
Artif Intell Rev (2015) 43:243–258
DOI 10.1007/s10462-012-9373-8

Particle swarm optimisation for discrete optimisation
problems: a review

Ahmad Rezaee Jordehi · Jasronita Jasni

Published online: 13 November 2012
© Springer Science+Business Media Dordrecht 2012

Abstract In many optimisation problems, all or some of decision variables are discrete.
Solving such problems are more challenging than those problems with pure continuous
variables. Among various optimisation techniques, particle swarm optimisation (PSO) has
demonstrated more promising performance in tackling discrete optimisation problems. In
PSO, basic variants are merely applicable to continuous problems. So, appropriate strategies
should be adopted for enabling them to be applicable to discrete problems. This paper analyses
all strategies adopted in PSO for tackling discrete problems and discusses thoroughly about
pros and cons of each strategy.
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1 Introduction

There are so many optimisation problems in various areas of science and engineering. For
solving them, there exist twofold approaches; classical approaches and heuristic approaches.
Classical approaches such as linear programming and non-linear programming are not effi-
cient enough in solving optimisation problems. Since they suffer from curse of dimensionality
and also require preconditions such as continuity and differentiability of objective function
that usually are not met.

Heuristic approaches which are usually bio-inspired include a lot of approaches such
as genetic algorithms, evolution strategies, differential evolution and so on. Heuristics do
not expose most of the drawbacks of classical and technical approaches. Among heuristics,
particle swarm optimisation (PSO) has shown more promising behavior.

PSO is a stochastic, population-based optimisation technique introduced by Kennedy and
Eberhart (1995). It belongs to the family of swarm intelligence computational techniques
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and is inspired of social interaction in human beings and animals (especially bird flocking
and fish schooling).

Some PSO features that make it so efficient in solving optimisation problems are the
followings:

• In comparison with other heuristics, it has less parameters to be tuned by user.
• Its underlying concepts are so simple. Also its coding is so easy.
• It provides fast convergence.
• It requires less computational burden in comparison with most other heuristics.
• It provides high accuracy.
• Roughly, initial solutions do not affect its computational behavior.
• Its behavior is not highly affected by increase in dimensionality.
• There exist many efficient strategies in PSO for mitigating “premature convergence.”

Thus, its success rate is so high.

However, in many optimisation problems, all or some of decision variables are discrete.
Solving such problems are more challenging than those problems with pure continuous vari-
ables. Since in PSO, basic variants are merely applicable to continuous problems, appropriate
strategies should be adopted for enabling them to be applicable to discrete problems. This
paper analyses deeply all strategies which are adopted in PSO for tackling discrete problems
and discusses about their pros and cons. The paper is organised as follows; in Sect. 2, an
overview of PSO is presented. In Sect. 3, all strategies adopted in PSO for dealing with
discrete problems are analysed in details. As an example of wide applicability of discrete
PSO, its applications in power system problems are mentioned in Sect. 4. Finally, drawing
conclusions and proposing some directions for future research are implemented in Sect. 5.

2 PSO overview

PSO starts with the random initialisation of a population (swarm) of individuals (particles)
in the n-dimensional search space (n is the dimension of problem in hand). The particles
fly over search space with adjusted velocities. In PSO, each particle keeps two values in its
memory; its own best experience, that is, the one with the best fitness value (best fitness
value corresponds to least objective value since fitness function is conversely proportional to
objective function) whose position and objective value are called Pi and Pbest respectively
and the best experience of the whole swarm, whose position and objective value are called
Pg and gbest respectively. Let denote the position and velocity of particle i with the following
vectors:

Xi = (Xi1, Xi2, . . . , Xid , . . . , Xin)

Vi = (Vi1, Vi2, . . . , Vid , . . . , Vin)

The velocities and positions of particles are updated in each time step according to the
following equations:

Vid (t + 1) = Vid (t) + C1r1d (Pid − Xid) + C2r2d
(
Pgd − Xid

)
(1)

Xid (t + 1) = Xid (t) + Vid (t + 1) (2)
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where C1 and C2 are two positive numbers and r1d and r2d are two random numbers with
uniform distribution in the interval [0,1]. Here, according to (1), there are three following
terms in velocity update equation:

(1) The first term this models the tendency of a particle to remain in the same direction it
has traversing and is called “inertia”, “habit” or “momentum”.

