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Abstract Face recognition is being widely accepted as a biometric technique because of
its non-intrusive nature. Despite extensive research on 2-D face recognition, it suffers from
poor recognition rate due to pose, illumination, expression, ageing, makeup variations and
occlusions. In recent years, the research focus has shifted toward face recognition using 3-
D facial surface and shape which represent more discriminating features by the virtue of
increased dimensionality. This paper presents an extensive survey of recent 3-D face recog-
nition techniques in terms of feature detection, classifiers as well as published algorithms that
address expression and occlusion variation challenges followed by our critical comments on
the publishedwork. It also summarizes remarkable 3-D face databases and their features used
for performance evaluation. Finally we suggest vital steps of a robust 3-D face recognition
system based on the surveyed work and identify a few possible directions for research in this
area.

Keywords Face recognition · 3-D faces · Feature extraction · 3-D Face databases ·
Biometrics · Face matching · Classifiers

1 Introduction

Face recognition is becoming a commonly used biometric techniquewithwidespread applica-
tions in public records, authentication, intelligence, safety, security, andmany other vigilance
systems. Unlike other biometric traits such as iris, fingerprint, palm-print, signature, vein-
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pattern etc., which require a user to be attentive and intentional while capturing input, face
recognition requires least user attention. An ideal face recognition system is expected to
detect and recognize a human face when the person is unaware of being biometrically exam-
ined. This reduces the harm of altering fiducial identity features by vicious persons. Also,
tampering of basic facial features is difficult and can be easily noticed. This may make it the
most reliable and preferred candidate amongst the other biometric techniques in the days to
come (Li and Jain 2011).

Face recognition is defined as either online or offline recognition of one or more people
using available face database (Zhao et al. 2003). Face recognition is classified into two
domains namely, identification and verification. For an identification/recognition system,
input face is matched against all faces in an available database, which in turn provides the
determined identity (Zhao et al. 2003). A verification/authentication system compares an
input face with a similar claimed face from a database. It either validates or rejects the claim
based on the matching score. The input to a face recognition system is usually referred to
as a ‘query’ or ‘probe’, whereas collection of faces in dataset is denoted as a ‘gallery’ or a
‘database’ (Bowyer et al. 2006).

After conduction of Face Recognition Vendor Tests FRVT-2000 (Blackburn et al. 2001),
FRVT-2002 (Phillips et al. 2003), researchers realized the importance of 3-D human facial
scans. A 3-D facial scan conveys much more discriminating information, as it provides the
exact shape information including the depth profile associated with a human face. After the
availability of 3-D scanners and subsequent 3-D face databases, many researchers focused
their energies toward 3-D face recognition, expecting to utilize the more precise information
associated with a 3-D facial shape (Bowyer et al. 2006; Xi et al. 2011; Ballihi et al. 2012;
Mohammadzade and Hatzinakos 2013). The acquired 3-D facial data is invariant to illumi-
nation (Al-Osaimi et al. 2012; Smeets et al. 2010) and pose changes (Ocegueda et al. 2013).
In fact all other poses and occlusion invariant features can be computationally estimated
using a complete 3-D frontal scan, even in presence of occlusions, improper illumination
or expression variations. Research efforts on 3-D face analysis are focused on improvement
of recognition accuracy and to address many challenges faced by these systems such as
expression variations and occlusions. The 3-D face recognition systems are more immune
to spoofing and deception (Määttä et al. 2012). Various agencies organized the Face Recog-
nition Grand Challenge (FRGC) (Phillips et al. 2005) and FRVT-2006 (Phillips et al. 2010)
evaluation tests which involved assessment of 3-D face recognition algorithms on databases
with large gallery size. This indicates the growing interest of the research community in
3-D face recognition. Bowyer et al. (2006) have summarized the research trends in 3-D face
recognition up to 2006. Abate et al. (2007) have reviewed the associated literature up to year
2007. Smeets et al. (2012) have recently studied various algorithms for expression invariant
3-D face recognition and evaluated the complexity of existing 3-D face databases. Some of
the earlier developments in face recognition are surveyed by Chellappa et al. (1995), Jaiswal
et al. (2011), Zhao et al. (2003) and Tan et al. (2006).

This paper surveys published work on 3-D face recognition from a general viewpoint,
and also reviews it with special focus on some challenges such as expression and occlusion
variations. An extensive review of prominent 3-D face databases that will help forthcoming
researchers to choose a database for their research problem is also presented. There are some
multimodal approaches based on both shape (3-D) and texture (2-D) data. The joint use of
these shape and textural features accommodates more information and facilitates extraction
of more discriminant features. We have reviewed the literature associated only with 3-D
shape, and also approaches that address 3-D face recognition and related challenges. The
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survey of pure 2-D and multimodal (2-D and 3-D) face recognition techniques is outside the
scope of this paper.

The rest of this paper is organized as follows: in Sect. 2 a brief overview of 3-D face
recognition systems, various 3-D data acquisition and representation techniques is presented
along with their advantages and limitations. It also includes a summary of 3-D landmark
detection, face segmentation, face registration, feature extraction and matching techniques.
Section 3 summarizes prominent 3-D face databases. In this section, complexity of each
database is examined for challenges such as pose, expression and occlusion variations. The
surveyed state-of-the-art methods for expression invariant 3-D face recognition are discussed
in Sect. 4 alongwith their advantages and limitations. Section 5 addresses the review of occlu-
sion invariant 3-D face recognition approaches. Section 6 presents a discussion on various
challenges faced by the published research so far and also summarizes various algorithmic
steps in 3-D face recognition. Section 7 presents the conclusion and future scope of research
in 3-D face recognition approaches.

2 3-D face recognition system

3-D face recognition is defined as a biometric technique which uses individual 3-D facial
shape to recognize human faces using 3-D models of both probe and gallery faces. A general
3-D face recognition system is depicted in Fig. 1.

A 3-D human face captured during face acquisition may contain unwanted body parts or
areas like hair, ears, neck, shoulders and accessories like glasses and ornaments that need to
be effectively eliminated.Major landmarks facilitate the segmentation process which extracts
face shape from the entire scan. Facial shape needs to be aligned before actual matching.
3-D registration techniques are used for face shape alignment. The discriminant features are
extracted and stored using the surveyed region-based and holistic approaches for all faces
in the gallery. Feature vector for a probe (query) scan is extracted and matched against the
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Fig. 1 A general 3-D face recognition system
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Fig. 2 Triangulation principle

gallery feature vectors one by one. The gallery scan that has the closest matching distance
with the probe scan below a predefined distance threshold is considered as the recognized
gallery scan, and the class of the corresponding feature vector is declared as the result.

2.1 3-D facial data acquisition techniques

The methods to acquire 3-D information about a facial surface adopt optical triangulation
principle for depth estimation (Amor et al. 2013) and are broadly classified into stereo acqui-
sition, laser beam scanning and fringe pattern based techniques.

Triangulation principle Triangulation principle (Haasbroek 1968) states that the depth (L)
and coordinates of a point (O) on an object in 3-D space can be estimated if length (M) of one
side of a triangle OXY and angles P and Q between line XY and other sides of the triangle
i.e. lines OX and OY at points X and Y could be measured depicted in Fig. 2. The points X
and Y represent an illumination source and a sensor or both can be sensors like cameras.

M = L

tan P
+ L

tan Q

M = L

(
cos P

sin P
+ cos Q

sin Q

)

M = L

(
sin(P + Q)

sin P · sin Q

)

L = M

(
sin P · sin Q

sin(P + Q)

)
(1)

Thus, depth L of each point O on a 3-D shape can be estimated using (1).

2.1.1 Stereo acquisition

Stereo acquisition based systems capture the 3-D facial data with two calibrated 2-D cameras.
The concurrently captured 2-D images are registered and integrated to forma 3-Dmodel using
visual features and landmarks in both (Winkler and Min 2013). This is a passive method of
3-D face acquisition (Uchida et al. 2005) and involves complex computations since a 3-D
face model is reconstructed from multiple 2-D images. The accuracy of 3-D face model
heavily depends upon the surrounding illumination conditions. Illumination intensity should
be consistent during the acquisition of 2-D calibrated images (Gökberk et al. 2009) to avoid
erratic registration. Figure 3 presents a schematic for stereo 3-D image acquisition.
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Fig. 3 Depth estimation using Stereo acquisition technique

Locations of calibrated cameras and an object form a triangle and hence the depth can
be estimated with the triangulation principle. The manifold images captured using a set of
cameras share some common points in 3-D space. Such shifted common points are known
as disparity (Koschan et al. 2007). If the value of disparity (d) is small, the estimated depth
is large and vice-versa. Figure 3 shows stereo depth acquisition of point C using camera A
and camera B. The distances DA and DB are measured from the centre of the camera lens.
Subsequently, the disparity is computed using (2) (Koschan et al. 2007).

d = |DA − DB | (2)

It can be interpreted that if the point D is relatively farther from the camera planes, its disparity
will be lesser (Koschan et al. 2007). In this way, the depth of various points in 3-D space is
computed using stereo acquisition.

This method depends upon point-pair correspondence and feature extraction in addition
to the conventional triangulation (Sansoni et al. 2009). The stereo acquisition technique is
advantageous due to its high sensing speed, ease of availability of acquisition devices, no
specific wavelength illumination source requirement and low cost. This technique suffers
from errors in exact localization of point-pairs in distinct images which affect the overall
reconstruction process. The process of conversion of the captured 2-D images into a 3-D
model is computationally heavy. The resultant reconstruction accuracy is low, restricted to
well illuminated scenes and depends upon resolution quality of captured 2-D images (Sansoni
et al. 2009).

2.1.2 Laser beam scanning

Laser beam based 3-D scanner projects a laser beam on the subject to be scanned, i.e. a
human face. The beam gradually scans the whole object just like a 2-D scan. A charge-
coupled device camera is used to acquire the reflected light from the subject along with a
2-D intensity image. The 3-D data is generated using triangulation process, which yields the
depth information. Laser beam based scanners offer the highest capturing range (∼8 feet) as
compared to other acquisition techniques (∼1.6 to 5 feet) (Gökberk et al. 2009). Figure 4
presents the basic principle of a laser beam scanning system for 3-D objects.

123



398 H. Patil et al.

A

X

D

CCD-CameraLaser
Illumination 
source

β

P

Z

Fig. 4 Single spot laser beam depth acquisition

The depth estimation is contingent upon bending of the emitted laser light. The laser
source emits single wavelength laser light to point A in 3-D space at an angle β with the
baseline. The intersection of laser source and baseline is P units away from the origin. The
focal distance of CCD camera is denoted by D (Koch et al. 2012; Koschan et al. 2007). The
3-D position i.e. (X, Y, Z) coordinates of point A are given by (3).

⎡
⎣ X
Y
Z

⎤
⎦ = P

D cot β − x

⎛
⎝ x

y
D

⎞
⎠ (3)

This is an active triangulation technique which involves laser source as an illumination device
and CCD camera as a sensor. The CCD camera is tuned to the wavelength of the transmitted
laser light. The advantages of laser beam scanningmethod are high accuracy due to tight focus
of laser source, illumination robustness due to utilization of a single standard wavelength and
less power requirements (Scopigno et al. 2002). This method is slow in terms of acquisition
speed due to line-wise scanning (Daoudi et al. 2013) of the complete 3-D surface. These
devices are costlier than other 3-D acquisition devices.

