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Abstract Machine learning, like its various applications, has received a great interest in
outlier detection in Wireless Sensor Networks. Support Vector Machines (SVM) are a special
type of Machine learning techniques which are computationally inexpensive and provide a
sparse solution. This work presents a detailed analysis of various formulations of one-class
SVMs, like, hyper-plane, hyper-sphere, quarter-sphere and hyper-ellipsoidal. These formu-
lations are used to separate the normal data from anomalous data. Various techniques based
on these formulations have been analyzed in terms of a number of characteristics for harsh
environments. These characteristics include input data type, spatio-temporal and attribute
correlations, user specified thresholds, outlier types, outlier identification(event/error), out-
lier degree, susceptibility to dynamic topology, non-stationarity and inhomogeneity. A tabular
description of improvement and feasibility of various techniques for deployment in the harsh
environments has also been presented.
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1 Introduction

1.1 Wireless sensor networks

Wireless sensor networks (WSNs), due to their ability to perform online and distributed
processing, have received considerable attention of research community for personal, indus-
trial, business and military domains (Madden et al. 2002; Zhang et al. 2007; García-Hernández
et al. 2007; Mainwaring et al. 2002; Cardell-Olivera et al. 2005; Ni et al. 2003; Akyildiz et al.
2002; Dereszynski and Dietterich 2011; Bahrepour et al. 2010, a; Phua et al. 2010; George
et al. 2010). Such networks usually consist of a large number of sensor nodes distributed
over a large area, with some powerful sink nodes which gather readings of sensor nodes. The
sensor nodes can perform sensing, processing and wireless communication among them-
selves. Some of the most important applications of WSNs include sink initiated query, data
gathering and periodic reporting, tracking and event detection. Of all these applications, this
survey paper will focus on event detection application of WSNs deployed in harsh environ-
ments. A step-by-step formulation of the problem explored in this survey article is given
below.

1.2 Harsh environments

Harsh environments are defined as “high stress environments which offer severe monitoring
and communication challenges” (Misra et al. 2010). Underground oil, gas, coal, salt mines,
forests and volcanic sites (García-Hernández et al. 2007) are typical examples of such envi-
ronments. A more specific example of such an environment is an underground coal mine
which should be monitored regularly to predict any disastrous conditions and to ensure the
safety of personnel working inside. Various factors disrupt the communication and monitor-
ing capabilities of sensor nodes in a harsh environment, some of which include high signal
attenuation, electrical interference and multiple reflections or echoes, underground topology,
instability in mine structures, ionized air, humid and warm conditions, gaseous hazards and
noise (Shahid et al. 2012; Tutorial on Wireless Communications and Electronic Tracking
2009; Dario et al. 2005; Akyildiz et al. 2003). These constraints pose severe challenges in
event detection applications in harsh environments because a safety assurance solution is
highly dependent on monitoring and communication.

The constraints posed by such environments on a WSN can be divided into two major
categories.

1. Communication constraints
2. Environmental monitoring constraints

The first set of constraints are caused due to extreme path loss, signal absorption, spreading,
rapidly changing time-varying channels, large propagation delay, noise and fading charac-
teristics. All these characteristics belong to a wireless communication channel of a harsh
environment; hence, they effect communication among the nodes of a network.

The second set of constraints, also known as monitoring constraints, are directly related to
the quality of data measured in a WSN. These constraints are imposed by dynamic changes
in the network topology, instability in mine structure and dynamic changes in the data dis-
tribution of various attributes being measured in a harsh environment.
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One-class support vector machines 517

1.3 Outlier and event detection in harsh environments

Outlier and Event Detection has been the focus of research community in recent years
(Dereszynski and Dietterich 2011; Bahrepour et al. 2010, a; Phua et al. 2010; George et al.
2010; Shahid et al. 2012; Ding et al. 2012; Ozdemir and Xiao 2012; O’Reilly et al. 2012;
Zhang et al. 2012, a; Xie et al. 2012, a; Suthaharan 2012; Saada and Meng 2012; Shahid et
al. 2012, a; Pham and Pagh 2012; McDonald et al. 2012; Ma et al. 2013; Moshtaghi et al.
2012; Stankovic et al. 2012; Trinidad et al. 2012; Shahid and Naqvi 2011; Giatrakos et al.
2010; Ozdemir and Xiao 2011; Liu 2011; Bezdek et al. 2011; Xue et al. 2006; Sheng et al.
2007; Katdare 2011; Hassan et al. 2011; Moshtaghi et al. 2011, a, b; Bahrepour et al. 2010;
Bezdek et al. 2010; Suthaharan et al. 2010, a; Sharma et al. 2010; Rajasegarar et al. 2010, a;
Paschalidis and Chen 2010; Keally et al. 2010; Giatrakos et al. 2010). Specifically, it has
attracted huge attention for WSNs deployed in harsh environments. Here we briefly define
the terms ‘outlier’ and ‘event’.

– An ‘event’ in a harsh environment can be referred to as a ‘disastrous condition’ that may
be characterized by an unexpected change in environmental conditions, for example, fire,
unexpected rise in gaseous concentrations, earthquake etc.

– ‘Outlier’ is another term that is closely associated with ‘event’ and can be defined as
an observation that differs significantly from the normal set of readings. The earliest
definition of outlier was given by Grubbs in Barnett and Lewis (1994) as “An outlying
observation, or outlier, is one that appears to deviate markedly from other members of
the sample in which it occurs”. Further definitions can be found in Katdare (2011), Tan
et al. (2006). In the context of WSNs we can say: “Those measurements that significantly
deviate from the normal pattern of sensed data” (Chandola et al. 2009).

Outlying data should be analyzed, as it may indicate a system moving towards
a state of natural disaster or event. Various accidents have occurred in underground
mines worldwide in the previous years which caused severe financial impact and great
loss of human lives http://connekt.seecs.nust.edu.pk/SAHSE.php, http://www.humanite.fr/
2006-03-10Societe-Catastrophe-de-Courrieres-une-expression-impropre, http://www.genu
ki.org.uk/big/eng/LAN/Haydock/WoodPitExplosion.html, http://www.msha.gov/MSHAIN
FO/FactSheets/MSHAFCT8.HTM. Thus, outlier detection in harsh environments is essen-
tial for event detection, data quality assurance and control (QA/QC), fault detection, intrusion
detection (Chen et al. 2006; Luo et al. 2006; da Silva et al. 2005; Bhuse and Gupta 2006),
focused data collection, (Zoumboulakis and Roussos 2007; Krishnamachari and Iyengar
2004; Ding et al. 2005; Ding and Cheng 2009) and adaptive system monitoring (Misra et al.
2010; Shahid et al. 2012).

1.4 Sources of outliers in a WSN deployed in a harsh environment

In a data set collected from WSNs, outliers may occur due to noise and errors, malicious
attacks and most importantly events (John 1995; Han and Kamber 2006). In fact, an ‘event’
can actually be described as a sequence of ‘outliers or erroneous readings’ in a streaming data
set (Shahid et al. 2012, a; Shahid and Naqvi 2011) and are considered to be the most impor-
tant sources of outliers in harsh environments (Dereszynski and Dietterich 2011; Bezdek et
al. 2011). For example, a sensor reading indicating a high temperature independent of its
surrounding sensors is an outlier, whereas, a continuous stream of high temperature readings
on a group of sensors located close together, indicates the presence of an event. Thus, an
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event detection scheme can be derived from an outlier detection scheme (Shahid et al.
2012; Zhang et al. 2012a; Shahid et al. 2012; Bahrepour et al. 2009).

1.5 Purpose of outlier and event detection techniques for WSNs in harsh environments

The purpose of an outlier and event detection technique for WSNs deployed in harsh environ-
ments should be three-fold: outlier detection, event detection and event identification (Shahid
et al. 2012; Zhang et al. 2010; Zhang 2010).

– To perform a separation between normal and outlying patterns from the collected data
set. This process is known as ‘outlier detection’.

– Determine the potential sources of an outlier, that is to identify if the outlier is due to
noise, sensor fault or an event. This process is known as ‘event detection’.

– In case of an event, determine the type of event and attributes that led to that event. This
process is known as ‘event identification’

1.6 Impact of harsh environment constraints on the performance of outlier and event
detection techniques

Two types of constraints were discussed in Shahid et al. (2012) that are imposed by harsh envi-
ronments on a WSN: a) communication b) monitoring constraints. In a distributed processing
scenario, outliers can be determined via processing on individual nodes of the network. There-
fore, communication constraints posed by harsh environments weakly effect the performance
of outlier detection algorithms: since such algorithms do not require significant communica-
tion between the nodes. However, performance of event detection algorithms may be strongly
dependant on the nature of communication between the nodes. State-of-the-art outlier detec-
tion techniques have reduced the amount of communication between the nodes by orders of
magnitude. Thus, only a few parameters related to the measured data are exchanged between
the nodes. Hence, the performance of outlier and event detection algorithms is not signifi-
cantly affected by the communication constraints.

Data collected by WSNs deployed in harsh environments is subject to temporally and
spatially varying distributions. This is the key monitoring constraint of harsh environments
that poses significant challenges for outlier and event detection techniques. To ensure a high
performance of detection techniques, they should satisfy an additional set of characteristics
when being used for WSNs deployed in harsh environments.

1.7 What is this survey about?

Various state-of-the-art techniques focus on outlier and event detection as well as event
identification for WSNs. A detailed analysis of state-of-the-art outlier and event detection
techniques for WSNs has been presented in Zhang et al. (2010). However, the research com-
munity needs to focus more on the application of outlier and event detection techniques for
harsh environments. For an outlier and event detection technique to perform well in harsh
environments, it should possess various characteristics. These characteristics, their impor-
tance and prioritization to the performance of outlier and event detection has been discussed
in detail in (Shahid et al. 2012). The review paper (Shahid et al. 2012) also concluded that
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clustering and classification based techniques are most suitable for outlier and event detection
in harsh environments.

This survey paper is intended to provide a detailed analysis of state-of-the-art classification
based outlier and event detection techniques which have been declared to be suitable for
WSNs deployed in harsh environments by the authors of (Shahid et al. 2012). It begins with
a brief introductory portion on WSNs and their various applications that are currently being
explored by the research community, harsh environments, outlier and event detection and their
importance from the perspective of WSNs deployed in harsh environments. In forthcoming
sections, we discuss a few characteristics that are essential for state-of-the-art outlier and
event detection techniques and have been derived mostly from Shahid et al. (2012). A major
contribution of this paper, however, lies in the later sections which provide a detailed analysis
of classification based outlier and event detection techniques. Further, a number of future
research perspectives have been explored to develop optimal outlier and event detection
techniques.

