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Abstract The importance of algorithm portfolio techniques for SAT has long been noted,
and a number of very successful systems have been devised, including the most successful
one—SATzilla. However, all these systems are quite complex (to understand, reimplement,
or modify). In this paper we present an algorithm portfolio for SAT that is extremely simple,
but in the same time so efficient that it outperforms SATzilla. For a new SAT instance to be
solved, our portfolio finds its k-nearest neighbors from the training set and invokes a solver
that performs the best for those instances. The main distinguishing feature of our algorithm
portfolio is the locality of the selection procedure—the selection of a SAT solver is based
only on few instances similar to the input one. An open source tool that implements our
approach is publicly available.
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1 Introduction

Solving time for a SAT instance can significantly vary for different solvers. Therefore, for
many SAT instances, availability of different solvers may be beneficial. This observation leads
to algorithm portfolios which, among several available solvers, select one that is expected
to perform best on a given instance. This selection is based on data about the performance
of available solvers on a large training set of instances. The problem of algorithm portfolio
is not limited only to the SAT problem, but can be considered in general (Huberman et al.
1997; Gomes and Selman 2001; Horvitz et al. 2001).
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458 M. Nikolić et al.

There are a number of approaches to algorithm portfolios for SAT, the most successful one
being SATzilla (Xu et al. 2008) that regularly wins in various categories of SAT Competi-
tions.1 SATzilla is very successful, but is a rather complex machinery not easy to understand,
reimplement or modify. In this paper we present an algorithm portfolio system, based on
the k-nearest neighbors method, that is conceptually significantly simpler and more efficient
than SATzilla. It derives from our earlier research on solver policy selection (Nikolić et al.
2009).

The rest of the paper is organized as follows. In Sect. 2, some of the existing algorithm
portfolios are described. In Sect. 3, the proposed technique is described and in Sect. 4 the
experimental results are presented. The conclusions are drawn in Sect. 5.

2 Algorithm portfolios for SAT

Various approaches to algorithm portfolio for SAT and related problems have been devised
(Gomes and Selman 2001; Horvitz et al. 2001; Lagoudakis and Littman 2001; Samulowitz
and Memisevic 2007), but the turning point in the field has been marked by the appear-
ance of SATzilla portfolio (Nudelman et al. 2004; Xu et al. 2008). Here we describe several
recent relevant approaches for algorithm selection for SAT, most of them using fragments of
SATzilla methodology.

SATzilla. SATzilla, the algorithm portfolio that has been dominating recent SAT Com-
petitions, is the most important and the most successful algorithm portfolio for SAT, with
admirable performance (Xu et al. 2008, 2009). SATzilla represents instances by using differ-
ent features and then predicts runtime of its constituent solvers based on these features and
relying on empirical hardness models obtained during the training phase.

SATzilla is a very complex system. On a given input instance, SATzilla first runs two pre-
solvers for a short amount of time, in a hope that easy instances will be quickly dispatched.
If an instance is not solved by the presolvers, its features are computed. Since the feature
computation can take too long, before computing features, the feature computation time is
predicted using empirical hardness models. If the estimate is more than 2 min, a backup
solver is run. Otherwise, using computed features, a runtime for each component solver is
predicted. The solver predicted to be the best is invoked. If this solver fails (e.g., if it crashes
or runs out of memory), the next best solver is invoked.

The training data are obtained by measuring the solving time for all instances from some
chosen training set by all solvers from some chosen set of solvers (using some predeter-
mined cutoff time). For each category of instances (used in SAT Competitions)—random,
crafted, and industrial, a separate SATzilla system is built. For each system, a hierarchical
empirical hardness model for each solver is trained to predict its runtime. This prediction is
obtained by combining runtime predictions of separate conditional models for satisfiable and
for unsatisfiable instances. To enable this, SATzilla uses an estimator of probability whether
the input instance is satisfiable that is trained using sparse multinomial logistic regression.
Each conditional model is obtained in the following manner. First, starting from a set of
base features, a feature selection step is performed in order to find features that maximally
reduce the model training error. Then, the pairwise products of the remaining features are
added as new features, and the second round of feature selection is performed. Finally, the
ridge regression model for runtime prediction is trained using the selected features. From
the set of solvers that have been evaluated on the training data, best solvers are chosen for

1 http://www.satcompetitions.org
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the component solvers automatically, using a randomized iterative procedure. The presolvers
and the backup solver are also selected automatically.

ArgoSmArT. ArgoSmArT is a system developed for instance-based selection of policies
for a single SAT solver (Nikolić et al. 2009). As a suitable underlying SAT solver it uses
a modular solver ArgoSAT (Marić 2009). ArgoSmArT uses a training set of SAT instances
divided manually in classes of instances of similar origin (e.g., as in the SAT Competition
corpus). Each instance is represented using (a subset of) the SATzilla features. For the input
instance to be solved, the feature values are computed and the nearest (with respect to some
distance measure) neighbor instance from the training set, belonging to some class c is found.
Then, the input instance is solved using the solver configuration that is known to perform
best on the class c.