2.1.3 Fringe pattern acquisition using structured light

This technique employs special system cameras to capture reflections from facial surfaces
illuminated with fringe patterns. This is an active triangulation technique where the source
projects encoded structured light patterns on theobject to be scanned (Sansoni et al. 2009).The
fringe patterns are predefined for specific angles and coded using structured light. Generally
halogen lights project the structured light pattern on a facial surface (Malassiotis and Strintzis
2005; Breitenstein et al. 2008; Gökberk et al. 2009; Je et al. 2013). These systems are
expensive compared to the stereo acquisition devices and offer more legitimate 3-D facial
surface representation. They are less expensive and also less accurate compared to laser beam
scanner devices. Analogous to stereo acquisition methods, the captured data also depends
upon illumination conditions (Gökberk et al. 2009). Basic principle of this method is depicted
in Fig. 5.
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Fig. 5 Depth estimation using structured light projection

Various types of structured light pattern consist of manifold slits, multi-color (RGB),
pixel-grid and dotted patterns (Sansoni et al. 2009). This technique is advantageous due
to its wide Field-Of-View (FOV), high speed of acquisition, low cost, less computations
for conversion from 2-D to 3-D, computerized control and implementation simplicity. This
technique suffers from haziness due to use of single multi-stripe encoded pattern (Scopigno
et al. 2002; Zhang and Lu 2013).

2.2 3-D face representations

2.2.1 Point cloud representation

Each point on the 3-D point cloud is denoted by {x, y, z} coordinates. Most of the scanners
use this representation (Beumier and Acheroy 2000; Chenghua et al. 2004) in order to store
the captured 3-D facial information. Sometimes texture attributes are also concatenated to the
shape information. In this case, the representation simply becomes {x, y, z, p, q} (Amor et al.
2013), where p and q are spatial coordinates. The disadvantage of this representation is that
the neighborhood information is not available as each point is simply expressed as three/five
attribute feature vector (Gokberk et al. 2008). Figure 6a indicates point cloud representation
for a sample face from the GavabDB 3-D face database (Moreno and Sanchez 2004). Point
cloud is a collection of unstructured coordinates in the 3-D space�3 (Koch et al. 2012). Often
the point cloud data is fitted to a smooth surface to avoid drastic variations due to noise.

2.2.2 3-D Mesh representation

The 3-D Mesh representation uses pre-computed and indexed local information about the
3-D surface (Amor et al. 2013). It requires more memory and storage space than point
cloud representation, but it is more preferred as it is flexible and more suitable for 3-D
geometric transformations such as translation, rotations and scaling. Each 3-D polygonal
mesh is expressed as a collection of mesh elements: vertices (points), edges (connectors
between vertices) and polygons (shapes formed by edges and vertices) (Amor et al. 2013).
3-Dmesh representation for an exemplary face belonging to the GavabDB database (Moreno
and Sanchez 2004) is shown in Fig. 6b. Most of the 3-D mesh data is represented in terms
of triangular mesh elements derived from the 2-D representation in �3 (Koch et al. 2012).
The 2-D texture coordinates are also embedded in the vertex information which is helpful
for construction of accurate 3-D models.
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Fig. 6 3-D face representations. a Point cloud, b 3-D mesh and c depth image representation

2.2.3 Depth image representation

Depth images are also called 2.5D or range image representations (Bowyer et al. 2006).
The Z -axis intensities of facial information are mapped onto a 2-D plane and the model
appears like a smooth 3-D surface represented in terms of intensity. It gives realization of
continuous depth information corresponding to various points on the facial shape. Since it is
a 2-D representation, many existing 2-D image processing approaches can readily be applied
to this representation. Figure 6c indicates a representative 3-D depth image from the Texas
3-D face database (Gupta et al. 2010a). Range image is an orthogonal projection of Z-axis
coordinates on the 2-D image surface where uniform sampling is achieved (Koch et al. 2012).
Range representation needs fewermemory resources as variable sampling is transformed into
uniform sampling. Range images can be readily visualized with gray scale image viewers.
Range images can be converted to 3-Dmesh format as per the application requirements using
the triangulation principle. Figure 6c depicts range image representation of a facial surface
where the nose is closer to the camera. Thus, the nose has highest intensity and the intensity
diminishes with increase in distance from the camera.

As discussed above, the 3-D facial information is usually represented in the three forms
namely; point cloud data, mesh data and depth image representation as shown in Fig. 6a–c.
The difference between the isolated points in point cloud, continuous edges and vertices in
mesh and smooth surface representation in range data followed by their respective computer
screen display shots can be clearly observed.

2.3 Landmark detection and face segmentation

Most of the published 3-D face recognition approaches assumemanually localized and regis-
tered faces in a common coordinate system (Colombo et al. 2006). However, while designing
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Table 1 Various landmark detection approaches

Sr. no. Author
and year

Landmarks
detected

Method Initial pose:
frontal?

Initial pose:
non-frontal?

1 Koudelka et al. (2005) NT, IE Radial symmetry maps Yes No

2 Malassiotis and Strintzis
(2005)

NT Principal curvature Yes Yes

3 Colombo et al. (2006) NT, IE Mean and Gaussian
curvature maps

Yes Yes

4 Conde et al. (2006a) NT, IE Mean curvature maps Yes Yes

5 Xu et al. (2006b) NT Effective energy Yes Yes

6 D’Hose et al. (2007) NT, OE Gabor wavelets Yes No

7 Segundo et al. (2007) NT, IE Mean and Gaussian
curvature maps

Yes Yes

8 Breitenstein et al. (2008) NT Single signature Yes Yes

9 Dibeklioglu et al. (2008) NT Principal curvature Yes Yes

10 Yi and Lijun (2008) NT, IE 2-means clustering Yes Yes

11 Romero and Pears (2009) NT, IE Cylindrically Sampled
RBR histograms
(CSR)

Yes Yes

12 Chew et al. (2009) NT Effective energy Yes Yes

13 Nair and Cavallaro (2009) NT, IE, OE Shape index and
curvedness index

Yes Yes

14 Szeptycki et al. (2009) NT, IE, OE Mean and Gaussian
curvature maps

Yes No

15 Peng et al. (2011) NT 2-D profiles based Yes Yes

16 Mohammadzade and
Hatzinakos (2013)

NT Eigen-nose space Yes Yes

NT nose tip, IE inner eye-corners, OE outer eye-corners

a complete face recognition system, automated detection and registration of human faces
is essential. Facial landmarks detection plays a vital role in automatic face localization and
registration process. Facial landmarks consist of a set of fiducial points defined by the anthro-
pometric studies (Farkas 1994), which can be used for face detection, face recognition, facial
expression recognition and pose estimation applications (Xi et al. 2011). Many approaches
utilize landmarks (such as nose tip and eye corners) to segment a 3-D facial surface from
background and other body parts. The nose tip is invariant to most expression changes and it
is noticeable for a broad range of non-frontal poses (Malassiotis and Strintzis 2005). Various
methods for landmark(s) detection on 3-D facial surfaces are surveyed for landmarks namely
the nose-tip (NT), inner eye-corners (IE) and outer eye-corners (OE) which are also known as
PRN (pronasal), EN (endocanthion) and EX (exocanthion) points by anthropometric experts
(Vezzetti and Marcolin 2012). In Table 1, we enlist the prominent landmark localization
approaches along with the detected landmarks and pose flexibility. This subsection is fur-
ther dedicated to the discussions and our comments on the work summarized in Table 1.
A frontal 3-D face registration can be accomplished with only one landmark by means of
the iterative closest point (ICP) algorithm, whereas, for non-frontal faces, location informa-
tion of minimum three landmarks is essential (Colbry et al. 2005; Vezzetti and Marcolin
2012).
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The 3-D surface derivatives play a vital role in computation of the mean (H) and Gaussian
(K ) curvaturemaps.A facial surface is partitioned into concave, convex and saddle regions by
employing signs of theHKmaps for segmentation. The nose tip and eye corners are searched
within the segmented regions by applying various thresholding algorithms. Colombo et al.
(2006) detected the eyes in the concave segmented HK maps (Hmin and Kmin) and a nose
tip around peak values of the mean curvature map (Hmax). However, the experimentation
is performed on a small dataset. Detection rate of the reported approach is affected by self-
occlusions and camouflage. Another method to detect inner eye corners and nose tip was
proposed by Conde et al. (2006a). The regions with high values of mean curvature (H)

were segmented into three different sets with clustering. Each cluster contained a feature
point corresponding to nose tip and inner eye corners. This approach further employed SVM
classifier for feature point localization. An advantage of this approach is that it can be directly
applied on a 3-D mesh, acquired using laser beam scanning. To locate the nose tip and inner
eye corners in a range image (Segundo et al. 2007) employed HK classification and median
filtering. Principal component analysis (PCA)was utilized to compute surface normal vectors.
Eye-corners are searched in concave regions and nose tip is searched in convex surface.
Performance of this method is adversely affected when input range image has pose variations
more than ±15◦. In Szeptycki et al. (2009), a coarse-to-fine rotation invariant method was
proposed to detect nose tip and inner eye corners. A generic facial statistical model was built
and fitted to locate outer eye corners and other fiducial landmarks. Though these landmark
detection methods use computationally heavy techniques, in effect they are computationally
moderate due to their selective or guided search techniques.

Principal curvatures based nose tip detection method was proposed in Malassiotis and
Strintzis (2005). An elliptical region of interest was marked on the range image to locate
a nose tip. Nose tip value was detected by considering the regions with large values of
the principal curvatures (k1 and k2). Principal curvatures k1 and k2 are the solutions of the
quadratic equation λ2 + 2Hλ + K = 0 and built upon from the mean (H ) and Gaussian (K )
maps of the facial surface. This method is robust for large variations in pose and expressions.
In Dibeklioglu et al. (2008), the surface curvature maps were computed as a part of pre-
processing of a range image. Then, a difference map between Gaussian and mean curvatures
was transformed to logarithmic scale for nose tip localization. The eye corners clustering
based approach was proposed in Yi and Lijun (2008) for localization of nose tip and inner
eye corners. The possible inner eye candidate’s vertices were segmented from the rest of
the 3-D mesh using concave regions of principal curvature based maps. The authors have
employed the 2-means clustering method for separation of left and right eye corners. A flat
surface was fitted to the candidate clusters using least summation distancemethod. A point on
the positive side of the flat surface with maximum distance from clusters was marked as nose
tip. Performance of the surface curvature based approaches is sensitive to the noise present
in facial range images. Statistical shape based point distribution model (PDM) was presented
for the extraction of nose tip and eye corners in Nair andCavallaro (2009). Principal curvature
based shape index and curvedness index maps were computed and candidate landmarks were
located using regional segmentation. Furthermore, they fitted the PDM model for accurate
registration of 3-D meshes. Performance of this method suffers when the mesh contains
self-occlusions. Due to curvature based approaches, local segmentation and the simple 2-
means classification technique, these approaches are computationally efficient. However, the
performance is sensitive to noise and mesh occlusions.

In Koudelka et al. (2005), initially, the positively and negatively affected pixels are located
using gradient operator on pixels of a range image. Subsequently, a radial symmetry plane
is computed to obtain the radial symmetric features. A nose tip was declared within large
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positive values and eye corners were localized around dark intensities of the radial sym-
metry map. Effective energy based hierarchical filtering method was proposed in Xu et al.
(2006b) to locate a nose tip. The values of neighboring effective energy, mean and variance
of neighboring pixels were fed to the support vector machine (SVM) classifier. This method
is suitable for frontal, viewpoint invariant and rotated facial range images. It requires SVM
based classification which makes it computationally heavy (Chew et al. 2009). To address
this issue, Chew et al. (2009) proposed a direct approach based on the effective energy and
avoided the use of SVM classifier. The effective energy for a pixel P with its neighborhood
pixels Pn for an angle between normal vector for P and (Pn − P) was computed using
E = ‖Pn − P‖ · cos(θ). The surface pixels P with negative effective energy (E) were
marked as potential candidates for nose tip location. This approach does not require initial
training unlike (Xu et al. 2006b) and is computationally efficient.

