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Abstract The dynamicity of distributed wireless networks caused by node mobility,
dynamic network topology, and others has been a major challenge to routing in such networks.
In the traditional routing schemes, routing decisions of a wireless node may solely depend
on a predefined set of routing policies, which may only be suitable for a certain network
circumstances. Reinforcement Learning (RL) has been shown to address this routing chal-
lenge by enabling wireless nodes to observe and gather information from their dynamic local
operating environment, learn, and make efficient routing decisions on the fly. In this article,
we focus on the application of the traditional, as well as the enhanced, RL models, to routing
in wireless networks. The routing challenges associated with different types of distributed
wireless networks, and the advantages brought about by the application of RL to routing
are identified. In general, three types of RL models have been applied to routing schemes in
order to improve network performance, namely Q-routing, multi-agent reinforcement learn-
ing, and partially observable Markov decision process. We provide an extensive review on
new features in RL-based routing, and how various routing challenges and problems have
been approached using RL. We also present a real hardware implementation of a RL-based
routing scheme. Subsequently, we present performance enhancements achieved by the RL-
based routing schemes. Finally, we discuss various open issues related to RL-based routing
schemes in distributed wireless networks, which help to explore new research directions in
this area. Discussions in this article are presented in a tutorial manner in order to establish a
foundation for further research in this field.
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1 Introduction

Compared to static wired networks, the dynamicity of various properties in distributed wire-
less networks, including mobility patterns, wireless channels and network topology, have
imposed additional challenges to achieving network performance enhancement in routing.
Traditionally, routing schemes use predefined sets of policies or rules. Hence, most of these
schemes have been designed with specific applications in mind; specifically, each node pos-
sesses predefined sets of policies suitable for a certain network condition. Since the policies
may not be optimal in other network conditions, the schemes may not achieve the optimal
results most of the time due to the unpredictable nature of distributed wireless networks.

The application of Machine Learning (ML) algorithms to solve issues associated with
the dynamicity of distributed wireless networks has gained a considerable attention (Forster
2007). ML algorithms help wireless nodes to achieve context awareness and intelligence for
network performance enhancement. Context awareness enables a wireless node to observe
its local operating environment; while intelligence enables the node to learn an optimal
policy, which may be dynamic in nature, for decision making on its operating environment
(Yau et al. 2012). In other words, context awareness and intelligence help a wireless node
to take actions based on its observed operating environment in order to achieve optimal or
near-optimal network performance.

Various ML techniques, such as Reinforcement Learning (RL) (Sutton and Barto 1998),
swarm intelligence (Kennedy and Eberhart 1995), genetic algorithms (Gen and Cheng 1999),
and neural networks (Forster 2007; Rojas 1996) have been applied to enhance network per-
formance. The choice of a ML algorithm may be based on the characteristics of a distributed
wireless network. Examples of distributed wireless networks are Wireless Sensor Networks
(WSNs) (Akyildiz et al. 2002), wireless ad hoc networks (Toh 2001), cognitive radio net-
works (Akyildiz et al. 2009), and delay tolerant networks (Burleigh et al. 2003). In relation to
the application of ML in distributed wireless networks, Forster (2007) provides a comparison
of various ML algorithms. For instance, in Forster (2007), the application of RL is found to be
more suitable for energy-constrained WSNs compared to the swarm intelligence approach.
The rationale behind this is that, swarm intelligence usually incurs higher network overheads
compared to RL, hence it may consume more energy. Meanwhile, genetic algorithm may
be more suitable for centralized wireless networks because it requires global information
(Forster 2007).

In distributed wireless networks, routing is a core component that enables a source node
to find an optimal route to its destination node. Route selection may depend on the charac-
teristics of the operating environment. Hence, the application of ML in routing schemes to
achieve context awareness and intelligence has received a considerable research attention.
For instance, in mobile networks, ML-based routing schemes are adaptive to the operating
environment because it may be impractical for network designers to establish and develop
routing policies for each movement in which the characteristics and parameters of the operat-
ing environment change with time and location (Ouzecki and Jevtic 2010; Chang et al. 2004).

This article provides an extensive survey on the application of various RL approaches to
routing in distributed wireless networks. Our contributions are as follows. Section 2 presents
an overview of RL. Section 3 presents an overview of routing in distributed wireless networks
from the perspective of RL. Section 4 presents RL models for routing. Section 5 presents new
RL features for routing. Section 6 presents an extensive survey on the application of RL to
routing. Section 7 presents an implementation of a RL-based routing scheme in wireless plat-
form. Section 8 presents performance enhancements brought about by the application of RL
in various routing schemes. Section 9 presents open issues. Finally, we provide conclusions.
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All discussions are presented in a tutorial manner in order to establish a foundation and to
spark new interests in this research field.

2 Reinforcement learning

Reinforcement Learning (RL) is a biological-based ML approach that acquires knowledge
by exploring its local operating environment without the need of external supervision (Xia et
al. 2009; Santhi et al. 2011). A learner (or agent) explores the operating environment itself,
and learns the optimal actions based on a trial-and-error concept. RL has been applied to
keep track of the relevant factors that affect decision making of agents (Sutton and Barto
1998). In distributed wireless networks, RL has been applied to model the main goal(s),
particularly network performance metric(s) such as end-to-end delay, rather than to model
all the relevant factors in the operating environment that affect the performance metric(s) of
interest. Through learning the optimal policy on the fly, the goal of the agent is to maximize
the long-term rewards in order to achieve performance enhancement (Ouzecki and Jevtic
2010).

A RL task that fulfills the Markovian (or memoryless) property is called a Markov Decision
Process (MDP) (Sutton and Barto 1998). The Markovian property implies that the action
selection of an agent at time t is dependent on the state-action pairs at time t − 1 only, rather
than the past history at time t − 2, t − 3, . . .. In MDP, an agent is modeled as a four-tuple
consisting of {S, A, T, R}, where S is a set of states, A is a set of actions, T is a state transition
probability matrix that represents the probability of a switch from one state at time t to another
state at time t + 1, and R is a reward function that represents a reward (or cost) r received
from the operating environment. At time t , an agent observes state s ∈ S and chooses action
a ∈ A based on its knowledge (or learned optimal policy). At time t + 1, the agent receives
a reward r . As time goes by, the agent learns and associates each state-action pair with a
reward. In other words, the reward indicates the appropriateness of taking action a ∈ A
in state s ∈ S. Note that, MDP requires an agent to construct and keep track of a model
of its dynamic operating environment in order to estimate the state transition probability
matrix T . By omitting T , RL learns knowledge through constant interaction with operating
environment.

Q-learning is a popular RL approach, and it has been widely applied in distributed wireless
networks (Yau et al. 2012). In RL, an agent is modeled as a three-tuple consisting of {S, A, R}
as described below:

• State. An agent has a set of states S that represent the decision making factors observed
from its local operating environment. At any time instant t , agent i observes state si

t ∈ S.
The state can be internal, such as buffer occupancy rate, or external, such as a destination
node. The agent observes its state in order to learn about its operating environment. If the
state is partially observable (i.e. operating environment with noise), an agent can estimate
its state, which is commonly called the belief state, using Partially Observable Markov
Decision Process (POMDP) (Sutton and Barto 1998).
• Action. An agent has a set of available actions A. Examples of actions are data transmis-

sion and next-hop node selection. Based on the continuous observation and interaction
with the local operating environment, an agent i learns to select an action ai

t ∈ A that
maximizes its current and future rewards.
• Reward. Whenever an agent i carries out an action ai

t ∈ A, it receives a reward r i
t+1(s

i
t+1)

from the operating environment. A reward r i
t+1(s

i
t+1) may represent a performance
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metric, such as transmission delay, throughput, and channel congestion level. Weight
factor may be used to estimate the reward if there are two or more different types of
performance metrics. For instance, in Dong et al. (2007), r i

t+1(s
i
t+1) = ωr i

a,t+1(s
i
t+1)+

(1 − ω)r i
b,t+1(s

i
t+1) where r i

a,t+1(s
i
t+1) and r i

b,t+1(s
i
t+1) indicate rewards for different

performance metrics, respectively; and ω indicates the weight factor. There are two types
of rewards, namely delayed rewards and discounted rewards (or accumulated and esti-
mated future rewards). Consider that an action is taken at time t , the delayed reward
represents the reward received from the operating environment at time t+1; whereas the
discounted reward is the accumulated rewards expected to be received from the operat-
ing environment in the long run at time t + 1, t + 2, . . .. The agent aims to learn how
to maximize its total rewards comprised of delayed and discounted rewards (Sutton and
Barto 1998).

2.1 Q-learning model

Q-learning defines a Q-function Qi
t (s

i
t , ai

t ), which is also called a state-action function. The
Q-function estimates Q-values, which are the long-term rewards that an agent can expect
to receive for each possible action ai

t ∈ A taken in state si
t ∈ S. An agent i maintains a

Q-table that keeps track of Q-values for each possible state-action pair, so there are |S|× |A|
entries. Subsequently, based on these Q-values, the agent derives an optimal policy π that
defines the best-known action ai

t , which has the maximum Q-value for each state si
t . For each

state-action pair (si
t , ai

t ) at time t , the Q-value is updated using Q-function as follows:

Qi
t+1

(
si

t , ai
t

)
← (1− α) Qi

t

(
si

t , ai
t

)
+ α

[
r i

t+1

(
si

t+1

)
+ γ max

a∈A
Qi

t

(
si

t+1, a
)]

(1)

where 0 ≤ α ≤ 1 is learning rate, and 0 ≤ γ ≤ 1 is discount factor. Higher learning rate α

indicates higher speed of learning, and it is normally dependent on the level of dynamicity
in the operating environment. Note that, too high a learning rate may cause fluctuations in
Q-values. If α = 1, the agent solely relies on its newly estimated Q-value r i

t+1(s
i
t+1) +

γ max
a∈A

Qi
t (s

i
t+1, a), and forgets its current Q-value Qi

t (s
i
t , ai

t ). On the other hand, γ enables

the agent to adjust its preference on the long-term future rewards. Unless γ = 1 in which
both delayed and discounted rewards are given the same weight, the agent always gives more
preference to delayed rewards.

2.2 Action selection: exploitation or exploration

During action selection, there are two types of actions, namely, exploitation and exploration.
Exploitation selects the best-known action ai

t = argmaxa∈A Qi
t (s

i
t , a), which has the highest

Q-value, in order to improve network performance. Exploration selects a random action
ai

t ∈ A in order to improve knowledge, specifically, the estimation of the Q-values for
all state-action pairs. A well-balanced tradeoff between exploitation and exploration helps
to maximize accumulated rewards as time goes by. This tradeoff mainly depends on the
accuracy of the Q-value estimation, and the level of dynamicity of the operating environment
(Yau et al. 2012).

Upon convergence of Q-values, exploitation may be given higher priority because explo-
ration may not discover better actions. A popular tradeoff mechanism is the ε-greedy approach
in which the agent performs exploration with a small probability ε (e.g. ε = 0.1) and exploita-
tion with probability 1− ε.
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The ε-greedy approach may not be suitable in some scenarios because exploration selects
non-optimal actions randomly with equal probability, hence the worst action with the lowest
Q-value may be chosen (Sutton and Barto 1998). A popular softmax approach based on
the Boltzmann distribution has been applied to choose non-optimal actions for exploration,
and actions with higher Q-values are given higher priorities (Sutton and Barto 1998). For
instance, in Dowling et al. (2005), a node i chooses its next-hop neighbor node ai

t ∈ A using
Boltzmann distribution with probability:

P
(

si
t , ai

t

)
= e−Qi

t
(
si
t ,a

i
t
)
/T

∑
a∈A e−Qi

t
(
si
t ,a

)/
T

(2)

where A represents a set of node i’s neighbor nodes; and T is the temperature factor that
determines the level of exploration. Higher T value indicates higher possibility of exploring
non-optimal routes, whereas lower T value indicates higher possibility of exploiting optimal
routes.