(2) The second term is a linear attraction toward the particle’s own best experience scaled by
a random weight C1r1d . This term is called “memory”, “nostalgia” or “self-knowledge”.

(3) The third term is a linear attraction toward the best experience of the all particles in the
swarm, scaled by a random weight C2r2d . This term is called “cooperation”, “shared
information” or “social knowledge”.

The procedure for implementation of PSO is as follows:

(1) Particles’ velocities and positions are initialised randomly, the objective value of all
particles are calculated, the position and objective of each particle are set as its Pi and
Pbest respectively and also the position and objective of the particle with the best fitness
(least objective) is set as Pg and gbest respectively.

(2) Particles’ velocities and positions are updated according to Eqs. (1) and (2).
(3) Each particle’s Pbest and Pi are updated, that is, if the current fitness of the particle is

better than its Pbest , Pbest and Pi are replaced with current objective value and position
vector respectively.

(4) Pg and gbest are updated, that is, if the current best fitness of the whole swarm is fitter
than gbest , gbest and Pg are replaced with current best objective and its corresponding
position vector respectively.

(5) Steps 2–4 are repeated until stopping criterion (usually a prespecified number of itera-
tions or a quality threshold for objective value) is reached.

It should be mentioned that since the velocity update equations are stochastic, the velocities
may become too high, so that the particles become uncontrolled and exceed search space.
Therefore, velocities are bounded to a maximum value Vmax , that is Eberhart et al. (2001)

I f |Vid | > Vmax then Vid = sign (Vid) Vmax (3)

where sign represents sign function.
However, primary PSO characterised by (1) and (2) does not work desirably; especially

since it possess no strategy for adjusting the trade-off between explorative and exploitative
capabilities of PSO. Therefore, the inertia weight PSO is introduced to remove this draw-
back. In inertia-weight PSO, which is the most commonly-used PSO variant, the velocities
of particles in previous time step is multiplied by a parameter called inertia weight. The
corresponding velocity update equations are as follows Shi and Eberhart (1998, 1999):

Vid (t + 1) = ωVid (t) + C1r1d (Pid − Xid) + C2r2d
(
Pgd − Xid

)

Xid (t + 1) = Xid (t) + Vid (t + 1) (4)

Inertia weight adjusts the trade-off between exploration and exploitation capabilities of
PSO. The less the inertia weight is, the more the exploration capability of PSO will be and
vice versa. Commonly, it is decreased linearly during the course of the run, so that the search
effort is mainly focused on exploration at initial stages and is focused more on exploitation
at latter stages of the run.
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3 Strategies in PSO for tackling discrete optimisation problems

In this section, all strategies adopted in PSO for tackling discrete problems are analysed
deeply.

3.1 Rounding off

This is the most commonly used approach for tackling discrete/integer variables (Zhang and
Xie 2003; Laskari et al. 2002; Venter and Sobieszczanski-Sobieski 2004; Salman et al. 2002;
Onate Yumbla et al. 2008; Yare and Venayagamoorthy 2007; Jin et al. 2007; AlRashidi and
El-Hawary 2007; Parsopoulos and Vrahatis 2002; Abdelaziz et al. 2009; Sivanagaraju et al.
2008; Ziari and Jalilian 2010; Eajal and El-Hawary 2010; Ziari et al. 2012; Yoshida et al.
2000; Fukuyama 2001). In this approach, discrete/integer variables are treated the same with
continuous variables during the course of optimization but at the end of optimization, they are
rounded off to the nearest discrete/integer value. Round off procedure, in some researches,
is implemented at each iteration whereas in most cases, it is implemented once at the end of
optimization. The results show that the accuracy is not much affected by rounding off. The
main advantages of this approach are its simplicity and low computational cost. Although it
exposes two crucial disadvantages; firstly, the solution may enter infeasible regions during
rounding off. And secondly, the fitness value in rounded point may be so different from that
in original point and it is also possible that the discrete point with more distance from the
continuous optimum possesses better fitness in comparison to rounded off point.

