in a stochastic
environment. We will discuss more when we develop solutions for RL later in Sect. 6.2.

4.2.5 Application of MDPs in CRNs

MDPs have been applied to study a wide range of planning and optimization problems in
CRNs. It is noted here that MDPs in their native form require complete knowledge of the
system (such as the state transition probabilities and the number of states, etc.) and they
are not directly applicable when CRs are operating in unknown RF environments. However,
various techniques exist (such as reinforcement learning discussed later in Sect. 5.3) that can
work in such scenarios where the environment is not completely known. Choi and Hossain
(2011) proposed a partially observableMarkov decision process (POMDP) based framework
for channel access to opportunistically exploit frequency channels a primary network oper-
ates on. In another work, Zhao et al. (2007) had devised a POMDP framework to develop a
cognitive MAC protocol. MDPs have also been applied extensively in communication net-
works. Interested readers are referred to a survey paper (Altman 2002) which highlights the
applications of MDPs to communication networks, and also includes a discussion on its use
for routing.

4.2.6 Application of MDPs for routing

The routing problem has been formalized in the setting of MDP in previous work. Lott and
Teneketzis (2006) have proposed anMDPbased formulation of opportunistic routing inwhich
the optimal routingdecision is to select the next relay node in each epochbasedon the expected
cost-to-forward from the neighbors to the destination. Opportunistic routing decisions, in
contrast to conventional routing schemes, are made online by choosing the next relay node
based on actual transmission outcomes and are modeled well by MDPs. The problem of
optimal ‘minimum-expected-cost’ routing, in an application of the concept of ‘cognitive
networking’ by Friend (2009), was formulated as a DEC-MDP (a special case of a POMDP).
In other works, multi-agent POMDPs were used for network routing in Rathnasabapathy
and Gmytrasiewicz (2003). Since the transition probabilities of the MDP are typically not
available a priori, reinforcement based learning is popularly used to converge to an optimal
policy even when the transition probabilities of the underlying MDP are unknown. Peshkin
et al. have proposed a reinforcement learning based MDP solution for adaptive routing in
Peshkin and Savova (2002). Nurmi (2007) presents a formulation of the routing problem as
a reinforcement learning problem involving a POMDP and also presents an algorithm for
solving this model.
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4.2.7 Pitfalls and challenges

The MDP makes the Markovian assumption, based on which the future state only depends
on the current state, which may not adequate model the problem being studied. MDP formu-
lations typically require a stationary environment with known transition probabilities of the
underlying Markovian process. MDPs are best suited to single user systems since in multi-
user systems, the presence of other users make the system non-stationary (Xu et al. 2013).
In practical CRNs, obtaining statistical information a priori may not be feasible limiting the
applicability of MDPs in such cases. In addition, it common for the environment in CRNs to
change rapidly leading to a likelihood of the optimal point shifting due to the non-stationarity
of the environment before the convergence of the MDP. The convergence results available
of MDPs generally apply only asymptotically (i.e., the solutions converge as the number
of iterations becomes sufficiently large) and do not inform about the convergence speed. In
practice, the convergence speed is extremely important and convergence needs to be fast for
the MDP solution to be useful.

4.3 Game theory

Game theory is a mathematical decision framework composed of various models and tools
through which we can study and analyze competitive interaction between multiple self-
interested rational agents. Although, game theoretic models exist for both cooperative and
non-cooperative settings, the ability tomodel competitionmathematically distinguishes game
theory from optimal control-theoretic frameworks such as the MDP (Haykin 2005). Game
theory is also differentiated from optimization theory (which caters to a single decisionmaker
scenario) in their ability to modelmulti-agent decision making scenarios where the decisions
of each agent affect each other.

Every game involves a set of players, actions for each of the players representing how
players interact,preferences for each of the players definedover all the possible outcomes. The
preferences, or payoffs, are typically defined through a utility function, or a payoff function,
which maps each possible outcome to a number representing that outcome’s desirability. An
outcome brings more reward, or is more desirable, if it has a higher utility (MacKenzie and
DaSilva 2006). In order to maximize its payoff, each player acts according to its strategy.
More formally, a game can be mathematically represented by the 3-tuple G = (N , S,U )

where N represents the set of players, S the set of strategies, andU the set of payoff functions.
The terms strategy and action should not be confused together: the strategy in fact specifies

how the player should act in each possible situation, and can be envisioned as a complete
algorithm documenting how the player will play the game. The strategy of a player can
be a single action (for a single-shot or a static games) or a set of actions during the game
(for a sequential or a dynamic games) (Felegyhazi and Hubaux 2006). A player’s strategy
set defines what strategies are available for it to play: the strategy set may be finite (e.g.,
when a choice is made from a countable discrete set of values) or infinite (e.g., when some
continuous value is chosen). A pure strategy deterministically defines how a player will play
a game, while a mixed strategy defines a stochastic definition by assigning probability to
each pure strategy. The strategy profile, or the action profile, documents the strategy of each
player and it fully specifies all actions in a game. The outcome of the game depends, possibly
stochastically, on the player’s strategy profile and returns payoffs to various players.

Game theory is popularly used in CRNs since each CR in a CRN interacts with a dynamic
environment composed of other rational agents that sense, act, and learn while aiming to
maximize personal utility. For games specific to CRNs, individual CRs typically represent
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the players, and the actions may include the choice of various system or design parameters
such as, e.g., the modulation scheme, transmit power level, flow control parameter, etc. One
of the main goal of game theory is to determine equilibria points for a given game. These are
sets of stable strategies in which individuals are unlikely to unilaterally change their behavior.
To gauge their efficiency, these equilibria points are often contrasted with some notion of
socially optimal point which produces the ‘best’ outcome when interests of all the players is
taken into accounts.

In recent years, game theory has provided deep insights into how to design decentral-
ized algorithms for resource sharing in networks particularly through the theory known as
mechanism design sometimes known as reverse game theory. While traditional game theory
focuses on analyzing how rational players would play a given game, in mechanism design,
we are interested in engineering or designing a game which rational players will play into a
desired equilibrium point. Intuitively, mechanism design aims to set up the game such that
players do what the designers want them to do but because the players themselves want to
do it (Keshav 2012).

4.3.1 Representation of games

There are two common ways of representing non-cooperative games. The normal-form rep-
resentation of a game explicitly lists the payoff for each player of every conceivable outcome.
This representation, also known as the standard- or strategic-form, is appropriate for static
games of complete, and perfect information. For two player games, this can be depicted in
a matrix form either as a pair of payoff matrices (one each for the row player and column
player) or as a single payoffmatrix (with an entry containing payoffs for both players). On the
other hand, an extensive-form game is a representation that allows, unlike the normal-form
games, explicit representation of temporal aspects of dynamic games such as the sequencing
of players’ possible moves and their choices at every decision point along with payoffs for all
possible game outcomes. It also allows representation of the (possibly imperfect) information
each player has about the other player’s moves when making a decision, and of incomplete
information (about the nature of the game) in the form of chance events encoded as moves by
the player ‘nature’. More details about representation of the games can be seen at MacKenzie
and DaSilva (2006).

4.3.2 Solution concepts

In game theory, a solution concept formalizes the concept of ‘solving’ a game by predict-
ing how rational players would play a specified game. These predictions, called solutions,
describe what strategies would be chosen by players and, therefore, it also describes the pre-
dicted result of the game. The most commonly utilized solution concepts are the optimality
concepts and the equilibrium concepts.

While optimality has a well-defined unambiguous meaning in optimal control problems
(one-player games), optimality—in settings of multi-player decision making—is a difficult
concept to define precisely. Equilibrium points are not necessarily optimal since equilibria
points may not be socially optimum [e.g., as in the classical Prisoner’s dilemma game (Nisan
2007)] where a strategy profile is considered as socially optimal if and only if it results in
the highest sum of expected payoffs. A common notion of optimality in game-theory is that
of Pareto-optimality. A strategy profile is stated to be a Pareto-optimal solution if no other
joint decision of the players can improve the performance of at least one of them without

123



Artificial intelligence based cognitive routing for… 47

degrading the performance of another. It must be noted that achieving Pareto optimality does
not imply equality nor fairness. Another optimality concept is theMinimax solution concept
useful for non-zero-sum games in which it is aimed to minimize the maximum loss a player
will face in the worst-case scenario (Basar et al. 1995).

We shall now discuss four concepts of equilibrium that are relevant to our subject.

Nash equilibrium TheNash equilibrium (NE) is a solution concept of a non-cooperative game
involving two or more players. A NE is a stable equilibrium point of a game representing the
situation where no player can benefit by changing its strategy unilaterally (i.e., by the player
changing its strategy while other players keep their unchanged). In other words, a NE implies
that each player’s strategy is the best response against those of the others. It is noted that it is
possible for games to have multiple NE. While NE is a very useful concept, analysis based
solely on NE has many drawbacks as pointed out in Haykin (2005) and Halpern (2008).
Also, the significant complexity of computing NEs has prompted development of alternative
solution concepts.

Correlated equilibrium This is an intuitive solution concept that generalizes the Nash equi-
librium and is much easier to compute.5 The idea is that each player chooses its action after
observing a common public signal. The player’s strategy assigns an action to every possible
observation. If no player has any incentive to deviate from the devised strategy, assuming
that others do not deviate, the game is in correlated equilibrium.

Wardrop equilibrium This is a common solution concept useful for modeling selfish routing
in transportation and telecommunication networks with congestion. It is assumed that in the
study of transportation and telecommunication networks that the players (travelers or packets,
respectively) choose the shortest perceived routes given the current traffic conditions. For a
network in Wardrop equilibrium, all the flow paths in use for a source-destination pair have
an equal delay. No other unutilized path has a lower delay in the Wardrop equilibrium.6 A
wireless routing analogue of this was explored in Raghunathan and Kumar (2009) where a
flow-avoiding routing protocol was proposed.

Stackelberg equilibrium This solution concept applies to Stackelberg games. Stackelberg
games aim to address the inefficiency of non-cooperative games (the equilibrium point of
non-cooperative network, or the Nash equilibrium, typically displays suboptimal network
performance) by employing a network manager/network agent which acts a leader which
imposes its strategy on the individual selfish users that then behave as followers. Stackelberg
strategy has previously been investigated for achieving network optimal routing (Korilis
et al. 1997) and congestion control (Shenker 1995) in networks. The Stackelberg strategy is
an important tool that can be leveraged for the design of network optimal cognitive routing
strategies.

Game theory predicts the agents’ equilibrium behavior typically without specifying by
itself how to reach such a state. Algorithms for computing equilibria and determining the
dynamics of games towards it is a subject studied in the fledgling discipline of algorithmic
game theory which is at the intersection of game theory and algorithms (Nisan 2007). It

5 Roger Myerson has pithily remarked that: “If there is intelligent life on other planets, in a majority of them,
they would have discovered correlated equilibrium before Nash equilibrium.”
6 If this property was not met, the system would not be in equilibrium intuitively, for it would have been
possible for a flow to reduce its latency by switching to an unutilized path.
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has been shown that equilibrium points do not have necessarily have to socially optimal. An
interesting question then is to quantify how inefficient the equilibria points (which are reached
through self interested behavior) arewith reference to the idealized ‘optimal’ situation (where
the agents collaborate selflessly in a bid to maximize total utility. Since there can be multiple
NE with varying overall payoffs, the comparison of the worst NE with the ideal is known as
the ‘price of anarchy’ while the comparison of the best NE with the ideal is known as the
‘price of stability’ (Nisan 2007).

We have covered only the most basic solution concepts that are relevant to our subject.
For a discussion on advanced solution concepts such as rationalizability, ε-Nash equilibrium,
trembling-hand perfect equilibrium, we refer the interested reader to standard game theory
texts (Leyton-Brown and Shoham 2008).

4.3.3 Categories of games

We introduce the various ways to categorize games through the following contrasting cate-
gories:

• Cooperative versus noncooperative In all game theoretic models, a basic primitive is the
concept of a player. A player may be either be interpreted as an individual or alternatively
as a group of individuals. After defining the set of players in a game, we may distinguish
between two kinds of models: (1) in which we are dealing with the possible actions of
individual players; (2) in which we are dealing with possible joint actions of groups of
players. Models of the former kind (individual-based) are sometimes known as ‘nonco-
operative’, while those of the latter kind are correspondingly known as ‘cooperative’. The
difference can be summarized in that in a cooperative game, players can make binding
commitments, while in noncooperative game, they cannot. A game in which the players
are groups of individuals that canmake binding commitments is also known as a coalition
game (Saad et al. 2012).

• Sequential versus simultaneous In a sequential game (also known as a dynamic game),
one player chooses his action before the others choose theirs—the latter player can
utilize knowledge about the previous move to decide on its action. On the other hand,
in simultaneous games, also known as static games, players choose their moves without
being aware of other player’s moves.

• Static versus dynamic In static games, alternatively known as single-stage games or
one-shot games, it is assumed that there exists only a single time step implying that the
players only have one move. In contrast, players in a dynamic game interact with each
other sequentially over multiple time steps. Repeated games, also known as supergames,
are a subclass of dynamic games in which the same stage game is played numerous
times. Dynamic games have a strong connection with MDPs which are also models for
sequential decision making. Repeated games (also known as matrix games) generalize
MDPs and can be envisioned as single-state multi-user MDPs: multi-user since it is a
game theoreticmodel that captures the interaction betweenmultiple users and single-state
since the same game is played at every stage. Stochastic games (also, known as Markov
games) generalize MDPs differently: they can be considered as multi-state multi-user
MDPs in which the game being played at each stage is stochastically dependent on the
game played previously, and the action adopted therein, and thus may change at every
stage. The relationship between dynamic games and MDPs can be observed in Fig. 4.
Dynamic games are interesting since they capture the temporal and sequential nature of
decision making involved in routing in CRNs. The study of dynamic game is taken in
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a subfield of game theory known as dynamic game theory which can be envisioned as
child discipline of game-theory and optimal control theory (Basar et al. 1995).

• Finite versus infinite-horizon gamesDepending on the number of stages, we can classify
dynamic games into finite-horizon games and infinite-horizon game—the strategies for
such games can hugely vary. Players in a repeated game, unlike those in simultaneous
games, have the benefit of historic information which they can utilize to adapt their
strategy. If players in a finite-horizon game are not aware of the duration of the game
(which is clearly a common situation in practical interactions particularly in a networking
setting), then infinite-horizon games with discounting can be used an appropriate model.
As explained in Sect. 4.2, discounting entails decreasing the value of future stage payoffs
in order to cater for the potentially abrupt end to the game thereby preferring payoffs in
nearer-by time.