In Bhorkar et al. (2012), a node i chooses its routing decision ai
t based on the historical

information as follows:

ε
(

si
t

)
= 1

ci
t
(
si

t
)+ 1

(3)

where ci
t (s

i
t ) is a counter that represents the number of successful packet transmissions

from node i to next-hop neighbor node si
t ∈ Si until time t . Subsequently, with probability

1 − ε(si
t ), node i chooses its routing decision ai

t = argmaxa∈A(si
t )

Qi
t (s

i
t , a), while with

a smaller probability ε(si
t ), node i chooses its routing decision ai

t ∈ A(si
t ) equally with

probability ε(si
t )/|A(si

t )|.
In Liang et al. (2008), a node i adjusts its level of exploration according to the level of

dynamicity in the operating environment, particularly node mobility. The node computes the
exploration probability as follows:

εi = na,T
i + nd,T

i

nT
i

(4)

where na,T
i and nd,T

i are the number of nodes that appear and disappear within node i’s
transmission range, respectively; nT

i is the number of node i’s neighbor nodes; and T is a
time window. Hence, higher εi indicates a highly mobile network, and so RL requires more
explorations.

2.3 Q-learning algorithm

Figure 1 shows the traditional Q-learning algorithm presented in Sects. 2.1 and 2.2.

3 Routing in distributed wireless networks

Routing is a key component in distributed wireless networks that enables a source node to
search and establish route(s) to the destination node through a set of intermediate nodes. The
objectives of the routing schemes are mainly dependent on the type of operating environment
and the underlying network, particularly its characteristics and requirements. This section
reviews the concepts of routing in various types of distributed wireless networks, and the
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Fig. 1 The traditional Q-learning algorithm at agent i

advantages brought about by RL to routing. With respect to routing, Sect. 3.1 reviews several
major types of distributed wireless networks, particularly network characteristics, routing
challenges, and the advantages brought about by RL to routing. Section 3.2 provides an
overview of the application of RL to routing in distributed wireless networks, and a general
formulation of the routing problem using RL.

3.1 Types of distributed wireless networks

This section presents four types of distributed wireless networks, namely wireless ad hoc
networks, wireless sensor networks, cognitive radio networks, and delay tolerant networks.
Table 1 summarizes each type of these networks.

3.1.1 Wireless ad hoc networks

A wireless ad hoc network is comprised of self-configuring static or mobile nodes. Two main
types of wireless ad hoc networks are static ad hoc networks and Mobile Ad hoc NETworks
(MANETs) (Toh 2001; Boukerche 2009).

Figure 2 shows a wireless ad hoc network scenario. Nodes within the range of each other
(e.g. A and B) may communicate directly; and out-of-range nodes (e.g. A and F) may use
a routing scheme to search for a route, comprised of intermediate nodes, from node (A) to
node (F). The routing scheme uses a cost metric to compute the best possible route, such as
the shortest route and route with the lowest end-to-end delay.

The main routing challenge in wireless ad hoc networks is the dynamic topology caused
by nodes’ mobility. For instance, in Fig. 2, source node (A) establishes a route (A-H-G-F)
to destination node (F). Suppose, node (H) moves and becomes out-of-range from node (A)
resulting in link breakage, then node (A) searches for another route to node (F). The packet
end-to-end delay and packet loss rate are dependent on the effectiveness of the routing scheme.
Furthermore, in link-state routing schemes, such as Optimized Link State Routing (OLSR)
(Clausen and Jacquet 2003), each node maintains a route to every other nodes in the network.
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Table 1 Characteristics of distributed wireless networks

Wireless ad
hoc networks

Wireless
sensor networks

Cognitive
radio networks

Delay tolerant
networks

Examples of
applications

Vehicular
networks

Physical
environment
monitoring

Extension of
broadband
service to rural
communities

High-speed
vehicular
networks

Multiplayer games Security
surveillance

Emergency and
rescue
operations

Spacecraft
communications

Emergency and
rescue
operations

Health
applications

Emergency and
rescue operations

Main routing
challenge(s)

High mobility Limited energy
and processing
capabilities

Dynamicity of
channel
availability

Lack of end-to-end
routes between
any two nodes at
most of the times

Minimizing
interference to
licensed users

Main advantage(s)
brought about
by RL

Adaptive to
dynamic
topology

Has lower
computational
cost

Adaptive to
dynamic
channel
availability

Adaptive to
dynamic topology

Incurs lower
routing overhead

Fig. 2 Wireless ad hoc network scenario

In highly mobile networks, the OLSR constantly updates these routes due to link breakages,
causing high computing cost and routing overhead.

RL-based routing schemes have been shown to be highly adaptive to topology changes
(Forster 2007). For example, RL enables a node to observe its neighbor nodes’ mobility char-
acteristics, and to learn how to improve the end-to-end delay and throughput performances of
routes. Subsequently, the node selects a next-hop node that can satisfy the Quality of Service
(QoS) requirements imposed on the route.

3.1.2 Wireless sensor networks

Wireless Sensor Networks (WSNs) are comprised of sensor nodes with sensing, computing,
storing, and short-range wireless communication capabilities commonly used for monitoring
the operating environment. WSNs share similar characteristics with wireless ad hoc networks
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Fig. 3 WSN scenario

in that both are multi-hop networks. An intrinsic characteristic of WSNs is that the sensor
nodes are highly energy constrained with limited processing capability (Akyildiz et al. 2002).

In WSNs, there is a special gateway called a sink node as shown in Fig. 3. The sink
node monitors a WSN by sending control messages to the sensor nodes, and gathers sensing
outcomes from them.

The main routing challenge in WSNs is the need to reduce energy consumption and
computational cost at sensor nodes in order to prolong network lifetime. For instance, routing
schemes for WSNs must avoid frequent flooding of routing information in order to reduce
energy consumption.

Since RL incurs low computational cost and routing overhead (Forster 2007), RL-based
routing is suitable for WSNs. For instance, RL enables a sensor node to observe and estimate
energy consumption of nodes along a route based on local observations, so that each node
can perform load-balancing and select routes with higher residual energy in order to prolong
network lifetime.

3.1.3 Cognitive radio networks

Cognitive Radio (CR) is the next generation wireless communication systems that address
issues associated with the efficiency of spectrum utilization (Akyildiz et al. 2009). In CR
networks, unlicensed users (or Secondary Users, SUs) exploit and use underutilized licensed
channels. A distributed CRN shares similar characteristics with wireless ad hoc networks in
that both are multi-hop networks. An intrinsic characteristic of CRNs is that the SUs must
prevent harmful interference to the licensed users (or Primary Users, PUs), who own the
channels. Since the SUs must vacate their channels whenever any PU activity appears, the
channel availability is dynamic in nature.

The main routing challenge in CRNs is that, since SUs must be adaptive to the
dynamic changes in spectrum availability, routing in CRNs must be spectrum-aware
(Al-Rawi and Yau 2012). Figure 4 shows a CRN scenario co-located with three PU Base
Stations (BSs). Suppose, SU (A) wants to establish a route to SU BS. Using a traditional
routing algorithm may provide a route with the minimum number of hops (A–C–E–G) to
the SU BS. However, the SUs may suffer from poor network performance because the route
passes through three PU BSs and their hosts (B, D, F, H), resulting in harmful interference
to the PUs. On the other hand, CR-based spectrum-aware routing may provide a route with
higher number of hops (A–C–I–K–L) that generates less interference to the PUs and their
hosts (B, D, J), and so it provides better end-to-end SU performance.
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Fig. 4 CRN scenario

RL has been shown to improve network performance of CRNs. For instance, based on
the local observations and received rewards, a SU node may learn the behavior and channel
utilization of PUs. Subsequently, the SU selects a route that reduces end-to-end interference
to PUs.

3.1.4 Delay tolerant networks

Delay Tolerant Networks (DTNs) interconnect highly heterogeneous nodes (Burleigh et al.
2003), and several common assumptions adopted by the traditional networks are relaxed.
Examples of the assumptions are low end-to-end delay, low error rate, and the availability of
end-to-end routes in the entire network. Nevertheless, these assumptions may not be practical
due to various challenges, such as highly mobile networks, low-quality wireless links and
small coverage, as well as low residual energy.

The aforementioned assumptions have imposed new challenges to routing. As an example,
due to the lack of end-to-end routes between any two nodes for most of the times, the reactive
and proactive routing schemes may not be applicable to DTNs (Elwhishi et al. 2010). Using
traditional Ad hoc On-Demand Distance Vector (AODV) (Perkins and Royer 1999) routing
scheme may constantly establish routes during frequent link breakages, and this increases
energy consumption and routing overhead. Hence, routing in DTNs may need to follow a
“store-and-forward” approach in which a node buffers its data packets until a link between
itself and a next-hop node becomes available (Elwhishi et al. 2010).

RL-based routing schemes have been shown to be adaptive to link changes by choosing
a next-hop node based on various local states (or conditions) that affect a link’s availability.
For instance, without using the global information, a node may observe and learn about its
local operating environment, such as link congestion level and buffer utilization level of
the next-hop node, so that it selects a route with higher link availability and lower buffer
utilization in order to increase packet delivery rate (Elwhishi et al. 2010).

3.2 RL in the context of routing in distributed wireless networks

The RL-based routing schemes have seen most of their applications in four types of distrib-
uted wireless networks (see Sect. 3.1), namely ad hoc networks, wireless sensor networks,
cognitive radio networks, and delay tolerant networks. Table 2 shows the application of RL
to routing in various distributed wireless networks.
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Routing in distributed wireless networks has been approached using RL so that each node
makes local decision, with regards to next-hop or link selection as part of a route, in order to
optimize network performance. In routing, the RL approach enables a node to:

a. estimate the dynamic link cost. This characteristic allows a node to learn about and
adapt to its dynamic local operating environment.

b. search for the best possible route using information observed from the local operating
environment only.

c. incorporate a wide range of factors that affect the routing performance.

Table 3 shows a widely used RL model for the routing schemes in distributed wireless
networks. The state represents all the possible destination nodes in the network. The action
represents all the possible next-hop neighbor nodes, which may be selected to relay data
packets to a given destination node. Each link within a route may be associated with dif-
ferent types of dynamic costs (Nurmi 2007), such as queuing delay, available bandwidth
or congestion level, packet loss rate, energy consumption level, link reliability and changes
in network topology, as a result of irregular node’s movement speed and direction. Based
on the objectives, a routing scheme computes its Q-values, which estimate the short-term
and long-term rewards (or costs) received (or incurred) in transmitting packets along a route
to a given destination node. Examples of rewards are throughput and packet delivery rate
performances; and an example of cost is end-to-end delay. To maximize (minimize) the
accumulated rewards (costs), an agent chooses an action with the maximum (minimum)
Q-value.

Figure 5 shows how a RL model (see Table 3) can be incorporated into routing. All possible
states are S = {1, 2, 3, 4, 5, 6}. All possible actions of node i = 1 are ai

t ∈ A = {2, 3, 4}.
Suppose, node i = 1wants to establish a route to node si

t = 6, and the objective of the

Table 3 A widely used RL model of agent i for a routing scheme

State si
t ∈ S = {1, 2, . . . , N − 1}, each state si

t represents a destination node n. N represents
the number of nodes in the entire network

Action ai
t ∈ A = {1, 2, . . . , J }, each action ai

t represents the selection of a next-hop neighbor
node j . J represents the number of node i’s neighbor nodes

Reward r i
t

(
si
t , ai

t

)
, which is dependent on the objective of the routing scheme, is a reward (or

cost) that represents a performance metric, such as queuing delay, transmission delay,
throughput, channel utilization level, and mobility factor

Fig. 5 RL-based routing scenario
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routing scheme is to find a route that provides the highest throughput performance. Node
i may choose to send its packets to its neighbor node ai

t = 2, and receives a reward
from node ai

t = 2 that estimates throughput achieved by the route from upstream node
ai

t = 2 to destination node si
t = 6, specifically route (2–6). Subsequently, node i updates

its Q-value for state si
t = 6 via action ai

t = 2 using Q-function (see Eq. 1), specifically
Qi

t

(
si

t = 6, ai
t = 2

)
. Likewise, when node i sends its data packets to node ai

t = 3, it
receives a reward that estimates the throughput from upstream node ai

t = 3, which can
be either (3–2–6) or (3–5–6), and updates Qi

t

(
si

t = 6, ai
t = 3

)
. Note that, whether route

(3–2–6) or (3–5–6) is chosen by upstream node ai
t = 3 is dependent on the Q-values of

Qi=3
t

(
si=3

t = 6, ai=3
t = 2

)
and Qi=3

t

(
si=3

t = 6, ai=3
t = 5

)
at node ai

t = 3, and the upstream
node that provides the maximum Q-value is the exploitation action. The matrix in Fig. 5 shows
an example of routing table (or Q-table) being constantly updated at node i . Node i keeps
track of the Q-values of all possible destinations through its next-hop neighbor nodes in its
Q-table.