1.8 Organization

Rest of this paper is organized as following. Section 2 deals with a brief description of the
classification of outlier and event detection techniques and the characteristics that should be
satisfied by such techniques when used for harsh environments. This section also concludes
that clustering and classification based techniques are most feasible for harsh environment
based applications. Section 3 describes the methods for analysis of classification based tech-
niques. Section 4 describes various types of classification based techniques which can be used
for outlier and event detection in WSNs and short-lists one-class SVM based techniques as
the most suitable for this purpose. Section 5 introduces the reader to a set of definitions and
notations used in various one-class SVM formulations. Section 6 presents a detailed analysis
of outlier and event detection techniques based on one-class SVM formulations. Section 7
discusses a few problems associated with SVMs and future research directions and Sect. 8
concludes the article.

2 Characteristics and classification of outlier and event detection techniques for
WSNs deployed in harsh environments—a brief analysis

A certain set of characteristics should be satisfied by outlier and event detection techniques to
be suitable for WSNs deployed in harsh environments. These characteristics were discussed
in detail in (Shahid et al. 2012) and various types of techniques were analyzed in terms of
these characteristics. This section presents a brief overview of the analysis carried out by the
authors of (Shahid et al. 2012) in terms of following:

– Classification of state-of-the-art outlier and event detection techniques for WSNs.
– Characteristics of outlier and event detection techniques for WSNs deployed in harsh

environments.
– State-of-the-art techniques suitable for WSNs deployed in harsh environments (based on

the discussion in Shahid et al. 2012).

The short discussion carried out in this section will be used to perform a more rigor-
ous analysis of the techniques discussed in the forth-coming sections. We first give a brief
overview of the classification of state-of-the-art outlier and event detection techniques for
WSNs in the form of Table 1. A detailed explanation of this classification criteria can be
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Table 1 Classification of state-of-the-art outlier detection techniques for WSNs in harsh environments Shahid
et al. (2012)

Types and description Examples

1 Statistical

a. Assume a statistical model for data
distribution

Dereszynski and Dietterich (2011), Zhang et al.
(2012a), Sheng et al. (2007), Wu et al. (2007),
Yozo et al. (2004), Jun et al. (2005),
Bettencourt et al. (2007), Palpanas et al.
(2003), Subramaniam et al. (2006)

b. Outliers are declared based on their
probability to be generated from assumed
model

2. Nearest neighbor

a. Use distance metrics to detect outliers, e.g,
euclidian and mahalanobis distance measures

Branch et al. (2006), Zhang et al. (2007),
Zhuang and Chen (2006)

b. All remote data samples are declared as
outliers

3. Clustering

a. Group similar & close data samples into
clusters

Zhang et al. (2012), Bezdek et al. (2011),
Moshtaghi et al. (2011, 2011a, 2011b),
Suthaharan et al. (2010, 2010a), Rajasegarar
et al. (2010a, 2012)

b. Some distance measure from cluster center is
used to detect outliers

c. Mahalanobis distance measure is commonly
used

4. Classification

a. Learn a classification model in training phase Bahrepour et al. (2010a), Zhang et al. (2009,
2012), Shahid et al. (2012, 2012a), Shahid and
Naqvi (2011), Rajasegarar et al. (2010),
Luo et al. (2006), Rajasegarar et al. (2006,
2007, 2008, 2009a), Elnahrawy and Nath
(2004), Janakiram et al. (2006), Hill et al.
(2007), Gomez-Verdejo et al. (2011)

b. Classify the unseen data samples in testing
phase using learned model

c. Support vector machine based techniques are
more commonly used

found in (Zhang et al. 2007; Shahid et al. 2012). Table 1 gives a brief description of various
types of outlier and event detection techniques for WSNs deployed in harsh environments
and state-of-the-art examples specific to each of the types.

The authors of Shahid et al. (2012) also presented a set of characteristics that should be
satisfied by the state-of-the-art outlier and event detection techniques. A brief description of
all these characteristics has been presented in Table 2. All the characteristics presented in
Table 2 have been listed down in the order of their decreasing importance to the performance
of outlier and event detection techniques. This table also gives examples of various types of
techniques which satisfy these characteristics.

2.1 Feasibility of state-of-the-art techniques for harsh environments

State-of-the-art outlier detection techniques for WSNs have been categorized into statisti-
cal, clustering, nearest neighbor and classification based techniques in Shahid et al. (2012).
Further, it has been concluded in (Shahid et al. 2012) that clustering and classification based
techniques are most feasible for WSNs deployed in harsh environments. We summarize the
findings of Shahid et al. (2012) in the form of Table 3. This table assigns a priority order
based on the consideration of each of the characteristic in a particular type of technique. The
order has been assigned from 1 to 4, where number 1 indicates the highest priority and 4
indicates the lowest priority. For example, clustering based techniques have been assigned
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Table 2 Characteristics of state-of-the-art outlier detection techniques for WSNs in harsh environments
Shahid et al. (2012)

Characteristics and description Examples
Types References

1 Multivariate streaming data

a. Attributes measured by
multiple sensors should
be considered together

Statistical Zhang et al. (2012a)

Nearest neighbor –

b. Continually arriving data should
be processed

Classification Shahid et al. (2012, 2012a), Rajasegarar
et al. (2010), Zhang et al. (2009, 2009a)

Clustering Bahrepour et al. (2010a), Zhang et al.
(2012), Suthaharan (2012), Moshtaghi
et al. (2011, 2011a, 2011b)

2 Temporal correlations Statistical Dereszynski and Dietterich (2011),
Zhang et al. (2012a), Ross et al. (2009)

Consider correlations between newly
arrived and historical data samples

Nearest neighbor –

Classification Bahrepour et al. (2010a), Shahid et al.
(2012, 2012a), Shahid and Naqvi
(2011), Rajasegarar et al. (2008, 2010),
Yozo et al. (2004), Zhangh et al. (2009,
2009a), Gomez-Verdejo et al. (2011),
Yang et al. (2008)), Wang et al. (2006);
Tax and Duin (1999)

Clustering Zhang et al. (2012), Bezdek et al. (2011),
Moshtaghi et al. (2011, 2011a, 2011b),
Suthaharan et al. (2010, 2010a),
Rajasegarar et al. (2010a, 2012)

3 Attribute correlations Statistical –

Consider correlations between
various attributes at a node

Nearest neighbor –

Classification Shahid et al. (2012, 2012a), Shahid and
Naqvi (2011), Ozdemir and Xiao
(2011), Hassan et al. (2011),
Krishnamachari and Iyengar (2004)

Clustering Zhang et al. (2012), Bezdek et al. (2011),
Moshtaghi et al. (2011, 2011a, 2011b),
Suthaharan et al. (2010, 2010a),
Rajasegarar et al. (2010a, 2012)

4 Spatial correlations Statistical Dereszynski and Dietterich (2011),
Zhang et al. (2012a)

Consider correlations between data
samples of geographically
separated nodes

Nearest neighbor –

Classification Shahid et al. (2012, 2012a), Shahid and
Naqvi (2011), Rajasegarar et al. (2008,
2010), Zhangh et al. (2009, 2009a),
Yang et al. (2008)

Clustering Moshtaghi et al. (2011, 2011b),
Rajasegarar et al. (2012)
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Table 2 continued

Characteristics and description Examples
Types References

5 In-susceptibility to temporal
non-stationarity

Statistical Bettencourt et al. (2007)

Should be robust to changes in data
distribution with time

Nearest neighbor –

Classification Bahrepour et al. (2010a), Shahid et al.
(2012, 2012a), Rajasegarar et al.
(2008), Zhangh et al. (2009, 2009a)

Clustering Zhang et al. (2012), Bezdek et al. (2011),
Moshtaghi et al. (2011, 2011a, 2011b),
Suthaharan et al. (2010, 2010a, 2012),
Rajasegarar et al. (2010a, 2012),
Subramaniam et al. (2006)

6 In-susceptibility to spatial
non-stationarity

Statistical –

Should be robust to spatial changes
in data distribution

Nearest neighbor –

Classification Bahrepour et al. (2010a), Shahid et al.
(2012, 2012a), Rajasegarar et al. (2008,
2010), Zhangh et al. (2009, 2009a)

Clustering Zhang et al. (2012), Suthaharan (2012),
Bezdek et al. (2011), Moshtaghi et al.
(2011, 2011a, 2011b)

7 In-susceptibility to topology changes Statistical –

Should be robust to changes in
network topology with time
Schieferdecker et al. (2011)

Nearest neighbor –

Classification Krishnamachari and Iyengar (2004)

Clustering –

8 Event / global outlier detection Statistical Zhang et al. (2012a), Wu et al. (2007),
Bettencourt et al. (2007)

Should detect events or outliers
common to the whole network

Nearest neighbor –

Classification Bahrepour et al. (2010a), Zhang et al.
(2012), Shahid et al. (2012, 2012a),
Rajasegarar et al. (2010)

Clustering Moshtaghi et al. (2011, 2011b),
Rajasegarar et al. (2012)

9 Event identification Statistical –

Should be able to identify the type of
event, if one occurs

Nearest neighbor –

Classification Abe (2010), Liu et al. (2007, 2010), Hao
et al. (2009), Xu (2009), Xu et al.
(2007), Aly (2005), Keerthi et al.
(2008)

Clustering –
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Table 2 continued

Characteristics and description Examples
Types References

10 Unsupervised nature Statistical –

Should learn data model during
training without requiring labelled
input-output data

Nearest neighbor –

Classification Bahrepour et al. (2010a), Shahid et al.
(2012, 2012a), Rajasegarar et al.
(2010), Zhangh et al. (Zhang et al.
(2009), Zhang et al. (2009a))

Clustering Zhang et al. (2012), Bezdek et al. (2011),
Moshtaghi et al. (2011, 2011a, 2011b),
Suthaharan et al. (2010, 2010a, 2012),
Subramaniam et al. (2006),
Rajasegarar et al. (2008, 2010a, 2012)

11 Distributed processing Statistical Dereszynski and Dietterich (2011),
Zhang et al. (2012a)

Should be able to distribute
processing equally on all nodes of
network

Nearest neighbor Branch et al. (2006), Zhang et al. (2007),
Zhuang and Chen (2006)

Classification Shahid et al. (2012, 2012a), Shahid and
Naqvi (2011), Rajasegarar et al. (2006,
2007, 2008, 2010),Elnahrawy and Nath
(2004), Janakiram et al. (2006), Hill
et al. (2007), Zhangh et al. (2009,
2009a)

Clustering Zhang et al. (2012), Bezdek et al. (2011),
Moshtaghi et al. (2011, 2011a, 2011b),
Suthaharan et al. (2010, 2010a, 2012),
Rajasegarar et al. (2012, 2010a),
Subramaniam et al. (2006)

12 Online data processing Statistical Dereszynski and Dietterich (2011),
Zhang et al. (2012a)

Should process the streaming data as
soon as it arrives

Nearest neighbor –

Classification Shahid et al. (2012, 2012a), Shahid and
Naqvi (2011), Rajasegarar et al. (2008,
2010) Zhangh et al. (2009, 2009a),
Yang et al. (2008)