• Complete versus incomplete information A game with complete information is a game
in which each player knows the exact game being played. The game is represented by
3-tuple G = (N , S,U ) with N representing the set of players, S the set of strategies,
and U the set of payoff functions. This complete information is not known in games of
incomplete information. We typically employ the model of a Bayesian game to model
situations in which some of the parties are not certain of the characteristics of some
of the other parties. Games with incomplete information should not be confused with
games with imperfect information (in which the history of the game is not available to
all players).

• Perfect versus imperfect informationWe refer to a game as a perfect-information game if
the players have perfect knowledge of all previous moves in the game at anymoment they
have to make a newmove. Since players in simultaneous games (which includes practical
games like poker and bridge) do not know the actions of other players, simultaneous
games are imperfect-information games. Only sequential games, therefore, can be games
of perfect information,with an example sequential perfect-information game being chess.
In games of imperfect information, while the actual moves of agents are not common
knowledge, the game itself is. This is in contrast to Bayesian games where at least one
player is unsure of the type (and therefore the payoff function) of another player.

• Symmetric versus asymmetric If the game is symmetric, the identities of the players may
be changed without changing the payoff to the strategies. In other words, even if the role
of the two players in a two-player symmetric game is reversed, the same payoffs would
be observed. This condition does not hold for asymmetric games.

• Zero-sum versus non-zero-sum In a zero-sum game, the sum of payoffs of all the players
must be zero—in other words, a player cannot get better off without affecting some other
player’s utility. A game which is not zero-sum is called nonzero-sum game or variable-
sum game.

• Flat versus hierarchical In the usual gamemodels reviewed up till now, it is assumed that
all the players have the same statuswithout any hierarchy.However, DSAbasedCRNs are
essentially hierarchical due to the priority of PUs over SUs for the purpose of spectrum
access. In game theory, Stackelberg game model is a way of modeling competition in
a hierarchical setting in which there is a leader and several followers competing over
certain resources.

4.3.4 Modeling routing with game theory

An important aspect of tackling routing problems through game theory is precisely how
the game is modeled (i.e., how are the players defined, what are the utilities, etc.). As an
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illustrative example (from MacKenzie and DaSilva 2006), consider a simple source routing
setup in which the end-to-end path is specified by the source node. In this game, the source
nodes may be considered as the players; to allow for the existence of multiple flows from
a single source, it is also possible, and more convenient, to view a source-destination pair
as a player instead. The action set available to each player is possibly the set of all possible
paths from the source to the destination. Depending on how the game is formulated, a node
may choose a single path from all the possible paths or even choose multiple paths and also
how much of their flow to send on each route. Preferences in a routing game can take several
forms just like many routing metrics exist for routing protocols to determine a route’s quality.
A simple way to formulate preferences can be to base it on end-to-end delay for a packet to
traverse the chosen route with a short delay being preferable to longer delay. While such a
simple example can be solved through optimization techniques (especially, if we consider
a single source and destination pair or if the available routes are completely disjoint), the
benefit of using game theory kicks in when we consider the interaction between multiple
flows using common paths through the network.

4.3.5 Uncertainty in games

Uncertainty can come into games in three distinct ways: (1) a player may use chance to
determine which strategy to use (such a strategy is known as mixed strategy), (2) the game
itself can include random events, and (3) you may not be exactly sure what game you’re
playing—i.e., you may not knowwhat strategies other players are capable of, or their payoffs
precisely. The latter two points refer to the incomplete information nature of the game. In
addition, the game may have imperfect information where the players do not know previous
history or have asymmetric information. We note here that simultaneous games are always
imperfect information games since players choose their moves without being aware of other
player’s moves.

Stochastic games introduced by Lloyd Shapley in 1950s, are games in which (poten-
tially multiple) agents take decisions in a sequence of stages (i.e., in a dynamic game) and
each player receives a payoff that depends probabilistically on the current state and the cho-
sen actions (Haykin 2005). Intuitively speaking, the agents in a stochastic game repeatedly
play games from a collection of games—the particular game played at any given iteration
depends probabilistically on the previous game played and on the actions taken by all agents
therein (Leyton-Brown and Shoham 2008). Stochastic games have been applied in wireless
networks in areas such as flow control, routing, and scheduling (Hossain et al. 2009).

Stochastic games, also knownasMarkovgames, generalize the concepts ofMDPs,Markov
chains, and repeated games. In particular, MDPs can be viewed as the special case of a single-
agent stochastic game, Markov chains as a single agent stochastic game where each player
has a single action in each stage, while repeated games can be viewed as a single state (or,
single stage) stochastic game (Neyman and Sorin 2003). Stochastic games can be viewed as
a bridge between game-theoretic models and MDPs. Stochastic games generalize the MDP
model to permit a pair of agents to control state transitions (either jointly or in alternation). The
relationship between Markov Chains, MDPs, POMDPs, and Markov (or stochastic) games
can be seen in Fig. 4 where it can be noted that a one-state stochastic game is equivalent
to an (infinitely) repeated game, while the special case of an one-agent stochastic game is
equivalent to an MDP.

We have seen previously that MDP are appropriate models for reinforcement learning
techniques that address the problem of a single agent learning through experience and inter-
action with an environment (assumed stationary). Stochastic games extend the concept of
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Table 2 Summary of the various decision and planning techniques discussed in this paper

Decision techniques Applications to routing General application to CRNs

Optimization theory Shortest-path graph-theoretic
optimization problems

Optimal spectrum sharing (Hou et al.
2008)

Gallager’s minimum delay routing
(Gallager 1977)

Power control and scheduling (Shi
et al. 2008)

Optimization based routing in CRNs
(Shi et al. 2008; Ma and Tsang
2008)

Resource allocation (Shakkottai et al.
2008)

Markov decision processes Routing in ad-hoc CRNs (Di Felice
et al. 2010)

Opportunistic spectrum access: Choi
and Hossain (2011)

Routing in communication networks:
see ref. in Altman (2002)

Medium access control (MAC): Zhao
et al. (2007)

MDP-based routing formulation
(Friend 2009; Rathnasabapathy and
Gmytrasiewicz 2003; Peshkin and
Savova 2002; Nurmi 2007)

Cooperative spectrum selection:
Di Felice et al. (2011)

Game theory Routing games (Roughgarden 2007;
Pavlidou and Koltsidas 2008; Han
et al. 2011)

Resource allocation: see references
in Maharjan et al. (2011) and
Zhang et al. (2013)

Mitigating selfish routing
(Felegyhazi et al. 2006; Eidenbenz
et al. 2005; Wang et al. 2004)

Spectrum sharing: Han et al. (2012);
Van der Schaar and Fu (2009)

Modeling routing: see references in
MacKenzie and DaSilva (2006)

Medium access control (MAC):
Akkarajitsakul et al. (2011)

Security: see references in Liu and
Wang (2010)

Channel assignment: Duarte et al.
(2012) and Farooq et al. (2013)

MDPs for multi-agent environments. In multi-agent environments, the other agents are also
learning and adapting and thus the environment can no longer be assumed stationary. Sto-
chastic games, also called competitive MDPs, allow us to model uncertainty in the players’
operating environment by allowing probabilistic state transitions in a dynamic game.

MDPs are observable stochastic environments in which a single agent takes a decision
by choosing an action given knowledge of the current state. A POMDP models partially
observable stochastic environments in which a single agent takes a decision while being
providedwith partial knowledge of the current state. In incomplete information games, on the
other hand,multiple agents control the transitions in the environmentwhile having incomplete
knowledge of the environment’s state (Fig. 4). As pointed out earlier game theory, MDP, and
game theory are closely related. The application of these techniques for CRNs generally, and
for routing in particular is shown and summarized in Table 2.

4.3.6 Application of game theory in CRNs

In literature, there has been a lot of work in applying game-theoretic ideas to the design
and analysis of general wireless networks including the works presented in MacKenzie and
DaSilva (2006), Han et al. (2012), Srivastava et al. (2005) and Naserian and Tepe (2009).
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Game theoretic ideas have been applied in CRNs widely in problems such as resource allo-
cation (Maharjan et al. 2011; Zhang et al. 2013), spectrum sharing (Han et al. 2012; Van
der Schaar and Fu 2009), medium access control (Akkarajitsakul et al. 2011), security (Liu
and Wang 2010; Attar et al. 2012), etc. Van der Schaar and Fu (2009) presented a survey of
spectrum-access games that are relevant to DSA CRN. Wang et al. (2010) a more general
survey paper on the application of game-theoretic ideas in CRNs is presented. The book by
Liu and Wang (2010) is a comprehensive game-theoretic treatment of cognitive radio net-
working and security. We will present the application of game-theoretic ideas specifically for
routing in a later subsection. Interested readers are referred to the references Van der Schaar
and Fu (2009), Wang et al. (2010) and Liu and Wang (2010), and the references therein, for
more details.

The dynamism of the overall wireless ecosystem in CRNs has led researchers to explore
utilizing models from other complex domains such as economics (Maharjan et al. 2011). In
particular, CRNs—in their distributed nature, complexity and heterogeneity—have become
analogous to real-world markets (Zhang et al. 2013) and are amenable to incorporation of
market mechanisms and incentives. Auction theory is an interdisciplinary field that has
shown itself to be particularly useful for CRN applications. Traditional static methods of
managing spectrum have been shown to be grossly inadequate for modern CRNs, and the
market mechanism of auctions seems to be a promising approach for distributed allocation of
network resources. The concept of market equilibrium—which comprises of (1) the supplier
and consumers both achieving maximum utility in the Pareto sense; (2) total demand being
equal to the total supply; (3) the budgets of consumers being totally spent—has been applied
for spectrum markets in multi-channel DSA based CRNs (Byun et al. 2014). In this work,
Byun et al. formulated the problem of sharing of multiple channels in such settings is as a
spectrum market and proposed both a centralized algorithm and a distributed algorithm to
yield the equilibrium.We note that while most of the application of auction theory andmarket
mechanisms in CRNs have been in the domain of resource allocation with a detailed survey
provided in Zhang et al. (2013), auction theory can also be useful for the problem of routing
since it is intertwinedwith resource allocation, although it remains to be seen if auction theory
andmarket based techniques from economicswill play amore direct role inAI-based routing.

4.3.7 Application of game theory for routing

In algorithmic game theory, routing in networks is a well-studied problem both in a gen-
eral network setting (e.g., of transportation networks) (Roughgarden 2007) and also for
Internet-like networks (Qiu et al. 2006). In general, centralized calculation of optimal routes
is infeasible for amajority of network routing problems, leading to interest in distributed algo-
rithms. Distributed algorithms can be viewed as ‘selfish routing’ since each agent intends to
optimize for itself. Researchers have vigorously pursued questions that aim to quantify the
performance degradation due to lack of coordination between the various ‘players’ of this
routing game. In this regard, concepts of price of anarchy and price of stability, discussed ear-
lier, have been proposed. It has been shown that while the price of anarchy is unbounded for
the case of selfish routing in networks with general latency functions (Roughgarden 2007),
results are much more encouraging for networks with linear latency functions (Roughgarden
2007) and for actual Internet-like networks (Qiu et al. 2006). Selfish routing in networks and
their equilibria was first formally defined byWardrop in 1952, and it has been a popular topic
for researchers since.

Broadly speaking, there are two popularmodels of selfish routing games: nonatomic selfish
routing in which there are very large number of players each controlling a negligible fraction
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of overall traffic, and atomic selfish routing in which each player controls a non-negligible
amount of traffic. Nonatomic selfish routing was first studied for transportation networks by
Wardrop, and equilibrium in such games is known as Wardrop equilibria. It has been shown
that for nonatomic selfish routing, the price of anarchy is the same as the price of stability.
Nonatomic selfish routing has been applied to routing in communication networks where it is
relevant to the ‘source routing’ paradigm in which the source node specifies a complete route
for its traffic and in a distributed setting (Roughgarden 2007). The paradigm of distributed
shortest-path routing, that is typically used on Internet-like networks, cannot be addressed by
selfish routing unless the ‘length’ used to define the shortest paths coincide with the edge cost
functions (Roughgarden 2007). Atomic selfish routing gameswere first considered byRosen-
thal in 1973 who also introduced the concept of congestion games and potential games. The
price of anarchy is also well understood for atomic selfish routing game (Roughgarden 2007).

A characteristic of a typical routing game is that each player is interested in finding a
minimum cost path from the origin to the destination in a congested network, where the
delay of an edge on some path depends on its congestion which in turn depends on the total
of players using that edge in their path. Such a dependence on congestion is seen in a class
of games known as congestion games, first proposed by Rosenthal in 1973. In a congestion
game, the payoff of each player depends not only on the resource it chooses, but also on
the number of players choosing the same resource. Congestion games are a special case
of potential games. Fortunately, the equilibria points are guaranteed to be approximately
optimal under best response dynamics (Nisan 2007) for potential games in general.

Repeated games and potential games have been shown to be especially relevant to the
routing problem. In previous work, repeated games have been used to address the problem of
selfish routingwith punishment for unsocial behavior (Felegyhazi et al. 2006; Eidenbenz et al.
2005; Wang et al. 2004). The usage of potential games for routing has been well-explored
(Roughgarden 2007). Potential games encompass many of the well-studied network routing
and congestion games. Potential games have many desirable properties including (1) pure
equilibria always exists, (2) the best response dynamics is guaranteed to converge, and (3) the
price of stability (or, the ratio of the best NE to the optimal solution) can be bounded using a
technique named the potential functionmethod. Potential games are especially attractive from
the point of view of analysis, since the incentives of all the players are mapped onto a single
function, called the potential function, whose local optima correspond to the set of pure NE.
There has been a lot of work in modeling wireless networking problems as potential games
[see the references in Hossain et al. (2009) for more details] with most applications being in
the domain of power control, waveform adaptation, and routing and congestion games.

In game-based routing optimization, a common goal is to minimize C + D where C ,
representing congestion, is themaximumedge congestionwhile D, called dilation, represents
the maximum path length. This optimization problem is known to be NP-complete. An
alternative type of routing games is “quality of routing” (QoR) games that are similar to
C+D-routing games but always have a Nash equilibria with the price of anarchy being small
for most interesting instances of the game. In addition, outcomes of the QoR game provide
approximation to the solution of the C + D-routing games. Busch et al. (2012) have studied
the problem of QoR games as an approximate way of solving C + D routing games. It was
shown that QoR games always have a pure Nash equilibria that can be obtained with players
utilizing best response dynamics to greedily improve their paths.

