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Abstract  Using five medical datasets we detected the influence of missing values on true
positive rates and classification accuracy. We randomly marked more and more values as miss-
ing and tested their effects on classification accuracy. The classifications were performed with
nearest neighbour searching when none, 10, 20, 30% or more values were missing. We also
used discriminant analysis and naive Bayesian method for the classification. We discovered
that for a two-class dataset, despite as high as 20-30% missing values, almost as good results
as with no missing value could still be produced. If there are more than two classes, over
10-20% missing values are probably too many, at least for small classes with relatively few
cases. The more classes and the more classes of different sizes, a classification task is the
more sensitive to missing values. On the other hand, when values are missing on the basis of
actual distributions affected by some selection or non-random cause and not fully random,
classification can tolerate even high numbers of missing values for some datasets.

Keywords Medical data - Missing values - Distance measures - Imputation -
Classification - Nearest neighbour searching

1 Introduction

For various reasons some variable values can be missing in a dataset. Missing values may
frequently occur in numerous application areas. In particular, medical datasets often contains
missing values. Therefore, we used medical datasets in our tests. Perhaps a physician who
investigates patients deems some tests or questions unimportant for patients of a certain type.
For instance, he or she has a good hypothesis about a diagnosis and, therefore, ignores vari-
ables like some medical tests that would not be important for that diagnosis. Some variables
may concern diagnostic tests such as some medical imaging types, e.g. positron emission
tomography (Mykkénen et al. 2000), that can be complicated or expensive to perform and,
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thus, rarely accomplished. Perhaps there is not precise enough data, e.g., about the beginning
of a symptom. Simply, some variables may remain unknown because their values could not
be acquired or were noticed to be incorrect.

Several works considering missing values (Little and Rubin 1987; Pyle 1999; Witten and
Frank 2000) exist, especially how to handle such problems, but research on the influence
of the quantities of missing values are mostly missing and particularly regarding medical
datasets. Usually missing values are substituted or imputed with artificial values that are
suitable estimates computed from the known variable by variable in each class if there are
appropriate training data available. This supervised situation requires that the class labels of
all training data are known. If only “unknown” or new data without class labels is available,
this cannot be performed classwise, but in an unsupervised manner from the whole dataset at
a time. Naturally, estimates of the latter situation are less representative. If there are missing
values in a training set, in principle such training cases could be abandoned entirely. If a
considerable number of the variable values of an individual case were missing, this might be
a reasonable choice. If there were only few missing values in a case, this would be unrea-
sonable. Besides, there are such datasets, medical in particular, that relatively few values are
missing, but most of the cases include at least one missing value. Thus, this straightforward
elimination of cases is frequently impractical or even impossible. Instead, we need efficient
techniques to substitute or to impute missing values.

An occasional reason for missing values in medical datasets is that there is no reason to
store a normal value as a value of healthy people. In such cases these “normal” or “assumed”
values would be a possibly good for imputation. However, this reason is not always known for
a variable or there are other reasons for missing values (Chowdhury et al. 1991). Simple and
fast methods to compute values to be imputed are to use central values as medians or means
for quantitative variables and modes for binary and nominal (qualititative) variables. More
sophisticated techniques include the use of linear regression or expectation-maximization
(EM) algorithm (Pyle 1999), or nearest neighbour searching or neural networks (Pesonen
et al. 1998). On the other hand, although the EM algorithm is often seen to be effective,
the problem of such techniques is the requirement of statistical model assumptions (Fortes
et al. 2006), e.g. about data distributions, which are not easy to satisfy or even to discover
when a dataset is not known in advance. Using nearest neighbour searching (Wasito and
Mirkin 2005) the closest or most similar case with a known variable value is computed and
this known value is used to replace the missing value of the same variable. Sometimes even
random substitution may be relevant, for instance if there are rather few missing values or
they are missing in less important variables. On the basis of the earlier studies (Pesonen et al.
1998; Laurikkala et al. 2001), we can assume that usually the imputation technique applied
affects only slightly classification accuracy. For instance, the use of means or neural network
outputs yielded average accuracies of 78%, random values and nearest neighbour searching
gave average accuracies of 74% and “normal” values those of 70 % for acute abdominal pain
data (Pesonen et al. 1998).