Clustering Moshtaghi et al. (2011, 2011b),
Rajasegarar et al. (2012)

13 Low complexity Statistical Dereszynski and Dietterich (2011),
Zhang et al. (2012a), Sheng et al.
(2007), Wu et al. (2007), Yozo et al.
(2004), Jun et al. (2005), Bettencourt et
al. (2007), Palpanas et al. (2003),
Subramaniam et al. (2006)

Should not require excessive
computations & communication
among nodes of network

Nearest neighbor –
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Table 2 continued

Characteristics and description Examples
Types References

Classification Bahrepour et al. (2010a), Shahid et al.
(2012, 2012a), Rajasegarar et al.
(2010), Zhangh et al. (2009, 2009a)

Clustering Zhang et al. (2012), Suthaharan (2012),
Giatrakos et al. (2010), Bezdek et al.
(2011), Moshtaghi et al. (2011, 2011b),
Rajasegarar et al. (2012)

These characteristics have been listed down in the order of their decreasing importance for harsh environments
as discussed in Shahid et al. (2012)

Table 3 Feasibility of state-of-the-art techniques for harsh environments

Characteristics Clustering Classification Nearest neighbor Statistical

1 Multivariate data 1 1 1 1

2 Streaming data 1 2 3 4

3 Temporal correlations 1 1 1 1

4 Attribute correlations 1 2 3 4

5 Spatial correlations 1 2 3 4

6 In-susceptibility to 1 2 3 3

Temporal non-stationarity

7 In-susceptibility to 1 2 3 3

Spatial non-stationarity

8 In-susceptibility to – 1 – –

Dynamic topology

9 Event / global outliers detection 1 1 2 2

10 Event identification 1 – – –

11 Unsupervised 1 2 3 4

12 Distributed approach 1 2 3 4

13 Online approach 1 2 3 3

14 Low computational complexity 1 2 4 3

15 Low communication complexity 2 3 4 1

16 Threshold dependence 1 1 1 1

A priority order from 1 (highest) to 4 (lowest) has been assigned to each of the types of techniques depending
on their tendency to incorporate the particular characteristic. ‘−’ sign indicates that the technique does not
incorporate the characteristic at all. Some of the techniques have been assigned the same priority because they
have equal tendency to incorporate the characteristic

a priority of 1 for attribute correlations, which means that clustering based techniques have
the highest tendency to consider attribute correlations, whereas the nearest neighbor based
techniques have been assigned a priority 4 because they have the lowest tendency to incor-
porate attribute correlations. ‘−’ sign indicates that the technique does not incorporate the
characteristic at all. Some of the techniques have been assigned same priority because they
have equal tendencies to incorporate the characteristic.
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From Table 3 it is clear that clustering based techniques have the highest priority order (1)
for a majority of characteristics. Then come the classification based techniques which have
priority orders 1 and 2 for most of the characteristics. Nearest neighbor and statistical based
techniques have the lowest priority order (3 and 4) for most of the characteristics. Based
on this table and the analysis carried out in Shahid et al. (2012) we arrive at the following
increasing order of the techniques for their feasibility in harsh environments.

Nearest Neighbor ≈ Statistical < Classification < Clustering

2.2 What is the rest of survey about?

Up till now, we have defined WSNs, harsh environments and explained the concept of outlier
and event detection in harsh environments. Further, the characteristics of outlier and event
detection techniques for WSNs in harsh environments have been discussed briefly and the
feasibility of various techniques has been determined for harsh environments. It has also
been concluded that clustering and classification based techniques are most suitable for
harsh environments. The above discussion has been derived from Shahid et al. (2012). In the
later sections, we give in-depth analysis of state-of-the-art classification based techniques
and their feasibility for harsh environments. Rigorous critical analysis has been carried out
to determine the feasibility of all techniques in terms of the discussed characteristics. The
article ends with future research directions for making state-of-the-art classification based
techniques suitable for harsh environments.

Before starting a detailed critical analysis of state-of-the-art classification based tech-
niques, we present a few methods that had been frequently used in literature for measuring
the performance of these techniques. We also formulate our methodology for analysis of
these techniques which is used in this survey article.

3 Methodology for analysis of classification based techniques

The most commonly used method to analyze the performance of a classification algorithm
is to calculate some quantitative measures by testing on various types of data sets and input
parameters. This method has commonly been followed by research community for presenting
state-of-the-art techniques in various application domains. However, an inherent drawback
of this procedure is that various algorithms may outperform other similar algorithms due
to difference of experimental setup and conditions. Consider, for instance, the example of
an outlier detection algorithm being tested in a harsh environment, such as an underground
mine. The same algorithm tested in a underground coal mine may show poor performance
as compared to the scenario when it is tested in salt mines due to difference in the nature of
two environments. Thus, quantitative measures are not reliable for fair comparison of two
techniques meant for the same purpose. To perform a fair comparison of various state-of-
the-art outlier and event detection techniques, we introduce qualitative measures which use
a set of well-defined characteristics to determine the quality of an outlier and event detection
technique. Various techniques are compared based on these measures.

Thus, two types of measures can be used to evaluate the performance of outlier and event
detection techniques:

– quantitative
– qualitative
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3.1 Quantitative performance measures

Three commonly used measures for the performance analysis of outlier and event detection
techniques are given below (Abe 2010; Lazarevic et al. 2003; Ganguly 2008):

1. Detection Rate
2. False Alarm Rate / False Positive Rate
3. Receiver Operating Characteristic (ROC) Curve

3.1.1 Detection rate

The ‘detection rate’ of an outlier and event detection technique is defined as the fraction of
outlying data that are detected as outliers by the application of outlier detection algorithm.
The detection rate may also be described separately as an outlier detection rate or as event
detection rate if the technique is able to detect outliers as well as events. Ideally the detection
rates should be close to unity. As described earlier, WSNs deployed in harsh environments
may suffer from frequent events, thus, it becomes essential for a technique to have a high
outlier and event detection rate if it is to be used in harsh environments. A technique with
a high outlier and low event detection rate is not suitable for harsh environments. Further, a
high outlier and low event detection rate implies that the algorithm is unable to differentiate
between various sources of outlier.

3.1.2 False positive rate

Although, a very high detection rate is extremely essential for techniques used in harsh
environments, however, it does not imply that a trade-off can be made to allow the normal
data to be classified as outliers or events. Thus, an optimal outlier detection technique should
not make false detections, that is, normal data should not be classified as outliers or events.
The fraction of normal data detected as outliers is known as false positive rate. Ideally, the
false positive rate should be as low as possible (close to zero). Similar to the detection rate,
false positive rate can also be categorized into outlier and event false positive rates, where
the former will provide a measure of normal data samples classified as outliers and later will
provide a measure for normal data samples classified as events.

3.1.3 Receiver operating characteristics

The relationship between detection rate and false positive rate of an outlier and event detection
scheme is given by a receiver operating characteristic curve (ROC). An ROC curve is a plot
that indicates the variation of the detection rate of a classifier with respect to false positive
rate. Ideally, the area under ROC curve should be very close to unity. Thus, for an optimal
outlier and event detection technique, the detection rate should be very close to unity even
when the false positive rate is very low. If the area under ROC curve for a classifier is less
than 0.5, the classifier is just based on a random decision.

3.1.4 Measures for event identification

The detection and false positive rates can only give information about the fraction of outlying
data classified as outliers or about the fraction of normal data declared as outliers. Thus,
these two measures can be used for detection problems only when there is one target class
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(normal for WSN applications). However, in case of data belonging to multiple classes, a
more accurate measure is required which takes into account the inter-class miss-classification
rates. Such a problem arises in the event identification process in WSNs, where the rate of
the occurrence of an event is not the only parameter of key importance. The type of event
and the attributes involved in an event should be identified in such applications. For example,
in case of occurrence of an event in underground mine, analysis should be carried out to
determine if the event is a fire or earthquake. This process requires some additional measures
to be associated for event detection and identification algorithms. Following parameters are
commonly used for analyzing multi-class problems:

1. Recognition rate
2. Error rate

Suppose that an event identification problem involves determining ‘n’ possible types of
an event, then the recognition and error rates can be calculated by formulating an n × n
confusion matrix whose element ai j is the number of class i data classified into class j . Then
the recognition rate and error rates can be defined as (Abe 2010):

Recognition (R) =
∑n

i=1 aii
∑n

i, j=1 ai j
× 100(%)

Error (E) =
∑n

i �= j,i, j=1
∑n

i, j=1 ai j
× 100(%)

where R + E = 100 %. Thus, the recognition rate (R) should be close to 100 % and the error
rate (E) should be as low as possible.

3.2 Qualitative performance measures - THE FEASIBILITY ANALYSIS TABLE

The characteristics for optimal outlier and event detection techniques presented in Sect. 2
and described in detail in Shahid et al. (2012) can be used to formulate a set of qualitative
measures for the performance evaluation of these techniques. More specifically, these char-
acteristics can be used to determine the feasibility of a technique for harsh environments.
Thus, to determine the feasibility of any state-of-the-art outlier and event detection technique
for WSNs in harsh environments we formulate a feasibility analysis table (Table 6) that
summarizes the analysis of a technique in terms of the presence or absence of all important
characteristic and then concludes with one of the following decisions:

– The technique is feasible for use in harsh environments.
– The technique can be used in harsh environments after some modifications.
– The technique cannot be used in harsh environments.

Tables 6 and 7 in Sect. 6 show sample feasibility analysis tables that have been used to
qualitatively analyze a technique and then determine its feasibility for harsh environments.
The left most column of these tables list all the characteristics that have been discussed in
Shahid et al. (2012). The characteristics have been further divided into sub-categories which
may be used to analyze a technique in more detail. For example, the first characteristic ‘input
data’ has been divided into two categories a) data type and b) correlations. The ‘data type’
specifies various data types that the algorithm is able to incorporate (univariate, streaming,
sequential etc.) and correlations indicate the types of correlations (temporal, attribute and
spatial) that the algorithm is able to incorporate. Similar divisions can be seen throughout
the tables. The rightmost columns of these tables indicate the presence of a characteristics by
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a ‘Y’ sign, whereas, the absence of a characteristic is indicated by an empty space. In some
cases a ‘?’ may also be seen which shows that the technique can incorporate the characteristic
after some minor modifications. The communication and computational complexities have
been described as ‘high’ or ‘low’ in the tables.

The bottom left of Tables 6 and 7 indicate decisions for the feasibility of a technique
for harsh environments. It has been described in Shahid et al. (2012) that a certain set of
characteristics has a higher priority for harsh environments than others. The decision on
feasibility has been made on the basis of the presence or absence of various characteristics
in a technique and their priority for harsh environments. We first divide the entire set of
characteristics (Shahid et al. 2012) into two sets, namely ESSENTIAL, NON-ESSENTIAL:

– ESSENTIAL: Multivariate streaming data, spatio-temporal-attribute correlations, insus-
ceptibility to temporal and spatial non-stationarity, insusceptibility to topology changes,
event detection and unsupervised nature.

