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Abstract The advances in improved fluorescent probes and better cameras in collaboration
with the advent of computers in imaging and image analysis, assist the task of diagnosis in
microscopy imaging. Based on such technologies, we introduce a computer-assisted image
characterization tool based on fractal analysis and fuzzy clustering for the quantification
of degree of the Idiopathic Pulmonary Fibrosis in microscopy images. The implementation
of this algorithmic strategy proved very promising concerning the issue of the automated
assessment of microscopy images of lung fibrotic regions against conventional classification
methods that require training such as neural networks. Fractal dimension is an important
image feature that can be associated with pathological fibrotic structures as is shown by our
experimental results.

Keywords Image analysis · Cluster analysis · Fuzzy clustering · Fractal dimension

1 Introduction

Idiopathic pulmonary fibrosis (IPF), also referred to as cryptogenic fibrosing alveolitis, is a
chronic, progressive and usually lethal lung disorder of unknown aetiology. Median survival
of newly diagnosed patients with IPF is about 3 years, similar to that ofclinical non-small cell
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Fig. 1 Typical salient regions of lung sections microscopy images depicting IPF

lung cancer. At present there are no proven therapies for IPF (Selman and Pardo 2002). IPF
usually affects patients aged 50–70 years, with a male preponderance, evidenced by a male-
to-female ratio of 2:1. The incidence of IPF has been estimated at 10.7 cases per 100,000 men
and 7.4 cases per 100,000 women and the incidence appears to be rising (Coultas et al. 1994).
The anatomy of IPF is shown in Fig. 1, which depicts typical salient regions of corresponding
lung sections microscopy images.

Advances in improved fluorescent probes (Chalfie et al. 1994) and better cameras (Inoué
and Spring 1997; Shotton 1998) have expanded the capabilities of the light microscope
and its usefulness in biologic and medical research. More specifically a light micro-
scope, also called an optical microscope, is an instrument to observe small objects
using visible light and lenses. The advancements in optical technology brought lenses
with better characteristics and capturing devices (i.e. CMOS chips adapted to micro-
scopes) allowing the acquisition of high-resolution digital images. In addition, improved
understanding of chemical and physical properties of fluorescence markers has led to
the optimization of cell imaging applications and limited undesired experimental side
effects. Thus, automatic classification and assessment of microscopy images is pos-
sible in an attempt to assist the task of diagnosis or measuring therapeutic proce-
dures.

In the present study, we employ one of the most widely used fuzzy clustering algorithms;
namely the fuzzy c-means (Bezdek 1981). The goal is to identify the presence and the
degree of lung pathology caused by idiopathic pulmonary fibrosis (IPF), which is a chronic,
progressive and usually lethal lung disorder of unknown etiology (Antoniou et al. 2007),
whose variability concerning the severity of the lesions it incurs in the lung is great, when
assessed by microscopy histological images (Izbicki et al. 2002). Fuzzy c-means clustering
has been applied in many real life problems, e.g. in environmental cases (Iliadis et al. 2010)
and here we extend the approach presented in (Tasoulis et al. 2012) in an attempt to achieve
better results. Our motivation is to create a tool for the quantification of the disease and
monitoring of therapeutical procedures and schemes.

The Fuzzy c-means clustering method was applied to digital images of sections, cap-
tured using a Nikon ECLIPSE E800 microscope and a Nikon digital camera DXM1200 at a
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magnification of 4×. Each image was partitioned into windows of specified size and features
were extracted from each window. The main contribution of this study is the introduction of
fractal dimension (FD) as a feature for analysing the microscopy images. The box-counting
method was used for the estimation of the fractal dimension of each image window. To extend
that approach, we use the clustering result of the Fuzzy c-means algorithm to introduce a
new scoring system that defines the degree of lung pathology at each corresponding image.
More specifically the scoring is based on the membership values of each cluster given by the
fuzzy clustering algorithm.

The rest of the paper is structured as follows. In Sect. 2, we briefly review the Fuzzy
c-means clustering algorithm and we outline the fractal dimension and the box-counting
method for its computation. Next, in Sect. 3, we introduce the proposed methodology and
finally in Sect. 4 we present the experimental analysis and results. The paper ends with
concluding results and pointers for future work.

2 Background information

The continuously growing medical data necessitates the development of new methods that
can extract information in several applications. The most popular approach used for ana-
lyzing data is Data Mining. In particular, clustering can be used to help physicians to
cope with the information overload by assisting on reducing resources used for pattern
recognition.