3.2 Approaches for solving binary problems

Any optimization problem either continuous or discrete can be represented as a binary prob-
lem. Furthermore, some problems especially engineering problems are binary in nature and
just can be represented by binary coding. So, devising approaches for effective handling
of binary problems in PSO is of high importance. In Binary PSO, each particle contains a
combination of 0’s and 1’s. Also, Pi ’s and Pg’s are binary variables.

3.2.1 Conventional binary approach

In this approach, at each iteration t , the velocity update equation in (1) is used. But after
using (1), Vid is mapped into interval [0,1] via sigmoid function as (Kennedy and Eberhart
1997; Ting et al. 2006; Khalil et al. 2006; Li et al. 2006; Liao et al. 2007; Liu and Gu 2007;
Wu and Tsai 2008; Chang and Lu 2002; Yin and Lu 2009; Robinson 2005):

s (Vid) = 1

1 + exp (−Vid)
(5)

Then a random number r in [0,1] is generated and

Xid (t + 1) =
{

1 r < s (Vid)

0 Otherwise
(6)

That is, Vid represents the probability that bit Xid takes the 1 value. Indeed, in this approach
the concept of velocity has been changed. The above processes are implemented for all
dimensions and all particles. They are iterated over iterations till termination criterion is met.

One crucial issue in binary PSO is velocity clamping. According to (6), the more the
velocity is, the less is the likelihood of changing the bit, thereby the less is the exploration
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capability of the algorithm. So, the velocity should be clamped in a small enough Vmax. Indeed
in binary PSO, in contrast to continuous versions, smaller Vmax result in more efficient
exploration. Typically, Vmax is set to 4, so that there is always at least a probability of
s (Vmax) = 0.018 for any bit to flip.

3.2.2 Angle modulation-based approach

This approach transforms a high-dimensional binary problem into a four-dimensional con-
tinuous problem. It utilises a trigonometric function as a bit string generator. The function is
(Pampara et al. 2005; Liu et al. 2007):

g (X) = sin (2π (X − a) .b.cos (A)) + d (7)

where A = 2πc (X − a) is a single element from a set of evenly separated intervals deter-
mined by the number of bits specified to be generated, b is maximum frequency of sine
function and d indicates the vertical shift of function. Standard PSO is used to optimize the
simple four-dimensional tuple (a, b, c, d). The optimized parameters are placed in (7) so
that by sampling of resultant function at evenly spaced intervals, a bit for each interval is
produced. The set of all generated bits represents the binary vector solution to the original
problem. Generation of bit string involves taking the sampled points, feeding them into equa-
tion (7) and evaluating the output. If the output is positive, the corresponding bit is set to 1,
otherwise, it is set to 0.

In summary, angle modulation-based approach significantly diminishes the complexity
of problem by reducing its dimensionality. As expected, the results show more accuracy in
lower computational time.

3.2.3 Boolean approach

In this approach, modified flight equations based on “XOR” and “OR” operators of Boolean
algebra are utilised (Afshinmanesh et al. 2005).

Vi (t + 1) = C1 ⊗ (Pi ⊕ Xi ) + C2 ⊗ (
Pg ⊕ Xi

)
(8)

Xi (t + 1) = Xi (t) ⊕ Vi (t + 1) (9)

A noticeable feature of this approach is its velocity bounding mechanism which is inspired
from “negative selection” mechanism existent in immune systems. In this mechanism at each
iteration and for each particle the number of 1’s in the binary velocity vector Vi which called
velocity length Li is counted and if it is below a specified threshold Lmax , Vi is considered
as a non-self antigen and will not be changed. Otherwise, if Li exceeds the threshold, Vi is
considered as a self antigen and negative selection is applied to Vi such that randomly chosen
1’s in Vi are flip to 0’s until Li = Lmax .