– NON-ESSENTIAL: distributed processing, online computations, low complexity.

Now, we formulate the decision for the feasibility of a technique for harsh environments
as following:

– FEASIBLE: ESSENTIAL & NON-ESSENTIAL are satisfied.
– INFEASIBLE: ESSENTIAL characteristics are not satisfied.
– FEASIBLE AFTER MODIFICATIONS: ESSENTIAL satisfied, NON-ESSENTIAL

not satisfied.

4 Classification based outlier and event detection for WSNs deployed in harsh
environments

Classification based techniques have a significant importance in data mining and machine
learning community. These techniques tend to learn a classification model during the training
phase and classify the unseen data instances during the testing phase. Labeled input-output
pairs may be fed to the algorithms during training phase (Stankovic et al. 2012; Ganguly
2008; Bishop 2006). The performance of a classifier depends on its ability to classify the
unseen data based on the learned model and is more generally known as its generalization
ability (Nguyen et al. 2008; Yeung et al. 2007; Steinwart and Christmann 2008; Tax and Duin
2004). Depending on the type of model learned during the training phase, these techniques
can be divided into two types:

1. Bayesian based
2. Support vector machine based (SVM)

4.1 Bayesian based approaches

Bayesian based approaches use a probabilistic graphical model to represent a set of variables
and their probabilistic dependencies. The learned graphical model can have various nodes
connected by edges representing their dependencies on each other. Based on the learned
graphical model, these techniques can determine the probability of a newly arrived data
sample belonging to a particular class (Zhang et al. 2010). An advantage of these techniques
is that they assign a probability measure associated with every newly arrived data sample;
hence, these techniques can be used to gain some information about the gradually changing
data distributions. Further, these techniques are known as soft-decision techniques because
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they give information about the probability of data samples belonging to outlying class
rather than a hard decision. Despite their numerous advantages, these techniques have not
been found to be suitable for WSNs due to following reasons:

– Require significant computational overheads to learn a probabilistic graphical model
during the training phase.

– The graphical model may have to be learned time and again due to dynamic nature of
data distributions in harsh environments.

– They are not online and adaptive. Thus, a large amount of training data is required initially
to learn a model and the training phase is repeated for changing distributions.

– Naive bayes assumption can be used to reduce the complexity of the learning phase, but
this assumption also leads to a loss of correlations between various attributes ultimately
leading to a reduction in the generalization ability.

4.2 Support vector machine (SVM) based approaches

Support Vector Machine (SVM) based techniques are another type of classification based
techniques which learn a classification model during the training phase and then use the
learned model to classify unseen data. However, unlike Bayesian based techniques, these
techniques have a better generalization ability because they tend to maximize the separation
between different classes by making use of mercer kernels. For this reason they are also
known as maximum margin classifiers (Abe 2010; Scholkopf and Smola 2001; Herbrich
2002). In general, an SVM based technique tends to learn a maximum margin hyperplane
between different data classes during training phase. A maximum margin hyperplane is
one which has maximum separation from data belonging to each of the target classes. The
separation is attained by constructing hyperplanes in input space, if the data is separable, or
by mapping the whole data to a higher dimensional feature space by using mercer kernels
and then constructing a hyperplane in feature space. The computational complexity of these
techniques is less than that of bayesian based techniques because they do not learn the whole
graphical model. In fact a hyperplane only requires the determination of two parameters,
that is, a weight vector (that determines its slope) and a bias parameter. Depending on the
number of target classes, SVM based techniques can be classified as (Tax and Duin 1999;
Aly 2005; Bishop 2006; Nguyen et al. 2008; Yeung et al. 2007; Steinwart and Christmann
2008; Tax and Duin 2004; Scholkopf and Smola 2001; Herbrich 2002; Weston and Watkins
1998; Smola and Schölkopf 1998; Weston and Watkins 1999; Mayoraz and Alpaydin 1999;
Bredensteiner and Bennett 1999; Schwenker 2000; Schölkopf et al. 2001; Hsu and Lin 2002;
Franc and Hlavác 2002; Elisseeff and Weston 2002; Zhu et al. 2003; Ambwani 2003; Cheong
et al. 2004; Kecman 2005; Zhang et al. 2006; Navia-Vazquez et al. 2006; Hofmann et al.
2008):

1. Multi-class SVM
2. Binary class SVM
3. One-class SVM

4.3 One-class SVMs for outlier and event detection

Outlier and event detection in WSNs require a model of normal data. All data samples which
do not fit the normal data model are declared to be outliers. As the problem of outlier detection
requires the model of normal data only so it is a one-class problem. Hence, One-Class SVMs
can be used for outlier and event detection in WSNs. In general, one-class SVMs tend to learn
a normal data model by enclosing majority of normal data in a geometric figure, where all
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the data lying outside the geometric figure are declared to be outliers (Abe 2010). Following
are a few advantages of one-class SVM.

– They have a simple geometric representation, that is, they determine a few parameters
of the normal data model only. For example, if the normal data is enclosed in a sphere,
then one-class SVM tends to determine the center and radius of the sphere only.

– They provide an optimum solution for outlier and event detection by maximizing the
separation between normal and abnormal data (Yang et al. 2008).

– Pre-classified abnormal data is difficult to obtain in WSNs, therefore, an unsupervised
technique should be used for outlier detection in WSNs. One-class SVMs are unsuper-
vised and can be used for this purpose.

– Provide a sparse solution, that is, only a small number of data samples are only used to
formulate the decision boundary between normal and abnormal class.

5 Introduction to one-class SVM formulations

A One-Class SVM formulation defines a boundary (such as a hyper-plane or a hyper-sphere)
to separate normal data from anomalous data in a high dimensional space by maximizing
the distance between normal and anomalous data. Various formulations for One-Class SVM
have been proposed in the literature.

– Hyperplane
– Hypersphere (SOCC)
– Quarter-sphere (QS-SVM)
– Hyperellipsoid (TOCC)
– Centered ellipsoid (CESVM)

5.1 Terminologies and notations used in one-class SVMs

This portion of the paper introduces the reader to a set of terminologies and notations that are
commonly encountered in one-class SVM problems. Information presented in this section
can help in a better understanding and analysis of SVM formulations discussed in the forth-
coming sections.

5.1.1 Classifier

A classifier is a name given to an algorithm or technique that achieves optimal separation of
data belonging to different classes. A one-class classifier should achieve a separation between
normal and abnormal data samples. A classifier can be described by its model parameters.
The quality of a classifier is described in terms of its generalization ability.

5.1.2 Model parameters

Model parameters for one-class SVMs (classifiers) are defined as the parameters used to
describe the formulations. A hyperplane formulation is defined by its weight vector w (which
determines its slope) and its bias parameter r (which determines its distance from the origin).
Hypersphere formulation is defined by its radius R and center c, whereas, a hyperellipsoid
formulation, which has more than one clusters is described by the center of clusters ci and
their radii ri . The quarters-sphere and centered ellipsoid formulations are defined by their
radii R. The model parameters are determined by solving some optimization problem.
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5.1.3 Training and testing phases

The model parameters of any classifier can be determined by using some example data
samples. This process is known as the training phase of a classifier. One-class classifiers
are unsupervised because they only require input data samples without their labelling into
normal or abnormal samples. Multi-class classifiers are supervised because they require
labelled input-output pairs during the training phase. The performance of a classifier can be
analyzed by giving unseen data samples at the input during the testing phase.

5.1.4 Generalization ability

The performance of a classifier is tested during the testing phase during which unseen data
samples are input to the classifier. The performance during testing phase depends on how well
the parameters learned during the training phase are able to perform a separation of unseen
data samples. This is known as the generalization ability of a classifier. The generalization
ability of all SVM based classifiers is improved by maximizing the margin between normal
and abnormal samples.

5.1.5 Maximum margin

Ideally, a one-class classifier should be able to classify the normal and abnormal samples
correctly during the testing phase. This is achieved by using the concept of maximum margin
between normal and abnormal data classes. The parameters of one-class formulation under
consideration are determined in such a way that the separation between normal and abnormal
data samples is maximized. This is known as the concept of maximum margin and is guar-
anteed to improve the generalization ability of SVM based classifiers over other non-SVM
based classifiers (Elisseeff and Weston 2002). The parameters corresponding to maximum
margin can be determined by solving some optimization problem under some constraints on
data samples that ensure maximum separation between the two classes.

5.1.6 Feature space

Let xεχ be the data samples and data set defined in the input space, then, each of the data
samples xεχ can be mapped to a higher dimensional space F by a non-linear mapping
function φ(x). The mapping can be defined as φ : χ → F . If the normal and abnormal
data are inseparable in input space, then, this mapping can be used to project the data to
a higher dimensional space, where the normal data samples can be easily separated from
abnormal samples. The separation in feature space is achieved by formulating the one-class
SVM problem in feature space itself (Abe 2010).

5.1.7 Mercer kernel functions

In general, one-class SVMs do not require an explicit treatment of data samples in input
or feature space because they involve the computation of norm of vectors in either space
and use these norms to detect outliers or events. Thus, mapping from input space to fea-
ture space can be carried out without an explicit information about the feature space with
the help of Mercer kernel functions. Mercer kernels are symmetric positive semi-definite
functions which compute the dot product of vectors in feature space and can be defined as
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K (x, z) = (φ(x) ·φ(z)) (Hofmann et al. 2008). Various types of kernel functions can be used
for this purpose, some of which are linear, polynomial, gaussian and mahalanobis kernels
(Hofmann et al. 2008).

5.1.8 Primal optimization problem

Model parameters for any one-class SVM formulation are usually determined by solving
optimization problem. The optimization problem involves minimizing or maximizing some
convex objective function under some constraints. The objective function is usually a function
of one or more primal variables. A primal variable can be defined as a variable which is directly
involved in the determination of the model parameters for one-class SVM. For example,
for the hyperplane based formulation, the norm of weight vector (which is a hyperplane
parameter) is minimized under some constraints (Boyd and Vandenberghe 2004).

5.1.9 Dual optimization problem and Lagrange function

The primal optimization problem formulated for one-class SVMs can involve more number
of variables than the number of constraints, thus, making it difficult to solve. This problem
can be alleviated by transforming the primal problem to a dual problem with lesser and low
dimensional variables that can be solved using quadratic and linear programming techniques.
An unconstrained lagrange function is formed for this purpose which consists of the objective
function and constraints weighted by lagrange variables. The lagrange function (also known
as lagrangian) is then minimized with respect to the primal variables to obtain some expression
in terms of dual lagrange variables only (Boyd and Vandenberghe 2004).