2.1 Applications

The field of microscopy image analysis has occupied several research teams and significant
research work may be found in the literature of this field. In Maglogiannis et al. (2008)
a tool that classifies biological microscopy images of lung tissue sections with idiopathic
pulmonary fibrosis was presented. Similar tools have also been proposed for the assess-
ment of liver fibrosis (Bedossa et al. 2003; Caballero et al. 2001; Masseroli et al. 2000;
Yagura et al. 2000), the study of micro vascular circulating leukocytes (Hussain et al. 2004),
the assessment of testicular interstitial fibrosis (Shiraishi et al. 2002, 2003), or that of lung
fibrosis (Izbicki et al. 2002). The use of pattern recognition or classification methods like
Support Vector Machines or Neural Networks has enabled the design of decision-making
algorithms, appropriate to microscopy data. Within this context, a method for evaluation of
electron microscopy images of serial sections based on the Gabor wavelets and the construc-
tion of a mapping between the model and the target image has been proposed in König et al.
(2001).

2.2 Clustering of medical data

Data clustering is the process of partitioning a set of data vectors into disjoint groups (clusters),
so that objects of the same clusters are more similar to each other than objects in different
clusters. Clustering is related to classification in the sense that it creates a labeling of the data
points, however it derives these labels only for the data. On the other hand, classification uses
information from data with known class labels to assign a class label to unlabeled data. For this
reason, in some cases data clustering is referred as “supervised or automatic classification”. In
addition more rarely data clustering is also referred as “numerical taxonomy” and “typological
analysis”.
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A complete clustering process is constituted by the following steps:

1. Representation of data (may include the feature extraction or the feature selection
process).

2. Definition of the similarity measure between the elements.
3. Clustering.
4. Evaluation of the results.

The term “representation of data” refer to the number and the type of features that describe
each one of the data elements. Feature selection is the process that tries to select the most
important features. On the other hand, feature extraction refers to the transformation of
features to others that are more important with respect to the further clustering procedure.
Different measures of similarity may be used in the clustering process, where the similarity
measure controls how the clusters are formed. Some examples of measures that can be used
in clustering include distance, connectivity, and intensity.

The final clustering results can be exclusive, where each data element is assigned to a
single cluster, or fuzzy where every element belongs to every cluster with a membership
weight. Moreover, a clustering result can be describe as a hierarchy, which is a set of nested
clusters that are organized as a tree, or just as a division of the data set into non overlapping
clusters.

In traditional (hard) clustering, data are divided into distinct clusters, where each data
vector belongs to exactly one cluster. On the other hand, in fuzzy (soft) clustering, data
points can belong to more than one cluster, and associated with each element is a set of
membership levels. The membership level that defines the association of a data point with
a cluster is between 0 (where the data point absolutely does not belong to the cluster) and
1 (where the data point absolutely belongs to the cluster), with the constraint that the sum
of the weights for each data point must equal 1. These indicate the strength of the asso-
ciation between that data point and a particular cluster. Fuzzy clustering is a process of
assigning these membership levels and then using them to assign data points to one or
more clusters. In the same way, probabilistic clustering techniques can be used to com-
pute the probability with which each data point belongs to each cluster with the similar
constraint that the probabilities must sum to 1. Since both the probabilities and the mem-
bership weights must sum to 1, these types of clustering differs from the non-exclusive
clustering, where a data point simultaneously belong to multiple clusters. Instead, these
approaches are mostly used to avoid the arbitrariness of assigning an object to only one
cluster, when it may be close to several. In many cases, fuzzy clustering is converted to hard
clustering by assigning each data point to the cluster for which its membership weight is
highest.

2.3 Fuzzy c-means algorithm

One of the most widely used fuzzy clustering algorithms is the fuzzy c-means (FCM) algo-
rithm. This technique was originally introduced by Bezdek (1981) as an improvement on
earlier clustering methods and attempts to partition a finite collection of data vectors into a
collection of fuzzy clusters with respect to some given criterion. A theoretical discussion of
FCM can be found in Cox (2005).