In Marandi et al. (2006), the notion of inertia weight which is missing in (8) is incorporated
so that the flight equations are as follows:

Vi (t + 1) = ω � Vi (t) + C1 ⊗ (Pi ⊕ Xi ) + C2 ⊗ (
Pg ⊕ Xi

)
(10)

where � represents “AND ” operator.
In an extension of Boolean PSO in order to enhance exploration capability a mutation

operator with a prespecified probability is applied to particles’ velocities. This mutation
operator just can flip 0 bits to 1and does not work in reverse (Deligkaris et al. 2009).
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3.2.4 Quantum-based binary PSO

In this binary-based approach, each particle besides its position vector, possesses a quantum
vector Qi = {Qi1, Qi2, . . . , Qin} . Qid represents the probability that Xid takes the value 1.
That is, for each bit Xid, a random number in [0,1] is generated and if it is below Qid, Xid

takes the value 1. At each iteration, Q is updated as follows Shuyuan et al. (2004):

Qsel f −based(t) = αPi (t) + β (1 − Pi (t)) (11)

Qsocial−based(t) = αPg(t) + β
(
1 − Pg(t)

)
(12)

Q (t + 1) = C1 Q (t) + C2 Qself−based (t) + C3 Qsocial−based (t) (13)

After updating Q by (11–13), X is updated. The main drawback of this approach is its
heavy computational burden required for tuning additional parameters α and β.

3.2.5 Binary PSO based on estimation of distribution

Evolutionary paradigms that use information gathered during the optimization process to
construct probabilistic models of the distribution of promising regions in search space and
utilise these models to generate new solutions are called “estimation of distribution algorithms
(EDA’s)”. Generation of new solutions is conducted by sampling the search space according
to the estimated distribution. The distribution is re-estimated after each iteration. From EDA
models, in Wang (2007), univariate marginal distribution (UMD) is applied. For applying
UMD to binary PSO, firstly all local best’s are selected. Then based on these selected local
best’s, UMD model estimates the distribution of promising regions in search space and uses
a probability vector P = (P1, P2, . . . , Pn) to characterise the distribution of promising
solutions where Pd is the probability that dth dimension of a promising solution take the
value 1. The probability vector guides particles to search the binary space in the following
way:

If rand (.) < β, then Xid (t + 1) =
{

1 If rand (.) < Pd

0 Otherwise
(14)

Otherwise:

Xid (t + 1) = Pgd (t)

From (14), it is obvious that the larger the β is, the more elements of Xi (t) are sampled
from vector P.

The probability vector P is initialised by the following rule:

Pd =
∑Np

i=1 Pid

Np
(15)

At each iteration, P is updated via:

Pd = (1 − λ) Pd + λ

∑Np
i=1 Pid

Np
(16)

where λ ∈ (0, 1) is a learning rate.
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3.3 Trinary PSO

Trinary PSO addresses problems which possess three different states for each bit. Three
states are represented by three unity vectors; 1�-120◦, 1�0◦ and 1�-120◦. For initialisation,
particles’ dimensions are initialised randomly with one of above three states. Flight Equation
in Trinary PSO is as follows Moradi and Fotuhi-Firuzabad (2008):

Vi (t + 1) = Vi (t) + C1 r1 Pi + C2 r2 Pg (17)

After updating velocity, the phase of Vi is computed and mapped into interval [0,1] as the
probability of states. Thus, the angles of states; 1�-120◦, 1�0◦ and 1�-120◦ are mapped into
1/6, 1/2 and 5/6 respectively. Then, the differences between the phase of Vi and the three
numbers (1/6, 1/2, 5/6) is calculated in each iteration and resulting numbers (d1, d2, d3)

are transformed via following function.

T (dk) = a.exp (tan (π (0.5 − dk)))

1 + a.exp (tan (π (0.5 − dk)))
(18)

where k = 1,2,3 and a is a constant.
After transformation by (18), a random number r in [0,1] is generated and new states of

particles’ dimensions are determined according to the following rules:

1. If r is more than all T (d1), T (d2) and T (d3), or it is less than all of them, one state is
chosen randomly for next iteration.

2. If r is more than all T (d1) , T (d2) and T (d3), 1�-120◦ is selected as the state for next
iteration.

3. If r is less than all T (d1) , T (d2) and T (d3), one of the states associated with d1 and d2

is selected as the state for next iteration.