5.1.10 Regularization parameter and slack variables

The model complexity for one-class SVMs, that is, the time taken by optimization problem
to return an optimal solution depends on how easily can the normal and abnormal data be
separated. Thus, in order to reduce the complexity of learned model and over-fitting caused
due to it, some miss-classifications are allowed in the learned model. This is achieved by
introducing a regularization term whose weight is controlled by a regularization parameter
v. If the cost of miss-classification for each of the data samples is represented by some slack
variable ξi , then the total miss-classification cost is the sum of all slack variables. The total
cost of miss-classification is controlled by weight of 1/(vn). If the cost is low then a large
number of data samples are allowed to be miss-classified which results in a high detection
rate and false positive rate of the classifier. If miss-classification cost is high then the data
samples are not allowed to be miss-classified and this results in a low detection rate and low
false positive rate of the classifier (Abe 2010).

5.1.11 Support and non-support vectors

The solution of dual optimization problem for one-class SVMs results in the determination
of the values of lagrange multipliers for each of the data samples. Depending on these values,
the data samples / vectors may be classified as normal or abnormal. The data samples which
lie inside the geometric figure are normal and their associated lagrange multipliers have a
value of zero. All such vectors are known as non-support vectors. The data samples which
lie on or outside the geometric formulation are known as support vectors. Out of the support
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 a An example 2D (2-attribute) data set. The blue points represent normal data vectors and red points
indicate abnormal data vectors. b Hyperplane formulation of one-class SVM over data set of (a). c Hyper-
sphere formulation of one-class SVM. d Quarter-sphere formulation of one-class SVM. e Hyper-ellipsoidal
formulation of one-class SVM. f Centered ellipsoid formulation of one-class SVM. In all figures, red, blue and
green points indicate the data vectors classified as abnormal, normal and support respectively. The yellow points
indicate the data vectors which have been miss-classified by the formulation. All normal data vectors have a
zero value for their associated lagrange multipliers αi = 0. All the data vectors classified as abnormal have their
lagrange multiplier values αi = 1/vn. The support vectors have lagrange multiplier values 0 < αi < 1/vn

vectors, those that lie exactly on the geometric formulation are known as border support
vectors. These vectors define the boundary of one-class SVM formulation (Abe 2010). The
support vectors which lie outside the SVM formulation belong to the abnormal class and
are also known as non-border support vectors. Classification of data vectors into support and
non-support vectors for various one-class SVM formulations is shown in Fig. 1b–f.
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Table 4 Notations for SVM
formulations

Type Notations Explanation

General n Size of input data

l Dimensions of input data

xεχ Input data set and input space

φ : χ → F Mapping to feature space

yεY Output and output space

vε(0, 1) Regularization parameter

α Lagrange multipliers

ξ Slack variables

�i Covariance matrix in input space χ

σ Covariance matrix in feature space F

	 Positive diagonal matrix

P	PT Eigen decomposition

K (x, z) Kernel (φ(x) · φ(z))

L Dual Lagrangian

Hyperplane r Distance of hyperplane from origin

w weight vector

Hyper-sphere, R radius of hypersphere / quarter-

Hyperellipsoid, sphere / centered ellipsoid

Quarter-sphere & ri Radius of i th cluster

Centered ellipsoid c Center of ball with radius R

ci Center of i th cluster

5.1.12 Euclidean distance

The euclidean distance of any data sample x from a point c is defined as:

d(x) =
√

(x − c)T (x − c) (1)

Suppose that the data collected from a WSN node is enclosed in a ball of radius R and center
c. Then, the euclidean distance of any data sample x from center c denotes the distance of x
from the center of distribution, assuming a spherical data distribution.

5.1.13 Mahalanobis distance

The mahalanobis distance of a data sample x from a point c is defined as:

d(x) =
√

(x − c)T �−1(x − c) (2)

The mahalanonis distance measure takes into account the covariance matrix of data. Thus, like
euclidean distance, a spherical distribution of data is not assumed. An important property of
this measure is that it is unaffected by the absolute values of attributes and takes into account
the deviation of data sample from the distribution of each of the attributes.

Table 4 summarizes the notations used in the SVM formulations.
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5.2 Description of one-class SVM formulations

5.2.1 Hyper-plane formulation

The earliest known formulation of one-class SVM is the hyper-plane (Schölkopf et al. 2001),
as shown in Fig. 1b. The hyper-plane based SVM constructs a maximal margin hyper-plane
to separate the normal and anomalous data from the origin. The hyperplane is characterized
by a weight vector w and a bias parameter r . Following quadratic optimization program
which involves the minimization of the norm of weight vector is solved:

min
wεF,ξε�l ,rε�

1

2
‖w‖2 + 1

vn

n∑

i=1

ξi − r (3)

subject to : (w · φ(xi )) ≥ r − ξi , ξi ≥ 0 (4)

The weight vector w, characterizing the hyperplane, lives in the feature space F, and therefore
it is not directly accessible (as the feature space may be extremely high-dimensional). The
term on the right hand side of above equation is the regularization term which controls the cost
of miss-classification. This term comprises of non-negative slack variables ξ , which allow for
some of the anomalies to lie on the wrong side of the hyperplane. The regularization parameter
v controls the fraction of data that may be classified as outliers. The overall problem tends to
reduce the distance of hyperplane from the origin to determine optimal w and r in such a way
that a few miss-classifications are allowed. Instead of the primal problem stated above, the
following dual problem, in which all the variables have low dimensions, is solved in practice

minαε�l

∑

i j

αiα j k(xi , x j ) (5)

subject to:
n∑

i=1

αi = 1 (6)

0 ≤ αi ≤ 1

vn
(7)

In the above dual problem, α are the lagrange multipliers and k(xi , x j ) is the dot product
of vectors xi and x j in the feature space. This dual problem is obtained by minimizing the
lagrangian with respect to primal variables. A detailed derivation of this problem can be
found in Schölkopf et al. (2001). The hyperplane formulation for an example synthetic data
set (Fig. 1a) is shown in Fig. 1b.

5.2.2 Hyper-sphere formulation (SOCC)

One can also use balls to describe the data in feature space (Tax and Duin 1999), as shown
in Fig. 1c. Hyper-sphere based SVM aims at separating the normal and anomalous data by
enclosing the normal data in a ball of radius R and centre c in a higher dimensional feature
space F. This is attained by solving the following quadratic optimization problem.

min
Rε�,ξε�l ,cεF

R2 + 1

vn

n∑

i=1

ξi (8)

‖φ(xi ) − c‖2 ≤ R2 + ξi , ξi ≥ 0 (9)
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The term on the right hand side of above equation is the regularization term that controls
the miss-classification cost as described for the hyperplane formulation. The above primal
problem tends to reduce the radius R of hypersphere and determine R and center c in such a
way that the euclidean distance of a majority of data samples is comparable to the radius R
and only a few miss-classifications are allowed. The dual of the above primal problem is:

min
α

∑

i j

αiα j k(xi , x j ) −
∑

i

αi k(xi , xi ) (10)

subject to:0 ≤ αi ≤ 1

vn
,
∑

i

αi = 1 (11)

where α are the lagrange multipliers and k(xi , xi ) is the dot product of vectors in feature
space. The hypersphere formulation for an example synthetic data set (Fig. 1a) is shown in
Fig. 1c.

5.2.3 Quarter-sphere formulation (QS-SVM)

Laskov et al. (2004) proposed to extend the ideas of one-class SVM to one-sided non-negative
data. He proposed to fix the center of the fitted sphere in SOCC at the origin, as shown in
Fig. 1d. Thus, the problem is reduced to fitting the normal data in a quarter-sphere. This
problem, also known as QS-SVM, can be formulated as following:

min
Rε�,ξε�l

R2 + 1

vn

n∑

i=1

ξi (12)

‖φ(xi )‖2 ≤ R2 + ξi , ξi ≥ 0 (13)

The corresponding dual problem is:

min
α

−
∑

i

αi k(xi , xi ) (14)

subject to:0 ≤ αi ≤ 1

vn
,
∑

i

αi = 1 (15)

An important fact about quarter-sphere SVM formulation is that its dual problem involves
only one set of lagrange multiplier values as compared to hypersphere formulation which
requires two sets. This can be attributed to the removal of a primal variable c from the hyper-
sphere problem. Thus, the complexity of quarter-sphere based problem is less as compared
to the hyper-sphere problem. The quarter-sphere formulation for an example synthetic data
set (Fig. 1a) is shown in Fig. 1d.

5.2.4 Hyper-ellipsoidal formulation (TOCC)

The spherical one-class classifier (SOCC) finds a hypersphere with minimum volume that
contains the target data while keeping outlier samples outside. SOCC achieves satisfactory
performance only when target samples have same distribution tendency in all orientations.
Therefore, performance of SOCC is limited in a way that many superfluous outliers might be
mistakenly enclosed. The authors in Wang et al. (2006) have formulated the one-class SVM
using hyperellipsoids with minimum effective radii around a majority of the image vectors
in the feature space. This hyperellipsoidal formulation involves two phases. First the image
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vectors are partitioned into a number of distinct clusters using Ward’s linkage algorithm.
Second, the image vectors in each cluster are fixed with a hyperellipsoid that encapsulates a
majority of the image vectors in that cluster. The image vectors that do not fall within any
of the hyperellipsoids are identified as anomalous. This formulation is also called structured
one-class classification (TOCC). The optimization problem in TOCC can be formulated as
a series of second-order cone programming problems that can be solved with acceptable
efficiency by primal-dual interior-point methods.

min ri + 1

vn

n∑

j=1

ξ j (16)

s.t:‖�i
− 1

2 (x j − ci )‖ ≤ ri + ξ j , ξ j ≥ 0 (17)

The overall problem tends to enclose majority of normal data (mapped to feature space)
in one or more clusters in such a way that a few miss-classifications are allowed only. An
important fact about hyper-ellipsoidal formulation is that it uses mahalanobis distance of data
samples from the center of clusters to detect outliers. Unlike, sphere structured SVMs, which
use euclidean distance, the mahalanobis distance ensures a better generalization ability of
the classifier. The hyperellipsoid formulation for an example synthetic data set (Fig. 1a) is
shown in Fig. 1e.

5.2.5 Centered ellipsoidal formulation (CESVM)

Based on the work presented in Rajasegarar et al. (2007, 2008) presented a centered hyper-
ellipsoidal formulation for one-class SVM (CESVM). The aim is to fit a hyperellipsoid in
the feature space with minimum effective radius R(> 0), centered at origin, encompassing
a majority of the image vectors χ , as shown in Fig. 1f. Like the quarter-sphere problem,
this problem can also be formulated as a linear optimisation problem because it requires the
determination of a radius only. The primal problem is formulated as.

min
Rε�,ξε�l

R2 + 1

vn

n∑

i=1

ξi (18)

‖φ(xi )‖σ−1‖φ(xi )‖ ≤ R2 + ξi , ξi ≥ 0 (19)

The dual optimization problem is.

min
αε�n

−
n∑

i=1

αi‖
√

n	−1 PT Kc
i‖ (20)

subject to:
n∑

i=1

αi , 0 ≤ αi ≤ 1

vn
(21)

The centered ellipsoid formulation for an example synthetic data set (Fig. 1a) is shown in
Fig. 1f.