4 Reinforcement learning models for routing

RL models have been applied to routing schemes in various distributed wireless networks.
The RL models are: Q-routing, Multi-Agent Reinforcement Learning (MARL), and Partially
Observable Markov Decision Process (POMDP). The rest of this section discusses the RL
models.

4.1 Q-routing model

Boyan and Littman (1994) propose Q-routing, which is based on the traditional Q-learning
model (Sutton and Barto 1998). In Q-routing, a node chooses a next-hop node, which has the
minimum end-to-end delay, in order to mitigate link congestion (Ouzecki and Jevtic 2010;
Chang et al. 2004). The traditional Q-routing approach has also been adopted as a general
approach to improve network performance in Zhang and Fromherz (2006).

In Q-routing, the state si
t represents a destination node in the network. The action ai

t
represents the selection of a next-hop neighbor node to relay data to a destination node si

t .
Each link of a route is associated with a dynamic delay cost comprised of queuing and
transmission delays. Subsequently, for each state-action pair (or destination and next-hop
neighbor node pair), a node computes its Q-value, which estimates the end-to-end delay for
transmitting packets along a route to a destination node si

t . Specifically, at time instant t + 1,
a particular node i updates its Q-value Qi

t (s
i
t , j) to a destination node si

t via a next-hop
neighbor node ai

t = j . Hence, Eq. (1) is rewritten as follows:

Qi
t+1

(
si

t , j
)
← (1− α) Qi

t

(
si

t , j
)
+ α

[
r i

t+1

(
si

t+1, j
)
+ min

k∈a j
t

Q j
t

(
s j

t , k
)]

(5)

where 0 ≤ α ≤ 1 is the learning rate; r i
t+1(s

i
t+1, j) = di

qu,t+1+ di, j
tr,t+1 represents two types

of delays, specifically di
qu,t+1 is the queuing delay at node i , and di, j

tr,t+1 is the transmission

delay between node i and its next-hop neighbor node j ; and Q j
t (s

j
t , k), which is a Q-value

received from next-hop neighbor node j , is the estimated end-to-end delay along the route
from node j’s next-hop neighbor node k ∈ a j

t to the destination node.

123



394 H. A. A. Al-Rawi et al.

Referring to Fig. 5, suppose node i = 1wants to establish a route to node si
t = 6 using

the Q-routing model. Node i = 1 may choose its next-hop neighbor node ai
t = j = 2

to forward its data packets. When node i sends its data packets to node j = 2, it receives
from neighbor node j = 2 an estimate of min

k∈a j
t

Q j
t (s

j
t , k) that represents the estimated

minimum end-to-end delay from node j to destination nodesi
t . Node i = 1 also measures

its queuing delay di
qu,t+1 and transmission delay di, j

tr,t+1 between itself and neighbor node

j = 2. Subsequently, using Eq. (5), node i updates its Q-value, Qi
t (s

i
t = 6, ai

t = 2) that
represents the end-to-end delay from itself to destination node si

t = 6 through the chosen
next-hop neighbor node ai

t = 2.

4.2 Multi-agent reinforcement learning model

The traditional RL model, which is greedy in nature, provides local optimizations regardless
of the global performance; and so, it is not sufficient to achieve global optimizations or a
network-wide QoS provisioning. This can be explained as follows: since nodes share a com-
mon operating environment in wireless networks, a node’s neighbor nodes may take actions
that affect its own performance due to channel contention. In Multi-Agent Reinforcement
Learning (MARL), in addition to learning locally using the traditional RL model, each node
exchanges locally observed information with neighboring nodes through collaboration in
order to achieve global optimizations. This helps the nodes to consider not only their own
performance, but also others’ performance. Hence, the Multi-Agent Reinforcement Learn-
ing (MARL) model extends the traditional RL model through fostering collaboration among
neighboring nodes so that a system-wide optimization problem can be decomposed into a
set of distributed problems solved by individual nodes in a distributed manner.

Referring to Fig. 5, node i = 1 constantly exchanges knowledge (i.e. Q-values and
rewards) with neighbor nodes j = 2, 3 and 4. As an example, in Dowling et al. (2005), the
MARL-based routing scheme addresses a routing challenge in which a node i selects its
next-hop neighbor node j with the objective of increasing network throughput and packet
delivery rate in a heterogeneous mobile ad hoc network (see Sect. 3.1.1). Each node may
possess different capabilities in solving the routing problem in a heterogeneous environment.
Hence, the nodes share their knowledge (i.e. route cost) through message exchange. The
exchanged route cost is subsequently applied by a node i to update its Q-values so that an
action, which maximizes the rewards of itself and its neighboring nodes, is chosen.

4.3 Partially observable Markov decision process model

The Partial Observable Markov Decision Process (POMDP) model extends the Q-routing
and Multi-agent RL model. In POMDP-based routing model, a node is not able to clearly
observe its operating environment. Since the state is unknown, the node must estimate the
state. For instance, the state of a node may incorporate its next-hop neighbor node’s local
parameters, such as the forwarding selfishness, residual energy, and congestion level.

As an example, in Nurmi (2007), the routing scheme addresses a routing challenge in
which a node i selects its next-hop neighbor node j with the objective of minimizing energy
consumption. Node j’s forwarding decision, which is based on its local parameters (or states)
such as the forwarding selfishness, residual energy and congestion level, is unclear to node
i . Additionally, node j’s decision is stochastic in nature. Hence, node j’s information is
unknown to node i . The routing scheme is formulated as a POMDP problem in which node i
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estimates the probability distribution of the local parameters based on its previous estimation
and its observed historical actions H j

t of node j .

5 New features

This section presents the new features that have been incorporated into the traditional RL-
based routing models in order to further enhance network performance.

5.1 Achieving balance between exploitation and exploration

Exploitation enables an agent to select the best-known action(s) in order to improve net-
work performance; while exploration enables an agent to explore the random actions in
order to improve the estimation of Q-value for each state-action pair. A well-balanced trade-
off between exploitation and exploration in routing is important to maximize accumulated
rewards as time goes by.

Hao and Wang (2006) propose a Bayesian exploration approach for exploration. The
Bayesian approach (Dearden et al. 1999) constantly updates a belief state (also called an esti-
mated state) based on the historical observations of the state in order to address the uncertainty
of MDPs (see Sect. 2). This approach estimates two values. Firstly, it estimates the expected
Q-values in the future, E[Qi

t

(
si

t , ai
t

)] based on a constantly updated model of transition
probabilities and reward functions. Secondly, it estimates the expected reward E[r i

t (s
i
t , ai

t )]
for choosing an exploration action. This approach chooses the next action with the maxi-
mum value of E[Qi

t (s
i
t , ai

t )] + E[r i
t (s

i
t , ai

t )] in order to make a balanced tradeoff between
exploitation and exploration. This approach has been shown to provide higher accumulated
rewards compared to the traditional Q-learning approach.

In Forster and Murphy (2007), routes are assigned with exploration probabilities such that
routes with lower costs are initially assigned with higher exploration probabilities. Subse-
quently, during the learning process, the exploration probability of a route is adjusted by a
constant factor f based on the selection frequency and the received rewards. There are three
types of received rewards, namely positive, negative, and neutral rewards. The positive and
negative rewards are received whenever there are any changes to the operating environment;
and the neutral are received when learning has achieved convergence. For instance, for a route
via next-hop node j , its exploration probability is decreased by a value of f each time it is
being selected. This scheme has been shown to provide higher convergence rate compared
to the traditional uniform exploration methods.

Fu et al. (2005) adopt a genetic-based approach for exploration. In the traditional RL-
based routing scheme, data packets are routed using exploitation actions regardless of their
respective service classes. Consequently, in this scheme, exploration is adjusted using a
genetic-based approach in order to discover routes based on the QoS requirement(s) of
packets (e.g. throughput and end-to-end delay). Based on the genetic algorithm, each gene
represents a route between a source and a destination node pair. The length of a chromosomes
length changes with the dynamicity of the operating environment. The fitness of a route is
based on the delay and throughput of the route. Subsequently, routes are ranked and selected
based on their fitness.

5.2 Achieving higher convergence rate

Convergence to an optimal policy can be achieved after some learning time. Nevertheless,
the speed of convergence is unpredictable and may be dependent on the dynamic operating
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environment. Traditionally, the learning rate α is used to adjust the speed of convergence.
Higher learning rate may increase the convergence speed; however, the Q-value may fluctuate,
particularly when the dynamicity of the operating environment is high because the Q-value
is now dependent more on its recent estimates, rather than its previous experience.

Nurmi (2007) applies a stochastic learning algorithm, namely Win-or-Learn-Fast Policy
Hill Climbing (WoLF-PHC) (Bowling and Veloso 2002), to adjust the learning rate dynami-
cally based on the dynamicity of the operating environment in distributed wireless networks.
The algorithm defines Winning and Losing as receiving higher and lower rewards than its
expectations, respectively. When the algorithm is winning, the learning rate is set to a lower
value, and vice-versa. The reason is that, when a node is winning, it should be cautious in
changing its policy because more time should be given to the other nodes to adjust their own
policies in favor of this winning. On the other hand, when a node is losing, it should adapt
faster to any changes in the operating environment because its performance (or rewards) is
lower than expected.

Kumar and Miikkulainen (1997) apply a dual RL-based approach to speed up the con-
vergence rate by updating the Q-values of previous state (i.e. source node) and next state
(i.e. destination node) simultaneously although this may increase the routing overhead. The
traditional Q-routing model updates the Q-values in regards to the destination node (see
Sect. 4.1). On the other hand, dual RL-based Q-routing model updates Q-values in regards to
destination and source nodes. Since the dual RL-based approach updates Q-values of a route
in both directions, it enables nodes along a route to make decisions on next-hop selection for
both source and destination nodes while increasing the speed of convergence.

Hu and Fei (2010) use a system model to estimate the converged Q-values of all actions so
that it may not be necessary to update Q-values only after taking the corresponding actions.
This is achieved through running virtual experiment or simulation to update Q-values using a
system model. The system model is comprised of a state transition probability matrix T (see
Sect. 2), which is estimated using historical data of each link’s successful and unsuccessful
transmission rate based on the outgoing traffic of next-hop neighbor nodes.

5.3 Detecting the convergence of Q-values

When the Q-values have achieved convergence, further exploration may not change the
Q-values, and so an exploitation action should be chosen. Hence, the detection of the con-
vergence of Q-values helps to enhance network-wide performance.

Forster and Murphy (2007) propose two techniques to detect the convergence of Q-values
for each route with the objective of enhancing the learning process so that the knowledge is
sufficiently comprehensive. Specifically, the first technique ensures the convergence of each
route at the unit level, while the second technique enhances the convergence of N different
routes at the system level. The first technique assumes that the Q-value of a route has achieved
convergence when the route receives M static (or unchanged) rewards. On the other hand,
the second technique requires at least N routes have been explored, which ensures that
convergence is achieved at the system level. Combining both techniques, the convergence is
achieved when there are N routes receiving M static rewards.