After updating particles, their objective function is calculated, then Pi’s and Pg’s are updated.
The main issue in the proposed trinary PSO is that there exists an overlap between first and
third states.

3.4 Penalty approach

In this approach, discrete variables are treated as continuous ones by penalising points which
are existent at intervals. Penalty function is as follows Kitayama et al. (2006), Li et al. (2005),
Kitayama and Yasuda (2006).

P (X) =
i=nd∑

i=1

1

2

[

sin
2 π

{
Xc

i − 0.25
(
di,j+1 + 3di,j

)}

di,j+1 − di,j
+ 1

]

(19)

where di,j and di,j+1 are the jth and (j + 1)th section of ith discrete variable, Xc
i represents the

continuous value between them and nd represents the number of discrete variables. According
to (19) the penalty value is small around the discrete values and is large at regions away from
discrete values. Augmented objective function is represented as:

ϕ (X) = f (X) + SP (X) (20)

where S represents penalty factor. For initialising S, S (Xi) for all particles are computed via:

S (Xi) = 1 + P (Xi) (21)
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Then, initial value of S called Sinit is determined as:

Sinit = min
i

S (Xi) (22)

During the course of optimization, at each iteration t, S is updated by:

S (t + 1) = S (t) .exp (1 + P (Xi)) (23)

The main drawback of penalty approach is it heavy computational burden which extremely
limits its application in complex optimization problems.

3.5 Approaches based on modification of flight equations

In Liu et al. (2009), Al-Kazemi and Mohan (2005), Pan et al. (2008), Tasgetiren et al. (2007),
Wu and Tsai (2011), Tao et al. (2010) PSO’s conventional flight equations are modified to
make it appropriate for discrete problems. In Liu et al. (2009), following new flight equations
are applied to discrete optimization problems:

X1
i (t) = Xi (t) + α Vi (t) (24)

X2
i (t) = β .PMX

[
X1

i (t) , Pi (t)
]

(25)

Xi (t + 1) = γ PMX
[
X2

i (t) , Pli (t)
]

(26)

where PMX and Pli represent partially matched crossover and particle i’s neighborhood best,
respectively.

In another approach called multi-phase discrete PSO, the flight equations are modified as
Al-Kazemi and Mohan (2005):

Vid (t + 1) = Min
(
Vmax, Max

(−Vmax, Vid (t) + Ci (t)
(
Pgd − Xid

)))
(27)

Xid (t + 1) =
{

1 If Vid (t + 1) + Xid (t + 1) > 0.5
0 Otherwise

(28)

where Ci (t) equals either 1 or -1 depending on the current phase of the corresponding particle.
After each pcf (phase change frequency) number of iterations, the sign of Ci (t) is reversed.
The sign of Ci (t) determines whether the particle i is attracted toward or repelled from the
global best.

Moreover in Pan et al. (2008), Tasgetiren et al. (2007)), new flight equations particularly
appropriate for flowshop scheduling problem is introduced. In Wu and Tsai (2011) a new
flight equation for integer problems is devised and in Tao et al. (2010) new flight equations
based on simple cyclic rules are proposed.

In an overall view on approaches proposed in literature which are based on modification
of flight equations, it can be said that the proposed flight equations are normally appropriate
for a particular problem and in most of cases, they do not work well in other problems.

3.6 Set-based approach

This approach uses a set-based representation scheme wherein particles’ positions and veloc-
ities are represented as crisp sets and sets with possibilities respectively (Chen et al. 2010;
Yue-Jiao et al. 2012).