In D’Hose et al. (2007), the authors pre-processed range images to cluster characteristic
features (including the nose tip and eyes) using theGaborwavelets. The segmented areaswere
refined using iterative closest point (ICP) algorithm for fine alignment and detection. The
pre-processing stage is computationally efficient since only horizontal and vertical directions
for Gabor filters were employed. Though this algorithm employs the computationally heavy
ICP algorithm, it is applied only on small tentative feature regions inwavelet domain resulting
in minimum computational requirement.

A 3-D shape signature based approach was proposed in Breitenstein et al. (2008). The 3-D
location of a pixel along its orientation was examined and segmented to check if it has the
maximum value compared to its neighbors. These local directional maximas were combined
to form a sparse aggregated signature map. The cell located at the center of the signature map
was denoted as nose tip. This approach is robust to partial occlusion, expression variations and
vast range of poses such as±90◦ yaw,±30◦ roll and±45◦ pitch, though it is computationally
heavy due to localization of a pixel in 3-D space in presence of the said pose variations.

In Romero and Pears (2009), the authors proposed a graph matching based method to
detect eminent landmarks. The regional distribution of neighborhood pixels was conceptual-
ized as a pattern of sample points around concentric circles. These patterns were encoded as
cylindrically sampled radial basis function (CSR) histograms. The graph edges were effec-
tively encrypted into these descriptors and utilized for detection of eye corners and nose tip.
Like most graph-based techniques, this approach is computationally light.

A face profile based approach for detection of nose tip in range images or uniformly
sampled point clouds was proposed in Peng et al. (2011). Initially, 61 left-most (min group,
[−90◦,−3◦]) and right-most (max group, [0◦, 90◦]) 2-D profiles were computed from the
input facial scan. The possible nose tip candidates were located using the proposed perimeter
difference parameter. This method does not involve any computationally complex oper-
ations and is independent of any statistical model or training and hence demands fewer
computations.

In Mohammadzade and Hatzinakos (2013), the authors constructed an Eigen-nose space
using a training set of nose regions. The pixel in the input facial scan is marked as a nose tip if
the mean square error between a candidate feature vector and an Eigen nose-space projection
is less than a predefined threshold. Additionally, to reduce computational complexity, the
authors have proposed a low-resolution wide-nose Eigen space, which speeds up the nose
tip detection process. This reduces the otherwise heavy computational requirement of the
original algorithm.
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2.4 Registration techniques

Face registration means transforming a probe (query) face such that it is aligned with other
faces in the gallery (database). Face registration is an essential step prior to feature extraction
and the matching of two facial surfaces. Various algorithms to perform registration between
two facial representations are briefed in the following subsections.

2.4.1 Iterative closest point (ICP) algorithm

Most of the 3-D face recognition systems introduced so far use the iterative closest point (ICP)
algorithm (Besl and McKay 1992) for registration and matching of 3-D facial surfaces. The
ICP algorithm transforms a 3-D point cloud shape ‘M’ for alignment with another 3-D point
cloud shape ‘N ’. A series of incremental transformations are performed repeatedly. During
each iteration step, the mean square error (MSE) between both point clouds is computed. The
algorithm converges when the value of theminimumMSE is achieved based on the registered
3-D shape information. The ICP algorithmdoes not depend on extraction of any local features.
Thus, ICP essentially is a semi-blind 3-D shape matching algorithm. ICP based registration
is performed either between a probe and set of gallery faces or between a probe and average
face model. A few methods that use ICP algorithm or it’s variants for face registration are
presented in Yue et al. (2010), Cai and Da (2012), Störmer and Rigoll (2008), Alyuz et al.
(2010, 2008, 2012) Al-Osaimi et al. (2009), Ben Amor et al. (2008), Cook et al. (2004),
Xueqiao et al. (2010a, b), Abate et al. (2006), Colombo et al. (2008), Kakadiaris et al. (2007),
Amberg et al. (2008), Xiaoguang et al. (2006), Queirolo et al. (2010), Faltemier et al. (2008),
Li and Da (2012), Ballihi et al. (2012) and Russ et al. (2005). A disadvantage of ICP-based
registration is that it is prone to converge at a local minimum point and requires sufficient
initialization for facial surface alignment (Yi and Lijun 2008). Thus, predefined localized
landmarks enhance the accuracy of initial correspondence between the two point clouds
(D’Hose et al. 2007; Nair and Cavallaro 2009). ICP based templates require large amount of
storage space and it is comparatively slow in terms of registration time (Spreeuwers 2011).
Nonetheless, it has been used by many researchers due to its robust registration performance.

2.4.2 Spin images

Spin images-based global registration method maps every point on 3-D facial surface to an
oriented point p with surface normal n forming a 2-D basis (p, n) (Johnson and Hebert 1998,
1999). Point p acts as origin resulting in a dimensionality reduction (x, y, z) → (α, β) using
a 3-D to 2-D transformation (Johnson and Hebert 1999). The cylindrical coordinates (α, β)

stand for the perpendicular span through a surface normal and elevation respectively (Johnson
andHebert 1999). A spin image is analogous to a distance histogram and represents neighbor-
hood around a specific oriented point with associated directions. Spin image representation
is used for face registration in Conde et al. (2006a), Kakadiaris et al. (2007) and Conde and
Serrano (2005). The spinmap S0(x) is calculated using (4). The spin image based registration
is robust to partially occluded or noisy 3-D surfaces (Johnson and Hebert 1999). Compared
to conventional ICP, this approach is computationally lighter due to dimensionality reduction
in the form of the said transformation from 3-D to 2-D space.

S0(x) → (α, β) =
(√

‖x − p‖2 − (n · (x − p))2, n · (x − p)

)
(4)
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2.4.3 Simulated annealing

Simulated annealing is an iterative stochastic approach which looks for better neighbor solu-
tion while matching two range images. Parameters for translation and rotation are treated
as a transformation vector. Initially, centers of mass for two facial images are aligned. The
M-estimator sample consensus (MSAC) measure (Torr and Zisserman 2000) and MSE are
minimized for coarse alignment. The fine alignment is attained based on surface interpene-
tration measure (SIM) distance (Queirolo et al. 2010). This approach is employed for face
registration in Kakadiaris et al. (2007), Queirolo et al. (2008) and Bellon et al. (2006). The
SIM is preferred over MSE for quality evaluation of two registered range images (Queirolo
et al. 2010). Due to the statistically heavy stochastic search algorithms, this technique is com-
putationally inefficient. However, it has minimum tendency to get trapped in local maxima
or minima. This ensures a correct and robust estimation of facial features.

2.4.4 Intrinsic coordinate system

All 3-D point cloud surfaces are transformed to a common reference coordinate system using
a set of localized landmark structures. This system is referred to as the ‘Intrinsic Coordinate
System’ (Spreeuwers 2011). The (x, y, z) coordinates are mapped to intrinsic coordinates
(u, v, w) using vertical symmetry plane, nose tip, and slope of the nose bridge. This approach
is effective in terms of time and computational complexity as all faces in the gallery and the
probe image share a common coordinate system instead of extrinsic alignment with another
3-D facial shape or an average 3-D facial model. The efficiency of registration depends upon
accurate localization of 3-D facial landmark structures.

2.5 Feature extraction and matching

After facial shape registration, most approaches extract significant features and match them
using metrics such as the Euclidean distance (Heseltine et al. 2004; Mpiperis et al. 2008;
Berretti et al. 2010; Gordon 1992; Gupta et al. 2010b), Hausdorff distance (Koudelka et al.
2005; Russ et al. 2005; Yeung-hak and Jae-chang 2004; Achermann and Bunke 2000; Gang
et al. 2003), and angular Mahalanobis distance (Amberg et al. 2008) against the stored
set of feature vectors for gallery faces. Major feature extraction algorithms, dimensionality
reduction techniques and classifiers are discussed below.

2.5.1 Gabor wavelet filters

The Gabor kernel functions ψ j (�x) are formulated as the Gaussian modulated complex expo-
nentials. Convolution of a range image I (�x) with the family of Gabor functions results in
directional Gabor wavelet subbands (Moorthy et al. 2010). The family of linear bandpass
Gabor functions is obtained using variations in parameters of mother Gabor kernel ψ j (�x).
The human brain’s primary visual cortex is responsible for extraction and computation of
perceptual data (Tai Sing 1996). It is advantageous to employ the Gabor wavelet filters since
theymodel the receptive fields of visual cortex (Tai Sing 1996;Moorthy et al. 2010; Daugman
1985). The Gabor wavelet functions typically have oriented localization properties which are
essential for robust feature extraction. The resultant Gabor coefficients obtained after filtering
a range image with oriented Gabor wavelets are known as Gabor features. The Gabor wavelet
filters based feature extraction techniques on range images are used for precise 3-D feature
extraction (Moorthy et al. 2010; Jahanbin et al. 2008; Xueqiao et al. 2010b). Gabor wavelets
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yield precise features in transform domain. The computational complexity depends upon the
level of Gabor wavelet transformations used in the specific application.

2.5.2 Local binary pattern (LBP)

Local binary pattern (LBP) approach is introduced byOjala et al. (2002) for feature extraction
from spatial 2-D texture images. A set of binary values is obtained upon comparison of
each pixel value with intensities of its 3 × 3 neighboring pixels. These binary values are
subsequently encoded to a decimal number which represents the LBP value for a particular
pixel. A histogram of such LBP values acts as a discriminant feature vector and is widely
used by face recognition researchers. A histogram of Multi Scale Local Binary Pattern (MS-
LBP) based on LBP is introduced by Di et al. (2010) where, feature information is extracted
using the MS-LBP histogram and employed for 3-D face recognition. Huang et al. (2006)
realized that range images of two different persons may have same depth variations and the
2D-LBP is not suitable to distinguish them. Based on the inference that the exact values
of differences may be different, they have proposed the extended 3D-LBP (Di et al. 2012)
for feature detection in 3-D scans. The LBP representation is in integer numbers and hence
LBP is a computationally effective technique compared to other feature detection techniques
demanding heavy floating point computations.

2.5.3 Markov random field model

Ocegueda et al. (2011) proposed the Markov random field (MRF) model-based approach
for extraction of discriminant features from 3-D faces. The MRF model is based on com-
bination of probability and graph theory and is widely used for solving image processing
and computer vision related complex problems such as face recognition, image denoising,
image segmentation, image reconstruction and 3-D vision. TheMRFmodel considers mutual
dependencies amongst label field of range image pixels. The MRF model is based on the
concept of near-neighbor dependence which is commonly observed in most of the range
images. The discriminant features are selected based on Posterior marginal probabilities of
the MRF model. This approach is computationally efficient due to involvement of graph
theory and computation of Markov random probabilities based on a small number of prior
event probabilities.

2.5.4 Scale invariant feature transform

Scale invariant feature transform (SIFT) detects landmarks using local extrema in the scale-
space difference of Gaussian (DOG) function (Lowe 2004). SIFT features are invariant to
orientation and scale. Di et al. (2010) applied the SIFT transform on shape index (SI) maps
and multi-scale local binary pattern (MS-LBP) depth maps. It is also utilized by Berretti
et al. (2013) for feature extraction on multi-scale extended local binary pattern (MS-eLBP)
maps. SIFT is extended for feature extraction on 3-D mesh representation using MeshSIFT
algorithm (Maes et al. 2010) and employed inBerretti et al. (2013), Smeets et al. (2011, 2013).
Inherently, SIFT offers scale and rotation invariant features at moderate computational costs.
However, application of SIFT on 3-D data demands considerable computational resources
in terms of memory and computational speed.
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2.5.5 Local shape patterns

The local shape pattern (LSP) computes differential structure factor (similar to LBP) as well
as orientation factor (similar to SIFT) on a 3×3 neighborhood for a range image (Huang et al.
2011). The LBP is an established technique for efficient feature vector generation from facial
images. The top-left first four pixel values are subtracted from their opposite pixels on the
same diameter. The binary values are obtained in a way similar to the LBP. The 4-bit code is
then converted to a decimal code to form an orientation pattern. The LSP combines the LBP
with orientation information, which results in obtaining a more discriminant feature vector
for 3-D face recognition. This approach is computationally heavy compared to LBP but it
is lighter compared to transformation techniques like Gabor wavelets or Markov random
fields.