5.4 Storing Q-values efficiently

When the number of states (e.g. destination nodes) increases, memory requirement to store the
Q-values for all state-action pairs may increase exponentially. Storing the Q-values efficiently
may reduce the memory requirement.
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Chetret et al. (2004) adopt an approach called Cerebellar Model Articulation Controller
(CMAC) (Albus 1975) in neural network to store the Q-values, which represent the end-to-
end delay of routes. The advantage of CMAC is that, it uses a constant memory requirement
to store the Q-values. CMAC stores smaller values with higher accuracy compared to larger
values. This can helpful for routing schemes that aim to achieve low end-to-end delay because
low values of end-to-end delay are stored (Chetret et al. 2004). CMAC computes a function
using inputs, which can be represented by multiple dimensions, to store the values. Each value
is represented by a set of points in an input space, which is a hypercube. Each of these points
represents a memory cell in which the data is stored. Hence, a value is partitioned and stored in
multiple memory cells. In order to retrieve a value, the corresponding points (or memory cells)
of a hypercube must be activated to retrieve all portions of the original value. The combined
portions are the stored Q-value. Furthermore, Least-Mean Square (LMS) algorithm (Yin and
Krishnamurthy 2005) is adopted to update the weights, which are the learning parameters, in
CMAC. The LMS is a stochastic gradient descent approach (Snyman 2005) that can minimize
errors in representing the Q-values in each dimension of the hypercube.

5.5 Application of rules

Rules can be incorporated into the traditional Q-learning approach in order to fulfill network
requirements, such as minimum end-to-end delay and number of hops to the destination
node, of a routing scheme (Yau et al. 2012). Rules can be applied to exclude actions if their
respective Q-values are higher (or lower) than a certain threshold.

Yu et al. (2008) calculate a ratio of the number of times an action ai
t violates a rule to the

total number of times the action ai
t is executed. When the ratio exceeds a certain threshold, the

action ai
t is excluded from action selection in the future. In Liang et al. (2008), Lin and Schaar

(2011), a node reads the QoS requirements, particularly end-to-end delay, encapsulated in
the data packets. If the estimated amount of time to be incurred in the remaining route to the
destination node will not fulfill the end-to-end delay requirement, the node will not forward
the packet to a next-hop node.

Further research could be pursued to investigate the application of rules to address other
issues in routing. For instance, rules may be applied to detect the malicious nodes, which
may advertise the manipulated Q-values with a bad intention to adversely affect the routing
decisions of other nodes.

5.6 Approximation of the initial Q-values

The traditional RL approach initializes Q-values with random values, which may not rep-
resent the real estimations, and so non-optimal actions are taken during the initial stage.
Subsequently, learning takes place to update these values until the Q-values have achieved
convergence. The initial random values may reduce the convergence rate, and may cause
fluctuations in network performance, which occur especially at the beginning of the learning
process. As a consequence, it is necessary to initialize Q-values to approximate values, rather
than random values.

In Forster and Murphy (2007), Q-values are initialized based on the number of hops to
each destination sink node in WSNs (see Sect. 3.1.2). Specifically, the sink node broadcasts
request packets; and each sensor node initiates its Q-values as the sink node’s request packets
passing through it, hence each sensor node has estimation on the number of hops to the sink
node. Subsequently, learning updates values using the received rewards.
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6 Application of reinforcement learning to routing in distributed wireless networks

This section presents how various routing schemes have been approached using RL to provide
network performance enhancement. We describe the main purpose of each scheme, and its
RL model.

6.1 Q-routing model

This section discusses the routing schemes that adopt the Q-routing model (see Sect. 4.1).

6.1.1 Q-routing approach with forward and backward exploration

Dual RL-based Q-routing (Kumar and Miikkulainen 1997), which is an extension of the
traditional Q-routing model, enhances network performance and convergence speed (see
Sect. 5.2). Xia et al. (2009) also apply a Dual RL-based Q-routing approach in CRNs (see
Sect. 3.1.3), and it has been shown to reduce end-to-end delay. In CRNs, the availability
of a channel is dynamic, and it is dependent on the PU activity level. The purpose of the
routing scheme is to enable a node to select a next-hop neighbor node with higher number
of available channels. Higher number of available channels reduces channel contention, and
hence reduces the MAC layer delay.

Table 4 shows the Q-routing model for the routing scheme at node i . Note that, the state
and action representations are not shown, and they are similar to the general RL model in
Table 3. The state si

t represents a destination node n. The action ai
t represents the selection

of a next-hop neighbor node j . The reward r i
t (s

i
t , ai

t ) represents the number of available
common channels between node i and node ai

t = j . The Q-routing model is embedded in
each SU node.

Node i’s Q-value indicates the total number of available channels at each link along a
route to destination node si

t through a next-hop neighbor node ai
t = j . Node i chooses a

next-hop neighbor node ai
t = j that has the maximumQi

t (s
i
t , j). Hence, Eq. (5) is rewritten

as follows:

Qi
t+1

(
si

t , j
)
← (1− α) Qi

t

(
si

t , j
)
+ α

[
r i

t+1

(
si

t+1, j
)
+max

k∈a j
t

Q j
t

(
s j

t , k
)]

(6)

where k is the next-hop neighbor node of ai
t = j .

Traditionally, Q-routing performs forward exploration by updating the Q-value Qi
t (s

i
t , j)

of node i whenever a feedback, specifically max
k∈a j

t
Q j

t (s
j
t , k), is received from a next-hop

neighbor node j for each packet sent to destination node n through node j . Xia et al. (2009)
extend Q-routing with backward exploration (see Sect. 5.2) (Kumar and Miikkulainen 1997)
in which Q-values are updated for the previous and next states simultaneously. This means
that Q-values at node i and node j are updated for each packet sent from a source node
s ∈ N to a destination node si

t passing through node i and node j . Specifically, in addition
to updating the Q-value of node i whenever it receives a feedback from node j , node j

Table 4 Q-routing model for the routing scheme at node i (Xia et al. 2009)

Reward r i
t

(
si
t , ai

t

)
represents the number of available common channels at node i and j
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also updates its Q-value whenever it receives forwarded packets from node i . Note that, the
packets are piggybacked with Q-values of node i into the forwarded packets to neighbor
node j . Using this approach, node i has an updated Q-value to destination node si

t through
neighbor node j ; and node j has an updated Q-value to source node s through neighbor node
i . Hence, nodes along a route have updated Q-values of the route in both directions. The dual
RL-based Q-routing approach has been shown to minimize end-to-end delay.

6.1.2 Q-routing approach with dynamic discount factor

The traditional RL approach has a static discount factor γ , which indicates the preference
on the future long-term rewards. This enhanced Q-routing approach with dynamic discount
factor calculates the discount factor of each next-hop neighbor node, hence each of them may
have different values of discount factor. This may provide a more accurate estimation on the
Q-values of different next-hop neighbor nodes, which may have different characteristics and
capabilities.

Santhi et al. (2011) propose a Q-routing approach with dynamic discount factor to reduce
the frequency of triggering the route discovery process due to link breakage in MANETs.
The proposed routing scheme aims to establish routes with high robustness, which are less
likely to fail, and it has been shown to reduce end-to-end delay and increase packet delivery
rate. This is achieved by selecting a reliable next-hop neighbor node based on three factors,
which are considered in the estimation of discount factor γ , namely link stability, bandwidth
efficiency, and node’s residual energy. Note that, the link stability is dependent on the node
mobility.

Table 5 shows the Q-routing model for the routing scheme at node i . Note that, the state
and action representations are not shown, and they are similar to the general RL model in
Table 3. The state si

t represents a destination node n. The action ai
t represents the selection

of a next-hop neighbor node j . The reward r i
t (a

i
t ) indicates whether node i’s packet has

been successfully delivered to destination node n through node j . The Q-routing model is
embedded in each mobile node.

Node i’s Q-value, which indicates the possibility of a successful packet delivery to its
destination node n through a next-hop neighbor node ai

t = j , is updated at time t + 1 as
follows:

Qi
t+1

(
si

t , j
)
← (1− α) Qi

t

(
si

t , j
)
+ α

[
r i

t+1

(
si

t+1, j
)
+ γi, j max

k∈a j
t

Q j
t

(
s j

t , k
)]

(7)

where k is the next-hop neighbor node of ai
t = j . The uniqueness of this approach is that the

discount factor 0 ≤ γi, j ≤ 1 is a variable, and so Q-values are discounted according to the
three factors affecting the discount factors. These factors are estimated and piggybacked into
Hello messages, and exchanged periodically among the neighbor nodes. Specifically, when
node i receives a Hello message from its neighbor node j , it calculates its discount factor for
node j, γi, j as follows:

Table 5 Q-routing model for the routing scheme at node i (Santhi et al. 2011)

Reward r i
t

(
ai

t

)
= {0, 1} . Node i receives a reward value of 1 if the packet it forwards has reached

the destination node n through its next-hop neighbor node j ; otherwise, it receives a
reward value of 0
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γi, j = ω
√

M Fj .B Fj .P Fj , j ∈ J (8)

where ω is a pre-defined constant; M Fj represents the mobility factor, which indicates the
estimated link lifetime between node iand node j ; B Fj represents the available bandwidth at
node j ; and P Fj represents the residual energy of node j . The Q-routing model chooses the
next-hop neighbor node ai

t = j with the maximum Qi
t (s

i
t , j) value. Based on Eq. (7), higher

value of γi, j generates a higher value of Q-value, which makes the action ai
t = j more likely

to be selected.

6.1.3 Q-routing approach with learning rate adjustment

Bhorkar et al. (2012) propose a Q-routing approach with learning rate adjustment to minimize
the average per-packet routing cost in wireless ad hoc networks (see Sect. 3.1.1). The learning
rate is adjusted using a counter that keeps track of a node’s observation (e.g. number of packets
received from a neighbor node) from the operating environment.

Table 6 shows the Q-routing model to select a next-hop node for node i . The state si
t

represents a set of node i’s next-hop neighbor nodes that have successfully received a packet
from node i . The action ai

rtx represents retransmitting a packet by node i, ai
f represents

forwarding a packet to neighbor node j ∈ si
t , and ai

d represents terminating/dropping of
packet which can be either by the packet’s destination node or an intermediate node. The
reward represents a positive value only if the packet has reached its destination node. The
Q-routing model is embedded in each mobile node.

Node i’s Q-value, which indicates the appropriateness of transmitting a packet from node
i to node ai

t = j , is updated at timet + 1as follows:

Qi
t+1

(
si

t , j
)
←

(
1−αci

t
(
si
t , j

)
)

Qi
t

(
si

t , j
)
+ αci

t
(
si
t , j

)
[

r i
t+1

(
si

t+1, j
)
+max

k∈a j
t

Q j
t

(
s j

t , k
)]

(9)

where ci
t (s

i
t , ai

t ) is a counter that keeps track of the number of times a set of nodes si
t have

received a packet from node i using action ai
t until time t ; k is the next-hop neighbor node

of node j, k ∈ A(s j
t ). The learning rate αci

t (s
i
t , j) is adjusted based on the counter ci

t (s
i
t , ai

t ),
and so it is dependent on the exploration of state-action pairs. Hence, higher (lower) value
of αci

t (s
i
t , j) indicates a higher (lower) convergence rate at the expense of greater (lesser)

Table 6 Q-routing model for the routing scheme at node i (Bhorkar et al. 2012)

State si
t ⊆ S = {1, 2, . . . , J }, si

t represents a set of node i’s neighbor nodes that have successfully
received a packet from node i . J represents the total number of node i’s neighbor nodes

Action ai
t ∈ A(si

t ) = {artx , a f , ad }, A
(

si
t

)
represents the set of actions available to node i upon

receiving a packet from its neighbor nodes si
t ⊆ S. Specifically, ai

rtx represents
retransmitting a packet; ai

f represents forwarding a packet to a next-hop neighbor node

j ∈ si
t ; and ai

d represents a packet arriving at destination (only if node i is the destination
node) or dropping a packet

Reward r i
t

(
si
t , ai

t

)
represents a positive value for a packet arriving at the destination node si

t ; a reward

of 0 value is given if the packet fails to arrive at the destination node; and −cat represents
the cost (e.g. required energy and hop count) of transmitting the packet
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fluctuations of Q-values. Further research could be pursued to investigate the optimal value
of αci

t (s
i
t , j) and the effects of ci

t (s
i
t , j) on αci

t (s
i
t , j).

6.1.4 Q-routing approach with Q-values equivalent to rewards

Baruah and Urgaonkar (2004) use rewards to reduce route cost and energy consumption in
WSNs with mobile sink nodes. A similar Q-routing approach has also been applied in Forster
and Murphy (2007), and the discussion in this section is based on Baruah and Urgaonkar
(2004). Moles, which are located within a single hop from a sink node, use RL to learn a
sink node’s movement pattern, and send their received packets to the sink node. Each mole
characterizes a sink node’s movement pattern using a goodness value, G. Specifically, the
goodness value is a probability that indicates the presence or absence of a sink node within
a mole’s one-hop vicinity. The purpose of the routing scheme is to enable a sensor node to
select a next-hop node with the higher likelihood of reaching the mole, which subsequently
sends packets to the sink node.