Interested readers are referred to a detailed survey of game-theoretic methodologies for
routingmodels at Pavlidou andKoltsidas (2008), details about routing games and the analysis
of the efficiency of its equilibria points at Roughgarden (2007), and a survey of application
of various networking games in telecommunications in Altman et al. (2006).
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4.3.8 Pitfalls and challenges

It is difficult to structure a game so that players converge to a desired equilibrium. Since a
problem is a game only when multiple agents are involved in making decisions, a common
pitfall is using game theoretic techniques where optimization techniques would have sufficed
(MacKenzie and DaSilva 2006). Another common pitfall while using game theoretic tech-
niques is to mix unduly tools from cooperative and non-cooperative games which can make
the analysis unsound. Most dynamic game models require statistical information about the
environment based onwhich a dynamic game formulation (repeated game or stochastic game)
is devised. However, in the case of CRNs, the statistical information about the environment is
not always known a priori making the straight forward application of game theoretic models
problematic. In addition, as stated earlier for optimization based methods, we must consider
the non-stationarity of the CRN environment due to rapid changes in the environment, which
can lead to the shifting of the optimal operating point before the convergence of the game.
The convergence speed for game theoretic models is another important area of concern. The
convergence results, in cases where they exist, only apply asymptotically and do not inform
about the speed of convergence. It is important to focus on the speed of convergence since
it is possible for a model with no convergence guarantees to outperform an asymptotically
convergent model in practical time frames.

5 Background: machine learning

Machine learning is a field of research that formally studies learning systems and algo-
rithms and provides an ability to “adapt to new circumstances and to detect and extrapolate
patterns” (Russell and Norvig 1995). Machine learning techniques are useful in diverse
domains—such as pattern recognition, robotics, natural language processing, autonomous
control systems—and are particularly suited to domains like CRNs where the agents must
dynamically adapt to changing conditions.

Previous work on applying machine learning to CRNs Bkassiny et al. (2013) provide a
comprehensive survey of applications of machine-learning techniques in CRNs, and divide
learning applications for CRNs into two broad categories of feature classification and deci-
sion making. Feature classification mainly has applications in spectrum sensing and signal
classification. Decisionmaking has diverse applications in CRNs including adaptive modula-
tion, power control, routing and transport-layer applications (Bkassiny et al. 2013). Decision
making problems can be further classified into policy making and decision rules problems.
In a policy making problem, an agent determines an optimal policy (or an optimal strategy
in game theory terminology) to determine what actions it should perform over a certain time
duration. In a decision rule problem, on the other hand, the problem is formulated as hypoth-
esis testing problem and the aim is to directly learn the optimal values of certain design and
operation parameters (Bkassiny et al. 2013). Bkassiny et al. also establish the relationship
between learning and optimization and show that many learning algorithms converge towards
the optimal solution concept in their respective applications (whenever it exists). Applica-
tions of machine learning to CRNs are vast (Clancy et al. 2007; Rondeau 2007), and we shall
develop a more complete picture gradually as we proceed in this paper. Interested readers
are referred to the surveys (He et al. 2010; Bkassiny et al. 2013), and the references therein,
for a comprehensive complementary treatment of general applications of machine learning
to CRNs.
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Some challenges that confront learning algorithms in CRNs, as identified in Bkassiny
et al. (2013), are as follows:

(1) Learning algorithms have to operate in certain cases in unknown RF environments
without any supervision.

(2) Learning algorithms have to operate in environments that are only partially observable.
(3) Learning algorithms for CRNs require distributed algorithms due to the decentralized

nature of CRNs and are properly envisioned in multi-agent learning which are more
challenging that single-agent learning scenario.

Machine learning concerns itself with a learner using a set of observations to uncover the
underlying process (Abu-Mostafa et al. 2012). There are principally three variations to this
broad definition and machine learning can be classified into three broad classes with respect
to the sort of feedback that the learner can access: (1) supervised learning, (2) unsupervised
learning, and (3) reinforcement learning. We will cover these three kinds of learning next in
Sects. 5.1, 5.2 and 5.3, respectively.

5.1 Supervised learning

In supervised learning, algorithms are developed to learn and extract knowledge from a set of
training data which is composed of inputs and corresponding outputs assumed to be labelled
correctly by a ‘teacher’ or a ‘supervisor’. To understand supervised learning, imagine a
machine that experiences a series of inputs: x1, x2, x3, and so on. The machine is also given
the corresponding desired outputs y1, y2, y3, and so on, and the goal is to learn the general
function f (x) through which correct output can be determined given a new input xi (not
necessarily seen in the training examples provided).

The output can be a continuous value for a regression problem, or can be a discrete value
for a classification problem. The objective of supervised learning is to predict the output given
any valid input. In other words, the task in supervised learning is to discover the function
throughwhich an input is transformed into output. This contrastswith ‘unsupervised learning’
in which the example of objects are available in an unlabelled or unclassified fashion.

There are essentially two types of supervised learningproblems—classification and regres-
sion (or estimation). Classifiers itself can be further classified into statistical classifiers such
as linear classifiers (e.g., Naive Bayes classifier or logistic regression), hiddenMarkov model
(HMM) and Bayesian networks, or connectionist classifiers such as artificial neural networks
(ANN) or computational classifiers such as support vector machines (SVM).We will discuss
ANNs as a representative supervised learning technique later these techniques in detail later
in a dedicated section on learning techniques (Sect. 6).

A central result in ‘supervised learning theory’ is the ‘no free lunch theorem’ which
informs that there is no single learning method that will outperform all others regardless of
the problem domain and the underlying distributions. For this reason, a variety of domain and
application specific techniques have emerged to deal with diverse applications with varying
degrees of success. The design of practical learning algorithms is therefore a mixture of art
and science (Kulkarni and Harman 2011).

The major issue with supervised learning is the need to generalize a function from the
learned data so that the technique may be able to conjure up the correct output even for inputs
it has not explicitly seen in the training data. This task of generalization cannot be solved
exactly without some additional assumptions7 being made about the nature of the target
function as it is possible for the yet unseen inputs to have arbitrary output values. Potential

7 These assumptions are subsumed in the phrase inductive bias. See Mitchell (1997) for more details.
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problems arise in supervised learning of creating a model that is underfitted (perhaps due
to limited amounts of training data) or overfitted (in which a unnecessarily complex model
is built to model the spurious and uncharacteristic noisy attributes of data). Depending on
the application, huge amounts of training data may be necessary for the supervised learning
algorithm to work.

5.1.1 Application of supervised learning to CRNs

Supervised learning techniques (such as HMM, ANN, etc.) have been extensively applied in
CRNs. The application of individual learning techniques to CRNs and to the routing problem
under respective headings in Sect. 6. Themain applications of supervised learning techniques
have been in the domain of signal classification—which although not directly relevant to the
problem of routing can be used for solving concomitant problems that accompany routing
such as PU detection, spectrum modeling, etc. (see Sect. 6.9 for more details of such tasks).

5.1.2 Application of supervised learning to routing

Due to the need of training, supervised learning techniques have not been used much directly
for the routing task which requires online learning in potentially unknown environments.
Supervised learning techniques are expected to play a minor role in such environments.

5.1.3 Pitfalls and challenges

Since supervised learning typically makes use of historical data as the training data, an
underlying assumption of the stationarity of the environment is made. In CRN, where the
environment is typically non-stationary, the use of supervised learning must be used with
caution while considering the potential effect of ‘concept drift’ which refers to the changing
of the statistical properties of the target variable over time in unanticipated ways.

5.2 Unsupervised learning

In supervised learning, it was assumed that a labeled set of training data consisting of some
inputs and their corresponding outputswas provided. In contrast, in unsupervised learning, no
such assumption is made. The objective of unsupervised learning is to identify the structure
of the input data. To understand unsupervised learning, again imagine the machine that
experiences a series of inputs: x1, x2, x3, and so on. The goal of the machine in unsupervised
learning is to build a model of x that can be useful for decisionmaking, reasoning, prediction,
communication, etc.

The basic method in unsupervised learning is clustering (which can be thought of as the
unsupervised counterpart of the supervised learning task of classification). This clustering is
used to find the groups of inputswhich have similarity in their characteristics. In this paper, we
will discuss Gaussian mixture models, non-parametric Bayesian clustering techniques and
hidden Markov models (HMM) in Sect. 6 all of which can used for unsupervised clustering.

5.2.1 Application of unsupervised learning in CRNs

An application to which unsupervised learning is particularly suited is the extraction of
knowledge about primary signals on the basis of measurements (Bkassiny et al. 2013). A
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prominent (non-parametric) unsupervised classification technique that has been applied to
CRNs particularly for this problem is the Dirichlet process mixture model (DPMM). The
DPMM is a Bayesian non-parametric model which makes very few assumptions about the
distribution fromwhich the data are drawn by using aDirichlet process prior distribution (Teh
et al. 2006). The benefit of Dirichlet process based learning is that training data is not needed
anymore, thus allowing this approach to be used for identification of unknown signals in an
unsupervised setting. Dirichlet process has been proposed in literature (Shetty et al. 2009)
for identifying and classifying spectrum usage by unidentified systems in CRNs.

5.2.2 Application of unsupervised learning for routing

Unsupervised learning techniques (such as learning with game theory, online learning, etc.)
provide a promising platform for tackling routing problems in CRNs since these techniques
do not require training data and can learn without direct supervision. These techniques and
their applications in the context of routing are later discussed in Sect. 6.

5.2.3 Pitfalls and challenges

Although unsupervised learning has the desired property of being able to learn without any
training data, unsupervised learning typically takes a long time to converge. Overfitting is
also a known problem with unsupervised techniques.

5.3 Reinforcement learning

Reinforcement learning (RL) is inspired from how learning takes place in animals. It is well
known that an animal can be taught to respond in a desired way by rewarding and punishing
it appropriately; conversely, it can be said that the animal learns how it must act so as to
maximize positive reinforcement or reward. RL is distinct from supervised learning in that
instead of being presented with training examples of how to select the correct output for
an input, the system has to learn indirectly from reinforcements (called reward for positive
reinforcement and punishment for negative reinforcement) on actions taken. RL is also dis-
tinct from supervised and unsupervised learning in that it focuses on online performance
(learning through taking actions) rather than on planning and offline performance. Since
RL can be used without training data and because it aims to maximize the long-term online
performance, it is particularly suitable for CRNs.

To understand RL, we consider Fig. 5 in which the CR acts as an agent and interacts with
the RF environment by taking certain actions. RL, like MDP, is used to model sequential
decision making where the agent takes a decision at in each time step t (also known as
time epoch) while being in environmental state st . One time-step later, the agent receives a
numerical reward or reinforcement8 rt+1 as a consequence of the action taken at and finds
itself in a new state st+1. The mapping from the actions to rewards is probabilistic in general.
The objective of a reinforcement learner is to discover a optimal policy (i.e., a mapping
from situations to actions) such that expected long-term reward is maximized in an unknown
stochastic environment. We note here that MDPs, on the other hand, address this planning
problem for known stochastic environments.

Since RL agents work in a stochastic environment, they have to balance two potentially
conflicting considerations: on the one hand, it needs to explore the feasible actions and their

8 The reinforcement is a scalar value that can be negative to express a punishment or positive to indicate a
reward.
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Fig. 5 The interaction of the CR node as an RL agent with the RF environment [adapted from Sutton and
Barto (1998)]

consequences (to ensure that it does not get stuck in a rut) while on the other hand, it needs to
exploit the knowledge, attained through past experience, of favorable actions which received
the most positive reinforcement. We will discuss RL in considerable detail when we study
RL as a specific learning technique in Sect. 6.2.

5.3.1 Applications, pitfalls, and challenges

We will describe the applications of RL in CRNs and in routing along with a description of
major challenges and common pitfalls after a more thorough discussion on RL algorithms
and techniques later when we discuss it as a learning technique in Sect. 6.2.

6 Learning techniques

Learning is especially crucial when dealing with unknowns or unplanned scenarios and is
especially relevant to CRNs (Haykin 2005). Learning, for the purpose of our discussion,
will focus on computational processes employed by CRs that can improve their behavior
through diligent study of their own interactions with the environment. Learning can also
be envisioned in the perspective of search. In this context, we can envision learning as
searching through a space of possible hypotheses to determine which hypothesis best fits the
available training examples and prior knowledge and constraints (Mitchell 1997). Learning
techniques are needed in the context of cognitive networks to address tasks T3 and T4
described in Sect. 3. In the remainder of this section, we will discuss hidden Markov models,
reinforcement learning, online learning algorithms, learning with game theory, metaheuristic
learning, artificial neural networks, and finally methods of Bayesian inference.

6.1 Hidden Markov models

Hidden Markov model (HMM) are stochastic models of great utility, especially in domains
where we wish to analyze temporal or dynamic processes such as speech recognition, PU
arrival pattern in CRNs, etc. HMMs are highly relevant to CRNs since many environmental
parameters in CRNs are not directly observable.

An HMM-based approach can analytically model Markovian stochastic processes whose
actual states are hidden, but which emit observations from states per some probability dis-
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Fig. 6 A depiction of an
extremely simple HMM with 2
hidden states and 2 observable
states. A = {a00, a01, a10, a11}
is the (hidden) state transition
probability, while
B = {b00, b01, b10, b11} is the
observation symbol probability
distribution

tribution. It is for this reason that an HMM is defined to be a doubly stochastic process:
first, the underlying stochastic process that is not observable, and second, the set of stochas-
tic processes, dependent on the embedded underlying stochastic process, that produce the
sequence of observed symbols (Rabiner and Juang 1986).

Intuitively, HMMs can be visualized as a Markov chain observed in noise (Cappé et al.
2005). In a simple Markov model like a Markov chain, the state is directly visible to the
observer, and the model is completely specified by describing the parameters defined through
state transition probabilities. In anHMM,on the other hand, amore elaboratemodel is needed.
The relationship of HMM with other Markov models is depicted in Fig. 4.

To represent an HMM, we use the notation λ = (A, B, π) to represent an HMMwhere A,
B andπ are three probability distributions. A is the state transition probability, B is the obser-
vation symbol probability distribution from various states (Rabiner and Juang 1986), while π

is the initial state distribution. Specifying an HMM completely requires, in addition to A, B
and π , information about the number of states N and the number of discrete output symbols
M . A simple example HMMwith 2 hidden states and 2 observable states is presented in Fig. 6
with the state transition probability A and the observation symbol probability B shown.

6.1.1 Key problems in HMMs

Having defined the notation for HMMs above, we can talk about the three key problems that
must be solved for the HMM to be useful in real world applications (He et al. 2010; Rabiner
and Juang 1986). The listing of these three keys problems below assumes an observation
sequence O = O1, O2, O3, . . . OT .

• Learning or training problem Given an observation sequence O , this problem deals with
learning the most appropriate model λ = (A, B, π) that ‘best’ explains the observed
sequence. In other words, we have to learn the most likely set of state transition A and
observation symbol probabilities B from the training data. For many applications, this
is the most important task since it allows us to optimally adapt model parameters to the
training data. TheBaum–Welch expectation-maximization algorithm solves this problem.