Given a finite set of data, the algorithm returns a list of cluster centers and a partition
matrix indicating the degree to which each element belongs to a given cluster. Like the
k-means algorithm, the FCM aims to minimize an objective function, that is:
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Jm =
N∑

i=1

C∑

j=1

um
i j‖xi − c j‖2, 1 ≤ m ≤ ∞, (1)

where m is any real number greater than 1, ui j is the degree of membership of xi in the cluster
j, xi is the i th of d-dimensional measured data, c j is the d-dimension center of the cluster,
and ‖ · ‖ is any norm expressing the similarity between any measured data and the center.
Fuzzy partitioning is carried out through an iterative optimization of the objective function
shown above, with the update of membership ui j and the cluster centers c j by:

ui j = 1

∑C
k=1

( ‖xi −c j ‖
‖xi −ck‖

) 2
m−1

, (2)

where

c j =
∑N

i=1 um
i j · xi

∑N
i=1 um

i j

.

This iteration stops when

maxi j

{
|uk+1

i j − |uk
i j |

}
≤ ε, (3)

where k is the iteration number and ε is a constant between 0 and 1 that controls the termination
of algorithm. This procedure converges to a local minimum or a saddle point of Jm . The steps
of the algorithm are shown in Algorithm 1.

Algorithm 1 Function FCM (X = x1, x2, . . . , xN , C, ε)

1: Initialize U = [ui j ] matrix, U (0)

2: At kth step calculate the centers vectors C(k) = [c j ] with U (k)

3: Update U (k), U (k+1)

4: If ‖Uk+1 − Uk‖ ≤ ε then STOP; otherwise return to step 2.

2.4 Fractals and fractal dimension

It is known that a fractal designates a rough or fragmented geometric shape that can
be subdivided into parts, each of which is a reduced-size copy of the whole (Foroutan-
pour et al. 1999). A series of complex objects found in nature such as coastlines or clouds
can be analyzed based on a mathematical model provided by fractal geometry (Mandelbrot
1983; Peitgen et al. 1993; Pentland 1984). In general, nature conforms to fractals much more
than it does to classical shapes and hence fractals can serve as models for many natural
phenomena. In most cases, this kinds of objects are hard to describe based on the Euclidean
geometry.

Fractal dimension is used to quantify self-similarity, which is the basic property of the
fractals since fractals are generally self-similar and independent of scale. Contrary to classical
geometry, fractals are not regular and may have a non-integer dimension. Fractal concepts
have provided a new approach for quantifying the geometry of complex or noisy shapes
and objects. Fractal geometry has been proven capable of quantifying irregular patterns,
such as tortuous lines, crumpled surfaces and intricate shapes, and estimating the ruggedness
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of systems (Mandelbrot 1983). There are several scientific fields on which FD has been
applied such as image analysis (Asvestas et al. 1998; Li et al. 2009) and texture analysis and
segmentation (Chaudhuri and Sarkar 1995; Ida and Sambonsugi 1998; Liu and Chang 1997).

There exists many methods for estimating FD but they can be classified into three major
categories (Balghonaim and Keller 1998). These are the box counting methods, the variance
methods and the spectral methods. The most widely used method is the box counting dimen-
sion. That is because it is very simple and automatically computable (Peitgen et al. 1993).
Among a number of techniques (Mandelbrot 1983), it was found to be the most appropriate
method of fractal dimension estimation.

In this study, we incorporate the fractal dimension in an attempt to guide the FCM algo-
rithm to construct meaningful clusters and for the fractal dimension estimation we use the
box-counting approach. The box-counting method is easy, automatically computable, and
applicable for patterns with or without self-similarity (Foroutan-pour et al. 1999; Peitgen
et al. 1993). In the box counting procedure, each input image is covered by a sequence
of grids of descending sizes and for each of the grids, two values are recorded. These are
the number of square boxes intersected by the image, N (s), and the side length of the
squares, s.

Then the fractal dimension is calculated by the regression slope D (1 ≤ D ≤ 2) of the
straight line formed by plotting log(N (s)) against log(1/s) (Mandelbrot 1983). An image
having a fractal dimension of 1, or 2, is considered as completely differentiable, or very
rough and irregular, respectively. The linear regression equation used to estimate the fractal
dimension is

log(N (s)) = log(K ) + D log(1/s), (4)

where K is a constant and N (s) is proportional to (1/s)D.