There are two main types of Q-routing models. Table 7 shows the Q-routing model for
the routing scheme at node i using Multiplicative Increase Multiplicative Decrease (MIMD).
Note that, the state and action representations are not shown, and they are similar to the general
RL model in Table 3. Also note that, this routing scheme applies Qi

t+1(s
i
t , ai

t ) = r i
t (s

i
t , ai

t ).
In other words, action selection is based on reward r i

t (s
i
t , ai

t ). The state si
t represents a sink

node n. The action ai
t represents the selection of a next-hop neighbor node j . The rewards

r i
t (s

i
t , ai

t ) represent the likelihood of reaching the sink node si
t = n through node ai

t = j .
Note that, the reward is chosen based on the goodness value G, where GT H,H and GT H,L are
thresholds for positive and negative reinforcements, respectively. Higher goodness value G
indicates a higher probability of the presence of a sink node within a mole’s one-hop vicinity.
The Q-routing model is embedded in each sensor node. In MIMD, the reward value r i

t (s
i
t , ai

t )

is doubled when GT H,H < G ≤ 1, and it is halved when 0 ≤ G < GT H,L .
Table 8 shows the Q-routing model for the routing scheme at node i using Distance Biased

Multiplicative Update (DBMU). In DBMU, the reward value r i
t (s

i
t , ai

t ) is increased with a
factor

√
(d + 3) when GT H,H < G ≤ 1, and it is decreased with the similar factor

√
(d + 3)

when 0 ≤ G < GT H,L , where d indicates the number of hop counts from the source sensor
node. Hence, sensor nodes further away from the source sensor node receive higher rewards;

Table 7 Q-routing model for the routing scheme at node i using MIMD (Baruah and Urgaonkar 2004)

Reward r i
t+1

(
si
t , ai

t

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2× r i
t

(
si
t , ai

t

)
i f GT H,H < G ≤ 1

r i
t

(
si
t , ai

t

)
i f GT H,L ≤ G ≤ GT H,H

ri
t

(
si
t , ai

t

)/
2 i f 0 ≤ G < GT H,L

Table 8 Q-routing model for the DBMU-based routing scheme at node i (Baruah and Urgaonkar 2004)

Reward r i
t+1

(
si
t , ai

t

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
(d + 3)× r i

t

(
si
t , ai

t

)
i f GT H,H < G ≤ 1

r i
t

(
si
t , ai

t

)
i f GT H,L ≤ G ≤ GT H,H

ri
t

(
si
t , ai

t

)/√
(d + 3) i f 0 ≤ G < GT H,L
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Table 9 Q-routing model for the routing scheme at node i (Arroyo-Valles et al. 2007)

Action ai
t ∈ A = {1, 2, . . . , J }, each action ai

t represents the selection of a next-hop neighbor
node j . J represents the number of node i’s neighbor nodes

Reward r i
t

(
ai

t

)
represents the estimated number of retransmissions for each packet transmission

from node i to next-hop neighbor node j

in other words, sensor nodes nearer to the mole (or closer to the sink node) are better indicators
of the goodness value.

6.1.5 Q-routing approach with average Q-values

Arroyo-Valles et al. (2007) propose a geographic routing scheme that applies RL to increase
packet delivery rate and network lifetime in WSNs (see Sect. 3.1.2). A node chooses its
next-hop neighbor node towards a sink node by taking into account the expected number of
retransmissions throughout a route.

Table 9 shows the Q-routing model for the routing scheme at node i . There is no state
representation. The action ai

t represents the selection of a next-hop neighbor node j , which
is physically located nearer to the sink node. The reward r i

t (s
i
t , ai

t ) represents the estimated
number of retransmissions for a single-hop transmission.

Node i’s Q-value indicates the total number of retransmissions along a route to the sink
node through a next-hop neighbor node ai

t = j . The routing scheme of node i chooses a
next-hop neighbor node ai

t = j that has the minimum Qi
t ( j) value. In Arroyo-Valles et al.

(2007), Eq. (5) is rewritten as follows:

Qi
t+1 ( j)← (1− α) Qi

t ( j)+ α
[
r i

t+1 ( j)+ Q̄ j
t (k)

]
(10)

where k is the next-hop neighbor of node j , and the average Q-value Q̄ j
t (k) is as follows:

Q̄ j
t (k) =

∑
k∈K P j

k Q j
t (k)

∑
k∈K P j

k

(11)

where K is a set of node j’s neighbor nodes located nearer to the sink node, and P j
k is the

probability that node j will forward the packet to node k, and it is dependent on the local
information, such as transmission and reception energies, message priority and neighbor
node’s profile (i.e. tendency to forward packets to the next-hop node).

6.1.6 Q-routing approach based on on-policy Monte Carlo

The traditional Q-routing approach updates Q-values upon receiving a reward for each action
taken, and so the Q-values may fluctuate. In the On-Policy Monte Carlo (ONMC) approach,
the Q-values are updated on an episode-by-episode basis in order to reduce fluctuation. An
episode refers to a window of timeslots in which a number of actions can be taken.

Naruephiphat and Usaha (2008) propose an energy-efficient routing scheme using ONMC-
based Q-routing in order to reduce energy consumption and to increase network lifetime in
MANETs. The routing scheme aims to achieve a balanced selection of two types of routes:
(1) routes that incur lower energy consumption; and (2) routes that are comprised of nodes
with higher residual energy.
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Table 10 ONMC-based Q-routing model for the routing scheme at node i (Naruephiphat and Usaha 2008)

State si
t = {Ei

j,t , ei
k,t } ∈ S1 × S2. The substate Ei

j,t ∈ S1 represents a quantized energy
consumption level of an entire route j ∈ M , where M is a set of available routes. The
substate ei

k,t ∈ S2 represents the least quantized residual energy level of a node within
the entire route k ∈ M

Action ai
t ∈ M, each action ai

t represents a route from the set of available routes M

Reward r i
t

(
si
t , ai

t

)
=

(
Ei

ai
t ,t

)ω1
(

ei
ai

t ,t

)−ω2 (
ei

ini t

)ω3
represents the cost of a route ai

t , where

ei
ini t is the initial residual energy of node i , while ω1, ω2 and ω3 are weight factors

Table 10 shows the ONMC-based Q-routing model for the routing scheme at node i .
The state si

t represents a two-tuple information, namely energy consumption level of an
entire route and the least residual energy level of a node within an entire route. An action ai

t
represents the selection of a route. The reward r i

t (s
i
t , ai

t ) represents the estimation of the cost
(or energy consumption) of a route.

At the end of each episode, the average cost of actions (or route selections) taken within
the episode of a window duration of Te is calculated as follows:

r i
avg,t

(
si

t , ai
t

)
=

∑
Te

r i
t

(
si

t , ai
t

)

Te
(12)

6.1.7 Q-routing approach based on model construction and update

Hu and Fei (2010) use a model-based Q-routing approach, which is based on the MDP
model (see Sect. 2), to provide higher convergence rate (see Sect. 5.2) in order to reduce a
route cost and energy consumption, and it is applied in underwater WSNs (see Sect. 3.1.2).
The purpose of the routing scheme is to enable a sensor node to select a next-hop neighbor
node with higher residual energy, which subsequently sends packets towards the sink node.
Table 11 shows the Q-routing model for the routing scheme, and it shall be noted that the
model is a representation for a particular packet. The state si

t represents the node in which
a particular packet resides (or node i). The action ai

t represents the selection of a next-hop
neighbor node j . The reward r i

t (s
i
t , ai

t ), which is a dynamic value, represents various types
of energies, including transmission energy and residual energy, incurred for forwarding the
packet to node ai

t = j . Taking into account the residual energy helps to avoid highly utilized
routes (or hot spots) in order to achieve a balanced energy distribution among routes. The
Q-routing model is embedded in each packet.

Node i’s Q-function, which indicates the appropriateness of transmitting a packet from
node i to node ai

t = j , is updated at time t + 1 as follows:

Qi
t+1

(
si

t , j
)
= r

(
si

t , ai
t

)
+ γ

[
P

ai
t

si
t si

t
max
k∈ai

t

Qi
t

(
si

t , k
)
+ P

ai
t

si
t s j

t
max
k∈a j

t

Q j
t

(
s j

t , k
)]

(13)

where P
ai

t

si
t si

t
is the transition probability of an unsuccessful transmission from si

t (or node i)

after taking action ai
t , while P

ai
t

si
t s j

t
is the transition probability of a successful transmission

from si
t to s j

t (or node j) after taking action ai
t . Further explanation about the transition

probability models to estimate the P
ai

t

si
t si

t
and P

ai
t

si
t s j

t
are given in Sect. 5.2.

123



404 H. A. A. Al-Rawi et al.

Table 11 Q-routing model for the routing scheme for a packet at node i (Hu and Fei 2010)

State si
t ∈ S = {1, 2, . . . , N }, each state si

t represents a node i in which a particular packet resides.
N represents the number of nodes in the entire network

Action ai
t ∈ A = {1, 2, . . . , J }, each action ai

t a next-hop neighbor node j . J represents the number
of node i’s neighbor nodes

Reward r
(

si
t , ai

t

)
= −g−ω1

[
cr

(
si
t

)
+ cr

(
s j
t+1

)]
+ω2

[
ra

(
si
t

)
+ ra

(
s j
t+1

)]
represents the cost

incurred by forwarding a packet from node i to node j . g represents resource consumption,
particularly transmission and reception energy, associated with each packet forwarding.

cr

(
si
t

)
and cr

(
s j
t+1

)
indicates the amount of residual energy at node i and node j ; and

lower cr

(
si
t

)
+ cr

(
s j
t+1

)
indicates higher amount of residual energy. ra

(
si
t

)
and

ra

(
s j
t+1

)
indicates the comparison of the amount of residual energy at node i and node j

compared to average amount of residual energy in a group of neighboring nodes. Higher

ra

(
si
t

)
+ ra

(
s j
t+1

)
indicates higher amount of residual energy. ω1 and ω2 are weight

factors

Table 12 Q-routing model for the routing scheme for hth hop nodes (Lin and Schaar 2011)

State sh
t ∈ S =

(
Gh

t , Lh
t

)
. Sub-state Gh

t represents the current channel state, specifically, the

propagation gain of links between hth and h + 1th hop nodes. Sub-state Lh
t represents the

current queue size of hth hop nodes; and each queue contains packets with the same remaining
lifetime within a certain deadline

Action ah
t ∈ A =

(
ah

n,t , ah
p,t

)
. The joint action of hth hop nodes, ah

t is comprised of ah
n,t and ah

p,t .

Action ah
n,t represents the selection of an h + 1th hop node. Action ah

p,t represents a
transmission power

Reward r (st , at ) = r
(

s H
t , aH

t

)
represents the number of received packets at the destination node, which

is located at the H th hop, within a certain deadline

6.1.8 Q-routing approach with actor-critic method

Lin and Schaar (2011) reduce message exchange in the traditional Q-routing approach without
considerably jeopardizing the convergence rate in a joint routing and power control scheme
for delay-sensitive applications in wireless ad hoc networks (see Sect. 3.1.1). The purpose
of the routing scheme is to enable a node to select a next-hop neighbor node that provides a
higher successful transmission rate.

In Lin and Schaar (2011), nodes are organized in hops such that any node is located h
hops from a base station. Note that, the base station is located at the H th hop. Table 12 shows
the Q-routing model for the routing scheme for hth hop nodes. The state sh

t represents a
two-tuple information, namely the channel state and queue size of hth hop nodes. Note that,
sh

t is locally available to all hth hop nodes. The investigation is limited to a single destination
node in Lin and Schaar (2011), and so the destination node is not represented in the state.
The action ah

t represents two types of actions: ah
n,t represents the selection of an hth hop

node, and ah
p,t represents a transmission power. The reward r(st , at ) represents the number

of received packets. Note that, the reward is only a function of the state and action at H th
hop destination node; however, it represents successful receptions of packets throughout the
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entire network. Hence, r (st , at ) also indicates the successful transmission rate of all links in
the network.