ArgoSmArT does not deal with solver tuning and assumes that good configurations for
classes are provided in advance. This approach could be used for selection of policies for
other solvers, too. Moreover, it can be also used as an algorithm portfolio.

ISAC. ISAC is a solver configurator that also has the potential to be applied to the general
problem of algorithm portfolio (Kadioglu et al. 2010). It divides a training set in families
automatically using a clustering technique. It is integrated with GGA (Ansótegui et al. 2009),
a system capable of finding a good solver configuration for each family. The instances are
represented using SATzilla features, but scaled in the interval [−1, 1]. For an input instance,
the features are computed and the nearest center of available clusters is found. If the distance
from the center of the cluster is less than some threshold value, the best configuration for that
cluster is used for solving. Otherwise, a configuration that performs the best on the whole
training set is used.

Latent class models. Another recent approach promotes use of statistical models of solver
behavior (latent class models) for algorithm selection (Silverthorn and Miikkulainen 2010).
The proposed models try to capture the dependencies between solvers, problems, and run
durations. Each instance from the training set is solved many times by each solver and a model
is fit to the outcomes observed in the training phase using the iterative expectation-maximi-
zation algorithm. During the testing phase, the model is updated based on new outcomes. The
procedure for algorithm selection chooses a solver and runtime duration trying to optimize
discounted utility measure on the long run. The authors report that their system is roughly
comparable to SATzilla.

Non-model-based portfolios. This, most recent, approach (Malitsky et al. 2011) also relies
on k-nearest neighbors, and was independently developed in parallel with our research. How-
ever, the two systems differ in some aspects (which will be shown to be important). This
approach uses a standard Euclidean distance to measure the distance of neighbors, while
each feature has to be scaled to the interval [0,1] to avoid dependence on order of magnitude
of numbers involved. Also, the feature set is somewhat different from the one we use. The
approach was evaluated on random instances from SAT 2009 competition and gave better
results than SATzilla.

3 Nearest neighbor-based algorithm portfolio

The existing portfolio systems for SAT build their models (e.g., runtime prediction models,
grouping of instances, etc.) in advance, regardless of characteristics of the input instance. We
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Fig. 1 k-nearest neighbors algorithm portfolio for SAT

expected that a finer algorithm selection might be achievable if a local, input-specific model
is built and used. A simple model of that sort can be obtained by the k-nearest neighbor
method (Duda et al. 2001), from just few instances similar to the instance being solved. In
the rest of this section we describe our algorithm portfolio for SAT.

It is assumed that a training set of instances is solved by all solvers from the portfolio,
and that the solving times (within a given cutoff time) are available. Based on these solving
times, for each solver a penalty can be calculated for any instance (the greater the solving
time, the greater the penalty). Each instance is represented by a vector of features.

Our algorithm selection technique is given in Fig. 1. Basically, for a new instance to be
solved, its k-nearest neighbors from the training set (with respect to some distance measure)
are found, and the solver with the minimal penalty for those instances is invoked. In the case
of ties among several solvers, one of them that performs the best on the whole training set
can be chosen.2

To make the method concrete, the set of features, the penalty and the distance measure
have to be defined.

Features. The authors of SATzilla introduced 96 features that are used to characterize SAT
instance (Xu et al. 2008, 2009), used subsequently also by other systems (Nikolić et al. 2009;
Kadioglu et al. 2010). The main problem with using a full set of these features is the time
needed to compute them for large instances.3 The features we chose, given in Fig. 2, can
be computed very quickly. They are some of the purely syntactical ones used by SATzilla.
Though this subset may not be enough for good runtime prediction that SATzilla is based
on, it may serve well for algorithm selection.

Penalty. If a solving time for a solver and for a given instance is less that a given cutoff
time, the penalty for the solver on that instance is the solving time. If it is greater then the
cutoff time, for the penalty time we take 10 times the cutoff time. This is the PAR10 score
(Hutter et al. 2009). We define a PAR10 score of a solver on a set of instances to be the sum
of its PAR10 scores on individual instances.

Distance measure. We prefer the distance measure that performed well for ArgoSmArT:

2 In practice, it is highly unlikely that there are more than one such solver, but for completeness we allow for
such possibility (step 5 of the procedure).
3 As said, SATzilla even performs a feature computation time prediction and does the computation itself only
if the predicted time does not exceed 2 min.
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Fig. 2 SATzilla features used

d(x, y) =
∑

i

|xi − yi |√
xi yi + 1

where xi and yi are coordinates of vectors x and y (containing feature values of the instance),
respectively. However, any distance measure could be used.