3 Proposed methodology

As long as the microscopy images are captured the procedure continues as follows. Initially,
the input microscopy images are being binirized using the Otsu’s method (Otsu 1979). This
method is one of many binarization algorithms, i.e. it automatically performs reduction of a
graylevel image to a binary one. The algorithm assumes that the image contains two classes
of pixels (e.g. foreground and background) and calculates the optimum threshold separating
those two classes so that their combined spread (intra-class variance) is minimal. At the
next step we segment the binary image to n × n windows and then we calculate FD of each
window. Fractal dimension is a useful feature proposed to characterize roughness and self-
similarity in a picture, which has been used for texture segmentation, shape classification,
and graphic analysis in many fields. It can be defined as a ratio providing a statistical index of
complexity comparing how detail in a pattern changes with the scale at which it is measured.
Finally, based on the Fractal Dimension, the mean value of the intensity and the standard
deviation of the intensity of the grayscale window image, we perform clustering using FCM
clustering algorithm. The fuzzification parameter m is set to the default value 1.25. The
complete scheme of the proposed method is shown in Fig. 2. Next, in Fig. 3 an example of
an image is illustrated in various steps of the procedure. From left to right, we exhibit the
input microscopy image, the greyscale image, the binary image, and the image that shows
the clustering result.
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Fig. 2 Diagram of the proposed methodology

4 Experiment setup and results

For this study, Age- and sex- matched, 6–8 week-old mice were used for the induction of
pulmonary fibrosis by a single intravenous injection with a dose of 100 mg/kg of body weight
(100 mg/kg body weight; 1/3 LD50; Nippon Kayaku Co. Ltd., Tokyo). Bleomycin admin-
istration initially induces lung inflammation that is followed by a progressive destruction
of the normal lung architecture. To monitor disease initiation and progression, mice were
sacrificed at 7, 15 and 23 days after bleomycin injection. Mice injected with saline alone
and sacrificed 23 days post injection, served as the control group. For pathology assessment,
at each time point, bronchoalveolar lavage (BAL) has been performed (3× 1 ml Saline) for
the estimation of total and differential cell populations. Finally after perfusion of lungs via
the heart ventricle with 10 ml Phosphate Buffer Saline, lungs were then removed, weighed
dissected and collected, for histology. Sagittal sections from the right lung were used for
Hematoxylin and Eosin staining and histopathologic analysis.

The results that are presented in this section are based on the images that correspond to
7, 15 and 23 days after bleomycin administration in mice (see Fig. 4). The lung images were
initially separated to windows of size 100 × 100 pixels and the box-counting method was
applied at each window to calculate the corresponding fractal dimension. Next, the images
were separated into windows of smaller sizes (5, 10, and 20, respectively). Each of these
windows corresponds to a data vector, with attributes the fractal dimension of the initial
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Fig. 3 An example of an image in various steps of the proposed methodology

Fig. 4 Original IPF Microscopy Images retrieved after 7, 15 and 23 days, respectively

100 × 100 window that contains it and the mean value of the intensity of the grayscale
window image. Finally, to cluster each of the datasets constituted by such data points, we
employed the Fuzzy c-Means clustering algorithm, for 3 and 4 clusters, respectively.

Figures 5 and 6 illustrate the clustering results with respect to the window size for all
images, where windows of the same cluster are colored equally for the 4 and 3 clusters case,
respectively. In the 4 clusters case, the red cluster represents the severe pathology, the orange
cluster represents the mild pathology and green cluster the normal lung. Finally, the blue
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Fig. 5 Clustering result for the 4 clusters case with respect to the window sizes (rows) for the images retrieved
after 7, 15 and 23 days (columns), respectively. The colors red, orange, green and blue corresponds to the
severe pathology, mild pathology, normal lung and background (non informative), respectively. (Color figure
online)

cluster denotes the image background. In the 3 cluster case, the mild pathology class is
omitted and the colors red, green and blue represent the severe pathology, the normal lung
and the background, respectively. In the case of black and white printing, the background
corresponds to the black color and the other classes varies from dark gray to light gray in the
presented order.

The results are quite encouraging with respect to their medical content. The clustering
algorithm has satisfactory performance in distinguishing pathologic from normal. Thus, the
majority of the blocks that are clustered into pathological clusters (i.e. severe and mild)
belong into the regions indicated by the expert pathologists as fibrotic.

Tables 1 and 2 report the percentage of the image that belongs to each cluster found by the
algorithm. The results are presented with respect to the different window sizes given as input
for each of the images used (images retrieved after 7, 15 and 23 days). The computed percent-
ages coincide with manual annotation and scoring performed by our collaborating experts
pathologists. The clustering algorithm seems to achieve high performance in pathological
from normal in most cases.