If E is a crisp set, a set with possibilities V defined on E is represented by:

V = {e/P (e) |e ∈ E} (29)

That is, each element e ∈ E possesses a possibilityP (e) ∈ [0, 1] in V.
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In this approach, the flight equations in (4) are used, so due to the new entities of velocities,
the operators in (4) should be redefined. The redefined operators are as follows:

1. Coefficient × velocity (multiplication of a coefficient and a set with possibilities) is as
follows:

cV = {
e/P ′ (e) |e ∈ E

}
(30)

where

P ′ (e) =
{

1 I f cP (e) > 1
cP(e) Otherwise

(31)

2. Position-position (Subtraction of two crisp sets) is defined as: If A and B are two position
sets, A−B is:

A − B = {e|e ∈ A and e /∈ B} (32)

3. Multiplication of a coefficient and a crisp set is defined as:

cE ′ = {
e/P ′ (e) |e ∈ E

}
(33)

where

P ′ (e) =
⎧
⎨

⎩

1 I f e ∈ E ′ and c > 1
c I f e ∈ E ′ and 0 ≤ c ≤ 1
0 I f e /∈ E ′

(34)

4. Velocity plus velocity (Addition of two sets with possibilities) is defined as follows.

If V1 = {e/P1 (e) |e ∈ E} and V2 = {e/P2 (e) |e ∈ E} are two velocity vectors, then:

V1 + V2 = {e/max (P1 (e) , P2 (e)) |e ∈ E} (35)

According to the operators defined in 1 through 4, particles velocities are updated at each
iteration.

For updating position, a random number α in (0,1) is generated for each particle. Then,
for each element e in the dth dimension, if the corresponding possibility P (e) in Vid is not
smaller than α, element e is reversed in the crisp set, that is:

cutα (Vid) = {e|e/P (e) ∈ Vid and P (e) ≥ α} (36)

After construction of cutα (Vid), new position of particle i is determined by learning from
the elements in cutα (Vid).

3.7 Hybrid approach

In Nema et al. (2008) PSO is hybridized with branch and bound (BB) algorithm which is an
efficient classic technique for tackling discrete variables. By this hybridization, both global
search capability of PSO and rapid convergence capability of BB are benefited to form a
more efficient approach.

At the beginning of this hybrid approach, the BB is invoked for determining an initial
feasible solution for PSO and at each iteration, whenever an improvement in Pg is achieved,
it is passed over to the BB module as the starting point. Actually, in this approach, BB is not
called at every iteration, but it is called when Pg is improved. When BB completes, Pg is
updated and the PSO resumes.
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The main advantage of this approach is the need to less function evaluations due to the
deterministic nature and quickness of BB. On the other hand, incorporation of BB which is
derivative-based, limits the applicability of the hybrid approach.

3.8 Other approaches

Besides all the approaches explained for tackling discrete variables in PSO, there exist some
other approaches in literature which are not explained here due to space limitation (Clerc
2004; Pang et al. 2004a, b; Niasar et al. 2009; Hoffmann et al. 2011; Sha and Hsu 2006; Qin
et al. 2011). Table 1 has tabulated all different discrete variable handling approaches adopted
in PSO, their applicability, pros and cons.

4 Applications of DPSO in power system problems

Most of the power system problems can be transformed into optimization problems and most
of them contain discrete/integer/binary variables. For instance, location of a compensator
represents an integer variable, or reactive power of a static var compensator and the setting of
a tap changer introduce discrete variables. Also, the states of switches in distribution systems
(close/open) represent binary variables.

In literature discrete PSO has been used for optimal power flow (Onate Yumbla et al.
2008; AlRashidi and El-Hawary 2007), optimal scheduling of generator maintenance (Yare
and Venayagamoorthy 2007), transmission network expansion planning (Jin et al. 2007),
distribution system reconfiguration (Sivanagaraju et al. 2008; Liu and Gu 2007; Chang and
Lu 2002; Yin and Lu 2009; Wu and Tsai 2011), allocation of active power line controllers
(Ziari and Jalilian 2010), optimal capacitor placement (Eajal and El-Hawary 2010; Khalil et
al. 2006), integrated distribution system planning (Ziari et al. 2012), reactive power control
(Fukuyama 2001), unit commitment (Ting et al. 2006). Reliability analysis (Robinson 2005),
power system defensive islanding (Liu et al. 2007) and switch placement (Moradi and Fotuhi-
Firuzabad 2008).