5.3 Relationship between various one-class SVM formulations

Various one-class SVM formulations discussed in this paper are interlinked with each other.
In fact, hyper-ellipsoid based formulation is the most generalized one-class formulation and
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Fig. 2 Relationship between various one-class SVM formulations

various other formulations can be derived from it. The relationship between these formula-
tions is described in the following discussion.

– The hyper-ellipsoid based formulation is generalized form all one-class SVM formu-
lations. A hyper-ellipsoid can be defined by a radius R and centre c. The shape of an
ellipsoid can vary from an ellipse to a hypersphere depending on the nature of data distri-
bution along various attributes. The covariance matrix involved in this formulation takes
into account the nature of data distribution. Replacing the covariance matrix by identity
matrix in Eq. (16) results in the hypersphere formulation of Eq. (8).

– The centered hyperellipsoid formulation of Eq. (18) is also a derivative of the hyperel-
lipsoid formulation and can be obtained by fixing the centre of the hyperellipsoid at the
origin, that is, placing c = 0 in Eq. (16).

– The quarter-sphere formulation of Eq. (12) is also a derivative of hyperellipsoid and
hypersphere based formulations. In fact, QS-SVM formulation can be obtained by fixing
the centre of hypersphere at the origin, that is, putting c = 0 in Eq. (8). The quarter-
sphere formulation can also be obtained from hyperellipsoid formulation by replacing
the covariance matrix in Eq. (16) with an identity matrix and putting c = 0.

– The hyperplane based formulation is a special SVM formulation which cannot be obtained
from other SVM based formulations.

The relationship between one-class SVM formulations is summarized in Fig. 2.

5.4 Comparison of One-class SVM formulations

One-class formulations tend to separate normal and abnormal data by enclosing normal
data in a geometric figure such as a hyperplane, hypersphere, hyperellipsoid, quarter-sphere
and centered ellipsoid. This section presents a comparison of one-class formulations in
terms of model complexity, optimization problem, distance measure used and generalization
ability.
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5.4.1 Optimization problem and associated complexity

An optimization problem is solved for learning model parameters during training phase,
whose complexity depends on the number of parameters to be determined. A hyperplane in
feature space is defined by its weight vector w and bias parameter r , therefore, it requires
the solution of a quadratic optimization problem. Similarly, hypersphere and hyperellipsoid
are also defined by two parameters, that is, their radius and center and require the solution of
quadratic optimization problems. Quarter-sphere and centered ellipsoid are only defined by
their radii, so they involve a linear optimization problem. Thus, quarter-sphere and centered
ellipsoid based techniques are computationally inexpensive and more feasible for implemen-
tation on WSNs.

5.4.2 Distance measure

A distance measure is used in all one-class SVM formulations to detect outliers. Hyperplane,
hypersphere and quarter-sphere based formulations use euclidean distance of data samples
from the center of distribution to detect outliers, whereas, hyperellipsoid and centered ellip-
soid use mahalanobis distance to detect outliers. We will shortly prove that classifiers based on
mahalanobis distance achieve better generalization as compared to those based on euclidean
distance.

5.4.3 Generalization ability and classification performance

Euclidean distance of any data sample from the center of distribution assumes that the data
is equally distributed in all directions. Thus, a spherical structure of data is assumed in the
classifiers based on euclidean distance. Moreover, this distance measure is highly dependent
on the difference among the absolute values of attributes. Mahalanobis distance is another
distance measure which is used in certain classifiers such as hyper-ellipsoid and centered
ellipsoid. This distance measure is normalized with the inverse of covariance matrix. This
normalization removes the effect of absolute values of attributes. Thus, mahalanobis distance
denotes the deviation of a data sample from the center of distribution without assuming a
spherical nature of data distribution.

In order to understand the generalization ability and classification performance of various
one-class SVM formulations, let us consider Fig. 1a–f. Figure 1a shows an example synthetic
data set which consists of two attributes. All data vectors represented by blue colour in Fig. 1a
are normal, whereas, those represented by red colour are abnormal. We now comment on
the classification performance of each of the one-class SVM formulations by using them to
classify the data of Fig. 1a. Figure 1b shows the classification of this data set into normal
and abnormal vectors by using a hyperplane formulation. All the data samples below the
hyperplane (characterized by weight vector w and bias r ) which are represented by blue
colour are classified as normal, whereas, those away from the hyperplane are classified as
outliers by this formulation. The green points represent the data vectors which form the
support of hyperplane formulation and are known as support vectors (Sect. 5). The yellow
points in Fig. 1b show the data vectors which are actually anomalous, but they have been
classified as normal by hyperplane formulation.

The classification of same data set using a hypersphere is shown in Fig. 1c. All data samples
which lie inside the sphere structure of center c and radius R are classified as normal by this
classification and represented by blue colour. Data points in red, which are outside the sphere
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are classified as abnormal by this formulation. A comparison of Fig. 1b, c shows that the
hypersphere formulation has a better classification performance as compared to hyperplane if
the abnormal data points lie far away from the center of distribution. If the data points repre-
sented by yellow colour lie more far away from blue points in Fig. 1b, c, then the hypersphere
formulation can classify these points as abnormal, whereas, the hyperplane formulation can-
not classify these points as abnormal until they lie above the hyperplane. The quarter-sphere
formulation (Fig. 1d) has the same performance as that of hypersphere formulation, however
its computational complexity is less as compared to that of hypersphere formulation.

The hyperellipsoid formulation for the classification of same data set is shown in Fig. 1e.
This formulation classifies all data points correctly because it fits a tight ellipsoid on the data
distribution which allows all the data vectors which are away from the data distribution to be
classified as abnormal. The centered ellipsoid formulation of Fig. 1f also has a performance
similar to that of hyperellipsoid, however, it has an added advantage of reduced computational
complexity.

A comparison of Fig. 1b–f shows that the ellipsoid based formulations have a better classi-
fication performance as compared to that of hyperplane and sphere based formulations. This
better performance can be attributed to the distance measure used in these formulations. The
use of mahalanobis distance in ellipsoid based formulations allows the data distribution to be
fitted in a tight ellipse whose shape depends on covariance of the data set under consideration.
The use of euclidean distance assumes a spherical data distribution and all data samples which
are actually anomalous but do not lie far away from the distribution may be miss-classified.
The ellipsoid based formulations can also generalize well to changing data distributions
because they can update their parameters based on the data covariance, so, they have a better
classification performance for unseen data as well. Thus, classification performance and gen-
eralization ability of one-class formulations can be arranged in the following increasing order:

hyperplane < hypersphere ≈ quarter-sphere < hyperellipsoid ≈ centered ellipsoid

5.5 Lessons to take forward

Before proceeding to detailed analysis of outlier & event detection techniques we present
some conclusions on one-class SVM formulations that can be derived from the above dis-
cussion.

– The hyperplane based formulation has a poor generalization ability and classification
performance. Moreover, it involves a quadratic optimization problem. Therefore, it is not
possible to use hyperplane based formulation for outlier and event detection on energy
constrained WSNs deployed in remote and harsh environments.

– A variant of hyperplane formulation (Gomez-Verdejo et al. 2011), which reduces the
computational complexity can be used for WSNs. However, the problem of poor classifi-
cation performance cannot be solved with this variant. We explore this technique further
in next section.

– The hypersphere formulation has a better generalization ability and classification per-
formance as compared to hyperplane formulation, however, a quadratic optimization
problem makes it infeasible for implementation on energy constrained WSNs.

– The classification performance of quarter-sphere formulation is comparable to that of
hypersphere formulation. However, it involves a linear optimization problem which
results in a significant reduction in complexity as compared to that of hypersphere. Thus,
it can be used for outlier and event detection in WSNs deployed in harsh environments.
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State-of-the-art outlier and event detection techniques based on this formulation have
been analyzed in next section.

– Hyperellipsoid based formulation has the best classification performance, however it
cannot be used for WSNs because of the complexity associated with its quadratic opti-
mization problem. As compared to the hyper-ellipsoid formulation, the centered ellipsoid
formulation involves a linear optimization problem and it can be used for WSNs.

– Thus, quarter-sphere and centered ellipsoid based formulations can be used for outlier
and event detection in WSNs deployed in harsh environments. A primary constraint of
centered ellipsoid formulation is its communication complexity, which will be discussed
in detail in next section.

6 Analysis of state-of-the-art outlier and event detection techniques based on one-class
SVM formulations

Now that we have defined various one-class SVM formulations, we proceed to a detailed
analysis of each of these formulations and determine their feasibility for WSNs deployed in
harsh environments based on the characteristics discussed in Sect. 2.

6.1 General methodology for outlier and event detection by one-class SVMs

One-class SVM formulations follow a specific methodology for outlier and event detection
which is outlined below:

6.1.1 Step 1—mapping to feature space

All the data samples collected over a particular time interval are mapped to a higher dimen-
sional feature space. This mapping is required for the separation of data that is inseparable in
the input space and can be done by the use of mercer kernels which calculate the dot product
of data vectors in feature space.

6.1.2 Step 2–determining appropriate parameters

The data vectors mapped to the feature space are then enclosed in a geometric figure. This
requires determining the parameters of geometric figure. For example, a hyperplane can be
defined by its weight vector and a bias parameter, whereas a hyper-sphere can be defined
by its centre and radius. These parameters are determined by solving a quadratic or linear
optimization problem. A primal optimization problem is formulated for this purpose. The
model complexity, that is, the complexity of determination of the parameters may be reduced
by allowing some errors in the classification. This error can be allowed by introducing some
non-negative slack variables and a regularization parameter in the primal optimization prob-
lem which allows some of the data samples to be miss-classified. The primal problem is later
converted to a dual quadratic or linear problem by the use of lagrange function. We note here
that the dual problem will be in terms of lagrange multiplier whose values are obtained for
each of the data samples by using optimization algorithms. Hyperplane, hyper-sphere and
hyper-ellipsoid are defined by two parameters each, therefore, they require the solution of
a quadratic optimization problem, whereas the quarter-sphere and centered hyper-ellipsoid
are defined only by their radius so they solve a linear optimization problem.
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6.1.3 Step 3–global outlier detection

Once the parameters of geometric figure are determined, each node broadcasts its parameters
to other nodes of the network. The central node ultimately receives the parameters of all nodes
and merges them to compute global parameters. The merged parameters include weight vector
w and bias r for hyperplane, radius R and center c for hypersphere based formulations and
an additional covariance matrix for ellipsoid based formulations. The merged parameters are
then broadcasted back to all nodes of the network. Each node then classifies the data samples
based on their location in the feature space around the geometry. There are two methods to
classify the data samples:

1. Based on the values of lagrange multipliers: All data samples which lie inside the
geometric figure are normal and their associated lagrange multipliers have a value of
zero. The data samples which lie on the quarter sphere have a non-zero value for their
lagrange multipliers. Such vectors are known as border support vectors. All the data
vectors whose lagrange multipliers reach a maximum value equal to 1/(vn) are known
as outliers because they lie outside the geometric formulation (Fig. 1b–f).