• Evaluation problem Given the parameters of the model λ, this problem deals with how
to compute the probability of a particular observation sequence Pr(O|λ). The forward
algorithm, backward algorithm, and the forward-backward algorithm solve this problem.9

9 While the forward-backward algorithm solve the evaluation problem (i.e., it can estimate the most likely
state for any point in time), it cannot solve the decoding problem (of finding the most likely sequence of states)
for which the Viterbi algorithm is used.
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The evaluation problem in HMMs is intuitively related to learning problem in the follow-
ing way. The evaluation problem computed Pr(O|λ) which represented the probability
of a particular observation sequence given a model. Pr(O|λ) is also the likelihood func-
tion for λ given the observations O . The learning problem is determining the HMM
parameters λ that maximize the likelihood function. The Baum–Welch algorithm is an
iterative algorithm which solves the learning problem by expectation-maximization to
produce maximum likelihood, or maximum a posteriori, estimates of HMM parameters
given only observation sequence as training data.

• Decoding problem Given the observation sequence O and the parameters of the model
λ, this problem deals with decoding or inferring about the sequence of hidden states
I = I1, I2, I3, . . . IT that most likely produced the observation sequence O . This task
aims at decoding, or uncovering, the hidden part of the HMM and is essentially an
estimation problem. The Viterbi algorithm solves this problem by providing the most
likely sequence and its probability.

We have already noted that HMM is a strong generic temporal model for dynamic signals
and systems. Prediction/inference techniques have been widely deployed in networking [e.g.,
for prediction-based data aggregation inWSNs (Wei et al. 2011)]. To hone onto the important
problem of inference in such temporal models, we note that there are four basic inference
tasks that may be performed with HMMs (Russell and Norvig 1995). (We use the notation
It and Ot to indicate respectively the hidden state and the observation during time step t . It
is assumed that observations O0, O1, . . . , Ot−1 have been observed till date.)

• Filtering or monitoring This is the task of computing the posterior distribution over
the current state, given all evidence to date. Mathematically, this is calculating
P(It− 1|O0, . . . , Ot−1)

• Prediction This is the task of computing the posterior distribution over the future state,
given all evidence to date. Mathematically, this is calculating P(It |O0, . . . , Ot−1).

• Smoothing or hindsight This is the task of computing the posterior distribution over
past states, given all evidence up to present. Mathematically, this is calculating
P(Ik |O0, . . . , Ot−1) for 0 ≤ k ≤ t − 1

• Most likely explanation This is the task mentioned earlier as the decoding task. The
aim is to find the most likely sequence of states that generated the observed sequence.
Mathematically, this is argmaxI1:t P(I1:t |O1:t )

6.1.2 Application of HMMs in CRNs

All the inference tasks listed above are potentially very useful for CRNs. HMMs have been
extensively used in CRNs for a wide range of problems. They can be used for spectrum
prediction, PU detection, signal classification, etc. (He et al. 2010). A potential drawback
when using HMMs is that a training sequence is needed, with the training process being
potentially computationally complex. Other AI techniques such as genetic algorithms are
used to improve the model training efficiency (Rondeau et al. 2004b).

6.1.3 Application of HMMs for routing

HMMs have been, or can be, used for solving various modeling, planning and prediction
tasks that relate to cognitive routing in CRNs. In particular, HMMs have been popularly
used for spectrum occupancy prediction (Akbar and Tranter 2007; Park et al. 2007). Akbar
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and Tranter (2007) utilized HMMmodels for predicting spectrum occupancy of the licensed
radio bands for CRNs in their proposal of an HMM-based DSA algorithm. Choi and Hossain
(2011) proposed a channel learning scheme based on HMM and also proposed a partially
observable Markov decision process (POMDP) based framework for channel access to
opportunistically exploit frequency channels a primary network operates on. Choi and Hos-
sain (2013) have another follow up work on using HMM to model the traffic pattern on
PUs.

6.1.4 Pitfalls and challenges

HMM makes many big assumptions that can be problematic for CRNs. The Markovian
assumption, fundamental to HMM, presupposes that the emission and transition probabilities
depend only on the current state (or that the system is memoryless). While this simplifies
analysis, the modeled system in CRNs may have significant memory. HMM is a supervised
learning technique which limits its usage in scenarios where the environment is unknown
and no training sequence is available. Furthermore, efficient performance of HMM requires
training with a sufficiently large training sequence which can be computationally complex.
Even after HMM has learnt of the model, the underlying assumption is that the system is
stationary and will not change is not matched by real systems which are dynamic and non-
stationary. In CRN environments, we often have to work in unfamiliar environments in an
online fashion which does not match the niche of HMM entirely.

6.2 Reinforcement learning

In this section, we will discuss initially the relationship of RL with MDPs, and will then dis-
cuss major categories of RL algorithms. We will then study specific RL techniques including
Q-learning and Learning Automata. We will then discuss some central issues in RL and will
finally discuss applications of RL in CRNs and for routing.

6.2.1 Relationship with MDPs

An interesting way to conceptualize RL is to think of it as a simulation-based technique for
solving large-scale and complex MDPs. We refer to Sect. 4.2 for an earlier discussion on
the relationship between MDPs and RL. We also discussed in Sect. 4.2 that classical DP
techniques are ineffective at solving large-scale complex MDPs (Gosavi 2009; Szepesvári
2010). Practical RL algorithms that can deal with large-scale complex MDPs (having large
state and action spaces) essentially bank upon two key ideas: firstly, to use samples to com-
pactly represent the dynamics of the control problem, and secondly, to use powerful function
approximation methods, including bootstrap methods that build estimates on other estimates,
to compactly represent value functions (Talk on Deconstructing Reinforcement Learning’
by Richard Sutton at ICML 2013; Szepesvári 2010). It has been stated that understand-
ing the interplay between dynamic programming, samples and function approximation is at
the heart of design, analysis and application of modern RL algorithms (Szepesvári 2010;
Busoniu et al. 2011). We note here that RL is also known by alternate monikers such as
neuro-dynamic programming (NDP) (Bertsekas and Tsitsiklis 1995), adaptive dynamic pro-
gramming (Bertsekas 2011; Gosavi 2009), and approximate dynamic programming (Powell
2007).
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6.2.2 Categories of RL algorithms

It is noted that RL is best understood as a class of learning problems rather than as a fixed
set of algorithms or techniques. There is great diversity in the various approaches taken by
different RL algorithms and techniques.

Most RL algorithms can be broadly classified into being either model-free or model-
based (Sutton and Barto 1998). A model intuitively is an abstraction that an agent can
use to predict how the environment will respond to its actions: i.e., given a state and the
action performed therein by the agent, a model can predict the (expected) resultant next
state and the accompanying reward. We will be mostly interested in stochastic models which
can predict probabilistically possible next states and rewards given the current state and
action.

In the model-based approach, the agent builds a model of the environment through inter-
action with it typically in the form of a MDP analogous to the approach taken in adaptive
control (Kumar 1985). With a model in hand, given a state and action, the resultant next
state and next reward can be predicted allowing planning through which a future course
of action can be contemplated by considering possible future situations before they are
actually experienced. Based on the MDP model in the model-based approach, a planning
problem is solved to find the optimal policy function with techniques from the related field of
dynamic programming (Russell and Norvig 1995; Sutton and Barto 1998). Commonly used
algorithms used to solve MDPs include the celebrated dynamic programming algorithms
of value iteration (Bellman 1957) and policy iteration (Howard 1960) (discussed earlier in
Sect. 4.2).

In the model-free approach, on the other hand, the agent aims to directly determine the
optimal policy by mapping environmental states to actions without constructing a MDP
model of the environment. Early RL systems were explicitly trial-and-error learners and
were generally devoid of planning. Popular model-free RL techniques include temporal
difference (TD) learning (in which a guess is updated on the basis of another guess) and
Q-learning (Sutton and Barto 1998). Modern reinforcement learning spans the whole gamut
of approaches from low-level, trial-and-error learning to high-level, deliberative planning
(Sutton and Barto 1998).

RL tasks can be also be categorized into two types depending on whether the decision
making tasks are sequential or not. In non-sequential tasks, expected immediate payoff is
more important, and the objective is to learn a mapping from situations to actions that
maximizes the expected immediate payoff. Such learning has been studied extensively in
the field of learning automata. In sequential tasks, the objective now is to maximize the
expected long-term payoffs. Sequential tasks are considered more difficult since the cho-
sen action may influence future trajectory of situations and payoffs. There are two major
challenges in sequential RL: the first challenge is the temporal credit assignment prob-
lem which arises from the fact that the reward in a sequential RL tasks is received in
response to a series of actions (or moves) which makes it challenging to attribute credit
appropriately to particular actions; the second challenge is the structural credit assignment
problem in which the problem space is too large for complete exploration and general-
ization must be performed so that the learning agent may guess about new situations
based on previous experience in similar situations. Sequential RL learning has been the
subject of fields such as dynamic programming (DP)—where the environment is com-
pletely known and the state/action spaces are not too large—and approximate dynamic
programming (ADP) for incompletely known environment or prohibitively large state/action
spaces.
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6.2.3 Major RL techniques

We can broadly categorize RL techniques into two main categories of value iteration and
policy iteration techniques. In value iterating learning techniques, the optimal policy is
calculated on the basis of optimal value function calculated as described in Sect. 4.2.1. In
policy iterating learning techniques, on the other hand, the learning is directly in the policy
space as described earlier also in Sect. 4.2.1. We will present representative techniques that
belong to these two categories next. In particular, we will discuss Q-learning as an example
value-iterating model-free technique, and will then discuss learning automata as an example
technique that is policy-iterating.

Q-learning Q-learning, proposed by Watkins and Dayan (1992), is a popular value-iteration
model-free technique with limited computational requirements that enables agents to learn
how to act optimally in controlledMarkovian domains. The implication of beingmodel-free is
that Q-learning does not explicitly model the reward transition probabilities of the underlying
process. Q-learning proceeds instead by estimating the value of an action by compiled over
experienced outcomes using an idea known as temporal-difference (TD) learning.

The TD learning idea has been referred to as the central key idea in the theory of RL. TD
learning combines ideas fromMonte Carlo (MC) methods and dynamic programming (DP).
LikeMCmethods, TDmethod is a simulation basedmodel-freemethod that can learn directly
from raw experience without a model of the environment’s dynamics. Like dynamic pro-
gramming, TD method used bootstrapping to update estimates based in part on other learned
estimates. The concepts of TD, DP and MC are central recurring themes in RL literature.

Q-learning proceeds by incrementally improving its evaluations of theQ-values that incor-
porate the quality of particular actions at particular states. The evaluation of the action-value
pair, or the Q-value, is done by learning theQ-function that gives the expected utility of taking
a given action in a given state and following the optimal policy thereafter. The Q-function is
defined as follows:

Q(s, a) =
∑

s′
Pa(s, s

′)
(
Ra(s, s

′) + γ V (s′)
)

(3)

The array Q is updated directly with experience in the following way. The core of the update
algorithmbelow is based on value iteration (discussed earlier in Sect. 4.2.1). rt+1 is the reward
observed after performing at in st , and where αt (s, a) (0 < α ≤ 1) is the learning rate (may
be the same for all pairs). The discount factor γ 0 ≤ γ ≤ 1) trades off the importance of
sooner versus later rewards. The Q-function estimate is refined in every learning step and a
new policy is generated on its basis which drives the next action to execute.

Qt+1(st , at ) = (1 − αt (st , at ))︸ ︷︷ ︸
inverse learning rate

× Qt (st , at )︸ ︷︷ ︸
old value

+ αt (st , at )︸ ︷︷ ︸
learning rate

× (rt+1 + γ max
a

Qt (st+1, a))

︸ ︷︷ ︸
learned value

(4)

Q-learning in its simplest setting stores data in tables. This quickly becomes impractical for
complex systems. In such cases, Q-learning can be combined with function approximation:
in particular, (adapted) artificial neural networks (ANNs) have been proposed for function
approximation for large-scale RL problems (Tesauro 2002). While Q-learning does not sys-
tematically handle the tradeoff between exploration and exploitation and relies instead on
heuristic explorations, it has been shown that fortunately Q-learning does eventually find the
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optimal value of an action [the proof relies on infinitely many observations for every action
and state (Watkins and Dayan 1992)]. The Markovian environment of MDPs is crucial for
guaranteed convergence, and the convergence guarantee is lost if this assumption is not valid.

In its basic setting, Q-learning is intended for single-agent environments, although multi-
agent Q-learning, also known as Q-learning with games, have also been proposed recently.
Multi-agent learning is especially challenging since it operates in non-Markovian environ-
ments (as the output of an action no longer only depends on the current state and agent’s
personal action). As such, the convergence guarantees of MDP do no extend to multi-agent
RL environments due to their non-Markovian nature.

Application of Q-learning in CRNs Q-learning is perhaps the most popular model-free
reinforcement learning technique which has been applied to CRNs extensively (Bkassiny
et al. 2013). For example, Reddy (2008) has used Q-learning for detecting the PU to ensure
efficient utilization of spectrum. We refer the interested reader to a survey paper for more
details and references (Al-Rawi et al. 2013).

Application of Q-learning for routing Boyan et al. in 1994 proposed their ‘Q-routing’
algorithm (Boyan andLittman1994) that learned a routingpolicy thatminimizes total delivery
time by learning through experimentation with different routing policies. The presented RL
based algorithm had the desirable features that: (1) its learning is continual and online, (2)
it uses local information only, and (3) it is robust in the face of dynamic network conditions.
This early paper showed that adaptive routing is a natural domain for reinforcement learning.
In a follow-up paper (Kumar and Miikkulainen 1997), another adaptive routing algorithm
DRQ-routing was presented which combines Q-routing and dual reinforcement learning
which learns a better routing policy (better average packet delivery time at high loads and
faster learning of policy) compared to Q-routing due to increased exploration. In another Q-
learning based routing work, Zeng et al. (2013) have presented a Q-learning based directional
routing and scheduling scheme for green vehicular DTNs optimized for energy efficiency.
The proposed algorithm explores multiple possible strategies, and adapts the strategy in an
online manner according to the knowledge obtained through prior actions.

Learning automataLearning automata (LA) is anAI technique that subscribes to the policy
iteration paradigm of RL (Nicopolitidis et al. 2011; Akbari Torkestani andMeybodi 2010a, b;
Vasilakos andPapadimitriou1995). In contrast to otherRL techniques, policy iterators operate
by directly manipulating the policy π . Another example of policy iterators are evolutionary
algorithms such as genetic algorithms (which we will discuss later in Sect. 6.5).

A learning automaton is a finite state machine that interacts with a stochastic environment
and attempts to learn the optimal action (that has the maximum probability to be rewarded)
offered by the environment so that it can ultimately choose this action more frequently than
other actions. Since wireless networks operate in dynamic time-varying environments with
possibly unknown characteristics (e.g., variable link qualities, dynamic topologies, changing
traffic patterns, etc.), the application of LA techniques for building adaptive protocols in such
networks is particularly appealing. In this regard, LA has been used in the design of wireless
MAC, routing and transport-layer protocols (Nicopolitidis et al. 2011).