Instead of using the traditional Q-routing-based Q-function (5), Lin and Schaar (2011)
apply an actor-critic approach (Sutton and Barto 1998) in which the value function V h

t (sh
t ) (or

critic) and policy ρh
t (sh

t , ah
t ) (or actor) updates are separated. The critic is used to strengthen

or weaken the tendency of choosing a certain action, while the actor indicates the tendency
of choosing an action-state pair (Sutton and Barto 1998). Denote the difference in the value
function between hth hop (or the current hop) and h+ 1th hop (or the next hop) by δh

t (sh
t ) =

V h+1
t (sh+1

t ) − V h
t (sh

t ), the value function at hth hop nodes is updated using V h
t+1(s

h
t+1) =

(1− α)V h
t (sh

t )+α[δh
t (sh

t )], and so it is updated using value functions received from h+1th
hop nodes. Denote δH

t (s H
t ) = r(st , at ) + γ Vt (st ) − V H

t (s H
t ), the value function at H th

hop nodes (or the destination node) is V H
t+1(s

H
t+1) = (1− α)V H

t (s H
t ) + α[δH

t (s H
t )], and so

it is updated using value function Vt (st ), which is received from 1th hop nodes (or all the
source nodes), and reward r(st , at ). Therefore, the reward r(st , at ) is distributed throughout
the network in the form of value function V h

t (sh
t ). The routing scheme of an hth hop node

chooses a next-hop neighbor node and transmission power ah
t that provide the maximum

ρh
t (sh

t , ah
t ) value, which is updated by ρh

t+1(s
h
t+1, ah

t+1) = ρh
t (sh

t , ah
t ) + βδh

t (sh
t ), where β

is the learning rate. This routing scheme has been shown to increase the number of received
packets at the destination node within a certain deadline (or goodput).

Lin and Schaar (2011) also propose two approaches to reduce message exchange. Firstly,
only a subset of nodes within an hth hop is involved in estimating the value function V h

t

(
sh

t

)
.

Secondly, message exchanges are only carried out after a certain number of time slots.

6.2 Multi-agent reinforcement learning (MARL) model

Multi-Agent Reinforcement Learning (MARL) model decomposes a system-wide optimiza-
tion problem into sets of local optimization problems, which are solved through collaboration
without using global information. The collaboration may take the form of exchanging local
information including knowledge (i.e Q-value), observations (or states) and decisions (or
actions). For instance, MARL enables a node to collaborate with its neighbor nodes, and
subsequently make local decisions independently in order to achieve network performance
enhancement.

6.2.1 MARL approach with reward exchange

Elwhishi et al. (2010) propose a MARL-based routing scheme for delay tolerant networks
(see Sect. 3.1.4), and it has been shown to increase packet delivery rate, as well as to decrease
transmission delay. Routing schemes for delay tolerant networks are characterized by the
lack of end-to-end aspect, and each node explores network connectivity through finding a
new link to a next-hop neighbor node when a new packet arrives, which must be kept in
the buffer while a link is formed. The purpose of this routing scheme is to select a reliable
next-hop neighbor node, and it takes into account three main factors. Specifically, two factors
that are relevant to the channel availability (node mobility and congestion level) and a single
factor that is relevant to the buffer utilization (remaining space in the buffer).

Table 13 shows the MARL model for node i to select a reliable next-hop neighbor node.
The state si

t includes three events {Bi , Ui, j , D j,i }. The action ai
t represents a transmission

from node i to a next-hop neighbor node j . The reward represents the amount of time in
which a mobile node i and a node j are neighbor nodes. The MARL model is embedded in
each node.
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Table 13 MARL model for the routing scheme at node i (Elwhishi et al. 2010)

State si
t ∈ S = {Bi , Ui, j , D j,i }, state Bi represents an event of nonempty buffer; state Ui, j

represents a successful transmission from node i to a next-hop neighbor node j ; and state
D j,i represents a successful transmission from a next-hop neighbor node j to node i

Action ai
t ∈ A = {1, 2, . . . , J }, each action ai

t represents the selection of a next-hop neighbor node
j . J represents the number of node i’s neighbor nodes

Reward r i
t

(
ai

t

)
represents the amount of time in which node i and node ai

t = j are neighbor nodes

Node i’s Q-value, which indicates the appropriateness of transmitting a packet from node
i to a node ai

t = j , is updated at time instant t + 1 as follows:

Qi
t+1

(
si

t , ai
t

)
← r i

t

(
ai

t

)
+ T f ree − Pi, j

unsuccess

Pi, j
success

Tbusy (14)

where T f ree and Tbusy are the amount of time a channel is free (or successful transmission)
and busy (or unsuccessful transmission) during a time window interval Twindow, respectively;
Pi, j

success = T f ree/Twindow and Pi, j
unsuccess = Tbusy/Twindow are the probability of successful

and unsuccessful transmissions from node i to a next-hop neighbor node j , respectively. The
probability Pi, j

unsuccess covers two types of events that may cause unsuccessful transmissions:
channel congestion and buffer overflow at the next-hop neighbor node j . The MARL chooses
a next-hop neighbor node ai, j

j that has the maximum Qi
t (s

i
t , ai

t ) value.

Collaboration among the agents involve the exchanges of reward r i
t (a

i
t ). The next-hop

node is chosen from a selected set of nodes towards the destination node, which may be
multiple hops away. For instance, agent i calculates r i

t (a
i,k
t ) = r i

t (a
i, j
t )+ r j

t (a j,k
t ), which is

the amount of time in which node i can communicate with two-hop neighbor node k though
neighbor node j . The r i

t (a
i,k
t ) is exchanged with one-hop neighbor nodes.

6.2.2 MARL approach with Q-value exchange

Liang et al. (2008) propose a MARL-based approach called Distributed Value Function-
Distributed Reinforcement Learning (DVF-DRL) for routing in WSNs (see Sect. 3.1.2); and
it has been shown to increase packet delivery rate, as well as to decrease end-to-end delay.
The purpose of this routing scheme is to select a next-hop neighbor node that provides lower
end-to-end delay; and it takes into account the Q-values, and hence the performance, of its
neighboring nodes.

Table 14 shows the MARL model for the routing scheme at node i to select a next-hop
neighbor node. The state si

t represents a two-tuple information, namely Sn represents a set
of node i’s neighbor nodes, and Sp represents a set of packets, which are encapsulated with
QoS requirements, to be sent or forwarded. The action ai

t represents either A f , which is a
packet transmission from node i to a next-hop neighbor node j ; or Ad , which is a packet drop
if the end-to-end delay of a packet fails to fulfill the QoS requirement encapsulated in the
packet itself. Denote the average one-hop link delay (i.e. queuing, transmission, processing
and channel contention delays) between nodes i and j by TPi j , and the average one-hop
transmission delay by TPavr . When a data packet transmission is successful, the reward value
r i

t (s
i
t , ai

t ) = TPavr /TPi j ; and when a data packet transmission is unsuccessful, the reward
value r i

t (s
i
t , ai

t ) = −1. The MARL model is embedded in each sensor node.
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Table 14 MARL model for the routing scheme at node i (Liang et al. 2008)

State si
t ∈ S = {Sn , Sp}, Sn represents a set of node i’s neighbor nodes; while Sp represents a set
of packets, which are encapsulated with QoS requirements, to be sent or forwarded

Action ai
t ∈ A = {A f , Ad }, A f = {1, 2, . . . , J } represents the selection of a next-hop neighbor
node j . J represents the number of node i’s neighbor nodes. Ad represents a packet drop

Reward r i
t

(
si
t , ai

t

)
=

⎧
⎨
⎩

TPavr /TPi j i f ACK received
−1 i f NACK received
−1.5 i f nei ther ACK nor NACK is received

Node i’s Q-value, which indicates the appropriateness of transmitting a packet from node
i to node ai

t = j , is updated at time instant t + 1 as follows:

Qi
t+1

(
si

t , j
)
← (1− α) Qi

t

(
si

t , j
)

+α

⎡
⎣r i

t+1

(
si

t+1

)
+γω (i, j) max

k∈a j
t

Q j
t

(
s j

t , k
)
+γ

∑

j ′∈ai
t , j ′ �= j

ω
(
i, j ′

)
max
k∈a j ′

t

Q j ′
t

(
s j ′

t , k
)⎤
⎦

(15)

where ω (i, j) indicates node i’s weight on Q-values received from node j ; j ′ ∈ ai
t and

j ′ �= j indicate node i’s neighbor nodes excluding its chosen next-hop neighbor node j .
Generally speaking, Qi

t+1(s
i
t , j) in Eq. (15) allows node i to keep track of its Q-value, the

immediate reward, the maximum Q-value of its chosen next-hop neighbor node j , and the
maximum Q-values of all its neighbor nodes (except its chosen next-hop node j).

6.2.3 MARL approach with decay function

Dowling et al. (2005) propose a MARL-based routing scheme for MANETs, and it has been
shown to increase network throughput, packet delivery rate, and to reduce the number of
transmissions required for each packet. Routing in ad hoc networks can be challenging due
to two main reasons. Firstly, node mobility causes frequent changes in network topology.
Secondly, the imperfect underlying radio links causes congestions and deteriorates network
performance. Using the MARL model, the purpose of this scheme is to enable the routing
agent to adapt to the varying network conditions, and choose stable links in order to meet
requirements on network performance. By sharing the current optimal policies among the
neighboring nodes, the convergence rate to the optimal policies is expected to increase. A
positive feedback contributes towards the convergence of the optimal policies, whereas a
negative feedback results in the policy update of an agent due to congestions of some links,
or deteriorating of a routing decision through some neighbor nodes.

Table 15 shows the MARL model to select a reliable next-hop node for node i . The
state si

t includes three kinds of events {Bi , Ui, j , D j,i }. The action ai
t includes three kinds

of actions {a f , aD, aB}. The reward represents link stability between node i and node j ,
which is calculated based on the ratio between successful and unsuccessful transmissions.
The MARL model is embedded in each mobile node.

Collaboration in MARL enables agents to exchange route cost advertisements. Note that,
given state Bi , a node i updates and calculates its route cost V i

t

(
Bi

) = max
a∈ai, j

f
Q(Bi , a),

which is advertised and sent to its neighbor nodes. The route cost (or negative reward) is
maximized and it is calculated as follows:

123



408 H. A. A. Al-Rawi et al.

Table 15 MARL model for the routing scheme at node i (Dowling et al. 2005)

State si ∈ S = {Bi , Ui, j , D j,i }, state Bi indicates that there is a packet waiting in the buffer to be
sent; state Ui, j represents an event of successful transmission from node i to neighbor node
j ; and state D j,i represents an event of successful transmission from neighbor node j to
node i

Action ai
t ∈ A =

{
ai, j

f , ai, j
D , ai, j

B

}
, action ai, j

f is to forward (or delegate) a packet from node i to

neighbor node j ; action ai
D is to deliver a packet locally to the upper layer at node i ; and

action ai
B is to broadcast a packet by node i to discover new neighbor nodes. Note that,

ai, j
f = {1, 2, . . . , J }, and J represents the number of node i’s neighbor nodes

Reward There are two types of rewards. Firstly, the r i
s

(
ai, j

f

)
= −1 represents a reward for successful

transmission, and r i
f

(
ai, j

f

)
= −7 represents a link cost for unsuccessful transmission.

Secondly, the r i
tc(s

i
t , ai

t ) represents the cost of executing actions locally at node i ,

specifically cost of -7 for action ai
B , 0 for action ai, j

f and 0 for action ai
D

V i
t+1

(
Bi

)
= r i

tc

(
si

t+1, ai
t+1

)

+ max
a∈ai, j

f

[
Decayi

t+1

(
V j

t

(
Ui, j

))
+ r i

s (a)+ Pi, j
unsuccess

Pi, j
success

r i
f (a)

]
(16)

where Decayi
t+1(V j

t (Ui, j )) is a decay function at node i that deteriorates the advertised

routing cost V j
t (Ui, j ) by neighbor node j over time; r i

s (a
i, j
f ) and r i

f (a
i, j
f ) are link reward

and cost for successful and unsuccessful transmissions to neighbor node j , respectively;
Pi, j

success = Pi (Ui, j |Bi , ai, j
f ) and Pi, j

unsuccess = 1 − Pi (Ui, j |Bi , ai, j
f ) are the probability

of successful and unsuccessful transmissions from node i to neighbor node j , respectively,
which are calculated using a statistical model that samples the transmission and reception
events of a link.