2. Based on distance measure: The data samples for all one-class SVM formulations
which enclose the data in a closed geometry, such as a hypersphere, hyperellipsoid,
quarter-sphere or centered ellipsoid, can be classified as normal or abnormal based on
their distance from the center of data distribution. This can be achieved by comparing
the euclidean or mahalanobis distance of these samples from the center of geometry with
the radius of geometry. All data samples whose distances exceed the radius are known as
outliers. Later in this article we will comment on the notion that generalization ability of
mahalanobis distance based classifiers is better than those based on euclidean distance.

6.1.4 Event detection and identification

Once a global outlier has been detected at a node of the network, a consensus of other nodes
in the network is invoked to get information about the presence or absence of outliers on
them. An event is said to have occurred if majority of nodes in a neighborhood show the
presence of global outliers. After the occurrence of event, further analysis should be carried
out to determine the event cause and attributes involved in the event. This process is known
as event type identification.

A summary of outlier and event detection process using one-class SVMs is presented in
Fig. 3.

From the discussion carried out in the previous section it was concluded that quarter-
sphere (QS-SVM) and centered ellipsoid (CESVM) based formulations are most suitable
for outlier and event detection in WSNs because of their low computational complexity. In
the discussion that follows, we present a detailed analysis of techniques based on these two
formulations. The discussion carried out in this section will highlight that in addition to low
computational complexity, the techniques based on these formulations possess a number of
additional characteristics which make them suitable specifically for WSNs deployed in harsh
environments.

6.2 Techniques based on quarter-sphere formulation (QS-SVM)

Various versions of QS-SVM based outlier and event detection techniques have been proposed
in literature. Here we briefly discuss each of these techniques (Table 5).
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Fig. 3 General strategy for outlier and event detection by various one-class SVM formulations

6.2.1 Offline QS-SVM approach with spatio-temporal correlations

Rajasegarar (2007) presented an SVM based approach for distributed anomaly detection in
hierarchical or non-hierarchical network structures. The authors have proposed an offline
technique which requires minimal communication between the nodes of network. Assum-
ing a homogeneous environment, that is, where all the measurements produced by sensors
have same unknown distribution, each node runs a quarter sphere based anomaly detection
algorithm to define a quarter sphere as a boundary for normal data. All the data points lying
outside the quarter sphere are outliers, whereas the points lying on the sphere are border
support vectors and the points lying inside the sphere are non-support vectors. Each node
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identifies the local radius of the quarter sphere and keeps the record of norms of data vector
in its memory and then sends its radius information to the parent node. The parent node then
collects the radius information from its children and combines them with its own local radius.
It then computes the global radius, which is used for global anomaly detection. Four strate-
gies, namely, mean, median, maximum and minimum of the combined radii (from the parent
node and children nodes) have been considered for the computation of global radius. Parent
node sends the global radius to its children nodes, which then compare the norms of their
data vectors with the global radius and classifies them as globally anomalous or normal. A
data vector is identified as globally anomalous if its norm is greater than the square of global
radius. This technique does not perform event detection. A modification of this technique
is presented next which can be used for event detection.(The analysis of this technique is
presented in Table 6).

6.2.2 Online QS-SVM approach with spatio-temporal correlations

An online version of the technique (Rajasegarar et al. 2007) (based on QS-SVM) for environ-
mental monitoring applications of WSNs is presented in Yang et al. (2008). This technique
shows that by taking advantage of spatial correlations that exist in sensor data of adjacent
nodes, the false alarm rate can be reduced and even real-time distinction between events
and errors can be made. Initially, each node learns the local radius of the quarter-sphere
using its m sequential data measurements, which may include some anomalous data. The
one-class quarter-sphere SVM can efficiently find a minimal radius to enclose the majority
of these mapped data measurements in the feature space. Each node then locally broadcasts
the learned radius information to its spatially neighboring nodes. In fact, a node first collects
the radius information from all of its neighbors and then computes a median radius Rim of its
neighboring nodes as well as a median radius of its closed neighborhood. When a new data
measurement x arrives at a node, it computes the Euclidian distance d(x)c between x and
the origin of its centered quarter-sphere in the feature space. Based on the fact that sensor
data collected in a densely deployed WSN tends to be correlated in both time and space, a
sensor first compares d(x)c with its own radius Ri . The data x will be classified as normal if
d(x)c <= Ri , which means that x falls on or inside the quarter-sphere at node Si . Otherwise
if d(x)c > Ri , x is a potential (temporal) outlier. In this case, the i th node Si further com-
pares d(x)c with the median radius Rim of its spatially neighboring nodes. If d(x)c > Rim, x
will finally be classified as outlier in the neighborhood. This technique also differs between
errors and events based on the fact that temporal deviations correspond to events whereas
spatio-temporal deviations correspond to errors. (The analysis of this technique is presented
in Table 6).

6.2.3 Online & adaptive QS-SVM approach with spatio-temporal correlations

An adaptive and communication efficient version of Yang et al. (2008) is presented in Zhang
et al. (2009a). This technique is identical to Yang et al. (2008) , in that, it identifies outliers
based on spatio-temporal deviations. However the authors have presented three different
approaches to online outlier detection namely Instant Outlier Detection (IOD), Fixed-size
Time Window-based Outlier Detection Technique (FTWOD) and Adaptive Outlier Detec-
tion Technique (AOD). All of these techniques use the quarter sphere based support vector
methods to identify outliers, however the difference lies in update of the training set. In IOD
the training set is updated at every time instant. This technique is computationally expensive
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as the radius of quarter-sphere is computed at each time instant and a significant communica-
tion cost is incurred for broadcasting this radius information to neighboring nodes. FTWOD
requires the update of training set after every n samples. AOD overcomes the computation
and communication overhead of IOD and FTWOD by updating the training set only when
an outlier is identified. Thus the training set will remain constant until an outlier occurs. This
technique reduces the communication overhead significantly. (The analysis of this technique
is presented in Table 6).

6.2.4 Online and adaptive QS-SVM approach with Spatio-temporal-attribute correlations
(STA-QS-SVM)

The QS-SVM based approaches presented in Zhang et al. (2009a), Rajasegarar et al. (2007),
Yang et al. (2008) incorporate temporal correlations of data to detect outliers and spatial
correlations to detect global outliers or events. However, none of these approaches incor-
porate attribute correlations which play an important role in outlier detection (Shahid et al.
2012). An online and adaptive QS-SVM based approach that incorporates temporal-attribute
correlations to detect outliers and spatial correlations to detect events is presented in Shahid
et al. (2012). This technique tends to correct the radius of quarter-sphere determined by the
approaches of Zhang et al. (2009a), Rajasegarar et al. (2007), Yang et al. (2008) via attribute
radius value. The attribute radius value is determined by applying the QS-SVM problem by
treating individual attributes as vectors. This results in the exploitation of attribute correla-
tions of the data set. Thus, two radii are calculated, that is temporal and attribute and their
mean is taken to form the final quarter-sphere radius. The technique reports significant perfor-
mance gains over other QS-SVM based techniques. Thus, the radius of quarter-sphere in this
technique is determined by temporal-attribute correlations of data set. Those data samples,
which fall outside the quarter-sphere are declared to be outliers. Once outliers are detected,
a procedure similar to that presented in Zhang et al. (2009a), Rajasegarar et al. (2007), Yang
et al. (2008) is invoked to determine the presence of events in the network. (The analysis of
this technique is presented in Table 6).

6.2.5 STA-QS-SVM with low complexity

STA-QS-SVM (Shahid et al. 2012) reports significant performance gains over other QS-
SVM based techniques because it incorporates attribute correlations. However, a major draw-
back of this approach is its high computational complexity. Moreover, the QS-SVM based
techniques broadcast the radius of quarter-sphere to central node of the network at each
time instant to detect events. An effort to reduce high computational and communication
complexity of these techniques has been presented in Shahid et al. (2012a). This paper
presents three approaches to outlier and event detection, namely, STA-TSV, STA-TASV
& STA-CA. All of these approaches follow the procedure of STA-QS-SVM for outlier and
event detection. However, they update and broadcast the radius of quarter-sphere in a different
manner as compared to STA-QS-SVM. STA-TSV, broadcasts the radius of quarter-sphere on
the arrival of temporal support vectors (TSV) only, whereas, STA-TASV broadcasts the radius
of quarter-sphere on the arrival of temporal-attribute support vectors (TASV). The number
of temporal or temporal-attribute support vectors in a data set is very small, therefore, these
techniques result in a significant reduction in communication complexity of STA-QS-SVM.
The performance of these techniques is comparable to that of STA-QS-SVM because only
support vectors contribute to the quarter-sphere radius. Hence, broadcast of quarter-sphere
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radius at each time instant is not required. STA-CA tends to reduce both the computational
and communication complexity of STA-QS-SVM by calculating the attribute radius only on
the arrival of temporal support vectors in the data set. Moreover, the temporal-attribute radius
is only broadcasted on the arrival of temporal support vectors. (The analysis of this technique
is presented in Table 6).

6.2.6 Analysis of QS-SVM based techniques

Following is a brief analysis of QS-SVM based approaches Zhang et al. (2009a), Shahid et
al. (2012, 2012a), Rajasegarar et al. (2007), Yang et al. (2008).

– All the QS-SVM based techniques consider multivariate data. Streaming data, however,
can only be handled by the techniques which can perform online data processing (Zhang
et al. 2009a; Shahid et al. 2012, a; Yang et al. 2008).

– Spatio-temporal correlations are considered by all the techniques, thus, all the techniques
can detect global outliers or events. However, attribute correlations are only considered
by Shahid et al. (2012, 2012a). The techniques which consider attribute correlations have
a better outlier and event detection performance.

– All the QS-SVM based techniques are unsupervised, that is, they do not require labeled
input-output data during the training phase. Moreover, all the techniques support distrib-
uted processing.

– All QS-SVM based techniques are online except (Rajasegarar et al. 2007). As the tech-
niques presented in Shahid et al. (2012, 2012a) are the only techniques that considers
attribute correlations, so (Shahid et al. 2012, a) are robust to dynamically changing data
distributions.

– The quarter-sphere formulation, unlike the hyperplane and hyper-sphere formulations,
is described by a radius only. Thus, it poses a linear optimization problem as compared
to quadratic optimization problem posed by other formulations. This corresponds to a
significant decrease in computational complexity making the QS-SVM based techniques
suitable for implementation on WSN nodes.

– None of the QS-SVM based techniques can identify the type of event or attributes involved
in it.