Application of LA to routing and CRNs We will now present some example LA based
routing protocols. Misra and Oommen (2005) presented a learning-automata based solution
to the dynamic shortest path problem in which there are continuous probabilistic updates
in the cost of edges of a single-source stochastic graph topology. Torkestani et al. have
proposed using LA for multicast routing in mobile ad-hoc networks or MANETs10 to find

10 MANETs share an important characteristic with CRNs in that both of them have highly dynamic topology.
The dynamically changing topology in MANETs is due to node mobility while in CRNs it is due PU arrivals.
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routes with expected higher lifetimes through prediction of node mobility (Akbari Torkestani
andMeybodi 2010a). Another LA-based distributed broadcast solutions can be seen atAkbari
Torkestani and Meybodi (2010b).

6.2.4 Central issues in reinforcement learning

Some pressing issues in RL research have been highlighted in Kaelbling et al. (1996) to
be: (1) trading off exploration and exploitation, (2) learning from delayed reinforcement,
(3) making use of generalization, (4) dealing with multiple agent reinforcement learning,
(5) constructing empirical models to accelerate learning, and (6) coping with hidden state.
Out of these problems, the issues of exploration and exploitation and that of multi-agent
reinforcement learning are most relevant to our work, and we discuss these next.

Issue of exploration and exploitation Exploitation would entail favoring immediate payoff
while exploration would require tolerating momentary regret of not using the best currently
known policy for the opportunity of potential information about better policies. It should
be apparent after some reflection that neither exploration nor exploitation can be pursued
exclusively without failing at the task of selection of the optimal action. The tension between
exploitation and exploration is typified in the so-called multi-armed bandit problems. The
k-armed bandit problem is the simplest possible RL problem (Kaelbling et al. 1996) and
represent anMDPwith a single state (see Fig. 4) inwhich k actions are available. The problem
is called a k-armed bandit in a metaphorical reference to predicament of a gambler who must
select from k slot machines, colloquially called a 1-armed bandit, in a casino. Interestingly,
the conflict between delayed versus immediate gratification is a dilemma unique not only to
RL, the conflict it arises can be experienced in our own humanness.11 Fortunately, a method
has been devised by Gittins in 1979 for optimally solving the exploration and exploitation
tradeoff for the simple case of k-armed bandit problem (Gittins 1989) assuming a discounted
expected reward criterion. This method entails providing a dynamic ‘allocation index’ to
each action for each step in k-armed bandit problems. Gittins showed that it is guaranteed
that choosing the action with the largest index value will lead to optimal balance between
exploration and exploitation (Gittins 1989).

For the general case of MDPs, the optimal balance between exploration and exploitation
is known to be an intractable problem to solve (Sutton and Barto 1998). Therefore, a lot of
interest has focused on development of heuristic or approximate methods to handle the trade-
off between exploration or exploitation. To manage the exploration or exploitation dilemma,
the ε-greedy strategy is to select the greedy action (one that exploits prior knowledge and
provides the best value) all but ε of the time, and to select an action randomly for the remain-
ing ε of the time. The value ε ranges between 0 and 1 and it is possible to change this value
over time. Intuitively, it would be prudent for an agent to be more of an explorer initially (by
having a higher ε) since it has no knowledge to exploit it. With passing time, as good states
and actions are learnt, the agent can benefit more by being an exploiter and taking the greedy
approach (with smaller ε) which chooses good actions more often. It makes intuitive sense
that during explorations, the choice of actions is not completely random but based on some
estimation of their potential value. In this regard, a soft-max action selection technique can
be used which uses the Gibbs or Boltzmann distribution for selecting the action to explore
where the probability of selecting an action is proportional to its perceived value (e.g., its

11 It has been said by a mathematician PeterWhittle that “bandit problems embody in essential form a conflict
evident in all human action: information versus immediate payoff”.
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Q-value). We note here the question of exploration versus exploitation is central not only
to reinforcement learning, but also to genetic algorithms, and to evolutionary algorithms in
general (Črepinšek et al. 2013).

Multi-agent reinforcement learning Multi-agent RL are more challenging than single-agent
RL problems mainly since the Markov property does not hold in such environments as an
agent’s reinforcement depends not only on its current state but also on the action taken
by the other agents. Accordingly, convergence guarantees that apply to MDP RL tasks do
not extend in such non-Markovian multi-agent RL settings. Learning automata based tools
have been quite popular in multi-agent RL environments. A detailed survey of multi-agent
reinforcement learning algorithms is presented in Busoniu et al. (2008).

Multi-objective reinforcement learning Multi-objective (or, multi-criteria) reinforcement
learning has also been proposed by Gábor et al. (1998) to apply RL to problems with multiple
objectives and where the RL reward is a vector rather than a scalar. Zheng et al. (2012) have
proposed a multi-objective RL-based (more specifically, Q-learning based) routing algo-
rithm for CRNs that integrates multiple desirable routing performance metrics—they have
proposed tominimize transmission delay under a constraint on packet loss rate—while taking
into account network dynamics triggered by PU arrivals.

6.2.5 Application of RL to CRNs

RL methods are especially appropriate for online control of CRN parameters where the
optimal behavior for the dynamic environment is not known a priori due to the unavailability
of a teacher or trainer. Since CRs often have to work in unknown environments, RL seems to
be a promising solution to the various learning problems in CRNs and it looks set to become
a popular tool for future CRN designers. Applications of reinforcement learning to CRNs in
general are explored in Yau et al. (2010) and Di Felice et al. (2010) while RL techniques for
context awareness and intelligence in wireless networks are reviewed in Yau et al. (2012).
The main benefits of applying RL in CRNs are adaptivity and network awareness while the
main drawback is slow convergence (Di Felice et al. 2010).

6.2.6 Application of RL to routing

There have been many applications of RL techniques for the routing problem. We have
already seen applications of the specific RL techniques of Q-learning and Learning Automata
to routing earlier in this section. In addition, techniques likes the multi-armed bandit problem
(covered next under the heading of online learning algorithms) are also closely related to RL
and have been applied in the context of routing. Xia et al. (2009) have proposed RL based
spectrum-aware routing algorithms inspired by Q-learning and dual reinforcement learning
for CRNs. In another work, Bhorkar et al. (2012) have proposed a distributed adaptive RL-
based opportunistic routing algorithm (d-AdaptOR) for ad-hoc networks which is optimal
with respect to the average expected per-packet reward and does not require any explicit
knowledge of the network environment. Numerous other works have utilized RL formulation
in their routing solution, and the interested readers are referred to the following two papers,
and the references therein, for an exhaustive treatment of RL applications for routing in
wireless networks. In the first reference (Di Felice et al. 2010), existing RL schemes in the
context of ad-hoc CRNs are surveyed and modifications are proposed from the viewpoint
of routing and link-layer spectrum-aware operations. The second reference (Al-Rawi et al.
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2013) presents a detailed survey of applications of RL to routing in distributed wireless
networks.

6.2.7 Pitfalls and challenges in applying RL in CRNs

We have noted earlier that RL techniques such as Q-learning can solveMDPs without requir-
ing an explicit specification of the transition probabilities, or the reward function, in contrast
to classical dynamic programming solutions of value and policy iteration. A common con-
ception of RL is that it obviates the need to explicitly specify the transition probabilities
by accessing it through a simulator that typically is restarted from a uniformly random ini-
tial state many times (Busoniu et al. 2011). While such a conception of RL is useful in the
AI/control community where it is feasible to perform such simulations repeatedly (resetting
the state whenever desired), it is not as applicable in wireless communications where the
learning has to be performed online without any generative model that can be reset (e.g., it
is not feasible to reset the channel state or the number of backlogged packets on demand).

The main drawback of RL techniques, especially in the wireless communications con-
text applicable to CRNs, is their slow convergence. Although wireless networks are highly
dynamic and non-stationary, RL techniques only have asymptotic guarantees of convergence
to optimal policy (i.e., only if each action is executed in each state an infinite number of
times, which is clearly not realistic in practical systems) even if we make the simplifying
(non-realistic) assumption of stationary networks. The non-stationary nature of wireless net-
works also implies a shifting optimal policy that changeswith network dynamics thusmaking
successful implementation of RL techniques in wireless networking challenging. Unfortu-
nately, in realistic wireless networking scenarios, learning the network dynamics through RL
techniques is not straight forward and can lead to fairly complex implementations (Fu and
Van Der Schaar 2010). More research is needed to develop RL techniques that are amenable
to efficient implementation in the highly dynamic CRNs.

The utility of RL may also depend on environmental dynamics: e.g., pattern and structure
of PU activity. For a learning process to be useful, there should be enough structure in the
observable environment over a suitable time scale. It has been observed that the learning
performance of RL is highly correlated with the level of PU activity and the amount of
structure in spectrum usage (Macaluso et al. 2013). In particular, RL performs no better than
random channel selection for low levels of PU activity (or high Lempel–Ziv complexity in
channel utilization).

6.3 Online learning algorithms

Online learning algorithms address the task of performing sequential decision-making online
with partial information. For example, consider the problem of determining what route to use
to drive to work everyday in an uncertain environment where the congestion pattern on the
various paths is both stochastic and unknown (Blum andMonsour 2007). The basic setting is
we have a space of N actions, from which the algorithm chooses an action (in our example,
selecting the route to take) one time step after the other. The environment then makes its
‘move’ (in our example, by setting the path congestions for that time step). The algorithm
then incurs the ‘loss’ for its action chosen (in our example, this is how long the route took).
Online learning algorithms aim to perform well in such tasks of repeated decision making.
While our example relates to routing in a transportation network, it is analogous and directly
extensible to the problem of routing in a CRN. Online learning algorithms typically aim to
provide efficient online solutions to complex problems (typically NP-hard) that are unlikely
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to admit algorithms with provably good worst-case performance. Due to the intractability of
the problem, the problem has to be addressed through heuristics whose performance can be
difficult to predict in advance.

A key technique for analyzing the performance of online learning algorithms is regret
analysis which quantifies the suboptimality of the online learning algorithm compared to
the optimal fixed policy. This captures our sentiment that we want our sophisticated online
algorithm (which may be choosing different actions at different times) to be at least as good
as some simple fixed alternative policy λ that sticks with just one action at the time of all
decisions—this will minimize our regret of not choosing the alternative policy λ. Regret is
formally defined to be the difference between the loss of our learning algorithm and the loss
using the alternative policy λ. This regret is more properly called external regret when the
alternative policy is a static policy (i.e., a policy of performing the same action in all time
steps). External regret allows us a general methodology for developing online algorithms
whose performance is comparable to that of an optimal static online algorithm. Stronger
notions of regret include internal or swap regret which allow comparison of online action
sequences in which every occurrence of a given action i is changed by an alternative action j
(Blum andMonsour 2007). There has been a lot of work by the learning theory and the game-
theory communities in the area of no-regret learning, and online learning algorithms have
been shown to have strong performance guarantees (Blum andMonsour 2007) with decision-
making algorithms (such as theweightedmajority algorithm (Littlestone andWarmuth 1989)]
available that approach zero regret even against a fully adaptive adversary.

The multi-armed bandit (MAB) problem, discussed earlier in Sect. 6.2 as a special case of
MDPs that has a single state with certain actions and associated rewards, is a powerful online
learning tool. The MAB formulation is a widely applied tool in the fields of manufacturing,
industry, decision theory, and is applicable wherever there is choice between alternatives in
an uncertain settings. The MAB problem deals with a player (known as a bandit) who has
to choose one or more resources (known as arms) amongst several plausible candidates each
having unknown statistical properties with the aim of maximizing some notion of long-term
reward. In bandit problems, partial information in the form of only the payoff of the selected
action is observed. This partial information setting is most relevant to the routing problem
in CRNs. The bandit setting is distinguished from the setting of online learning with full
information in which the action chosen by the adversary is revealed after each time step. A
MAB is said to have rested arms if the state of the stochastic process representing an arm
stays frozen unless played. A MAB has restless arms, on the other hand, when the state of
the stochastic process representing all arms continues to evolve (accordingly to a possibly
different law) regardless of which arm is played per the player’s action. From the perspective
of CRs, the most important family of bandit problems is the restless MAB problem since the
rewards associated with various routes cannot be predicted unless those routes are adopted
and these rewards do keep changing.

Online MAB problems can be thought of as a repeated game between the player and the
environment. There are two fundamental formalization of the onlineMAB problems relevant
to the routing problem depending on the assumed nature of the reward process: stochastic and
adversarial. In stochastic bandit problems, the rewards are assumed to be sampled from an
unknown distribution. The classic UCB algorithm (Auer et al. 2002a) is essentially optimal
for such a setting. In adversarial bandit problems, also known as non-stochastic bandit
problems, the rewards are assumed to be chosen by an adversary. The stochastic model of
the reward process lends itself to a framework where the algorithm are designed to perform
well in expectation for the average case (in the stochastic sense) while the adversarial (or the
non-stochastic) model of the reward process allows the design of algorithms to be robust in
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the worst-case sense. If it is assumed in an adversarial setting that the rewards do not depend
on this history of arms selected so far then we have an oblivious adversary, otherwise (i.e., if
the rewards do depend on the history of selected arms), we have an adaptive adversary. The
adaptive adversary makes stronger assumptions and it tries to make the online algorithm as
poorly as possible. The Exp3 algorithm (Auer et al. 2002b) is an effective algorithm for the
adversarial bandit problem. Adversarial online bandit algorithms have been proposed both
for routing in oblivious settings (Bansal et al. 2003) and in adaptive settings (Aspnes et al.
1997).While adaptive algorithms generally return ‘better’ performance, oblivious algorithms
have the advantage of lower implementation overhead and can be computed in advance. In
addition to stochastic and non-stochastic bandit problems, we also have Markovian bandit
problems in which it is assumed that the bandit arms are associated with K Markov processes
each with its own state space; for the Markovian bandit problem, the use of Gittin’s indices
is an effective algorithmic solution.

6.3.1 Application of online learning algorithms in CRNs

The MAB formulation has also been extensively applied in CRNs for problems such as
opportunistic spectrum access (in which a node is considered as a bandit with the set of
channels that be accessed considered as the bandit’s arms) (Xu et al. 2013). In general, the
framework of ‘restless bandits’ fits best with the dynamic environment of CRNs in which
each arm may correspond to links on different frequency channels and the PU activity on
each channel can change even if it that link is not chosen (Goldsmith et al. 2012). The restless
bandit approach has been adopted in literature for spectrum sensing but no work using this
approach has been proposed for routing in CRNs according to the best of our knowledge.
In other work, Han et al. proposed a using the solution concept of correlated equilibrium
for opportunistic spectrum access in CRNs using a distributed no-regret online learning
algorithm. It was shown in their work that their correlated equilibrium based solution returns
fairer results with better performance (Han et al. 2007).