Compared to the approaches described in Sect. 2, our procedure does not discriminate
between satisfiable and unsatisfiable or between random, crafted, and industrial instances.
The procedure does not use presolvers, does not predict feature computation time, nor it uses
any feature selection or feature generation mechanisms. It is not assumed that the structure
of instance families is given in advance, nor it is constructed in any way. Also, the algorithm
does not use any advanced statistical techniques, nor does solve the same instances several
times. Compared to the approach of Malitsky et al. (2011), we use a smaller feature set,
different distance measure and avoid feature scaling.

Note that the special case of 1-nearest neighbor technique, has some advantages compared
to the general case. Apart for simpler implementation, it can have a wider range of appli-
cation. In the case of algorithm configuration selection (that can be seen as a special case
of algorithm selection—each configuration of an algorithm can be considered as a different
algorithm), it would be expensive or practically impossible to have each instance solved for
all algorithm configurations. Therefore, neither SATzilla nor k-nearest neighbor approach
for k > 1 is applicable in this situation. However, there are special optimization based tech-
niques for finding good solver configurations off-line (Hutter et al. 2009; Ansótegui et al.
2009). Hence, for each instance, one good configuration can be known. This is sufficient for
the 1-nearest neighbor approach to be used.

4 Implementation and experimental evaluation

Our implementation of the presented algorithm portfolio for SAT, ArgoSmArT k-NN,4 con-
sists of less than 2,000 lines of C++ code. The core part, concerned with the solver selection,
has around 100 lines of code, while the rest is a feature computation code, solver initialization
and invocation, time measurement, etc. All the auxiliary code (everything except the solver

4 The source code and the binary are available from http://argo.matf.bg.ac.rs/ download section.
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selection mechanism) is derived from the SATzilla source code by removing or simplifying
parts of its code.

In the evaluation we compare ArgoSmArT k-NN with SATzilla 2009. We are not aware
of a publicly available implementation related to the approach of Malitsky at al., but we
compare different decisions in our two approaches within ArgoSmArT k-NN.

Instead of solving instances from a training set, the training data for SATzilla 20095 avail-
able from the SATzilla web site,6 was used. SATzilla was trained using 5,883 instances from
SAT Competitions (2002–2005 and 2007) and SAT Races 2006 and 2008 (Xu et al. 2009).
The data available on the web site include the solving information for 4,701 instances (the
solving data for other instances SATzilla is trained on is not available on the web). The avail-
able solving times of these instances were used, while the feature values were recomputed
(in order to avoid using the SatELite preprocessor that SATzilla 2009 uses as a first step of
feature computation). The cutoff time of 1,500 s was used. When instances that where not
solved by any solver within that time limit and duplicate instances were excluded, there were
4,276 remaining instances in the training set. The feature vectors of training instances and
their solving times for all solvers used are included in the implementation of ArgoSmArT
(1.3 Mb of data). As a test set, we used all the instances from the SAT Competition 2009.

There are 13 solvers for which the solving data are available, and that are used by SATzilla
2009 as components solvers in 3 versions of SATzilla (random, crafted, and industrial) (Xu
et al. 2009). Each version of SATzilla uses a specialized subset of these 13 solvers that
is detected to perform the best on each category of instances. No specialized versions of
ArgoSmArT are made, but simply all 13 solvers are used as component solvers.

ArgoSmArT k-NN can use any distance measure, but we take into consideration two
measures. The first is the one shown in Sect. 3 that performed best for ArgoSmArT, and for
some other problems (Tomovic et al. 2006). The second one is the Euclidean distance (with
features being scaled to [0,1]) as used by Malitsky et al. The comparison of these distances
for various k is shown in Fig. 3. The number of solved instances for each distance and each
k is obtained by leave one out procedure (the solver to be used for each instance is chosen
by excluding the instance from the training set, and applying the solver selection procedure
using the rest of the training set). It is obvious that ArgoSmArT distance is uniformly better
than the Euclidean one. For both distances, the highest number of solved instances is obtained
for k = 9. Hence, we use these choices for ArgoSmArT k-NN in further evaluation. Also,
we justify our choice of features by measuring the feature computation times. For the full set
of 48 features used by Malitsky et al., minimal, average and maximal computation times on
the training set are 0.002, 19.2 and 6,257.0 s. For our, reduced, set of features the minimal,
average and maximal computation times are 0.0017, 0.45, and 51.2 s.