For solving each of the mentioned power system problems, a particular type of dis-
crete/binary variable handling strategy has been adopted. Round off strategy is used in
(Onate Yumbla et al. 2008; Yare and Venayagamoorthy 2007; Jin et al. 2007; AlRashidi
and El-Hawary 2007; Sivanagaraju et al. 2008; Ziari and Jalilian 2010; Eajal and El-Hawary
2010; Ziari et al. 2012; Yoshida et al. 2000; Fukuyama 2001), conventional binary PSO has
been applied in Ting et al. (2006), Khalil et al. (2006), Liu and Gu (2007), Robinson (2005),
angle-modulated PSO is used in Liu et al. (2007) trinary PSO has been used in Moradi and
Fotuhi-Firuzabad (2008) and finally an approach based on modification of flight equations is
introduced in Wu and Tsai (2011). Table 2 tabulates the PSO applications in discrete power
system problems and the type of discrete PSO adopted in them.

5 Conclusions and future research directions

In this paper, all strategies adopted in PSO for tackling discrete problems have been analysed.
Conclusively, the followings are proposed as some directions for future research.

• In round off approach, at the end of continuous optimization, when final continuous opti-
mum is found, instead of rounding off, it is recommended that the two nearest discrete
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Table 2 PSO applications in discrete power system problems and their type of discrete PSO

Reference number Type of discrete PSO Application in power system

Onate Yumbla et al. (2008) Round off Optimal power flow subject to
security constraints

Yare and Venayagamoorthy (2007) Round off Optimal scheduling of
generator maintenance

Jin et al. (2007) Round off Transmission network
expansion planning

AlRashidi and El-Hawary (2007) Round off Optimal power flow
considering the valve loading
effects

Sivanagaraju et al. (2008) Round off Network reconfiguration for
loss reduction and load
balancing

Ziari and Jalilian (2010) Round off Allocation and sizing of
multiple active power-line
conditioners

Eajal and El-Hawary (2010) Round off Optimal capacitor placement
and sizing in unbalanced
distribution systems with
harmonics consideration

Ziari et al. (2012) Round off Integrated distribution systems
planning to improve
reliability

Yoshida et al. (2000) Round off Reactive power and voltage control

Fukuyama (2001) Round off Power system state estimation

Ting et al. (2006) Conventional binary PSO Unit Commitment

Khalil et al. (2006) Conventional binary PSO Optimal placement and sizing
of capacitor banks in radial
distribution feeders

Liu and Gu (2007) Conventional binary PSO Skeleton-network reconfiguration

Wu and Tsai (2008) Conventional binary PSO Feeder reconfiguration in
distribution systems

Chang and Lu (2002) Conventional binary PSO Feeder reconfiguration for load
factor improvement

Yin and Lu (2009) Conventional binary PSO Feeder reconfiguration in
distribution systems

Robinson (2005) Conventional binary PSO Reliability analysis of bulk
power systems

Liu et al. (2007) Angle-modulated
binary PSO

Defensive islanding of large
scale power systems

Moradi and Fotuhi-Firuzabad (2008) Trinary PSO Optimal switch placement in
distribution systems

Wu and Tsai (2011) Based on new flight
equations

Feeder reconfiguration in
distribution systems

values to the continuous optimum are evaluated and the one with better fitness is consid-
ered as the optimum discrete point.

• In conventional binary PSO, replacing sigmoid function with other functions may lead
to superior results.

• Devising a time-variant (preferably time-deceasing) velocity bound for conventional
binary PSO may result in better results.

• In Boolean PSO, transforming other basic PSO variants (like constricted PSO) to Boolean
structure may lead to more promising results.
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• In binary PSO, using different probability distribution functions for generating the prob-
ability vector (the vector whose entries indicate the probability that their corresponding
bits in position vector take the value 1) is recommended. Maybe certain probability
functions lead to outperformance in binary PSO.

• In penalty approach, devising more appropriate and simple penalty functions is of high
value.

• Approaches like estimation of distribution-based PSO and set-based PSO should be tested
on a wider range of discrete problems in order to evaluate their performance.

• Devising new flight equations more appropriate for discrete problems can be a potential
research direction.

• Focusing more on binary PSO and devising more efficient binary coded approaches for
solving continuous and binary problems may direct attractions toward binary coded PSO
in early future.

• So limited number of theoretical analysis on discrete variable handling in PSO has been
conducted.
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