6.3.2 Application of online learning algorithms for routing

While the centralized problem can be directly formulated as the classic MAB problem with
each path from the source to destination being considered as an arm.After such a formulation,
standard MAB solutions can be applied to yield centralized learning of the shortest path in a
source-routing setting. The drawback of such a naive approach is poor performance with the
regret growing linearly with the number of paths and thus exponentially with the network
size (in terms of the number of edges) and the difficulty of adopting a distributed learning
approach (MAB policies typically rely on the knowing the number of times an arm has been
played to balance the exploration/exploitation tradeoff; this information is not available to
individual nodes in a distributed setting). Tehrani and Zhao (2013) have proposed a distrib-
uted online learning based shortest path algorithm, which is called distributed Bellman–Ford
with learning (DBFL) which utilizes dependencies between paths sharing common edges
to solve the problem of regret growing exponentially with the number of edges and also
local information exchange to detect the least traversed edge which is then explored. The
DBFL algorithm achieves regret logarithmic in time and polynomial in network size. To
reiterate the DBFL algorithm is distinct from conventional Bellman–Ford algorithm in that
the edge weights are not static and known a priori but are considered as random variables
with unknown distributions which have to be learnt. In other works, Awerbuch and Kleinberg
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(2008) have formulated the problem of determining a sequence of routing paths in a network
with unknown link delays varying unpredictably over time as a generalization of the online
MAB problem. The sequential decision-making under partial information in this MAB prob-
lem is handled through the framework of a repeated game with two players (algorithm and
adversary) interacting over time. Avramopoulos et al. (2008) have proposed using online
learning algorithms as a framework for adding adaptivity to routing decisions in realistic
Internet-like environments and still return with stable outcome that has a small optimality
gap with respect to the network wide optimum. Recently, Bhorkar and Javidi (2010) have
presented a no-regret routing algorithm for wireless ad-hoc networks.

6.3.3 Pitfalls and challenges

MAB problems essentially deal with single user problems, only incorporating the agent’s
interaction with the environment and not with other users, thus limiting its use to single-user
environments. Since CRNs are characterized by the interaction of multiple agents, MABs
cannot model the multi-user interaction that may be present in CRNs. Also, existing works
in CRN literature using MABs (e.g., Gai et al. 2012) have mostly assumed i.i.d. rewards.
The problem of getting regret results for MAB with restless Markovian rewards is still an
open research issue. The restless MAB problems in general are known to be computationally
intractable being in the class of PSPACE (or polynomial space problems) (Papadimitriou and
Tsitsiklis 1999). PSPACE-problems, include all decision problems that can be solved in a
polynomial amount of space by a Turing machine, are highly challenging to solve optimally.

To summarize information covered till now about common analytical models of routing,
we refer the reader to Table 3.

6.4 Learning with game theory

While game theory is essentially concerned with the decisions made by individuals in their
interactions with other decision makers and their environment, researchers have long recog-
nized the need to guide future decisions from the history of past experience. There is a lot of
work on the important relationship between game theory and learning (Fudenberg 1998). A
branch of game theory known as ‘learning game theory’ studies the dynamics of individuals
who repeatedly play a game, and adjust their behavior over time as a result of their experience
(through, e.g., reinforcement, imitation, or belief updating) (Izquierdo et al. 2012).

It is worth highlighting the work that has been done in identifying the similarities between
inference and learning in the fields of machine learning and game theory (Rezek et al. 2008).
In the field of game theory, learning is used implied to mean inference of the correct strategy
to play against an opponent within a dynamic game (repeated game, stochastic game, or
evolutionary game). Some of the models that have been used for learning in game theory
include reinforcement learning, learning by imitation, myopic response, fictitious play, and
Bayesian learning (see Sect. 6.7). As examples, we discuss myopic response, fictitious play,
and Q-learning with game theory.

Myopic response In myopic adaptation, a SU does not update its belief about other SU’s
action but instead maximizes the utility based on the observation of other SU’s actions in the
previous round of the game.

Fictitious play The main idea in fictitious play is that each player would choose their best
strategy in each period, based on the predicted strategy that each opponent player would
choose in that period, to maximize expected payoff.
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Table 3 Analytical formulation of the routing problem in wireless networks

Analytical model used References Comments

Markov decision process

MDP Lott and Teneketzis (2006) MDP-theoretic formulation for the
opportunistic routing approach

DEC-MDP Friend (2009) Optimal ‘minimum-expected-cost’
routing in cognitive networking
setting

POMDP Nurmi (2007) Models routing as a sequential
decision making processing with
incomplete information using the
POMDP framework

Game theory

Static game Urpi et al. (2003) Static Bayesian game is used to
model routing

Repeated game Srinivasan et al. (2003) Repeated prisoners’ dilemma is used
to model the conflict nodes face
(i.e., should the node forward
cooperatively or drop selfishly?)

Repeated game Urpi et al. (2003) Infinitely repeated games are used to
model routing

Dynamic Bayesian game Nurmi (2004) Dynamic Bayesian games are used to
incorporate non-simultaneous
decision making and incorporating
history information into the
decision making process

Reinforcement learning

Q-learning Boyan and Littman (1994) Proposed a Q-learning based
distributed Q-routing scheme in
which a RL module is embedded in
each routing node

Multi-armed bandit Avramopoulos et al. (2008) Formulated routing as a regret
minimizing online MAB problem
and proposed a bandit-based
routing algorithm which used the
Exp3 (Auer et al. 2002b) learning
algorithm

Q-learning with game-theory Although Q-learning in its basic form is used in a single-
agent RL setting, it can also be used in amulti-agent RL setting. In thismulti-agentQ-learning
algorithm, the Q-value is updated with the future payoff so that each agent can observe and
estimate the payoff for using a particular strategy (not only for itself but also for the other
players).

6.4.1 Application of learning with game theory in CRNs

As an example of the use of myopic adaptation, Meshkati et al. (2007) has used this approach
as the learning approach in a power control game. It was shown that this approach converges
to a Nash equilibrium but with a lower system performance than the collaborative case. As
an example of fictitious play, Shiang and Van Der Schaar (2008) have presented a multi-
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agent learning approach for delay-sensitive resource management in multi-hop CRNs. As
an example of using Q-learning with game theory, Hu and Wellman (2003) have presented
a Nash Q-learning algorithm for multi-agent RL setting based on the concept of stochastic
games. A detailed survey of strategic learning in CRNs, and various spectrum access games,
is presented in Van der Schaar and Fu (2009). In another related work, Khan et al. (2012)
have studied the game dynamics and the cost of learning in heterogeneous 4G wireless
networks. The authors proposed a new RL based learning scheme named ‘cost-to-learn’ that
incorporated the cost of switching to a new channel and a new action.

6.4.2 Application of learning with game theory to routing

There is limited work on using learning based game theory in CRNs. As an example of
work in this domain, a distributed routing framework based on multi-stage fictitious play
learning has been proposed by Zhu et al. (2010) for the dynamic interference minimization
routing game. Using learning-based game theory for routing is a promising direction in need
of further exploration.

6.4.3 Pitfalls and challenges

The aim of the approach of learning with game theory is for agents to use learning techniques
to reach the same strategy that rational players would use in a game of complete information.
They key challenge in learning with game theory in CRNs is incomplete information and
observability of the players, their strategies, and the environment. Learning in multi-agent
environments is in general a very hard problem due to the inherent dynamism in the system
which arises as all agents continually adapt as they learn.

6.5 Learning with metaheuristic algorithms

Most of the optimization problems of interest in CRNs are difficult to solve optimally in rea-
sonable time thus motivating interest in heuristic optimization techniques that provide ‘good
enough’ solutions in reasonable time. Metaheuristics are generic design patterns or algorith-
mic ideas based on heuristics that can be applied to a broad range of optimization and learning
problems (Glover and Kochenberger 2003). There are diverse number of metaheuristic tech-
niques such as simulated annealing, swarm optimization, hill climbing, that can be applied
in CRNs but we will, in the interest of brevity, focus on the two metaheuristic techniques that
have been widely applied in CRNs: genetic algorithms and ant-colony-optimization.

6.5.1 Genetic algorithms

A genetic algorithm (GA) is a particular class of evolutionary algorithm which uses tech-
niques inspired from evolutionary biology (Goldberg and Holland 1988).12 Evolutionary
algorithms are a set of machine learning techniques that aim to imitate the robust procedures
and structures that various biological organisms have used for adaptation and learning in
their evolution. Evolutionary algorithms are similar to reinforcement learning algorithms in
that they also depend on exploration and exploitation (Črepinšek et al. 2013). GAs constitute
a very general meta-heuristic technique which can be thought of as the sledgehammer of

12 We note here that GA is not the only biology-inspired technique and there are a variety of other biology-
inspired optimization techniques (Liu et al. 2015; Song et al. 2014).
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Fig. 7 A flow chart of a typical
genetic algorithm

the craft of algorithms, much like the technique of ANNs, which can be readily invoked
when more specialized methods fail. GAs are very good at navigating through huge search
spaces to heuristically find near optimal solutions in quick time. More specifically, GA fun-
damentally relies on the genetic operators of random mutation and recombination through
crossover to improve the current solution. Apart from these operators, the design of GAs also
includes other crucial components such as population initialization, genetic representation,
fitness function, and a mechanism for selection.

The flow chart of a typical GA is shown in Fig. 7. GAs operate by initially defining a
population of candidate solutions (called individuals). Individuals are encoded in an abstract
representation known as a chromosome (which may be problem specific although representa-
tion in strings of 1s and 0s is common). Various evolutionary techniques (mutation, crossover,
etc.) are applied on the population thereafter in a computer simulation. The evolution can
start from a population of completely random individuals and can evolve to better solutions
through survival of the fittest after application of genetic operators in every generation. In
every generation, multiple individuals are stochastically selected from the current population
with fitter individuals more likely selections and are genetically modified (mutated or recom-
bined) to form the next generation of the population. The usage of genetic operators and
stochastic selection allow a gradual improvement in the ‘fitness’ of the solution and allow
GAs to keep away from local optima. The GA completes execution when the population
(representing the solution) meets a predefined fitness condition or when a predefined number
of iterations have been performed.

We note here that evolutionary algorithms, and by extension GA, are related to reinforce-
ment learning in that both depend on exploration and exploitation (Črepinšek et al. 2013).
Evolutionary algorithms based learning also illustrates how learning can be viewed as a
special case of optimization. These algorithms pursue the ‘optimization problem’ of find-
ing the optimal hypothesis according to a predefined fitness function (Mitchell 1997). With
the insight that learning is ultimately related to optimization, we can apply other optimiza-
tion and heuristic techniques to machine learning problems. For a discussion about heuristic
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optimization techniques (such as simulated annealing, tabu search, hill climbing) and their
application to CRNs, readers are referred to He et al. (2010).

Application of GAs to CRNs GAs have been extensively deployed in CRNs and more gener-
ally in wireless networks (Mehboob et al. 2014). Apart from playing a direct role in routing,
GAs can also be used for bandwidth allocation for paths and for QoS based routing as used
by Pitsillides et al. (2000) in their work. The benefits of GA is that it is conceptually easy to
understand, inherently amenable to parallel solutions and therefore can be easily distributed.
GA also lends support to multi-objective optimization and performs well in noisy environ-
ments. An early application of GA techniques to CRNs is documented in a paper authored
by Rondeau et al. (2004a). This paper presented the adaptation mechanism of a cognitive
engine implemented by the authors which used GAs to evolve a radio’s parameters to a set
of parameters that optimize the radio for the user’s current needs. This paper also proposed a
GA approach, called the ‘wireless system genetic algorithm’ (WSGA), to realize cross-layer
optimization and adaptive waveform control (Rondeau et al. 2004a). Genetic algorithms
have also been used for building distributed parallel solutions, using the technique of island
genetic algorithms, to the problem of channel allocation in cognitive networks (Friend et al.
2008). An island GA divides the overall population into subpopulation known as islands
which interact by migrating individuals to the other island. More details of parallel genetic
algorithms, and of general parallel metaheuristics, can be found in the survey Alba and Troya
(1999) and Alba (2005), respectively.

Application of GAs to routing Ahn and Ramakrishna (2002) proposed tackling the shortest
path routing problem throughGAs. The paper discussed the issues of path-oriented encoding,
and path-based crossover and mutation, which are relevant to the routing problem (Ahn and
Ramakrishna 2002).

Pitfalls and challenges There are numerous challenges in devising an appropriate GA based
solution for optimization problems in CRNs including suitable definitions of population size
and evaluation function (which is typically non-trivial to define). The policy for deletion and
operators of mutation/crossover also have to be suitably defined. A big challenge with using
GAs in CRNs is the risk of slow convergence and settling for local minimas especially with
inappropriate choice of model parameters. In light of potentially slow convergence, it is very
important to devise a suitable termination criteria which defines a ‘good enough’ solution.

6.5.2 Ant colony optimization

While typical ‘shortest path’ routing protocols may have significant computational and mes-
sage complexity, the humble biological ants, in a marvel of nature, are able to shortest routes
to food sources in the dynamics of ant colony with extremely modest resources. Ant colony
optimization can be used to solve shortest-path problems in the following way. Initially, ants
wander around in search of food, but when food is found, ants return to their colonywhile lay-
ing down a pheromone trail that is then used by subsequent ants who follow this trail instead
of wandering randomly. The pheromone trail that takes the ants to the food successfully via
the shortest path is continually reinforced and is kept updated by the fact that pheromone
trails starts to evaporate over time.

Application of ACO to CRNs As a form of an evolutionary algorithm, ACO is suited for
heuristic control of dynamic environments. ACO can be used, like GA, for developing cog-
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nitive radio engine (Zhao et al. 2012) and for various other tasks in CRNs such as routing
(Li et al. 2009).

Application of ACO to routing With biological ants well-known for self-learning routes to
food sources in dynamic environments robustly and adaptively, it is natural to explore ACO
for the problem of routing in the context of networking. A lot of research effort has been
focused on imitating the performance of biological ants to produce optimized and efficient
distributed routing behavior for mobile ad-hoc networks (Caro et al. 2005) as well as for
dynamic CRNs (Li et al. 2009). Jie and Kamal (2014) have also proposed an ACO-based
multi-objective optimization algorithm that aims to compute optimized multicast trees that
minimize the worst-case delay and the number of transmission links while simultaneously
maximizing the multicast rate. A detailed description of the design parameters, and possible
choices for these parameters, for ACO-based routing protocols is provided in the survey
paper of Zheng and Sicker (2013) on biologically inspired algorithms for networking. In
a previous work, it has been shown that ACO can outperfrom GA in routing and motion
planning especially for dynamic topologies (Purian et al. 2013).