Based on the analysis of QS-SVM based techniques, it can be concluded that (Shahid et
al. 2012a) is the only technique that is suitable for implementation in harsh environments
without modifications.

6.3 Centered ellipsoidal formulation (CESVM)

Only a few techniques based on centered ellipsoidal formulation have been presented in
literature. We briefly discuss each of these techniques.

6.3.1 Offline CESVM

The CESVM based algorithm for detection of outliers and events is similar to that of quarter-
sphere formulation (Rajasegarar et al. 2007). Here the data vectors in the input space are first
mapped to a higher dimensional space and centered by the mean of kernel functions. Then, a
hyperellipsoid, centered at the origin, with minimal effective radius is fitted around the major-
ity of the data vectors in the higher dimensional space. The mahalanobis distance of newly
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arrived data vectors is compared with the radius of hyperellipsoid. All the data vectors that fall
on or inside the hyperellipsoid are normal and those falling outside the hyperellipsoid are clas-
sified as anomalous. A better detection rate is achieved with hyper-ellipsoids as compared to
the quarter-sphere formulation. This can be attributed to the use of mahalanobis distance as a
metric for comparison of newly arrived data vectors with the hyperellipsoid radius. However,
the hyper-ellipsoidal formulation (Rajasegarar et al. 2008) has more communication over-
head as compared to the hyper-sphere (Tax and Duin 1999) and quarter-sphere formulations
(Rajasegarar et al. 2007) because it requires broadcasting the covariance matrix to the neigh-
boring nodes in the network. The broadcast of covariance matrix is required to the central node
of the network to determine the global covariance matrix. For a d attribute data set, covariance
matrix is a d×d symmetric matrix. Due to symmetric nature of this matrix, a set of d(d+1)/2
values have to be broadcasted at each time instant. (The analysis of this technique is given in
Table 7).

6.3.2 Online CESVM

The hyper-ellipsoidal based technique presented in Rajasegarar et al. (2010) is offline.
An online and distributed approach to outlier detection based on centered hyper-ellipsoids
(Rajasegarar et al. 2008) was presented by Zhang et al. (2009). Each sensor node models
its hyper-ellipsoid SVM for m observations and then obtains the hyper-ellipsoid radius Ri

as well as the corresponding covariance matrix of centered data. Then the local outliers can
be determined in real-time by comparing the distances between new observations and the
origin with Ri . Each node then communicates its parameters, that is, Ri and the covariance
matrix to its spatial neighbors. Due to the fact that the covariance matrix is symmetric, each
node only transmits d(d + 1)/2 elements for covariance matrix, where d is the number of
attributes of a sensor observation. These parameters are then merged with similar parameters
of other nodes to form global radius and global covariance matrix. Finally each node uses its
merged parameters to determine global outliers for its new observations in an online manner.
(The analysis of this technique is given in Table 7).

6.3.3 Online CESVM with low complexity

The CESVM based formulation presented in Rajasegarar et al. (2010) has a high computa-
tional and communication complexity for the following reasons: a) it requires the calculation
of covariance matrix of data b) it requires the computation of mahalanobis distance of newly
arrived data samples in feature space c) it requires the broadcast of hyperellipsoid parameters,
that is, its radius and covariance matrix to other nodes of network at every time instant. The
first two problems have been overcome by the authors of Zhang et al. (2012). This technique
presents a method for formulating the hyperellipsoid in the input space, rather than the feature
space. It is based on the fact that the data collected from a typical WSN is separable in input
space, thus, outliers can easily be separated from normal measurements in the input space.
The optimization problem is formulated to determine the radius of hyper-ellipsoid in the
input space. Thus, the technique requires the solution of a linear optimization problem and
is far less expensive as compared to Rajasegarar et al. (2010). The outliers are detected by
comparing the norm of newly arrived data vectors with the radius of hyper-ellipsoid. Once
an outlier is detected at a particular node, the decisions of other nodes can be invoked to
determine the presence of an event in the network. (The analysis of this technique is given
in Table 7).
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6.3.4 Analysis of CESVM based techniques

Following is a brief analysis of state-of-the-art centered hyper-ellipsoidal based techniques
(Zhang et al. 2009, 2012; Rajasegarar et al. 2010).

– All the CESVM based techniques consider multivariate data. However, only (Zhang et
al. 2009, 2012) consider the streaming data.

– Spatio-temporal correlations are considered by all the hyper-ellipsoidal based techniques.
An important advantage of CESVM based techniques over QS-SVM techniques is that
CESVM based techniques consider attribute correlations of data via covariance matrix.
The calculation of covariance matrix, however, requires additional computational com-
plexity and memory. Thus, the CESVM based techniques detect local outliers using
temporal-attribute correlations and detect events or global outliers by exploiting spatial
correlations between the geographically separated nodes of the network.

– All the CESVM based techniques perform online data processing except (Rajasegarar
et al. 2010). Moreover, due to their ability to incorporate attribute correlations, the tech-
niques presented in Zhangh et al. (2009, 2012), are robust to dynamically changing data
distributions.

– All the CESVM based techniques pose a linear optimization problem and are compu-
tationally inexpensive like QS-SVM based techniques. However, an inherent problem
of CESVM based techniques is their high communication cost because they require the
broadcast of entire covariance matrix among the nodes of the network. Although the tech-
nique presented in Zhang et al. (2012) tends to reduce the computational complexity of
CESVM based techniques, however, it is still not suitable for outlier and event detection
due to high communication cost.

– None of the CESVM based techniques can identify the type of event or the attributes
involved in it.

From the analysis carried out in the above discussion it can be concluded that the offline
technique presented in Rajasegarar et al. (2010) is unsuitable for WSNs deployed in harsh
environments, whereas the techniques presented in Zhangh et al. (2009, 2012) can be used
for outlier and event detection in harsh environments after some modifications to reduce the
communication complexity.

6.4 How to use the techniques based on hypersphere and hyperellipsoid formulations for
outlier and event detection in WSNs?

The hypersphere and hyperellipsoid based techniques have a good classification performance
but a quadratic optimization problem limits their applicability for WSNs. Thus, these for-
mulations can only be used for outlier and event detection in WSNs if a method can be
devised to reduce their complexity. A method based on iterative re-weighted least squares
algorithm has been presented to reduce the complexity of hyperplane based formulation. We
present this method below and propose a similar solution for hypersphere and hyperellipsoid
formulations.

6.4.1 The adaptive hyperplane formulation

The problem of high computational complexity of the hyperplane based formulation
(Schölkopf et al. 2001) has been overcome by the technique presented in Gomez-Verdejo
et al. (2011). This technique presents an online and adaptive version of a hyperplane
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which can update its parameters with the newly arrived data samples. Further, the com-
putational complexity associated with the quadratic optimization problem of hyperplane
has been reduced by using iterative re-weighted least squares (IRWLS) method. In IRWLS,
the machine structure is updated via growing and pruning mechanisms and the weights are
updated using structural risk minimization principles underlying SVMs. The technique is
known as adaptive because it uses a forgetting factor that enables the hyperplane parame-
ters to be updated with the most newly arrived data, thus, discarding the effect of old data
samples.

7 Bottlenecks of one-class SVMs and future research directions

Although one-class SVM formulations, such as QS-SVM and CESVM satisfy most of the
characteristics which are required for outlier and event detection in harsh environments but
they have not been extensively explored by the research community for WSN applications
due to the following reasons:

7.1 Optimization complexity

The optimization problems required in QS-SVM and CESVM are linear, but for an online
technique the solution of this problem is required with the arrival of every new data sample.
For example, QS-SVM based technique presented in Shahid et al. (2012) requires the solution
of a linear optimization problem at every time instant. Moreover, to detect global outliers and
events, the determined parameters are also broadcasted at every time instant. Thus, computa-
tion and communication is required at each time instant. Although the techniques presented
in Shahid et al. (2012a) reduce communication and computations but more efforts are needed
for this purpose. One way to reduce computations can be to use IRWLS algorithm for QS-
SVM and CESVM as done in Gomez-Verdejo et al. (2011). Further, CESVM requires even
more communication than QS-SVM because the whole covariance matrix has to be broad-
casted to central node. The research community should focus on developing communication
and computation effective algorithms based on QS-SVM ad CESVM without compromising
their performance.

7.2 Choice of optimal regularization parameter

An important parameter for one-class SVM problems is the regularization parameter v which
decides the fraction of data that is classified as outliers. Small values of this parameter result
in high values of 1/vn, thus, increasing the cost of miss-classification. The increased cost of
miss-classification results in a low detection rate and a low false positive rate. Large values
of v result in a small value of 1/vn, thus decreasing the cost of miss-classification. The
decreased cost of miss-classification results in a high value of false positive rate and a high
detection rate. The choice of optimal regularization parameter can be made by using cross
validation. N-fold Cross validation divides the data set into N distinct portions, where some
of the portions are used as training set to determine the value of regularization parameter
and the remaining data sets are used for testing purposes. An inherent draw back of cross
validation is that the procedure has to be repeated time and again for dynamically changing
data distributions. The research community should focus on methods to determine the optimal
value of regularization parameter in an online manner.
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7.3 Event identification

A review of state-of-the-art outlier and event detection techniques based on one-class SVM
shows that none of the techniques incorporate an event identification strategy. Event identi-
fication strategies play an important role to identify the type of event and attributes involved
in event (Shahid et al. 2012). The research community should focus on developing low
complexity one-class SVM based event identification algorithms so that the need of manual
examination of attributes can be eliminated.

7.4 Soft decision based algorithms

All one-class SVM based techniques analyzed in this paper provide a hard decision for the
presence or absence of outliers. Ideally an outlier detection technique should be able to assign
an outlier score to each of the newly arrived data samples. This would provide information
about gradual change in the state of data samples from normal to outliers which can be used
to generate a pre-event warning in harsh environments

8 Conclusion

This paper presents a detailed analysis of various one-class Support Vector machine for-
mulations for outlier and event detection in Wireless sensor networks deployed in harsh
environments. These formulations include hyper-plane, hyper-sphere, quarter-sphere and
hyper-ellipsoid. The analysis has been carried out in terms of characteristics like input data
type, spatio-temporal and attribute correlations, user specified thresholds, outlier types(local
and global), type of approach (distributed/centralized), outlier identification (event/error),
outlier degree, susceptibility to dynamic topology, non-stationarity and inhomogeneity. A
tabular description of improvement and feasibility of various techniques for deployment
in the harsh environments has also been presented. We observe from the analysis that the
quarter-sphere formulations are most suitable for outlier detection in WSNs because of their
low computation and communication complexity and high efficiency. Hyper-plane and hyper-
sphere formulations are computationally expensive and do not generalize well to variety of
distributions. Hyper-ellipsoid based techniques, although more efficient then quarter-sphere
techniques, pose a high communication overhead; hence can be used for energy constrained
WSNs only after suitable modifications.
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