Finally, as it can be seen, using the feedback model, node i updates its routing behavior (i.e
policy) whenever one of three events occurs. Firstly, changes in the link quality (i.e. Pi, j

success

and Pi, j
unsuccess). Secondly, changes in the advertised route cost (V j

t (Ui, j )) by a neighbor
node j . Thirdly, if the routing cost V j

t (Ui, j ) is not updated within a time window (i.e. in the
absence of new advertisements from neighbor node j), then node i deteriorates V j

t (Ui, j ) so
that possible future performance degradation is taken into account as follows:

Decayi
t+1

(
V j

t

(
Ui, j

))
= V j

t (Ui, j ).ptU (17)

where tU is the time since the last update; and p is the deteriorating factor.
The MARL-based routing scheme makes use of feedbacks while learning the optimal

routing policy. The use of feedbacks increases the convergence rate compared to the traditional
Q-routing approach in which the policy is only updated whenever an agent executes its action.

6.3 Partial observable Markov decision process (POMDP) model

Nurmi (2007) proposes a POMDP-based routing scheme that estimates its state comprised
of its neighbor node’s local parameters (i.e. forwarding selfishness and energy consumption)
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Table 16 POMDP model for the routing scheme at node i (Nurmi 2007)

State si
t =

(
θ

i, j
t

(
Hi, j

t , θ
i, j
t−1

)
, . . . , θ

i,J
t

(
Hi,J

t , θ
i,J n

t−1

))
, where θ

i, j
t represents the estimated

probability distribution of neighbor node j’s forwarding selfishness and energy consumption
parameters. J n represents set of nodei’s one-hop neighbor nodes that have a valid route to a

destination noden. Each state θ
i, j
t

(
Hi, j

t , θ
i, j
t−1

)
is estimated based on the previously

observed historical actions H j
t and previously estimated probability distribution value θ

j
t−1

Action ai
t ∈ A = {1, 2, . . . , J n}, each action ai

t represents the number of packets generated by node i
to each of the neighbor node j ∈ J n at time instant t

Reward r i
t

(
si
t , ai

t

)
represents the gain or cost (e.g. a constant value) when node i’s packets are

forwarded or dropped by neighbor node j , respectively

in ad hoc networks, and it has been shown to reduce energy consumption. Note that, to the
best of our knowledge, this is the only routing scheme that applies the POMDP model.

Table 16 shows the POMDP model for the routing scheme at node i . The state
θ

i, j
t (Hi, j

t , θ
i, j
t−1) represents node i’s estimates on neighbor node j’s forwarding selfishness

and energy consumption parameters, which indicate node j’s capability to forward packets
to destination. Note that, neighbor node j ∈ J n , where J n is the set of one-hop neighbor
nodes that have a valid route to a destination node n. An action ai

t represents the number of
packets generated by node i to a neighbor node j . The reward represents the gain or cost
when node i’s packets are forwarded or dropped by next-hop neighbor node j , respectively.
The POMDP model is embedded in each node.

In order to estimate the parameter of next-hop neighbor nodes, an algorithm that mainly
consists of two parts is proposed. Firstly, it uses a stochastic approximation algorithm, namely
Win-or-Learn Fast Policy Hill Climbing (WoLF-PHC), to estimate the local parameters θ

i, j
t

of its next-hop neighbor node j ∈ J n . WoLF-PHC uses a variable learning rate to adapt
to the level of dynamicity in the operating environment (see Sect. 5.2). Secondly, a func-
tion approximation technique is proposed to learn a control function, which estimates the
forwarding probability through neighbor node j ∈ J n . The forwarding probability function
f i
t+1 is optimized using a stochastic gradient descent algorithm (Snyman 2005) as follows:

f i
t+1 = f i

t + η
∂ E

∂θ
j

t

(18)

where η is the step size of the gradient; E is a loss function that indicates the error between
the observed and the estimated probability.

7 Implementation of routing using reinforcement learning in wireless platform

Forster et al. (2008) implement a RL-based routing protocol in mobile WSNs on a ScatterWeb
platform comprised of MSB530 sensor nodes and ChipCon 1020 transceivers. The aim of this
platform implementation is to evaluate the feasibility of implementing a RL-based routing
protocol (Forster and Murphy 2007) in real hardware and to benchmark its performance
against a traditional routing protocol, namely Directed Diffusion (Intanagonwiwat et al.
2003). The RL-based routing protocol aims to select a next-hop neighbor node with the lowest
route cost (i.e. lower number of hops and packet retransmissions along a route) leading to
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multiple sink nodes (Forster and Murphy 2007). Additionally, a random backoff delay was
introduced to reduce channel contention.

Compared to the traditional Directed Diffusion (Intanagonwiwat et al. 2003) routing pro-
tocol, the findings of the platform implementation is that, the RL-based routing protocol:

• Provides lower routing cost.
• Provides higher packet delivery rate or lower packet loss rate attributed to the optimal

routes.
• Requires higher memory requirement due to the complex data structures required to store

the Q-values.
• Causes higher route discovery delay.

8 Performance enhancements

Table 17 shows the performance enhancements brought about by the application of RL
in various routing schemes. The RL approach has been shown to achieve the following
performance enhancements.

a. Lower end-to-end delay.
b. Higher throughput.
c. Higher packet delivery rate or lower packet loss rate.
d. Lower routing overhead. Lower routing overhead may indicate more stable routes (or

higher route robustness), and so it may indicate a lower number of packet retransmissions
(Dowling et al. 2005). Usaha (2004) reduces the number of route discovery messages
by incorporating a cache, which stores routing information, at each mobile node. This
reduces the need to invoke the route discovery process for each connection request.

e. Longer network lifetime. Longer network lifetime indicates lower energy consumption.
For instance, Nurmi (2007) takes account of the residual energy of each node in routing
in order to increase network lifetime.

f. Higher reward value. Bhorkar et al. (2012) achieves higher reward value, which indicates
lower average cost incurred by routing.

9 Open issues

This section discusses open issues that can be pursued in this area. Additionally, further
research could be pursued to investigate the new features discussed in Sect. 5.

9.1 Suitability and comparisons of action selection approaches

Action selection techniques, such as ε -greedy and softmax (see Sect. 2.2) have been widely
applied in the literature. The ε-greedy approach performs exploration with small probability
ε (e.g. ε = 0.1), and exploitation with probability 1 − ε. On the other hand, the softmax
approach ranks the exploration actions so that it does not explore actions that are far away
from the optimal action. Nevertheless, each action selection technique has its merits and
demerits in regards to the respective applications. Hence, further research could be pursued
to investigate the suitability and network performance brought about by each of the techniques
for routing in distributed wireless networks.
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9.2 Degradation of optimal route due to exploitation

Exploitation may deliver all data packets along the same optimal (or near-optimal) route,
which may cause congestion, resulting in higher energy consumption, routing overhead, as
well as the degradation of network performance. Various traditional approaches may be used
to ameliorate this issue as described below:

• Increasing learning rate. This increases the responsiveness of nodes to the dynamic con-
ditions of the operating environment. When an optimal route becomes congested, nodes
may change their respective routes. However, a new route may be suboptimal compared
to the existing one. For instance, some intermediate nodes may have lower residual
energy. Hence, achieving a better balance in energy consumption among various routes,
including the optimal route, is necessary.
• Increasing exploration rate. This reduces the traffic load on the optimal route. Never-

theless, this may affect the network performance because the traditional exploration
techniques may choose the non-optimal routes, which may not meet the requirements on
network performance.
• Using different QoS classes. This enables nodes to achieve a balance among the avail-

able routes based on the QoS requirements. For instance, high priority traffics may use
an optimal route (i.e exploitation), while lower priority traffics may use a suboptimal
route (i.e exploration). For instance, Fu et al. (2005) adopt a genetic-based approach for
exploration in route discovery, in which routes are discovered based on a predefined set
of QoS goals (e.g. the throughput and end-to-end delay requirements). This approach has
been shown to improve the network performance. Further research could be pursued to
investigate the effectiveness and amount of overhead of this technique, the coordination
among nodes for QoS provisioning along a route, as well as to ameliorate the selfishness
of intermediate nodes.

9.3 Multi-agent RL approaches

Most routing schemes in the literature have been applying the traditional single-agent RL
approach. These schemes have been shown to improve network performance. Nevertheless,
the performance may be further enhanced using the multi-agent RL model (see Sect. 4.2)
(Dowling et al. 2005; Elwhishi et al. 2010; Liang et al. 2008). The multi-agent RL model
aims to coordinate agents in order to achieve the optimal network-wide performance, and
its application in the literature has been limited. Nevertheless, the multi-agent RL approach
requires additional overhead and complexity (Di Felice et al. 2010; Dowling et al. 2005),
and so further research could be pursued to address these issues. In regards to the challenges
of each type of distributed wireless network (see Table 1), some of the expected advantages
brought about by coordination through the application of multi-agent RL approach are as
follows:

• Mobile Ad Hoc Networks (see Sect. 3.1.1). The application of multi-agent RL approach
may improve the coordination of nodes moving in groups, which may be an important
factor in nodes’ routing decisions. Consequently, the routing decision of nodes in each
group can be further enhanced and coordinated in real-time.
• Wireless Sensor Networks (see Sect. 3.1.2). The application of the multi-agent RL

approach may prolong network lifetime of a WSN. For instance, the neighboring sensor
nodes may cooperate with each other to choose a sensor node with higher residual energy
as clusterhead so that it is capable of collecting and forwarding data to the sink node.
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• Cognitive Radio Networks (see Sect. 3.1.3). The application of multi-agent RL approach
may be helpful to solve many issues that require coordination among SUs, as well as
PUs. For instance, the neighboring SUs can share their respective estimations of PU
utilization level, which is location-dependent. Subsequently, they can coordinate their
respective routing decisions in order to reduce the interference to PUs.
• Delay Tolerant Networks (see Sect. 3.1.4). The application of multi-agent RL has been

shown to improve the network-wide performance. For instance, Elwhishi et al. (2010)
propose a MARL-based routing scheme that enables neighboring nodes to collaborate
among themselves so that they can respectively select a reliable next-hop based on three
factors, namely node mobility, the congestion level, and the buffer utilization level.

9.4 Exploration with stability enhancement

Exploration helps a routing scheme to converge to an optimal route selection policy. However,
route discovery using non-optimal actions may increase network instability. Consequently,
network performance (e.g. throughput and end-to-end delay) may fluctuate. While various
approaches have been proposed to provide a balanced tradeoff between exploitation and
exploration, further research could be pursued to investigate the possibility of achieving route
exploration, while minimizing network instability. For instance, using rules, exploration may
be triggered based on the required network performance level. Exploration of non-optimal
routes may only be granted if network performance is unsatisfactory.

9.5 Application of events to routing

Another feature that can be incorporated into the traditional RL-based routing scheme is
called event. Traditionally, state monitors the conditions of the operating environment at all
times. In contrast, event, such as node failure and handoff, is detected occasionally whenever
it occurs (Yau et al. 2012). In a highly dynamic operating environment, Q-values may change
rapidly and fluctuate. The event may capture and detect the fluctuation of Q-values so that
appropriate actions can be taken in order to improve the convergence rate and network
performance.

Rules (see Sect. 5.5) and events may be also applied together. For instance, rules and
events can improve the estimation of Q-values, and avoid invalid routes. For example, when
mobile nodes move out of range, their respective Q-values may become invalid, and so mak-
ing routing decisions based on these Q-values may degrade the network performance. An
event may be applied to detect whether a node is out-of-range due to node movement; subse-
quently rules may be applied to set Q-values of neighbor nodes to infinity (Yau et al. 2012;
Chang et al. 2004).