At this point it should be mentioned that the importance of FD is not only to enhance
the clustering results of the method since there are no significant improvement when using
FD as a feature , but also to use FD as a pathology index. More specifically, using the
FD we can locally quantify the extent of fibrosis in the pathological areas and assist the
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Fig. 6 Clustering result for the 3 clusters case with respect to the window sizes for the images retrieved after
7, 15 and 23 days, respectively. The colors red, green and blue corresponds to the pathology, normal lung and
background (non informative), respectively. (Color figure online)

physicians to understand better the pathologic mechanisms behind fibrosis. An indicated
example is illustrated in Fig. 7. This figure depicts a sample fibrotic image retrieved after 15
days with the pathological areas denoted by experts with green color (top left) along with
the visualization of the corresponding FD values of each window (top right). The black color
represents the highest FD value, while the white color the lowest. In addition, we can see
the clustering result based on the window size we used to compute FD with respect to FD
(bottom left) and the with respect to mean intensity (bottom right). As shown the FD can
identify better the local extent of sever fibrosis.

Next, in Table 3 the scores of the assessment of a group of expert pathologists (denoted by
P1, P2, P3) are presented. These scores are set according to the score guidelines provided
in Maglogiannis et al. (2008). We have the following states: healthy [0–4], mild pathology
(4–11] and severe pathology (11–15]. In our study, we introduce two new scores based on
the membership values of the produced clusters given by the Fuzzy c-means algorithm and
we examine if they follow the trend of the score given by the experts. An example of the
membership values of the severe class along with the original image and the corresponding
clustering result is given in Fig. 8. Membership values are illustrated with the help of a
greyscale contour plot. A value close to 1 corresponds to the white color while values close
to 0 correspond to black [see Fig. 8 (right)].

The first score (score 1), corresponds to the weighted mean of the membership values of
the mild and severe classes for the 4 cluster case and the severe and normal classes for the 3
cluster case respectively. We have
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Table 1 Percentages of the
clusters found by the clustering
algorithm when the cluster
number is set to 4

Window size Severe pathology Mild pathology Normal
lung

Image retrieved after 7 days

5 19.55 38.76 41.64

10 19.02 40.58 40.36

20 21.60 41.18 37.18

Real 12.49 30.12

Image retrieved after 15 days

5 20.70 39.62 39.63

10 21.35 40.70 37.91

20 18.51 42.52 38.96

Real 19.01 25.67

Image retrieved after 23 days

5 23.00 37.90 39.07

10 22.94 37.06 39.98

20 19.80 36.50 43.66

Real 23.81 24.13

Table 2 Percentages of the
clusters found by the clustering
algorithm when the cluster
number is set to 3

Window size Pathology Normal
lung

Image retrieved after 7 days

5 37.36 62.60

10 37.54 62.44

20 38.88 61.09

Real 42.61

Image retrieved after 15 days

5 40.16 59.81

10 38.86 61.10

20 39.71 60.27

Real 44.68

Image retrieved after 23 days

5 41.27 58.70

10 38.22 61.75

20 37.54 62.42

Real 47.94

score1 = 1

n

n∑

1

(2 × Sm(n) + Mm(n)), (5)

where n is the number of the windows that constitute the image, Sm(n) is the membership
value of the severe class for the window n and Mm(n) is the membership value of the mild
class for the window n respectively. Next, score 2 is given by the following equation:
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Fig. 7 The image retrieved after 15 days with the pathological areas denoted by experts with green color
(top left), along with the visualization of the corresponding FD values of each window (top right), and the
clustering result with respect to FD (bottom left) along with the result with respect to mean intensity (bottom
right) when cluster number is set to 3. (Color figure online)

Table 3 Pathologists grading
score on the images

The scores corresponds to the
following states: healthy [0–4],
mild pathology (4–11] and severe
pathology (11–15]

Image retrieved after Expert pathologists

P1 P2 P3

7 days 3 3 3

15 days 5 4 4

23 days 12 11 12

score2 = 1

n

n∑

1

U (n), (6)

where

U (n) =
{

Mm(n), for Mm(n) > Sm(n)

2 × Sm(n), for Mm(n) ≤ Sm(n)
. (7)