An experimental comparison between ArgoSmArT k-NN and any individual version of
SATzilla would not be fair since each version is designed specifically for one kind of instances.
So, in order to make a fair comparison, on random instances we used SATzilla random, on
crafted instances we used SATzilla crafted, and on industrial instances we used SATzilla
industrial. This virtual SATzilla system will be just referred to as SATzilla. In our experi-
mental comparison, we included MXC08 (the best single solver on the training set), SATzilla,
the ArgoSmArT system based on Nikolić et al. (2009) with 13 SATzillasolvers instead of
ArgoSAT configurations, ArgoSmArT 1-NN, and ArgoSmArT 9-NN. Also, we compare to
the virtual best solver—a virtual solver that solves each instance by the fastest available
solver for that instance (showing the upper achievable limit). Experiments were performed

5 SATzilla 2009 is a winner of SAT Competition 2009 in random category.
6 http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
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Fig. 3 The number of solved instances from the training set for ArgoSmArT using each of the compared
distances for each k from 1 to 30

Table 1 Experimental results on instances from SAT Competition 2009

MXC08 SATzilla ArgoSmArT ArgoSmArT 1-NN ArgoSmArT 9-NN VBS

T imeAL L (s) >1,500 635 874 390 353 115

NAL L 355 635 609 685 692 816

NRN D 84 375 308 367 390 454

NC RF 124 128 154 158 149 188

NI N D 147 132 147 160 153 174

For each solver/portfolio the number of solved instances and the median solving time are given for the whole
corpus. Also, the number of solved instances is given for each of the categories of instances—random, crafted,
and industrial. The total number of instances is 1,143
The number of solved instances from the whole corpus is presented in boldface

on a cluster with 32 dual core 2 GHz Intel Xeon processors with 2 GB RAM per processor.
The results are given in Table 1 and they show that ArgoSmArT 1-NN/ArgoSmArT 9-NN
outperformed all other solvers/portfolios in all categories.

It is a common practice on SAT Competitions and SAT Races to repeat instances known
from previous events. This results in overlapping of training and test set. To be thorough, in
Table 2, we provide experimental evaluation on the test set without the instances contained
in the training set.

One can observe that on one subset of instances (industrial instances that did not appear
on earlier competitions), MXC08 component solver performs better than all the portfolio
approaches. This probably means that the test set is somewhat biased with respect to the
training set. However, the presented results show that ArgoSmArT k-NN significantly out-
performed other entrants on this test set as well. Possible reasons for this involve two char-
acteristics of ArgoSmArT k-NN. First, in contrast to the original ArgoSmArT and SATzilla,
ArgoSmArT k-NN does not use predefined groups or precomputed prediction models, built
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Table 2 Experimental results on instances from SAT Competition 2009 without the instances known from
previous SAT Competitions and SAT Races

MXC08 SATzilla ArgoSmArT ArgoSmArT 1-NN ArgoSmArT 9-NN VBS

T imeAL L (s) >1,500 497 895 343 274 76

NAL L 243 513 475 533 553 659

NRN D 84 375 308 367 390 454

NC RF 77 68 88 86 83 115

NI N D 82 70 79 80 80 90

For each solver/portfolio the number of solved instances and the median solving time are given for the whole
corpus. Also, the number of solved instances is given for each of the categories of instances—random, crafted,
and industrial. The total number of instances is 894
The number of solved instances from the whole corpus is presented in boldface

regardless of the input instance. Instead, ArgoSmArT k-NN selects a solver by consider-
ing only a local set of instances similar to the input instance. Second, ArgoSmArT and
SATzilla make their choices by considering specific groups of instances, but these groups are
typically large. On the other hand, ArgoSmArT k-NN considers only a very small number
of instances (e.g., k = 9) and this eliminates influence of less relevant instances. Indeed,
SATzilla improves its predictive performance by building specific versions for smaller sets
of related instances (i.e., random, crafted, industrial) (Xu et al. 2008), which also supports
the above speculation.

5 Conclusions

We presented a strikingly simple algorithm portfolio for SAT stemming from our work on
ArgoSmArT (Nikolić et al. 2009). The presented system, ArgoSmArT k-NN, benefits from
the SATzilla system in several ways: it uses a subset of SATzilla features for representation
of instances, a selection of SAT solvers, SATzilla solving data for the training corpus, and
fragments of SATzilla implementation. However, in its core part—selection of a solver to be
used—ArgoSmArT k-NN significantly differs from SATzilla. Instead of predicting runtimes,
our system selects a solver based on the knowledge about instances from a local neighbor-
hood of the input instance, using the k-nearest neighbors method. The proposed system is
implemented and publicly available as open source. The experimental evaluation shows that
the particular decisions made in the design of our system are even better than the decisions
made in the similar recent system (Malitsky et al. 2011). Also, it (even the simplest version
ArgoSmArT 1-NN) performed substantially better than SATzilla—the most successful, but
rather complex, algorithm portfolio for SAT. We believe that the presented approach proves
there is a room for improving of algorithm portfolio systems for SAT, not necessarily by
overengineering.
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