2.5.6 Haar-like features

Viola and Jones (2001) developed this Haar-like feature detection algorithm. This technique
deals with neighboring regions, adds up intensities in each region and computes difference
between sums from each region. For a range image, Haar-like features calculate disconti-
nuities in depth values. Mian (2011) computed Haar-like features on range images and its
gradients. The Haar-like features are employed for description of characteristics of the signed
shape difference maps (SSDM) (Yue et al. 2010). Due to the use of computationally simple
Haar-like features, this algorithm is computationally very fast. This is also one of the most
popular online available algorithms for real time face detection and tracking.

Major dimensionality reduction and feature classification techniques used by 3-D face
recognition approaches are enlisted in Table 2.

Principal component analysis (PCA) (Turk and Pentland 1991) is a popular technique for
dimensionality reduction of feature vectors. The procedure finds a set of orthonormal basis
vectors which optimally represents the feature vector data. It transforms the original feature
data vectors into a lower dimensional subspace. The new coordinate system forms the axes in
such a way that they are a linear combination of input data vectors. The first component with
maximum variance is denoted as the principal component. The second component is perpen-
dicular to primary axis of principal component and indicates the direction of second highest
statistical variance from the original data and so forth. PCA is computationally complex
due to computation of multiple orthogonal Eigen-space vectors. Linear discriminant analysis
(LDA) (Belhumeur et al. 1997) projects high dimensional feature vectors into a low dimen-
sional subspace and computes an optimal linear combination of components that maximize
intra-class distance and minimize inter-class distance simultaneously. The true reconstruc-
tion error rate of LDA is a parametric function of Gaussian distribution of classes. LDA is
based on PCA and hence requires more computations than PCA but yields a smaller but more
robust feature vector compared to PCA. Support vector machine (SVM) classifier (Cortes
and Vapnik 1995) is a supervised machine learning method which is popular for addressing
binary classification problems. SVM attempts to place a decision boundary which highly
separates the feature vectors of genuine class from imposter class. The performance of SVM
classifier is notably robust to sparse and noisy input feature vectors. During classification
phase, they isolate a training data using a hyper-plane which is maximally separated from
binary labeled classes. If the linear separation between the classes is not feasible, SVMs uti-
lize kernel based methods to isolate the classes with non-linear mapping in the feature vector
space. The SVM is extended to multi-class domain for face recognition, object classification
and fingerprint recognition related problems. The SVM classifier for multiclass domain is
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Table 2 Major dimensionality reduction and classification methods

Sr. no. Method Purpose Used by

1 Principal component analysis
(PCA) (Turk and Pentland
1991)

Dimensionality reduction Heseltine et al. (2004), Russ
et al. (2006), Chang et al.
(2006), Störmer and Rigoll
(2008) and Spreeuwers
(2011)

2 Linear discriminant analysis
(LDA) (Belhumeur et al.
1997)

Dimensionality reduction Gupta et al. (2007),
Kin-Chung et al. (2007),
Alyuz et al. (2010), Sala
Llonch et al. (2010),
Heseltine et al. (2008), Lei
et al. (2013) and
Mohammadzade and
Hatzinakos (2013)

3 Support vector machine
(SVM) (Cortes and Vapnik
1995)

Classification Conde and Serrano (2005),
Hyoungchul and
Kwanghoon (2006),
Srivastava et al. (2006),
Kin-Chung et al. (2007),
Mousavi et al. (2008),
Zhang et al. (2011), Ballihi
et al. (2012) and Lei et al.
(2013)

4 Nearest neighbor (NN)
(Cover and Hart 2006)

Classification Hesher et al. (2003), Samir
et al. (2006), Jahanbin et al.
(2007), Xueqiao et al.
(2010b), Alyuz et al. (2010)
and Yue et al. (2010)

computationally very heavy. The nearest neighbor (NN) classifiers are subdivided into 1-NN
and k-NN classifiers (Cover and Hart 2006). The 1-NN classifiers allocate the class label
of its nearest neighbor to a queried test feature point. The k-NN classifiers denote a class
label to queried test feature point based on majority voting between the classes of k-nearest
neighbors. The nearest neighbor classifiers are computationally very light. However, their
performance depends upon the used distance measure.

2.6 Performance measures

The performance of a 3-D face verification/identification system is examined in terms of
the percentage of false decisions it gives during verification/identification process. While
comparing a probe face (query) with a claimed or possible identity (a face from gallery data),
a system is observed for two types of errors. They are known as false reject errors and false
accept errors. False reject error appears when a genuine face is compared with a possible
or claimed identity and similarity score (Z) is lower than predefined threshold (λ), and the
genuine person is not recognized by the system. False accept error arises when fake/imposter
probe is compared with a possible or claimed gallery face and similarity score (Z) resulting
from the match is higher than predefined threshold (λ) and the wrong person is authorized
as established identity (Phillips et al. 2010). Figure 7 portrays the errors that occur during
face verification process.
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Fig. 7 False reject and false accept errors during face verification process

False accept rate (FAR) is the percentage of fake (imposter) probes which have similarity
score greater than predefined threshold. False reject rate (FRR) is the percentage of genuine
probes which have similarity scores less than predefined threshold. When FRR versus FAR
is plotted on logarithmic scale or its variants, emanating graph is called receiver operating
characteristic (ROC) curve. A point on ROC graph, where FRR and FAR are equal, provides
the equal error rate (EER) point which is a single-valued error metric (Jain et al. 2008) for the
rejection rate. For an accurate face recognition algorithm, the FRR, FAR and EER should be
as minimum as possible. The performance of identification system is evaluated through the
cumulative match characteristics (CMC) curve (Jain et al. 2008). The CMC curve is a plot
between ranks and recognition rates which contains Rank-1 recognition rate (R1-RR) that
implies the first best matching rate when a probe is compared with all gallery faces (Smeets
et al. 2012). These performance measures offer robustness to the performance benchmarking
of the face recognition algorithms.

3 3-D face databases

For the development of a high quality robust face recognition algorithm, its testing onmultiple
large datasets which have inherent complexities similar to real life situations is a must. After
the availability of 3-D face scanners and powerful digital computers capable of processing
huge data at a time, many 3-D face databases have become available for research. Various
publicly available 3-D face databases are enlisted in Table 3.

The 3DRMA database is captured at Royal Military Academy, Belgium using a structured
light based 3-D face scanner. Initially, the camera and structured light projectors are aligned
and calibrated in order to reduce the relative errors. They have acquired facial information
of 120 different subjects. The 3-D facial surface is extracted through labeled stripe detection
method (Beumier and Acheroy 2000). The FSU 3-D database is developed at Florida State
University, FLandcontains facial images of 37distinct persons in amesh format. Thedatabase
is acquired using the Minolta Vivid 700 laser scanner (Hesher et al. 2003). The GavabDB
database consists of mesh surfaces of 61 individuals. The age variation of the subjects is in
between 18 and 40. They have acquired both intrinsic (pose, expression, occlusion) as well
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Table 3 Prominent 3-D face databases

Sr. no. Database
and ref.

Number of
acquisitions

Data acquisition
method

2D intensity
image size

1 3DRMA (Beumier and
Acheroy 2000)

720 Structured light 768 × 576

2 FSU (Hesher et al. 2003) 222 Laser scanner N.A.

3 GavabDB (Moreno and
Sanchez 2004)

427 Laser scanner N.A.

4 FRGC v 2.0 (Phillips et al.
2005)

4007 Structured-light 640 × 480

5 BU3D-FE (Lijun et al. 2006) 2500 Structured-light 512 × 512

6 CASIA (Xu et al. 2006a) 4059 Laser scanner 640 × 480

7 FRAV3D (Conde et al.
2006b)

1696 Laser scanner N.A.

8 ND 2006 (Faltemier et al.
2007)

13,450 Laser scanner N.A.

9 MSU (Xiaoguang and Jain
2006)

533 Laser scanner N.A.

10 ZJU-3DFED (Wang et al.
2006)

360 Structured-light N.A.

11 IV2 multimodal
(Petrovska-Delacretaz et al.
2008)

2880 Laser scanner 780 × 576

12 Bosphorus (Savran et al.
2008)

4666 Structured-light 1600 × 1200

13 University of York (Heseltine
et al. 2008)

5250 Stereo acquisition N.A.

14 BJUT-3D (Bao-Cai et al.
2009)

500 Laser scanner 489 × 478

15 Texas 3-D (Gupta et al.
2010a)

1149 Stereo acquisition 751 × 501

16 UMB-DB (Colombo et al.
2011)

1473 Laser scanner 640 × 480

17 3D TEC (Colombo et al.
2011)

428 Laser Scanner 480 × 640

18 EURECOM Kinect (Huynh
et al. 2013)

∼900 Structured-light 256 × 256

as extrinsic variations (varying background, scale, lighting effects) (Moreno and Sanchez
2004). The Face Recognition Grand Challenge V 2.0 (FRGC V 2.0) database is a part of a
protocol specially designed to access the increase in recognition performance by different
state-of-the-art algorithms (Phillips et al. 2005). The 3-D data is captured under controlled
illumination conditions. The 3-D shape and the corresponding texture image of a specific
person were acquired with Minolta Vivid 900/910 scanner. The training partition of the
dataset consists of 943 scans whereas the validation partition contains 4007 3-D scans for
466 individuals. Experiment 3 of FRGC challenge focuses on 3-D face recognition where,
both training and query faces are 3-D facial surfaces. The BU3D-FE (Binghamton University
3D Facial Expression) database specifically incorporates the expression variation challenges
for 3-D face recognition (Lijun et al. 2006). The various expressive faces of 100 subjects were
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acquired with the 3DMD digitizer which stores a range image as well as mesh structure of
the person in front of a projection beam. CASIA 3-D face database is collected at the Chinese
Academy of Sciences Institute of Automation (Xu et al. 2006a). It contains facial images of
123 subjects, captured with laser based Minolta Vivid 910 scanner. The advantage of this
database is that it not only contains expression and pose variations but also combinations of
poses under different expressions. It also involves scans with illumination variations. Face
Recognition and Artificial Vision group acquired the FRAV3D database which consists of
facial scans of 105 subjects (Conde et al. 2006b). Minolta Vivid-700 laser scanner was used
for capturing 3-D mesh and texture information. ND 2006 database is a superset of FRGC v
2.0 database (Phillips et al. 2005), acquired at the University of Notre Dame (Faltemier et al.
2007). The facial scans of 888 individuals were captured using Minolta Vivid 910 scanner
(Konica 2013). The output of this laser based scanner consists of color texture along with
3-D facial range images. Michigan state university (MSU) has developed a database which
contains simultaneous expression and large pose variations. They have acquired the range
scans of 90 subjects. Since expression and pose variations are imposed simultaneously, face
recognition using this database is challenging and complex (Xiaoguang and Jain 2006). The
ZJU-3DFED database consists of 3-D facial scans of 40 individuals captured using structured
light based Inspeck 3-DMega capturor sensor at the Zhejiang University (Wang et al. 2006).
Lack of pose variations is the main limitation of this database. The ‘Identification par l’Iris et
le Visage via la Video’ (I V 2) multimodal database (Colineau et al. 2008) involves 3-D faces
as well as 2-D videos, audios and iris data of 365 subjects. 3-D facial surfaces are captured
using Konica Minolta Vivid 7000 sensor. Bosphorus 3-D face database is acquired using
Inspeck Mega Capturor-II scanner at the Bogazici University (Savran et al. 2008). The shape
and texture data were captured within less than a second per subject. The raw point cloud data
of 105 subjects was processed for noise removal using median and Gaussian filters. It also
offers manual marking of 24 facial landmarks like chin middle, eye corners for each facial
scan. Researchers from the University of York (Heseltine et al. 2008) acquired 3-D facial
data with help of two cameras using stereo based modeling technique. In addition, another
camera mapped the captured 2-D texture information onto the 3-D mesh model. Beijing
University of Technology gathered BJUT-3D database which contains 3-D mesh and color
texture data of 500 subjects. The database is acquired with the Cyberware 3030 RGB/PS
3-D scanner, which stores texture along with shape data for each facial scan. In order to
avoid occlusion due to hair, all subjects were asked to wear a swimming cap. Smoothing
has been performed for the sake of removing noise from the captured data. Hole filling
filters were operated on the facial scan data in order to deal with missing parts. Finally, after
preprocessing, the facial region from the redundant parts has been separated and stored as a
part of BJUT-3D database (Bao-Cai et al. 2009). The range images of 118 subjects along with
corresponding 2-D color textures were acquired at the University of Texas at Austin using
stereo based scanning system (Gupta et al. 2010a). Locations of 25 anthropometric fiducial
landmarks are included along with the database (Gupta et al. 2010b) which is a unique
feature of this database. UMB-DB 3-D face database consists of frontal facial scans of 143
subjects acquired using Minolta Vivid 900 laser scanner at university of Milano Bicocca
(Colombo et al. 2011). This database is useful for the evaluation of algorithm performance
under unconstrained scenarios since they have captured naturally occurring occlusions. The
3D-TEC dataset is a subset of the twins’ days dataset captured with Minolta Vivid 910
scanner during the twin’s days festival in Twinsburg, Ohio. It contains 3-D facial scans of
107 twins acquired with neutral and smiling expressions (Vijayan et al. 2011). The RGB
color and depth data of 52 subjects is acquired using Microsoft’s Kinect camera (Shotton
et al. 2013) at the EURECOM institute. The data was captured during two sessions separated
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Table 4 Expression specific 3-D face databases