9.6 Lack of the implementation of RL-based routing schemes on wireless platform

To the best of our knowledge, there is only a single implementation of RL-based routing
scheme in wireless platform by Forster et al. (2008) (see Sect. 7), and most of the existing
routing schemes have been evaluated using simulation. Real implementation on wireless
platform is important to validate the correctness and feasibility of RL-based schemes. Further
research can be pursued to investigate the implementation and challenges of the RL-based
routing schemes on wireless platforms.
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10 Conclusions

Reinforcement Learning (RL) has been applied to various routing schemes for distributed
wireless networks, including wireless ad hoc networks, wireless sensor networks, cognitive
radio networks and delay tolerant networks, and it has been shown to improve network
performance, such as higher throughput and lower end-to-end delay. RL enables a wireless
node to observe its local operating environment, and subsequently learn to make global
routing decisions efficiently. The advantages brought about by RL to routing are foreseen to
draw significant research interests in the near future. This article has provided an extensive
review on the existing RL-based routing schemes in distributed wireless networks. Firstly,
this article presents Q-learning, which is a popular RL approach. Secondly, it identifies
the challenges and advantages brought about by RL in various types of distributed wireless
networks. A general RL model for routing is also presented. Thirdly, it presents three types of
RL models for routing, namely Q-routing, multi-agent RL, and partially observable Markov
decision process. Fourthly, it provides an extensive review on how various routing schemes
have been formulated and modeled using RL in order to improve network performance.
Fifthly, new features aiming to enhance the traditional RL approach for routing are presented.
Sixthly, it presents an implementation of RL-based routing scheme on wireless platform.
Seventhly, it presents performance enhancements achieved by the RL-based routing schemes.
Lastly, it discusses the open issues associated with the application of RL in the routing
schemes. Certainly, there is a substantial room for future work in the application of RL to
routing.

References

Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput
Netw 38(4):393–422

Akyildiz IF, Lee WY, Chowdhury KR (2009) Cognitive radio ad hoc networks. Ad Hoc Netw 7(5):810–836
Al-Rawi HAA, Yau K-LA (2012) Routing in distributed cognitive radio networks: a survey. Wirel Pers Com-

mun Int J. doi:10.1007/s11277-012-0674-7
Albus JS (1975) A new approach to manipulator control: the cerebellar model articulation controller. J Dyn

Syst Meas Control 97:220–227
Arroyo-Valles R, Alaiz-Rodriquez R, Guerrero-Curieses A, Cid-Sueiro J (2007) Q-probabilistic routing in

wireless sensor networks. In: Proceedings of ISSNIP 3rd international conference intelligent sensors,
sensor network and information processing, pp. 1–6

Baruah P, Urgaonkar R (2004) Learning-enforced time domain routing to mobile sinks in wireless sensor
fields. In: Proceedings of LCN 29th annals IEEE international conference local computer networks, pp.
525–532

Bhorkar AA, Naghshvar M, Javidi T, Rao BD (2012) Adaptive opportunistic routing for wireless ad hoc
networks. IEEE ACM Trans Netw 20(1):243–256

Boyan J, Littman ML (1994) Packet routing in dynamically changing networks: a reinforcement learning
approach. In: Proceedings of NIPS Adv neural information processing systems, pp 671–678

Boukerche A (2009) Algorithms and protocols for wireless, mobile and ad hoc networks. Wiley, New Jersey
Burleigh S, Hooke A, Torgerson L, Fall K, Cerf V, Durst B, Scott K, Weiss H (2003) Delay-tolerant networking:

an approach to interplanetary internet. IEEE Commun Mag 41(6):128–136
Bowling M, Veloso M (2002) Multiagent learning using a variable learning rate. Artif Intell 136(2):215–250
Chang Y-H, Ho T, Kaelbling LP (2004) Mobilized ad-hoc networks: a reinforcement learning approach. In:

Proceedings of ICAC international conference autonomic computer, pp 240–247
Chetret D, Tham C-K, Wong LWC (2004) Reinforcement learning and CMAC-based adaptive routing for

MANETs. In: Proceedings of ICON 12th IEEE international conference networks, pp. 540–544
Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR). IETF RFC 3626
Dearden R, Friedman N, Andre D (1999) Model based Bayesian exploration. In: Proceedings of UAI 15th

conference uncertainty, artificial intelligence, pp 150–159

123

http://dx.doi.org/10.1007/s11277-012-0674-7


Application of reinforcement learning 415

Di Felice M, Chowdhury KR, Wu C, Bononi L, Meleis W (2010) Learning-based spectrum selection in
cognitive radio ad hoc networks. In: Proceedings of WWIC 8th international conference wired wireless
internet communications, pp 133–145

Dong S, Agrawal P, Sivalingam K (2007) Reinforcement learning based geographic routing protocol for UWB
wireless sensor network. In: Proceedings of GLOBECOM IEEE global telecommunications conference,
pp 652–656

Dowling J, Curran E, Cunningham R, Cahill V (2005) Using feedback in collaborative reinforcement learning
to adaptively optimize MANET routing. IEEE Trans Syst Man Cybern Part A Syst Hum 35(3):360–372

Elwhishi A, Ho P-H, Naik K, Shihada B (2010) ARBR: Adaptive reinforcement-based routing for DTN. In:
Proceedings of WIMOB IEEE 6th international conference wireless and mobile computes, networks and
communications, pp. 376–385

Forster A (2007) Machine learning techniques applied to wireless ad-hoc networks: guide and survey. In:
Proceedings of ISSNIP 3rd international conference intelligent sensors, sensor Networks and information,
pp. 365–370

Forster A, Murphy AL (2007) FROMS: Feedback routing for optimizing multiple sinks in WSN with rein-
forcement learning. In: Proceedings of ISSNIP 3rd international conference intelligent sensors, sensor
Networks and, informations, pp. 371–376

Forster A, Murphy AL, Schiller J, Terfloth K (2008) An efficient implementation of reinforcement learning
based routing on real WSN hardware. In: Proceedings of WIMOB IEEE international conference wireless
and mobile computers, networks and communcations, pp 247–252

Fu P, Li J, Zhang D (2005) Heuristic and distributed QoS route discovery for mobile ad hoc networks. In:
Proceedings of the CIT 5th international conference on computer and information technology, pp. 512–516

Gen M, Cheng R (1999) Genetic algorithms and engineering optimization. Wiley, NY
Hao S, Wang T (2006) Sensor networks routing via Bayesian exploration. In: Proceedings of LCN 31th annals

of IEEE international conference local computing Networks, pp. 954–955
Hu T, Fei Y (2010) QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and

lifetime-extended underwater sensor networks. IEEE Trans Mobile Comput 9(6):796–809
Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F (2003) Directed diffusion for wireless sensor

networking. IEEE ACM Trans Netw 11(1):2–16
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference

neural networks. pp 1942–1948
Kumar S, Miikkulainen R (1997) Dual reinforcement Q-routing: an on-line adaptive routing algorithm. In:

Proceedings of ANNIE artificial neural networks in engineering conference. pp 231–238
Liang X, Balasingham I, Byun S-S (2008) A multi-agent reinforcement learning based routing protocol for

wireless sensor networks. In: Proceedings of ISWCS IEEE international symposium Wireless communi-
cations systems. pp 552–557

Lin Z, Schaar Mvd (2011) Autonomic and distributed joint routing and power control for delay-sensitive
applications in multi-hop wireless networks. IEEE Tran Wirel Commun 10(1):102–113

Naruephiphat W, Usaha W (2008) Balancing tradeoffs for energy-efficient routing MANETs based on rein-
forcement learning. In: Proceedings of VTC spring IEEE vehicular techmology conference. pp 2361–2365

Nurmi P (2007) Reinforcement learning for routing in ad hoc networks. In: Proceedings of WiOpt 5th inter-
national symposium modeling and optimization in mobile, ad hoc and wireless network and workshops,
pp 1–8

Ouzecki D, Jevtic D (2010) Reinforcement learning as adaptive network routing of mobile agents. In: Pro-
ceedings of MIPRO 33rd international convention, pp 479–484

Perkins CE, Royer EM (1999) Ad-hoc on-demand distance vector routing. In: Proceedings of WMCSA mobile
computers systems and applications, pp 90–100

Rojas R (1996) Neural networks: a systematic introduction. Springer, NY
Santhi G, Nachiappan A, Ibrahime MZ, Raghunadhane R, Favas MK (2011) Q-learning based adaptive QoS

routing protocol for MANETs. In: Proceedings of ICRTIT international conference recent trends in infor-
mation technology, pp 1233–1238

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge
Snyman A (2005) Practical mathematical optimization: an introduction to basic optimization theory and

classical and new gradient-based algorithms. Springer, NY
Toh CK (2001) Ad hoc mobile wireless networks: protocols and systems. Prentice Hall, New Jersey
Usaha W (2004) A reinforcement learning approach for path discovery in MANETs with path caching strategy.

In: Proceedings of ISWCS 1st international symposium wireless communications systems, pp 220–224
Xia B, Wahab MH, Yang Y, Fan Z, Sooriyabandara M (2009) Reinforcement learning based spectrum-aware

routing in multi-hop cognitive radio networks. In: Proceedings of CROWNCOM 4th international confer-
ence cognitive radio oriented wireless networks and communications, pp 1–5

123



416 H. A. A. Al-Rawi et al.

Yau K-LA, Komisarczuk P, Teal PD (2012) Reinforcement learning for context awareness and intelligence in
wireless networks: review, new features and open issues. J Netw Comput Appl 35(1):253–267

Yin GG, Krishnamurthy V (2005) Least mean square algorithms with markov regime-switching limit. IEEE
Trans Autom Control 50(5):577–593

Yu FR, Wong VWS, Leong VCM (2008) A new QoS provisioning method for adaptive multimedia in wireless
networks. IEEE Trans Veh Technol 57(3):1899–1909

Zhang Y, Fromherz M (2006) Constrained flooding: a robust and efficient routing framework for wireless
sensor networks. In: Proceedings of AINA 20th international conference advanced information networking
and applications

123


	Application of reinforcement learning to routing in distributed wireless networks: a review
	Abstract
	1 Introduction
	2 Reinforcement learning
	2.1 Q-learning model
	2.2 Action selection: exploitation or exploration
	2.3 Q-learning algorithm

	3 Routing in distributed wireless networks
	3.1 Types of distributed wireless networks
	3.1.1 Wireless ad hoc networks
	3.1.2 Wireless sensor networks
	3.1.3 Cognitive radio networks
	3.1.4 Delay tolerant networks

	3.2 RL in the context of routing in distributed wireless networks

	4 Reinforcement learning models for routing
	4.1 Q-routing model
	4.2 Multi-agent reinforcement learning model
	4.3 Partially observable Markov decision process model

	5 New features
	5.1 Achieving balance between exploitation and exploration
	5.2 Achieving higher convergence rate
	5.3 Detecting the convergence of Q-values
	5.4 Storing Q-values efficiently
	5.5 Application of rules
	5.6 Approximation of the initial Q-values

	6 Application of reinforcement learning to routing in distributed wireless networks
	6.1 Q-routing model
	6.1.1 Q-routing approach with forward and backward exploration
	6.1.2 Q-routing approach with dynamic discount factor
	6.1.3 Q-routing approach with learning rate adjustment
	6.1.4 Q-routing approach with Q-values equivalent to rewards
	6.1.5 Q-routing approach with average Q-values
	6.1.6 Q-routing approach based on on-policy Monte Carlo
	6.1.7 Q-routing approach based on model construction and update
	6.1.8 Q-routing approach with actor-critic method

	6.2 Multi-agent reinforcement learning (MARL) model
	6.2.1 MARL approach with reward exchange
	6.2.2 MARL approach with Q-value exchange
	6.2.3 MARL approach with decay function

	6.3 Partial observable Markov decision process (POMDP) model

	7 Implementation of routing using reinforcement learning in wireless platform
	8 Performance enhancements
	9 Open issues
	9.1 Suitability and comparisons of action selection approaches
	9.2 Degradation of optimal route due to exploitation
	9.3 Multi-agent RL approaches
	9.4 Exploration with stability enhancement
	9.5 Application of events to routing
	9.6 Lack of the implementation of RL-based routing schemes on wireless platform

	10 Conclusions
	References