Pitfalls and challenges While ACO is an efficient metaheuristic that is useful for routing
in dynamically changing environments such as those present in CRNs, it also has a few
disadvantages. It is difficult to theoretically analyze ACO, with the time to convergence being
potentially problematic for large problems. Also, since ACO is a metaheuristic technique,
there is no guarantees regarding convergence to the globally optimal solution.

6.6 Artificial neural networks

Artificial neural networks (ANNs) are composed of artificial ‘neurons’ interconnected
together in a programming structure that aims to mimic the neural processing (organization
and learning) of biological neurons and its behavior (Tsagkaris et al. 2008).More specifically,
ANNs involve a network of simple elements that can exhibit complex global behavior deter-
mined through: (1) the way these elements are connected together into a network, and (2) the
adaptive element parameters which are tuned by a learning algorithm. ANNs are mostly used
in supervised learning settings but can also be used in reinforcement learning environments
[e.g., it can be used along with dynamic programming (Bertsekas and Tsitsiklis 1995), in
what is known as neuro-dynamic programming, to solve RL problems] and in unsupervised
learning environments (e.g., a self-organizing map (SOM) is a type of an ANN that works
under the unsupervised learning paradigm to produce a low-dimensional map of the input
space of the training samples, called a map). ANNs are essentially “a network of weighted,
additive values with nonlinear transfer functions” although its coined name seems to elicit a
grander impression.13

The simplest kind of ANN is a single-layer perceptron network which is a simple kind of
a feed-forward network (i.e., a network in which connections between the units do not form a
directed cycle). In such a network, there exists a single layer of output nodeswhich is provided
the input directly via a series of weights. The sum of the weighted input is calculated at each
node to calculate an overall value which is then matched against a threshold (typically 0). If
the calculated value is greater than the threshold, the neuron is fired and it takes an activated
value (typically 1), otherwise, the neuron takes a deactivated value (typically −1). Despite

13 It has been claimed that the selection of the name “neural network” was one of the great PR successes
of the twentieth century since it sounds much more exciting by eliciting a comparison with an actual neural
network (i.e., the brain) (A brief history of neural networks 2013).
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having a simple and efficient learning algorithm, single-layer networks are of limited utility
since they have limited expressive power (i.e., they can not express complex functions)
and can only learn linear decision boundaries in the input. Multi-layer networks, on the
other hand, are far more expressive and can represent non-linear functions. In multi-layer
ANNs, processing elements are arranged in multiple layers (typically interconnected in a
feed-forward fashion) with each neuron in a layer having directed connections to the neurons
of the subsequent layer. Such networks have a downside that they are hard to train because
of high dimensionality of the weight-space and the abundance of local minima (Russell and
Norvig 1995).

ANN is essentially a black-box statistical modeling technique that does not utilize the
domain’s subject knowledge but learns feature from the data itself. Despite the black-box
modeling style of ANN, it is a remarkably versatile tool and applies to a wide range of prob-
lems and performs fairly well in general. This has led to John Denker to famously remark
that “neural networks are the second best way of doing just about anything.” (Russell and
Norvig 1995). Notwithstanding this claim, for certain types of tasks (e.g., pattern recogni-
tion, speech recognition, etc.), ANN is arguably the most effective learning method known
currently (Mitchell 1997). The price of the generality of ANNs, though, can be the need of
large amounts of training data and in its greater convergence time.

6.6.1 Application of ANNs to CRNs

ANNs have been successfully applied to various problems in CRNs such as spectrum sensing,
spectrum prediction (Tumuluru et al. 2010), and dynamic channel selection (Baldo et al.
2009)—the last two applications being especially relevant to our focused topic of routing in
CRNs. For more details about application of ANNs to CRNs, the interested reader is referred
to these survey papers (He et al. 2010; Bkassiny et al. 2013; Tsagkaris et al. 2008).

6.6.2 Application of ANNs to routing

Since ANNs are used mostly in supervised learning setting, they are mostly used in tasks
that complement routing but there are two notable works in which ANNs have been directly
employed for the problem of routing in Ju and Evans (2010) and Barbancho et al. (2006).
Barbancho et al. (2006) have proposed a QoS-driven routing algorithm named Sensor Intel-
ligence Routing (SIR) for WSNs. The proposed framework incorporates AI by building an
ANN on Kohonen SOMs that is implemented on every node to build a distributed AI-based
system. SIR builds up the network backbone by using a modification of Dijkstra’s algorithm
that connects the base station or root to every other node in the network through minimum
cost paths. The edge weight parameter is then defined using the qos variable obtained from
the output of the SOM ANN. In the SOM employed in this work, the first layer has four
input neurons (corresponding to the metrics of latency, throughput, error rate and duty cycle)
while the second layer has twelve output neurons forming a 3×4 matrix. In another work, Ju
and Evans (2010) have proposed scalable cognitive routing protocol (SCRP) for MANETs.
SCRP employs a novel approach of scalable flooding that also uses ANNs to provide knowl-
edge to network nodes about history. The use of ANN in flooding reduces routing overhead
significantly since nodes now flood RREQ selectively over links and frequencies that are
predicted to be strong using historical information.
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6.6.3 Pitfalls and challenges

ANN is mainly a supervised learning technique (although ANNs may also be used for non-
supervised learning using SOMs in some settings). The supervised learning model limits the
usage of ANNs in CRNs since the environment in CRNs is typically unknown and no training
sequence is available. Training an ANN model can take a lot of time and computational
resources depending on the network size. It is also possible that ANN may over-train, i.e.,
overfit the training data, with overfitting one of the most cited problems with ANNs (Zhang
2007). However, this lengthy training provides the benefit of simpler computation of the
output with very small overhead. Furthermore, ANN is essentially a black-box modeling
technique for capturing the non-linear relationship between the network input and the network
performance which does not provide any domain specific insights about the model/network
developed.

6.7 Bayesian learning

Bayesian learning can be viewed as a form of uncertain reasoning from observations (Russell
and Norvig 1995). Bayesian learning is used to calculate the probability of each hypothe-
sis, given the data, and to make predictions on that basis. It has been shown that the true
hypothesis eventually dominates in Bayesian prediction (Russell andNorvig 1995). Bayesian
analysis accords significant importance to the prior distribution which is supposed to rep-
resent knowledge of unknown parameters before the data becomes available. While it is a
common assumption that the agent has no prior knowledge about what it is trying to learn,
this is not an accurate reflection of reality in many cases. Frequently, an agent will have some
prior information, and the learning process should ideally exploit this available information.

While it was noted byRondeau andBostian (2009) that little research attention has focused
on using Bayesianmethods of statistical inference in CRNs, a lot of Bayesian inference based
work have recently been proposed for CRNs. Bayesian networks can be used for computing
how much a set of mutually exclusive prior events contributes to a posterior condition,
which can be a prior to yet another posterior, and so on. Bayesian networks can be used
for reasoning and for tracing chain of conditional causation back from the final condition to
the initial causes (Russell and Norvig 1995). Previous work on using Bayesian networks for
reasoning in CRNs has been summarized in Adamopoulou et al. (2008).

Parametric models (such as the Gaussian distribution, k-means, HMM, etc) typically
assume some finite set of parameters θ and assume that θ captures everything there is know
about the data. Non parametric models (such as the Bayesian non-parametric (BNP) models
Gershman and Blei 2012), on the other hand, do not assume that the data distribution can be
explained on the basis of a finite set of parameters—instead, an infinite dimensional set of
parameters θ , envisioned as a function,14 is assumed. There also has been increasing interest
in applying BNP models to CRNs (Saad et al. 2012; Han et al. 2011) due to their desirable
characteristics such as its ability to flexibly model an unknown environment with model
complexity growing as warranted by new data. The term ‘non-parametric’ in BNP should
not be construed to mean a total lack of parameters but as a lack of non-fixed parameters.
Indeed, non-parametric models not only have parameters, but typically have infinitely many
parameters. To illustrate, let us take a look at the example of clustering data. The parametric
mixture modeling approach requires the number of clusters to be specified a priori, whereas

14 While the parameter set in BNP models is infinite dimensional, only a finite subset of the available dimen-
sions are used to explain a given finite sample of observations with the dimension size depending, and growing,
with sample size.
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the non-parametric Bayesian approach is a purely observation-based approach that allows
the number of clusters to grow with more data.

BNP models typically exploit in their formulation decades of research on Gaussian
processes (which defines a distribution on functions) and Dirichlet process (which defines
a distribution on distributions). Popular BNP techniques that use these processes include
Gaussian process regression, in which the correlation structure is improved as the sample
size increases, and Dirichlet process mixture models for clustering, which adapt the number
of clusters to the complexity of the data. As an example, we can compare and contrast the
parametric HMM—which makes an assumption (that often does not hold in practice) that the
number of states are known a priori—with the non-parametric Bayesian clustering techniques
of infinite Gaussian Mixture Models (IGMMs) which can be used to dynamically learn the
number of states without a prior knowledge of the number of clusters.

6.7.1 Applications of BNP methods in CRNs

Saad et al. (2012) have proposed using cooperation between CR devices that are observing
the availability pattern of PUs, and the use of BNP techniques to estimate PU activity pat-
tern’s distributions. In another work, spectrum access in CRNs was modeled as a repeated
auction game and a Bayesian nonparametric belief update scheme was constructed based on
the Dirichlet process (Han et al. 2011). In practice, different PUs can have different traffic
patterns which will provide time-varying spectrum opportunities for SUs. In previous work,
BNP inference model with unknown number of traffic types (based on the Dirichlet process
mixture model) has been used for clustering PU traffic patterns with the cluster parameters
being utilized by SUs to determine the PU channel idle time distribution and optimizing the
transmission strategy accordingly.

6.7.2 Applications of BNP methods for routing

SinceBNP techniques are primarily tools for inferencing, clustering, planning and prediction,
BNP techniques are useful for a variety of tasks (such as learning and predicting PU activity)
that complement the algorithmic problem of routing in CRNs. Their use in this context in
CRNs have already been covered in previous paragraph. They have not bee used directly for
routing according to the best of our knowledge.

6.7.3 Pitfalls and challenges

Bayesian analysis is appealing since it provides a mathematical formulation of how previous
knowledge can be incorporated with fresh evidence to create new knowledge. However,
choosing the right prior distribution is not trivial with the prior being chosen mostly in
practice for computational ease (e.g., for conjugacy). A major pitfall is making an incorrect
assumption about the prior which can significantly skew inference. It is for this reason that
some statisticians feel uneasy about the use of prior distributions fearing that it may distort
“what the data are trying to say.” (Box and Tiao 2011). In addition, another challenge to
successfully employing non-parametric learning techniques in CRNs is that such techniques,
including DPMM, typically require a larger number of iterations compared to parametric
methods.

To conclude this section on learning algorithms, a representative summary of this section
on learning techniques for CRNs is captured in Table 4. In addition, the comparison the main
techniques, along with their pros and cons, is presented in Table 5.
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Table 4 Summary of the various learning techniques discussed in Sect. 6

Learning techniques Applications to routing General applications to CRNs

Hidden Markov model Can indirectly utilize spectrum
occupancy and channel quality
predictions

Spectrum occupancy prediction: Akbar
and Tranter (2007), Park et al. (2007)
and Choi and Hossain (2013);
spectrum sensing, primary signal
detection (see references in He et al.
2010)

Reinforcement learning Q-routing algorithm (Boyan and
Littman 1994); learning automata
(Akbari Torkestani and Meybodi
2010a, b); RL-based routing for
CRNs (Xia et al. 2009), MANETs
(Bhorkar et al. 2012; Di Felice et al.
2010), see further references in
survey papers (Bkassiny et al. 2013;
Al-Rawi et al. 2013; Yau et al. 2010)

Dynamic channel selection and
topology management (Yau et al.
2010); spectrum sensing and efficient
spectrum utilization through PU
detection (Reddy 2008); security (He
et al. 2010)

Learning with games Evolutionary game theory; dynamic
Bayesian games (Pavlidou and
Koltsidas 2008); congestion games
(Pavlidou and Koltsidas 2008);
quality of routing games (Busch et al.
2012)

Spectrum access games (Van der
Schaar and Fu 2009)

Online learning No regret routing for adhoc networks
(Avramopoulos et al. 2008; Bhorkar
and Javidi 2010); Bandit routing
(Tehrani and Zhao 2013); online
adaptive routing (Awerbuch and
Kleinberg 2008)

Opportunistic spectrum access (Han
et al. 2007)

Genetic algorithms Shortest path routing (Ahn and
Ramakrishna 2002)

Modeling wireless channel: (Rondeau
et al. 2004b)

Ant colony optimization Routing with ACO in CRNs (Zhao
et al. 2012) and MANETs (Caro
et al. 2005)

Cognitive engine design (Zhao et al.
2012)

Artificial neural networks Routing with ANNs Ju and Evans
(2010) and Barbancho et al. (2006)

Spectrum occupancy prediction
(Tumuluru et al. 2010); dynamic
channel selection (Baldo et al. 2009);
radio parameter adaptation (see ref.
in He et al. 2010)

Bayesian learning Bayesian routing in
delay-tolerant-networks (Ahmed and
Kanhere 2010)

Establishing PU’s activity pattern
(Saad et al. 2012; Han et al. 2011);
channel estimation (Haykin 2005);
channel quality prediction (Xing
et al. 2013)

6.8 Relationship of learning with reasoning

For a radio to be deemed a cognitive radio, it is necessary for it to be equipped with the ability
of learning and reasoning (Haykin 2005). Reasoning is an important aspect of CRN behavior
and is necessary for cognitive behavior. Reasoning techniques are needed in the context of
cognitive networks to address tasksT5 described in Sect. 3.We have already seen some learn-
ing techniques such as Bayesian networks as well as metaheuristic techniques that can also
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be used for the task of reasoning (Gavrilovska et al. 2013). While reasoning is an important
part of cognition, a comprehensive treatment of various reasoning tools and techniques useful
for CRNs is outside the scope of this work. For illustrative purposes, we will discuss fuzzy
cognitive maps as a representative reasoning technique useful for cognitive networking and
will refer the interested readers to a recent survey for a comprehensive account of methods,
techniques, issues and challenges in implementing reasoning in CRNs (Gavrilovska et al.
2013).

6.8.1 Fuzzy cognitive maps

Fuzzy logic is a formalism that is useful for reasoning in systems and situations having
inherent uncertainty or ambiguity. Since complete environmental knowledge is difficult, or
even impossible, to obtain in CRNs. Fuzzy logic is a natural fit to the CRN environment
where there is limited or no information about certain environment factors. Fuzzy logic
based reasoning has been used commonly in CRNs (Erman et al. 2009; Shatila 2012). Fuzzy
techniques have also been deployed for strategic QoS routing in networks (for instance, in the
work Vasilakos et al. (1998) that uses evolutionary-fuzzy prediction for routing in broadband
networks).