Sr. no. Name Expressions

1 FSU Neutral, smile, scared, angry, squint, frown

2 GavabDB Neutral, smile, accentuated laugh, random gesture

3 FRGC v 2.0 Neutral, surprise, happy, puffy cheeks, anger, frown

4 BU3D-FE Neutral, angry, fear, sadness, disgust, happiness, surprise

5 CASIA Neutral, smile, eyes closed, anger, laugh, surprise

6 FRAV3D Neutral, smile, open mouth, and gesture

7 ND2006 Neutral, surprise, sadness, disgust, happiness,
undetermined

8 ZJU-3DFED Neutral, smile, surprise, sad

9 IV2 multimodal Neutral, surprise, happy, eyes closed, disgust

10 Bosphorus Neutral, happy, anger, disgust, fear, sadness, surprise

11 University of York Neutral, eyes closed, eyebrows raised, happy, anger

12 Texas-3D Neutral, smile/talk with open/closed eyes and/or
open/closed mouth

13 UMB-3D Neutral, smile, angry, bored

14 3D-TEC Neutral, smile

15 EURECOM Kinect Neutral, smile, open mouth

with half a month’s difference. The manual annotation information is also available for six
fiducial landmarks. The 3D expression variations are captured by various databases enlisted
in Table 4. These databases can also be used for 3D expression recognition.

From Table 4, it is evident that the FSU, FRGC v 2.0, BU3D-FE, ND 2006 and Bosphorus
are the databaseswhich contain large variations amongst facial expressions and can be utilized
for benchmarking of identification/verification performance of a novel algorithm.

As indicated in Table 5, the CASIA and Bosphorus database captured stepwise pose
variations. These databases are most challenging for the automatic landmark localiza-
tion and normalization algorithms. The FRAV3D database contains severe Z -axis pose
variations which also severely affect the performance of real time 3-D face recognition
systems.

Table 6 enlists various occlusions available in publicly accessible 3-D face databases. The
most common intrinsic occlusions that affect the performance of face recognition systems
are due to hair, randomly posed hands that cover facial region and eyeglasses. The occlusion
invariant face recognition system should address the extrinsic occlusions like missing facial
data due to hat, scarf, paper and eyeglasses. It should be noted that the Bosphorus dataset
appears with all the three constraints. Thus it should be imperative for the validation and
benchmarking of novel 3-D face recognition algorithms.

4 Expression invariant 3-D face recognition

3-D face recognition is comparatively robust to illumination and pose variations than 2-D
image-based face recognition. However, owing to its non-rigid nature, the captured 3-D faces
deform with expression variations which is a prominent challenge for recognition from the
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Table 5 Pose specific 3-D face databases

Sr. no. Name Pose variations

1 3D RMA Frontal, up/down, limited left/right

2 GavabDB Frontal, left profile, right profile, looking up, looking
down

3 CASIA Frontal, tilt left and right 20◦−30◦, up and down
20◦−30◦, left and right 20◦−30◦, left and right
50◦−60◦, left and right 80◦−90◦

4 FRAV3D Frontal looking up and down in X-axis direction, 25◦
Y-axis right turn, 5◦ Y-axis left turn, small and severe
Z-axis right turn

5 IV2 multimodal Frontal, left and right profile

6 Bosphorus Frontal, right-downwards, right-upwards, upwards,
downwards, slight upwards and slight downwards, or
as represented by exact numerical angles
+10◦,+20◦,+30◦,+45◦, +90◦, −45◦, −90◦

7 University of York Frontal, up, down

8 EURECOM Kinect Frontal, left and right profile

Table 6 Occlusion specific 3-D
face databases

Sr. No. Name Occlusion due to

1 Bosphorus Hair, mouth, eye, eyeglasses

2 UMB-DB Scarf, hat, hands in random positions,
eyeglasses, hair, miscellaneous

3 EURECOM
Kinect

Hand, paper

3-D shape (Samir et al. 2006; Kin-Chung et al. 2007). An obvious approach to take on
this challenge is to identify expression invariant 3-D human face features and use them for
matching. Expression invariant face recognition approaches are broadly classified as holistic
and region based methods. Figure 8 presents the classification of different approaches for
expression invariant 3-D face recognition.

4.1 Local processing based expression invariant approaches

In recent years, there has been a growing interest in using local processing based approaches
for addressing the expression variation problem in 3-D face recognition. The facial sur-
face is divided into different local sub-regions. Instead of matching entire facial surfaces,
face recognition algorithms are applied on smaller facial sub-regions. Generally, those sub-
regions which have lesser effect of expression variations are selected for matching process.
Figure 9 indicates the general steps used in local processing based approaches which address
expression variation problem in 3-D face recognition.

After acquisition of a 3-D probe face, it is segmented to avoid outliers and registered with
the gallery faces. Usually, local patches invariant to expression variations such as the area
surrounding nose, forehead and eyes are extracted and matched with the corresponding local
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Fig. 9 General steps involved in local processing based approaches

patches from gallery faces to find the closest match. Individual matching results are typically
fused to achieve a better rank-1 recognition rate. For performance improvement, various
fusion schemes are proposed in the literature. Major fusion schemes are briefly discussed
below. More details on fusion schemes can be found in Spreeuwers (2011).

4.1.1 Fusion schemes

Sensor level fusion Sensor level fusion combines the raw sensor data during initial stages
of 3-D face recognition system, before feature extraction and matching. The raw sensor
data includes the biometric information of the same person acquired with different sensors.
Sensor level fusion is widely referred in multi-biometrics literature as the image or pixel level
fusion. This fusion scheme belongs to the ‘fusion before matching’ class (Ross et al. 2006;
Li and Jain 2011). For example, multiple calibrated 2-D cameras enable pose invariant face
recognition by forming a 3-D model that can be rotated and translated. The calibration and
compatibility of the 2-D cameras is a must for reconstruction of a reliable 3-D model. As
this scheme achieves fusion at sensor level, it requires minimum computational overhead.

Feature level fusion Feature level fusion involves combination of features extracted from dif-
ferent facial representations of a single subject.Using the results ofmultiple feature extractors,
the ultimate feature vector is derived. If the feature extraction algorithms have compatible
outputs, template improvement or template update schemes are employed to obtain the resul-
tant feature vector (Ross et al. 2006; Li and Jain 2011). Template improvement attains the
removal of duplicate data in feature sets. On the other hand, template update modifies the
resultant feature vector based on certain statistical operations such as mean, variance or
standard deviation. This fusion scheme is among the ‘fusion before matching’ class. If the
feature vectors participating in fusion have incompatible ranges and distributions, feature
normalization is employed to modify the scale and location of feature vectors. Transforma-
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tion techniques such as min-max normalization andmedian normalization are popularly used
in the reported literature for feature normalization (Ross et al. 2006). This requires consider-
able computational overhead as registration and feature detection is to be done individually
for all images.

Rank level fusion During identification experiment, ranks are assigned to gallery images
according to decreasing sequence of confidence. The rank outputs of several subsystems are
fused to construct a consensus rank for each individual probe image. The consensus of ranks
provides eminent information to the decision-makingmodule. The highest-rank, Borda-count
and logistic regression are popular statistical methods to attain the rank level fusion. Rank
level fusion is independent of normalization techniques (Ross et al. 2006; Li and Jain 2011)
and belongs to the ‘fusion after matching’ class. This is computationally complex as rank of
each matching gallery image is to be computed.

Decision level fusion The decisions of individual classifiers are combined in decision level
fusion. Exemplary techniques are behavior knowledge space, AND and OR rules, Bayesian
decision fusion, majority voting, Dempster–Shafer evidence-based method and weighted
majority voting schemes (Ross et al. 2006; Li and Jain 2011). The behavior knowledge space-
based technique computes a storage map during training that links the decision of individual
classifiers to a single decision. The AND rule declares a match only when all classifiers agree
with the specified template, whereas, OR rule affirms a match when at least one classifier
agrees with the particular template. The Bayesian decision fusion selects a label with highest
probabilistic discriminant function value. Majority voting based technique performs decision
level fusion based on majority of classifiers agreeing with the specific template. If the face
recognition system contains say, M classifiers, then at least g(g = (M/2)+1, (M mod 2) =
0 and g = (M + 1)/2, (M mod 2) = 1) classifiers must agree with the specified template to
declare it as a match. Dempster–Shafer evidence based method adopts belief theory to obtain
more flexible and robust results than the probability based Bayesian decision level fusion.
This method is preferred when the complete knowledge base related to the problem is not
available. Weighted majority voting technique is utilized when classifier efficiency in terms
of accuracy is not similar with other classifiers. The classifier ‘C’ may give more accurate
matching rates and hence assigned more weight in the majority voting scheme. This scheme
belongs to ‘fusion after matching’ class.

Score level fusion It is the combination of the match scores of individual classifiers based
on weighing schemes. Sum, product, max, min and median rules are utilized for performing
score level fusion. The combination of matching scores from various classifiers provides
a new feature vector. The efficiency of score level fusion depends upon similarity metrics,
probability distributions and numerical ranges of individual classifiers. It is the most popular
fusion technique for face recognition due to readily available match scores and reduced
processing overheads. Score level fusion scheme belongs to the ‘fusion after matching’
class (Ross et al. 2006; Li and Jain 2011). Score level fusion is computationally heaviest as
matching scores given by multiple classifiers are to be computed for all the gallery images
and fused for the final decision.

4.1.2 Approaches

The first systematic study of 3-D face recognition based on local processing was carried out
by Chang et al. (2006). After segmentation and pose normalization, the circular regions in
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the vicinity of the nose tip are selected and registered with a generic 3-D face model. Three
regions namely: (i) entire nose region, (ii) interior nose region and (iii) circular region around
the nose tip are extracted as small probe surfaces and matched with each region in gallery
using the ICP algorithm. Score level fusion is performed based on sum, product andminimum
rules. The neutral probe to neutral gallery identification rate is 97.1% and expressive probe to
neutral gallery identification rate is 87.1%.Although they have achieved 97.1% identification
rate, the probe images in the real life scenario may comprise of expressive faces. It is stated
that the performance may increase with extra local patches in the fusion process at the cost
of increased computations.