To further examine the behavior of the two scores when noise is reduced, we apply the
median filter and a 50 % cutoff to the membership values of each class, respectively. The
resulting scores are summarized in Tables 4 and 5 for the 3 and 4 cluster cases, respectively.
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Fig. 8 The original image retrieved after 7 days (top) along with the clustering results for the case of 4 clusters
and window size 10 (bottom left) and the corresponding contour plot of the membership values of the severe
class (bottom right)

Table 4 Values of the two scores computed based on membership values for the case where the cluster number
input is set to 3

Original membership
values

Membership values
with median filter

Membership values
with a 50 % cutoff

Day 7 Day 15 Day 23 Day 7 Day 15 Day 23 Day 7 Day 15 Day 23

Window size 5

Score 1 0.6871 0.7139 0.8097 0.5250 0.5386 0.6669 0.6241 0.6539 0.7402

Score 2 0.3239 0.3311 0.3736 0.2582 0.2543 0.3108 0.3168 0.3422 0.4005

Window size 10

Score 1 0.8459 0.8491 0.8954 0.7066 0.6686 0.7648 0.7747 0.7805 0.8215

Score 2 0.3945 0.4159 0.4399 0.3391 0.3422 0.3880 0.3774 0.4044 0.4399

Window size 20

Score 1 1.0224 1.0389 0.9801 0.9321 0.9079 0.8718 0.9437 0.9585 0.8969

Score 2 0.4811 0.5220 0.4692 0.4076 0.4690 0.4453 0.4502 0.4949 0.4627

As shown, in most of the cases, the computed scores coincide with manual scoring performed
by our collaborating experts pathologists. As expected, only in the cases where the window
size is set to 20 the scores have a different behavior due to the lack of information.

123



326 S. K. Tasoulis et al.

Table 5 Values of the two scores computed based on membership values for the case where the cluster number
input is set to 4

Original membership
values

Membership values
with median filter

Membership values
with a 50 % cutoff

Day 7 Day 15 Day 23 Day 7 Day 15 Day 23 Day 7 Day 15 Day 23

Window size 5

Score 1 0.4347 0.4495 0.5476 0.2434 0.2578 0.3804 0.3889 0.4037 0.4935

Score 2 0.2148 0.2184 0.2589 0.1251 0.1267 0.1716 0.1935 0.2048 0.2637

Window size 10

Score 1 0.5213 0.5529 0.6086 0.3080 0.3235 0.4264 0.4670 0.5027 0.5527

Score 2 0.2657 0.2782 0.2954 0.1729 0.1673 0.1953 0.2371 0.2576 0.2984

Window size 20

Score 1 0.6443 0.6241 0.6230 0.4333 0.3833 0.4439 0.5858 0.5668 0.5677

Score 2 0.3233 0.3201 0.3088 0.2296 0.2220 0.2253 0.2988 0.2754 0.2946

Fig. 9 An example plot of the membership values of the severe class (top), along with the membership values
when the median filter is applied (bottom left) and when the 50 % cutoff is applied (bottom right) for the image
retrieved after 7 days

An example plot of the membership values of the severe class for the image retrieved
after 7 days and when the window size is set to 10 is illustrated in Fig. 9, along with the
plots of the membership values after the median filter and the 50 % cutoff respectively. The
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Fig. 10 A three dimensional plot of the membership values of the severe class, when the median filter is
applied

reduced noise in Fig. 9(center) and (right) that correspond to the median filter and the 50 %
cutoff respectively is obvious. In addition, the clearly visible circular shapes in these images
motivate us to further develop our technique in the future for the recognition of such shapes.
Finally a three dimensional plot of the membership values of the severe class with median
filter is illustrated in Fig. 10.

5 Conclusions

In the present paper, a computer-assisted image characterization tool based on a Fuzzy clus-
tering method was introduced for the quantification of degree of IPF in medical images. The
implementation of this algorithmic strategy is very promising, concerning the issue of the
automated assessment of microscopy images of lung fibrotic regions. The results obtained
so far show that the proposed strategy addresses the vital biological issues concerning their
imaging part as this is contained in the specific type of microscopy images.

The majority of the blocks that are clustered according to their fractal dimension into
pathological clusters (i.e. severe and mild) belong into the regions indicated by the expert
pathologists as fibrotic. In addition, the computed percentages coincide with manual annota-
tion by our collaborating experts pathologists. Thus, the FD was proved an important image
feature that can be associated with pathological fibrotic structures.

In a future study, we intent to use the degree of membership to postprocess the clustering
results in an attempt to eliminate small isolated regions and increase further the accuracy of
the proposed approach.
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