Fuzzy cognitivemaps (FCMs) are fuzzy-logic based graph structures used for representing
causal reasoning (Kosko 1986). FCMs represent a reasoning formalism much like neural
networks, Bayesian and Markov networks which can be used for representing cause-effect
relationships between variables of a given problem.

FCMs can be compared with traditional expert systems and Bayesian network which are
both frameworks that allow reasoning based on causal knowledge or relationships. Traditional
expert systems consist of a knowledge base comprising of rules of the form of IF some
condition THEN some action. The inference engine can then determine the system state
and action depending on the input. Despite some early success, expert systems are primarily
limited to a settings that donot haveuncertainty and are relatively simple (and canbedescribed
using explicit rules). Bayesian networks offer an alternate framework for reasoning based on
causal relationships that involve uncertainty. FCMs improve upon the capability of Bayesian
networks in that FCMs can also handle complex feedback loops which Bayesian networks
cannot accommodate. An advantage of FCM framework is that it allows effective handling
of different uncertainties by allowing merging of several FCMs into one FCM.

Application of FCMs to CRNs and routing FCMs can be used to facilitate fuzzy-logic based
reasoning inCRNs (Gavrilovska et al. 2013). FCMswork based on cause-effect dependencies
have already been proposed for cognitive networking applications by Facchini et al. (2013).
FCM can be embedded in radio network controllers in the capacity of cognitive engines.
FCMs’ use in cognitive networking ismainlymotivated by the fact that FCMs facilitate cross-
layered optimization and can enable reasoning within the cognition cycle. FCM has already
been used for cognitive networking in the context of cognitive rate adaptation of WLANs
(Facchini et al. 2011) and for ensuring dynamic green (energy-efficient) self-configuration
of 3G base stations (Facchini et al. 2013). According to the best of our knowledge, FCM has
not been directly used to solve the problem of routing in networks.

Pitfalls and challenges Inference of causality between events only based on observational
data is not readily accessible without a priori knowledge. Also, the problem of abductive
reasoning, which guesses the cause responsible for a given effect, is an NP-hard problem.
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6.8.2 Other reasoning techniques

Knowledge can be represented using an ontology which provides shared vocabulary useful
for modeling a domain, e.g., it can be used to model the type of objects and concepts existing
in a system or domain, and their mutual relationship and properties (Gavrilovska et al. 2013).
A rule based system can make use of a knowledge base and somemeans of inference through
an inference engine. It is also possible to reason by analogy. This involves the transferring of
knowledge from a past analogous situation to another similar present situation. Case-based
reasoning (CBR) is a well-known kind of analogy making which has been exploited in CRN
research (He et al. 2010). In case-based reasoning a database of existing cases is maintained
and used to draw conclusions about new cases. The CBR reasoning method can utilize
procedures like pattern matching and various statistical techniques to find which historical
case to relate to the current case. More details about other prominent reasoning techniques
can be seen in a recent survey paper on this topic (Gavrilovska et al. 2013).

6.9 Some inferential tasks in cognitive routing

Future cognitive routing protocols can benefit from the following inferential (i.e., prediction-
based) tasks: (1) channel quality modeling and prediction, and (2) spectrum occupancy
modeling (including the modeling and prediction of PUs). We will first highlight the impor-
tance of these prediction-based tasks in the context of cognitive routing, and will then discuss
the listed tasks under their respective headings. We note that these tasks relate closely to the
task T6 described in Sect. 3.

Relationship to cognitive routing We will now discuss how these inferential predictions
can improve cognitive routing. The prime motivation of learning PU dynamics is to incorpo-
rate these predictions into the utility/reward functions into the various decision-theoretic and
learning frameworks we have studied in this paper (such as optimization theory, MDP, game-
theory, HMM, RL, etc.) so that more stable routes (that are disrupted less) are preferred. In
particular, a CR that manages to learn the behavioral patterns of a primary user bymodeling it
can optimize its performance by exploiting the learned model. For example, a SU can exploit
information, potentially gleaned from spectrum sensing data, and select white spaces (that
emerge due to the absence of PUs) that tend to be longer lived at certain times of day and at
certain locations. Knowledge of PUpatterns can also be helpful for advanced planningwhen a
SUhas to decide the channel to switch to on the arrival of a PU (whichwill help reduce the tem-
poral connection loss faced by SUs and potential interference faced by PUs due to any delays
in vacation of channel by SUs) (Doyle 2009). Accurate prediction of PU arrivals and net-
work dynamics can also help in improving the accuracy of the model adopted in model-based
approaches.Whilemodel-based approaches are computationally expensive, it has been shown
that they are more effective than model-free approaches provided an accurate model is avail-
able (Sammut and Webb 2010). To be reminded about the distinction between model-based
and model-free approaches, the reader is referred to the Sect. 6.2.2. In CRNs, both model-
based and model-free approaches can be used and both have their pros and cons. It is in the
context of model-based approaches that PU activity prediction is useful for cognitive routing.

6.9.1 Channel quality modeling and prediction

It is useful in the context of cognitive routing to be able to estimate an accurate model of the
current and future (predicted) quality of a channel. Rondeau et al. (2004b) proposed using
HMM to model the wireless channel online with the HMM being trained using a genetic

123



84 J. Qadir

algorithm. Akbar (2007) techniques for modeling wireless network channel using Markov
models are presented along with techniques for efficient estimation of Markov model para-
meters (including the number of states) to aid in reproducing and/or forecasting channel
statistics accurately. In another work, Xing et al. (2013) have proposed to perform chan-
nel quality prediction using Bayesian inference. Channel estimation problem has also been
addressed in Haykin (2005) in which the use of particle filters, rooted in Bayesian estimation,
were proposed as a device for tracking statistical variations in awireless channel. Researchers
have also proposed using an ANN-based cognitive engine for learning how various channel’s
quality status affects performance and thereby dynamically selecting a channel that improves
performance. The dynamic selection of channels has an obvious implication for network-
layer functionality and the routing algorithm for such networks should be able to keep up
with the channel changes so that the best performing routes are selected.

6.9.2 Spectrum occupancy modeling

The cognitive routing task can benefit frommodeling the spectrum occupancy. A satisfactory
model of spectrum occupancy (or, of spectrumwhite spaces) should incorporate: (1) states of
the channel along with their transition behavior, and (2) the sojourn time or the time duration
the system resides in each of the states (Geirhofer et al. 2007).

Since many DSA environments (e.g., contention based protocols such as IEEE 802.11)
do not have a slotted structure, it is more appropriate to use a continuous-time (CT) model.
A CT model that is especially relevant to DSA, and one that is popularly used for modeling
spectrum occupancy, is the semi-Markov model (SMM) which generalizes the concept of
CT Markov chains (CTMCs). Although both the semi-Markov and CTMC models have
the Markovian property and they describe the transition behavior in the same way, a SMM
allows for specifying the occupancy periods, or the sojourn time, for each state arbitrarily.
In particular, the occupancy time does need have to be necessarily exponentially distributed
as must be the case for CTMCs by definition (Kleinrock 1975; Ross 1970). Specification of
a SMM therefore requires both the statistical specification of the transition behavior and of
the sojourn time within each state (Kleinrock 1975; Ross 1970).

It has been posited that for practical purposes of analyzing DSA/CRNs, a simple two-state
semi-Markov ON–OFF model is adequate for modeling spectrum usage (López-Benítez and
Casadevall 2011) (Table 1 may be referred to see the popularity of this model). The OFF
state represents an idle channel, while the ON state indicates a busy channel not available
for opportunistic access, with the length of ON and OFF periods being random variables
(RVs) following some specified distribution. Such a model is also known as a stochastic duty
cycle model (Wellens and Mähönen 2010). The use of this simple semi-Markov ON–OFF
model is quite popular (Geirhofer et al. 2007), although other more elaborate models are also
available (e.g., Jiang et al. 2012 modify the ON/OFF Markov model by also incorporating
a priority service queue to provide QoE-driven channel allocation). Geirhofer et al. (2006)
showed that such a basic Markov model can be used to empirically model the spectrum use
in IEEE 802.11b WLAN-systems. It was noted that their results should also extend to other
systems having multi-access protocols similar to CSMA/CA.

An important aspect of using such semi-Markov models is specifying the state sojourn or
stay times, and to study if successive period lengths are correlated. The simplest approach is
to assume the state sojourn time is exponentially distributed and that successive stay times
are not correlated. Such an approach is interesting due to its simplicity and tractability.
Unfortunately, studies have shown that this simple approximation does not tally up well
with empirical studies on actual systems (Geirhofer et al. 2007). Nonetheless, exponential
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distribution is still used heuristically (Lee and Akyildiz 2008), although such an approach is
not entirely justified statistically, since this assumption makes the model earlier to apply in
practice. Empirical studies have shown that state sojourn times typically have larger variability
than suggested by the exponential distribution. In fact, the distributions of the ON and in
particular the OFF period were often found to be heavy-tailed (Geirhofer et al. 2007).

While focusing on spectrum occupancy modeling, it is extremely important for cognitive
routing in DSA CRN networks that we are able to model, in particular, the activities of PUs.
Various models for traffic pattern prediction for PU are presented in Li and Zekavat (2008).
Wang et al. (2009) have proposedmodeling the interaction between the PUs and SUs through
continuous-time Markov chains (CTMC). In addition, Bayesian nonparametric techniques
(Saad et al. 2012) and ANNs (Tumuluru et al. 2010) have also been proposed to estimate
PU activity pattern’s distributions. A lot of studies have focused on empirical modeling
of spectrum usage and have proposed various models for PU traffic pattern (Wellens and
Mähönen 2010;Wellens et al. 2009b, a; Harrold et al. 2011; Ghosh et al. 2010; Hoyhtya et al.
2010). For further details, interested readers are referred to the survey papers (López-Benítez
and Casadevall 2011; Masonta et al. 2013) in which various statistical models proposed
in literature for modeling temporal and spatial spectrum occupancy are reviewed in detail.
For more details about spectrum prediction techniques, the interested readers are referred to
detailed survey papers on this topic (Xing et al. 2013; Saleem and Rehmani 2014) and the
references therein.

7 Open issues and future work

In this section, we will outline some of the major open research issues in building cognitive
networks and in developing AI-enabled cognitive routing protocols. We will also discuss
potential future work.

7.1 Multi-agent decision-making in complex environments

The cognitive radio networking environment is naturally amenable to distributedmulti-agent
decision making rather than centrally controlled optimization. We have seen earlier how
multi-agent environments are much more challenging to design than their single-agent coun-
terparts. Ideas from game-theory and economic market design will become increasingly
important as multi-agent learning becomes commonplace in CRN design. With AI-based
cognitive networks becoming mainstream, it will be important to understand the behavior of
the overall CRN system in terms of equilibria and dynamics for large distributed networks
with multiple learning CRs, each taking self-serving decisions with access to limited infor-
mation. This is because emergent behavior of CRNs, composed of multiple self-interested
CR servicing users with distinct context, can be complex. This can manifest itself when
slight changes in one or more of the system parameters result in dramatic changes in system
behavior (Haykin 2005). The task of cognitive routing is made complex by the fact that two
cognitive loops (device level and network level) operate at different time scales and their
interdependence is largely unexplored (Haigh and Partridge 2011). Researchers can exploit
advances in the study of complexity to understand the dynamics of such CRNs (Waldrop
1992). Also, while it is quite common to use simplistic assumptions (such as the Markovian
assumption or the perfect knowledge assumption) to keep our models tractable, real systems
are in fact quite complex with CRs often operating in unknown RF environments. There is
a lot of scope of new research in areas of decision making and learning in non-Markovian,
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partially observed, or unknown environments. In such unknown environments, the usage of
model-free and online methods seem promising.

7.2 Application of varied machine-learning techniques

Game theory, reinforcement learning, neural networks, and genetic algorithms, due to their
natural fit to the kind of problems faced in CRNs, are understandably the most used AI
techniques in CRNs. However, as listed in this survey paper, there are various other machine-
learning techniques that can be plausibly applied to tasksmuchmore diverse than their current
application. In particular, it is anticipated that Bayesian techniques will find increasing use in
CRNs. It is an open research question that whichmachine-learning techniques, apart from the
current popular approaches, would prove to be most successful in solving problems in CRNs.

7.3 Interworking with other modern technologies

The interplay of cognitive radios with the software defined networking (SDN) architecture,
which allows a standards based interface (McKeown et al. 2008) between a centralized ‘net-
work controller’15 and networking devices, should be explored. It is possible that interesting
use cases will emerge that will synergize the mainly centralized operational paradigm of
SDNs with the mainly distributed operational paradigm of CRs. While the emphasis of SDN
architecture has been on the separation of control and data planes, it is worth exploring if a
combined SDN andCR architecture can help realize the vision of having a ‘knowledge plane’
for networks as envisioned by Clark et al. (2003). Also, it is worth exploring how cognitive
networks may seamlessly integrate modern technologies like internet-of-things, pervasive
and ubiquitous technology, and cloud computing. In particular, cloud computing can be used
to aggregate state information from various wireless nodes and for performing optimization
computations centrally in datacenters rather than on constrained wireless devices.

7.4 Cognitive traffic engineering and congestion control

In this paper, our particular focus has been on cognitive routing in the settings of cognitive net-
works. Apart from routing, there are also other correlated problems such as traffic engineering
that focuses on network robustness (by minimizing network congestion by changing what
happens inside a network) and congestion control that focuses on user performance (bymaxi-
mizing user utility by controlling the edge of the network) (Fortz et al. 2002) that are important
from the perspective of network-wide optimization. The relationship of traffic engineering
and congestion control with routing is as follows. In traffic engineering, the focus is on min-
imizing network congestion by devising appropriate routing given the traffic. In congestion
control, on the other hand, we are interested in maximizing user utility given the routing state
by adapting the end transmitting rate. More research is needed on the interaction between
routing, traffic engineering, and congestion control in the setting of cognitive networking.

8 Conclusion

Learning lies at the core of the vision of cognitive radio and cognitive radio networks. While
a lot of previous research attention has focused on general AI techniques for optimizing

15 The centralized SDN network controller can itself be built as a distributed system to be scalable and avoid
a single point of failure.
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PHY and MAC layer parameters for CRs, scant attention has been given to utilizing learning
techniques at the network layer particularly for the problem of routing. We have argued
in this paper that incorporating learning from the past and present conditions can be very
productive and can lead to improved CRN performance. In this paper, we have surveyed the
set of techniques that can be used to embed learning in the routing framework of CRNs. Open
research issues and potential directions for future work have also been identified.
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