Kin-Chung et al. (2007) proposed linear discriminant analysis (LDA) and linear support
vector machine (LSVM) fusion based 3-D face recognition system by capturing local char-
acteristics frommultiple regions as summation invariants. From a single frontal facial image,
ten sub-regions and subsequent feature vectors are extracted. Further, summation invariants
are computed with the moving frames (Fels and Olver 1998) technique. LDA and LSVM
based linearly optimum fusion rules provide improved performance. The performance of
reported approach decreases with increasing severity of expressions.

Faltemier et al. (2008) used 28 best-performing sub-regions from a facial surface for 3-D
face recognition. For a probe image, total 38 sub-regions are extracted; a few of them overlap
with each other. Each sub-region from a probe image is matched with a gallery image region
by employing the ICP algorithm. Highest rank-one recognition rate achieved by individual
region matching is 90.2% which promoted the use of the fusion strategy. The modified
Borda-count fusion method attains overall 97.2% rank-one recognition rate. This algorithm
performed well despite incomplete facial information in some of the range images from the
FRGC v 2.0 database.

Boehnen et al. (2009) proposed an alternative method to the ICP based matching. Instead
of comparing whole 3-D point clouds with each other which is time consuming, each face is
represented as a 3-D signature template. The comparison time for such templates is much less
than ICP based approaches. Eight reference regions are described for signature matching. A
novelmatch sum threshold fusion scheme is proposedwhichperformsbetter than themodified
Borda-count technique. The authors have mentioned that the performance can be improved
upon addition of regions with variability of shapes and density. However, identification and
separation of such patches, their processing and fusion for final decision requires considerable
computational power.

Queirolo et al. (2010) developed a new technique for range image registration based on
Simulated Annealing. Subsequently, the elliptical and circular area in the vicinity of the nose,
upper head and the entire facial region are extracted from the facial surface. To match the
range images, surface interpenetration measure (SIM) is utilized as a similarity metric with
sum rule for fusion. If two range images present good interpenetration, it means that, they
are registered correctly and have high SIM values. This approach is quite faster than the
techniques which utilize the ICP based registration with MSE as a similarity metric.

Spreeuwers (2011) proposed an intrinsic coordinate systemdefinedby the nose tip, perpen-
dicular symmetry plane passing through the nose and nose bridge slope for face registration.
Thirty overlapping sub-regions are defined for 3-D face recognition. After matching probe
and gallery images, the majority voting scheme is opted for performing decision level fusion.
This approach performs fastest computation of similarity matrix on FRGC v 2.0 database
using ‘all versus all’ protocol for the verification experiments. Each local classifier has dif-
ferent parameters in order to further improve the performance of the proposed system. In
addition, the fusion is performed using techniques based on majority voting approach. More
advanced fusion and matching techniques may yield enhanced performance.
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Li and Da (2012) used local processing based approach for matching 3-D faces. Initially,
the facial surface is split into six regions which are forehead, left mouth, right mouth, nose,
left cheek and right cheek. Deformation mapping based adaptive region selection scheme is
proposed for automatic region selection. The partial central profile is extracted and compared
against partial central profiles of the other gallery faces to form an initial rejection classifier.
Sub-regions are matched using the ICP algorithm. Subsequently, weighted sum fusion rule
method is employed for overall recognition performance improvement. The approach can
fail when the nose tip localization is incorrect which causes improper normalization leading
to inaccurate matching.

Lei et al. (2013) divided 3-D facial surface into nose, eyes-forehead andmouth regions. By
assuming the nose region as rigid, eyes-forehead region as semi-rigid and mouth as non-rigid
regions, only rigid along with semi-rigid regions are considered to eradicate the effect of
facial expressions. Four fundamental geometric features namely: A: Angle between the two
predefined random points and the nose tip,C : Radius of a circle between the nose tip and two
predefined random points, N : Angle of a line joining predefined points and Z-axis, D: Length
of two predefined points on a facial surface are extracted and subsequently transformed into
a region based histogram descriptor. A machine learning based SVM technique is employed
for classification. The results indicate that feature level fusion performs better than score
level fusion for this experimental scenario. Authors also recommend the fusion of low level
features of the rigid and semi-rigid facial parts. The local region segmentation is performed
with a fixed size binary mask which may not be the best fit for all facial scans. This may
affect the final matching scores and recognition rates.

Tang et al. (2013) proposed a local binary pattern (LBP) based 3-D face division scheme.
The facial surface is divided into 29 blocks which is denoted as a sparse division and another
59 blocks are denoted by a dense division. They have utilized the nearest neighbor based
classifier for 3-D face recognition.

Li et al. (2014) computed the normal vectors to a range image using local plane fitting
technique. Subsequently, the normal component images were extracted for each x, y and z
axis. Each normal component image was subdivided into local patches of fixed size. The
local patches were subjected to multi-scale uniform LBP to obtain multi-scale multi com-
ponent local normal pattern (MSMC-LNP) histograms. Specific weights have been assigned
to different patches depending upon their position in a face to obtain an expression robust
feature vector. The method was tested using three scales and respective normal components.
Weighted sparse representation (W-SRC) classifier has been employed for final classification.
The range image registration is performed with the ICP algorithm which is computationally
heavy. The overall algorithm is computationally heavy.

Regional Bounding SpheRe descriptors (RBSR) were presented for efficient feature
extraction on 3-D facial surfaces (Ming 2015). Initially, the facial surface is divided into
local patches by using shape band algorithm. The local patches involve the forehead, mouth,
left cheek, right cheek, nose, left eye and right eye regions. The RBSR descriptors extracted
from the local patches are transformed with prior weightage into the spherical domain. The
regional and global regression mapping (RGRM) captured the manifold configuration of pre-
weighted RBSR feature vectors. This method is heavily dependent upon robust, consistent
and accurate detection of the local patches.

Different region based approaches reported so far are summarized in Table 7.
As indicated in Table 7, Spreeuwers (2011) has achieved the highest rank-one recognition

rate on FRGC v 2.0 database. This approach requires significantly less time than the other
state-of-the-art methods for registration and matching.
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Fig. 10 General steps in curvature based expression invariant 3-D face recognition

4.2 Holistic approaches

Unlike local processing based techniques, the whole facial surface is considered simul-
taneously for face recognition in holistic approaches. The various methods using holistic
approaches are broadly classified as (i) curvature based, (ii) morphable model based and (iii)
frequency domain approaches.

4.2.1 Curvature based approaches

A few holistic approaches extract curvature information associated with the facial shape.
General steps involved in curvature based approach are presented in Fig. 10.

The curvature information is represented as level or radial curves. Level curves are
extracted at distance ‘X ’ along the depth direction from some reference point. In most of
the approaches, nose tip is the reference point. Figure 11a depicts level curves marked on a
range image. Profile information is recorded by rotating a vertical plane which makes angle
‘Y ’ with the reference plane to derive radial curves. The reference plane passes through a
landmark such as nose-tip. Figure 11b illustrates radial curves marked on 3-D facial surface.
The extracted curves represent the facial surface profile and information in a compact form
and are further converted into a feature template for matching templates of gallery faces.
Since the facial surface is represented by a very compact representation, these approaches
are much appreciated due to less computational requirements during feature computation
and matching.

Samir et al. (2006) represented the facial surface as a height map and extracted the level
curves. Geodesic lengths of facial curves are used as a similarity metric for matching amongst
different curves using the nearest neighbor classifier. This approach is invariant to range image
acquisition noise.

Haar and Veltkamp (2009) used profile and contour (level) curves for face matching.
Profile curves are collected starting from the nose tip. To compare two profile curves, sample
values were examined along the curves. The contour curves are obtained by combining
samples in all profile curves with the same depth value. The number of profiles and contours-
based distance between the corresponding samples for two faces are used as dissimilarity
measure. This technique requires exact nose-tip location for initial pose normalization. Good
recognition rate is achieved subject to the accurate localization of the nose-tip.

Ballihi et al. (2012) used the level sets/circular curves and streamlines/radial curves as
Euclidean distance functions of the 3-D face. The feature extraction is performed using the
machine learning based Adaboost method (Freund et al. 1999). Pair-wise comparison of
facial curves is accomplished using differential geometry tools. Each face is characterized
using a highly compact 3-D face signature which is effective in terms of storage and retrieval
cost. This yields good recognition rates at reasonably less computational cost.
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Fig. 11 a Level curves marked on depth image and b radial curves marked on a 3-D facial surface

Drira et al. (2013) proposed a 3-D face recognition method based on curvature analysis of
a 3-D facial surface. The Riemannian framework is used for analyzing 3-D facial surfaces.
The radial curves are extracted with nose tip as the center. They have compared radial curves
from a probe with gallery faces with the help of elastic shape analysis framework for curves
(Srivastava et al. 2011) of 3-D facial surfaces. The authors have manually located the nose
tip for non-frontal facial surfaces in the Bosphorus and GavabDB datasets. This technique
also achieves good recognition rates subject to accurate localization of nose-tip by a human
operator.

Lei et al. (2014) extracted a set of radial curves fromupper part of a face due to its semi-rigid
nature. A novel feature extraction method called angular radial signatures (ARS) is proposed
which represent a 3-D face into a set of mapped 1-D feature vectors. The 1-D feature vectors
are found to be very close to each other in the feature vector space. Thus, Kernal principal
component analysis (KPCA) is employed to address the linear inseparability issue. TheKPCA
transforms 1-D ARS features to a high-dimensional feature space. Subsequently, a SVM
classifier is trained with a set of KPCA feature vectors. For a probe face, its corresponding
KPCA feature vector is compared against the learned SVM model to find the closest match.
This technique is computationally complex due to the use of SVM and required training.

Table 8 presents the major curvature based approaches published and discussed so far
along with their benchmarking.

As indicated in Table 8, the Riemannian framework based approach (Drira et al. 2013)
is found to be a robust curve based 3-D face recognition technique as it achieves consistent
performance for identification as well as verification experiments on FRGC v 2.0 dataset,
but at a considerable computational cost.
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Fig. 12 Morphable model based approaches

4.2.2 Morphable model-based approaches

The morphable models vary their shape in accordance with an unknown facial shape. They
are also known as deformable models. A general methodology applicable to the morphable
model-based approaches is depicted in Fig. 12.

In order to compare an input probe face with gallery faces, initially a probe is registered
with themorphablemodel to ensure the unified coordinate system.After this alignment, point-
to-point feature correspondence is established between a probe and themorphablemodel. The
3-Dmorphablemodel is fitted to the probe. The deformation parameters/coefficients obtained
after the completion of fitting procedure are encoded into a feature vector or represented
in some suitable form to achieve compact template representation. A morphable model is
built by training samples from a train dataset. Once the morphable model is constructed,
it can be used for matching probes having any alignment, pose, scale or even occlusion.
Major approaches that use the morphable models are enlisted below in Table 9 with their
performance on various databases.

Kakadiaris et al. (2007) proposed a fully automatic expression invariant 3-D face recogni-
tion system based on the morphable models. An annotated face model (AFM) is built using
the average 3-D facial mesh model. After initial alignment, the AFM fitting gives geometric
characteristics of probe face based on elastically deformable model scheme by Metaxas and
Kakadiaris (2002). A difference between probe scan and the AFM is transformed into a 2-
D-geometry image which constitutes encoded information on a 2-D grid sampled from the
deformed AFM. Consequently, the geometry image is transformed to a normal map which
distributes the information evenly amongst three components. The Haar wavelet transform
is applied on a normal map and geometry images. The pyramid transform is employed for
the geometry images. The L1 distance and structural similarity index measure (SSIM) are
used as performance metrics. The transformation to a spin image is computationally heavy
but it facilitates fast matching in terms of system-time (Spreeuwers 2011).

Xiaoguang and Jain (2008) proposed an algorithm to match range images having expres-
sion variations using 3-D facemodelswith neutral expression. A collection of 94 landmarks is
utilized to study the 3-D surface deformation due to specific expressions. Themapping is then
established between the collection of landmarks having neutral expression and a 3-D neutral
model. A comparable deformation is incorporated onto a 3-D neutral model by applying thin
plate spline (TPS)-based mapping. Every probe scan associated with a deformable model is
matched against gallery faces based on the cost function minimization algorithm. The forma-
tion of the user specific deformable model for each person in the gallery is computationally
complex.
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Mpiperis et al. (2008) established the combination of elastically deformable model frame-
work and Bilinear models for jointly addressing the problems of identity invariant 3-D face
expression recognition and expression invariant 3-D face recognition. Based on the elastically
deformable models, bilinear model coefficients are computed. During a test phase, elastically
deformable model is fitted to both probe and gallery face sets to associate point to point corre-
spondences. Euclidean distance is employed as a metric for comparison of probe and gallery
surfaces. In order to build a bilinear model, a large annotated training dataset is needed. The
recognition performance using bilinear models hampers with improper localization of facial
landmarks.

Amberg et al. (2008) introduced a method for expression invariant face recognition by
fitting identity and expression separated 3-D morphable models to a 3-D facial probe shape.
A statistical PCA based 3-Dmorphablemodel is trainedwith a combination of 270 individual
neutral and 135 expressive face components. A variant of the non-rigid ICP is employed as a
fitting algorithm. A 3-Dmorphable model is fit to the point correspondences using systematic
Jacobian and Gauss–Newton Hessian approximations. AngularMahalanobis distance is used
as dissimilarity metric. This approach suffers from a large processing time (40s per probe).

Al-Osaimi et al. (2009) employed the PCA to learn and model expression deformations.
The PCA eigenspace technique is employed because it is computationally effective than other
closed form solutions. The generic PCAdeformationmodel is built using non-neutral faces of
distinct persons. The expression deformation templates are used to eliminate (morph out) the
expressions fromnon-neutral face scan. The ICP basedmatching increased the computational
time complexity.

Haar and Veltkamp (2010) built a strong multi-resolution PCA model using a limited
collection of facial landmarks along with neutral and expression scans. A single morphable
identity model and seven isolated morphable expression models per subject are built. Due
to separate models for identity and expressions, an expression is neutralized and coefficients
of identity model are utilized for face recognition. L1 distance is used as similarity metric
for face matching. This method requires initial manual localization of fiducial landmarks
to build morphable models. Obviously performance of this technique is subject to accurate
localization of the landmarks.

The morphable model-based approach proposed by Haar and Veltkamp (2010) is found
to be the most robust expression invariant approach as they have proved its superiority in
terms of identification and verification rates on the UND, GavabDB, BU-3DFE and FRGC
v 2.0 databases.

4.2.3 Frequency domain approaches

A few approaches extract frequency domain information from 3-D facial shape and perform
3-D face recognition. Figure 13 depicts the overall procedure for frequency domain 3-D face
recognition. The 3-D face is subjected to segmentation and registration algorithms for proper
alignment. Further, the facial data is transformed into frequency domain for discriminant
feature extraction and formation of template vectors. Templates arematched using established
classification algorithms like SVM and nearest neighbor classifier. The frequency domain
based approaches are summarized further on.

Cai and Da (2012) proposed shape filtering approach and utilized manifold harmonics to
split a facial model into three distinct components relevant to their frequency domain rep-
resentation. The multi-scale model separates an expressive facial shape into person-specific
deformation, expression effects and noise based on its energy in frequency domain. The
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Fig. 13 Frequency domain 3-D face recognition scheme

intra-person variations are captured using low frequency components. The depth distance
based method utilized for nose tip localization is not robust for non-frontal poses. Classical
frequency domain approaches are computationally complex.

Peijiang et al. (2013) developed the harmonic feature based approach using energies in
spherical harmonics at different frequencies. Point cloud data is represented as the spheri-
cal depth map (SDM) which acquires both abstract and fine details of a facial surface. The
spherical harmonic features (SHF) were extracted from the SDM. It is convenient to handle
different poses as pose variation is simply a rigid rotation of the fitted sphere. The recognition
performance of this approach degrades when both occlusions and expression variations are
considered simultaneously. This is also computationally complex as occlusions and expres-
sion variations are handled in frequency domain.

Elaiwat et al. (2014) presented the curvelet transformbased 3-D face recognition approach.
The reported algorithm initially inspects the curvelet coefficients for fiducial keypoints detec-
tion. The keypoint selection is based on the magnitude of the curvelet coefficients. Each
keypoint is characterized with direction, scale and spatial as well as positions in the curvelet
domain. The resultant rotation invariant feature vector is computed at multiple scales. It is
evident from this approach that scale-2 curvelet coefficients contain more discriminant infor-
mation. Computation of the curvelet coefficients is computationally light compared to other
statistical features.

Table 10 presents frequency based approaches and their vital statistics.
The multi-scale frequency domain approach proposed in Cai and Da (2012) achieved a

high identification rate on a complex database like FRGC v 2.0. The importance of low and
high frequency components both has been established by representing the person specific
and discriminating facial information in terms of the frequency domain features. It is clear
that, the SDM based SHF frequency domain approach adopted by Peijiang et al. (2013)
does not yield very high verification rates though it yields good identification rates on all
the listed databases in Table 10. In this technique the SHF features of the same face with
different expressions in frequency domain SDM map lie very close to each other and hence
the Euclidean distance classifier based matching of an expressive face with its other versions
fails considerably. On the other hand, when the SHF features of different faces are mapped
into the SDM domain they are wide apart and hence identification rates are high compared
to verification rates. The frequency domain approach of detecting key-points using curvelet
transform employed by Elaiwat et al. (2014) has yield good verification rate but moderate
identification rate in presence of expression variations. Curvelet transform based features
depend upon detection of sharp directional facial curves and subsequent feature extraction.
The facial curves like face boundary, eye-sockets, nose tip and nose base are not much
affected by expression variations represented by large contours and contribute dominantly to
the feature matching process. This results in higher verification rate. But matching of only
key-points which may not be very robust to expression variations with multiple database
image key-points as required in identification is definitely not going to yield high matching
scores due to the following two reasons: (i) other faces may have similar key-points and (ii)
its own key-point features may be distorted to a large extent due to expression variations.
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5 Occlusion invariant 3-D face recognition

While capturing non-cooperative subjects under uncontrolled environments, some part of
the face may not be acquired as a subject may wear sunglasses, hats, eyeglasses or face
may be partially covered by hair. The non-availability of 3-D facial data due to external
objects causes external occlusion. For a non-frontal pose of the subject, some parts of the
face may not be captured during the scan. This results in missing data and is referred to as
internal occlusion.Althoughmany researchers dealtwith expression variations, very fewhave
attempted occlusion variation problem for 3-D face recognition. Assumed facial symmetry
has an important role in occlusion invariant approaches. A few approaches use the curvature
information from a statistical model to obtain relevant curves for missing data. In morphable
model based approaches, whole facial model is fitted to the partial probe scan.

Perakis et al. (2009) proposed an algorithm to deal with internal occlusions. The annotated
face model (AFM) is fitted into a probe scan on the basis of localization data from landmark
detector. The AFM creates geometry images that are invariant to missing data. Thus, the
approach addresses the incomplete data problem due to pose variations. Experimentation is
performed with FRGC v 2.0 as well as a subset of side pose faces in the UND Ear dataset
(F, G collection). Images in this dataset include ear of the subjects in the captured side
poses. For 45◦ side scans, 119 left and 119 right side pose scans from 119 different persons
are considered for experimentation along with 88 left and 88 right 60◦ pose face scans of 88
persons. UND45LR denotes a set of scans with 45◦ pose where for every person, the left pose
scan belongs to gallery and the right pose scan is considered as probe. Similarly UND60LR
denotes a collection of side scans at 60◦ pose where the left pose considered as gallery and
the right pose is denoted as probe for each person. Also, UND45F stands for gallery with a
single frontal scan from FRGC v 2.0 dataset and the probes are left and right 45◦ poses of a
person. UND60F indicates a gallery set with a single frontal scan from FRGC v 2.0 dataset
and 60◦ left and right poses are denoted as probes.

Drira et al. (2013) proposed an algorithm to address occlusion as well as expression
invariance. Facial surface is transformed into radial curves starting from the nose tip and
ending at the facial boundary. A curve quality filter is utilized to handle internal occlusions.
It checks continuity and length of facial curves. If a particular curve does not pass the quality
filter test, it is discarded and restored later by reconstructing the missing data. In order
to handle external occlusions, the points belonging to object, which cause occlusion, are
detected. Subsequently, the occluding area is removed from the facial surface. The broken
curves, caused by the removal of occluding object, are completed with the help of PCA-
based statistical model. This model is used to complete the incomplete curves using training
data. After the retrieval of missing curves, they have utilized a complete set of curves as
an input to the proposed curvature based 3-D face recognition system. They have validated
the algorithm with Bosphorus database (Savran et al. 2008) which contains four distinct
occlusion variations per subject.

Alyuz et al. (2013) addressed the problem of external occlusions. They have proposed a
registration framework in which, a possible non-occluded model is adaptively selected for
each probe face, by employing non-occluded facial parts. After themodel selection, occluded
portions of the face are removed.Amaskedprojection is computed using a set of non-occluded
distinct regions. Furthermore, the classification is performed with the 1-nearest neighbor (1-
NN) classifier. They have experimented with Bosphorus and UMB-DB database. These are
the most complex occluded face databases available till-date, with realistic occlusions. This
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algorithm also relies on accurate nose tip detection. Since the UMB-DB database has some
occlusions covering nose area, the overall system performance is adversely affected.

Smeets et al. (2013) proposed the local feature based MeshSIFT algorithm to deal with
missing 3-D data (Maes et al. 2010). They performed the experimentation with SHREC’11
(Veltkamp et al. 2011), UND45LR and UND60LR (Perakis et al. 2009; Passalis et al. 2011)
databases. MeshSIFT algorithm automatically extracts salient features from scale space rep-
resentation of a facial surface. Symmetric MeshSIFT method improves the performance by
flipping the histogram vector. Mean distances between the corresponding landmarks were
used for face matching. The pose normalization is performed using the RANdom SAmple
Consensus (RANSAC) technique which is computationally complex in terms of estimation
time (Fischler and Bolles 1981).

Berretti et al. (2013) utilized probe faces acquired under unconstrained situations. They
used Scale Invariant Feature Transform (SIFT) key-point detection approach to locate key-
points on the depth image alongwith facial curves that connected those key-points. They have
utilized 45◦ and 60◦ side-pose scans from the UND database. Since the same organization
has collected the UND and FRGC v 2.0 databases, they have found 39 common subjects
between 45◦ side-pose scans in the UND and frontal scans in the FRGC v 2.0. Also, 33
subjects were found as common in 60◦ side-pose scans in the UND and frontal faces in the
FRGC v 2.0. Face matching is achieved using the curvature information across landmarks.

Bellil et al. (2014) introduced the Gappy wavelet transform-based neural network for
occlusion invariant 3-D face recognition. They have treated occlusions as regional face defor-
mations. The difference betweenwavelet sub-bands of a probe face and a generic facialmodel
indicated the regional deformations. Subsequently, the occluded regions are restored using
a multi library wavelet transform neural network. A gallery face with minimum distance in
the Gappy Wavelet transform neural network (GWNN) based parametric space is declared
as the closest match. The authors have manually performed the 3-D face registration. The
performance of this technique is subject to the manual 3-D face registration. Apart from the
one time neural network training required at the time of new face registration, the algorithm
is computationally light.

Performance of various approaches incorporating occlusion invariant 3-D face recognition
is presented in the Table 11.

Smeets et al. (2013) has achieved good occlusion invariant recognition rates on small
databases like SHREC’11, UND60LR and UND45LR. The SIFT features of the usually
symmetric human faces detected from the mesh 3-D representations result in high degree of
matching while using the selected databases. Bellil et al. (2014) used comparatively large
databases: Bosphorus and UMB-DB and achieved good identification rates. The estimation
of intermediate features using Gappy wavelet-based interpolation and neural networks based
classification resulted into good identification results.

6 Discussion

In recent years, the 3-D face recognition field saw a sharp growth in terms of number of
publically available large size databases, features, algorithms and even practically deployed
systems. Despite large research efforts invested so far, a robust 3-D face recognition system
capable of operating under unconstrained situations could not be implemented. During the
initial years of 3-D face recognition research, the iterative closest point (ICP) was the most
preferred algorithm for rigid face registration and matching of 3-D faces. Due to the changes
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in shape caused by various expressions, facial surface appears to be non-rigid and rather elas-
tic. ICP is costly in terms of time complexity (Boehnen et al. 2009). Therefore, in pursuit of
developing an accurate and robust system with small response time, researchers started rep-
resenting facial surface into other representations such as signed shape difference map (Yue
et al. 2010), intrinsic coordinate system (Spreeuwers 2011), spherical depth map (Peijiang
et al. 2013) etc. It has been observed that in an effort to reduce the computational complexity
one has to sacrifice the robustness ofmatching or recognition. Although, 3-D face recognition
is consolidating its importance in the biometric community, there are a few shortcomings of
3-D face recognition techniques; such as 3-D face scanners require specific ambient illumi-
nation (Bowyer et al. 2006). Even after capturing faces in a controlled environment, holes
(missing data) and spikes are present in the data during the acquisition process which require
subsequent processing. If they are not addressed properly, the recognition efficiency may be
adversely affected.

As the field of view (FOV) of a scanner is limited, profile scans of a facial surface suf-
fer from internal occlusion as the other side of the face is not visible. Therefore, internal
occlusions due to pose variations is an intrinsic challenge while processing non-frontal 3-D
facial scans. However, it is clear that the reconstruction of missing data due to occlusion is
computationally heavy. Additionally, since aging changes the human facial shape over time,
capturing age variation databases (Smeets et al. 2012) and extracting age invariant facial
features is essential. A detailed study of transformation of features with age will also be very
important. Practically, capturing of such age variation database and subsequent computation
of age invariant features is a tough task. Even very rigid human facial features like jaws, cheek
bones, nose shape etc. deform due to ageing. Another issue with all the biometric techniques
is that they are prone to spoofing and deception. But the 3-D face recognition techniques
are minimum prone to such attacks due to the available details of the facial information, its
possible integration with 2D data and other biometric techniques (Määttä et al. 2012).

In our opinion, the process of human face observation, abstracting, memorizing and sub-
sequent recognition by a human brain consists of many psycho-visual, neural, basic scientific
and mathematical processes in the background. If the ongoing research is supported by some
fundamental research in psycho-visual activities in this area and their repercussions on the
facial structure and change in features due to various expressions, it may throw light on a few
new expression invariant human face features. Neural activities in human brain after observ-
ing a human face are also of very high importance and are supported by human intelligence.
As human beings, we can recognize a person even from a 2-D picture of a resolution adequate
for human eyes.What goes on in this recognition process is still a mystery. The only thing that
can be pointed out at this stage is the study of psycho-visual processes that take place while
observing and recognizing a human face may be of great help in designing robust face recog-
nition algorithms and systems. Also it is obvious that the human face recognition process
might not simultaneously compute or estimate all the features required for recognizing a face
out of human memory. Instead, based on some primary features, it either accepts the face for
further matching or rejects it only on the basis of mismatch of a few initial parameters. In
other words, the matching process is hierarchical. This is also a very crucial step that may
require high level of human intelligence. Thus, the initial rejection step in Li and Da (2012)
may be very important in minimizing the recognition time per probe. In computer based face
recognition systems, the hierarchical approach can be implemented using well organized or
specially structured databases. The effects of laser scans on living tissues have not so far been
studied extensively. Such study may add a different dimension to the utility of laser or other
wavelength scanners for face scanning. It is evident from discussions that computational
systems with very high capabilities are a mandatory part of 3-D face recognition systems
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introduced so far. Our opinions and critical comments on advantages and limitations of the
specific 3-D face acquisition, registration, feature extraction and matching algorithms have
already been presented in the respective sections. The most important 3-D face databases
for evaluation and benchmarking of novel face algorithms have also been pointed out for
general applications. However, a specific application may demand use of a specific database
specially designed or captured under constrained conditions.

Brief discussions on themajor approaches discussed in the state of the art selected publica-
tions have been presented. Most of them use ICP technique for face registration and PCA and
its derivatives for feature extraction followed by subsequent nearest neighbor matching. Both
of them are computationally heavy and blind techniques. Recently, researchers have proposed
alternate methods for 3-D face registration like simulated annealing (Queirolo et al. 2010),
3-D signatures (Ross et al. 2006), transformation to intrinsic coordinate system (Spreeuwers
2011) etc. This review has already presented significant discussions on expression invariant
and occlusion invariant major 3-D face recognition work.

The traditional 2-D face recognition techniques that are essentially face recognition from
either gray-scale or color facial images have been researched formore than last 40years.Many
algorithms performedwell under constrained conditions and are deployed as limited capacity
commercial face recognition systems under such conditions. Face Recognition Vendor Tests
FRVT-2000 (Blackburn et al. 2001), FRVT-2002 (Phillips et al. 2003) were organized to
evaluate the performance of commercially deployed algorithms under challenging conditions.
Conclusions of FRVT-2000 highlight the need for further research on handling facial images
with indoor and outdoor illumination variations. FRVT-2002 recorded significant progress
on handling indoor face recognition and eventually expressed the need of improvement in
outdoor face recognition systems under uncontrolled illumination conditions.

The disadvantages of 2-D face recognition are:

I. Performance of 2-D face recognition algorithms badly suffers due to illumination vari-
ations, pose changes, poor image quality, occlusions and facial expression variations
(Ocegueda et al. 2013; Tang et al. 2013; Al-Osaimi et al. 2012; Petrovska-Delacretaz
et al. 2008).

II. Since 2-D intensity image is a projection of original 3-D facial shape, some geometric
information is lost during this mapping (Yue et al. 2010; Smeets et al. 2010). Human
beings are intelligent enough to recover the lost 3-D information for face recognition
process even from 2-D images.

However, 2-D face recognition has the inherent advantage of lower dimensionality of the
feature space, and subsequently simpler registration, feature extraction and low recognition
time. It should be noted that general algorithmic steps for 3-D face recognition and 2-D face
recognition are similar.

Based on this survey work, we present functional steps of a robust 3-D face recognition
system in Fig. 14.

7 Conclusion and future scope

In this paper, a comprehensive survey of 3-D face acquisition, representation, registration,
feature detection and matching techniques have been presented along with our opinions
and comments. Initially we summarized various available 3-D face databases. Almost all
researchers used three basic approaches for 3-D facial data representations namely (1) point
cloud (2) mesh (3) range data. Out of these three representations, range data is found to
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Fig. 14 General flow of a 3-D face recognition system

be simplest for handling and processing due to its similarity with 2-D data representations.
Mesh data is found to be most complex due to heavy statistical representation of every mesh
element. However, this is preferred due to its suitability in designing pose, expression and
occlusion invariant robust face recognition algorithms. Fast, deterministic and accurate robust
feature detection, registration and matching techniques are the need of the hour. Though the
ICP algorithm requires more disk space for storing probe and gallery samples, and high
computational time for registration, it is most frequently used because of its robustness.
LDA is the most frequently used technique for dimensionality reduction. It is obvious that
3-D shape contributes more information compared to conventional 2-D intensity images.
However, acquisition of very accurate 3-D data in itself is a major challenge. Furthermore,
the 3-Ddata acquisition and processing algorithms are expected to be computationally heavier
and demand larger primary and secondary memory sizes leading to increased costs of 3-D
face recognition systems.

Spreeuwers (2011) offered the most accurate, robust rank-1 recognition rate on the most
complex databases such as FRGC v 2.0 Smeets et al. (2012). LBP and LSP-based approaches
offer reasonably robust features at moderate computational overheads. Many algorithms
require inputs like nose-tip, eye location from human operators. Performance of such algo-
rithms directly depends on the accuracy of the information provided by the human operator.

After 40years of rigorous research, the 2-D face recognition still face shortcomings like
sensitivity to pose, illumination and occlusion variations. This is where 3-D face recognition
finds space for itself. Although major computer-based systems process 3-D information with
reasonable computation time, it is challenging to deploy such a system on portable embedded
platform till date. Thus, in general, it can be inferred that 3-D face recognition is a wide open
area for research; in terms of robustness, accuracy and computational time.

A desired 3-D face recognition system should have the following aspects:

1. Robust to expression, pose, illumination, occlusion, ageing, makeup variations.
2. Ability to identify a person at a reasonably long distance from 3-D acquisition sensor.
3. Have higher Rank-one Recognition Rates (R1-RR) and verification rates (VR)with lower

false acceptance rates (FAR).
4. Fast and accurate 3-D face registration mechanism with a large database (more than

10,000 faces) with minimum training data.
5. Should have provision for easy registration, algorithmic up-gradation, expansion and

maintenance of the database via a user friendly graphical user interface (GUI) inminimum
time.

6. Should be deployable in the form of portable embedded system (Kisačanin and Nikolić
2010).
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7. Should have fast and portable 3-D data acquisition devices with low cost and least acqui-
sition spikes and noise.

8. Should be capable to accurately differentiate and recognize similar faces like that of
twins.

9. The system should be available at a reasonable cost.

Many state-of-the-art 3-D face scanners acquire texture (2-D intensity) information along
with 3-D shape. Thus, multimodal (2-D+3-D) approaches can be explored in the coming
years to achievemore accuracy.Most 3-D approaches do not concentrate on color information
or depth information represented by colors. This may be an interesting area for future work.
Detection of 3-D facial landmarks under challenging conditions (such as pose variations,
occlusion and expression variations) is also an open research problem. After observing the
performance characteristics of occlusion invariant approaches, it is clear that, there is a lot
of scope in research areas related to 3-D occlusion invariant face matching. Face tampering
is difficult to hide specially in case of 3-D face scanning techniques. Microsoft Kinect 3-D
face acquisition technology (Kinect 2013) is becoming popular due to its very low cost, high
capture speed (0.033s) and small size (41.25 inch3) (Li et al. 2013) compared to other 3-D
scanners. The limitation of the data acquired from the Kinect scanners is the low resolution
of the output scan and high noise contents. In the coming years, with the use of robust pre-
processing techniques, it may be possible to perform real time 3-D face recognition with low
cost and light weight sensors in real time. After introduction of the ‘Twin-Expression Chal-
lenge’ (3-D-TEC) (Vijayan et al. 2011) database, twin 3-D face recognition is an approachable
research area. In view of age-invariant 3-D face recognition techniques, 3-D facial ageing
model (Unsang et al. 2008)mayprovide further cues for research thatmay lead to age invariant
recognition. Best possible combinations of modules such as preprocessing and registration
techniques, feature extraction algorithms and data retrieval methods can be worked out by
comparison of existing individual module performance. Robust 3-D feature template data
protection techniques are needed to be discovered. As discussed in Sect. 6, the psycho-visual
processes and structural changes in human faces due to expression variations and aging pro-
vide a lot of scope for research in this area not only for engineers but also for psychologists,
physiologists and anthropologists.
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