Impact of missing values in datasets has seldom been investigated for the purpose to
evaluate their influence on classification results. Using neural networks such influence was
recently researched (Markey et al. 2006) for mammographic breast image and other associ-
ated data. Nevertheless, they applied complete training data, i.e. no missing values in training
sets. After all, this is a restricted situation, which is often not met in reality.

In the present article we report our results after researching the effects of increasing num-
bers of missing values on the true positive rates and accuracies of classification tasks in five
medical datasets. Two straightforward ways were employed to handle missing values and
three basic methods were utilized for classification.
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2 Datasets

We utilized three datasets from the UCI data repository (Blake and Merz 1998) frequently
used in machine learning studies and two from our own previous research (Laurikkala and
Juhola 1998; Viikki et al. 1999). The three former are Buba, Haberman and New-thyroid,
and the two latter Incontinence and Vertigo.

The Buba dataset contains data about liver disease male cases. It consists of six variables
and two classes as ‘sick’ or ‘healthy’ with 145 and 200 cases. The Haberman dataset includes
breast cancer data of three variables. Its two classes express whether a patient died during a
five-years period after surgery. There were 225 ‘survivors’ and 81 ‘dead’. The New-thyroid
dataset consists of data concerning about the functioning of the thyroid. It has three classes:
‘normal function’, ‘hyperfunction’ and ‘hypofunction’ with 150, 35 and 30 cases. All vari-
ables of the three datasets are quantitative (ordinal or real). The datasets have 345, 306 and
215 cases.

The Incontinence dataset incorporates the data of female urinary incontinence cases with
13 binary variables. There are five classes: ‘stress’, ‘mixed’, ‘sensory urge’, ‘motor urge’
and ‘normal’ with 323, 140, 33, 15 and 18 cases. The total number of cases is 529. The
vertigo dataset contains 20 ordinal, 16 real variables and 14 binary variables. It has six
classes: ‘vestibular schwannoma’, ‘benign positional vertigo’, ‘Meniere’s disease’, ‘sudden
deafness’, traumatic vertigo’ and ‘vestibular neuritis’ with 130, 146, 313, 41, 65 and 120
cases, respectively. There are 8§15 cases altogether.

3 Methods

We applied 1-nearest neighbour searching by implementing a one-leave-out test procedure
in Matlab for each dataset. In other words, a test set only included one test case at time
and the other n-1 cases were used for its training set. Thus, n tests were executed for each
test condition. This is a reasonable choice when datasets are relatively small and especially
when they include small classes of few cases. We randomly marked values of variables as
missing, but set the total number of the missing to be 10, 20, 30% etc. from the whole. We
ran these tests with two ways to handle missing values: a suitable distance measure called
the heterogenous Euclidean-overlap metric (Aha et al. 1991; Wilson and Martinez 1997) and
imputation with the medians and modes of variable values. After choosing the latter of them,
we continued by applying k-nearest neighbour searching with k equal to 3 and 5, linear dis-
criminant analysis and naive Bayesian classification to compare their classification results.
Since the preceding tests were performed after fully randomly marking values as missing,
we proceeded with 3-nearest neighbour searching, when values were first marked randomly
as missing and according to classwise variable distributions of missing values present in the
Incontinence and Vertigo datasets.

At first, we made two main test series with all five datasets to find out whether they yield
different results while considering missing values differently. We handled missing values
applying the heterogeneous Euclidean-overlap metric (HEOM). This distance measure is
appropriate to medical data which often consists of mixed-type variables, i.e. from the sim-
plest binary type to quantitative variables. It also takes into account missing values while
calculating a distance. If one or both values of a variable of two cases are missing, the
distance between the cases is defined to be the normalized maximum 1. Alternatively, we
imputed missing values employing medians of quantitative variables and modes of binary
variables (Little and Rubin 1987). This approach can be seen as the most straightforward
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imputation technique in addition to the use of random values. Modes and medians were
computed variable by variable from the existent values before the imputation. The Euclidean
metric was then applied to nearest neighbour searching.

HEOM is as follows (Aha et al. 1991; Wilson and Martinez 1997). Let us have patient
cases x and y when x;, and y; are the values of a variable i, i = 1..., m. A distance D(x, y)
between the cases is as follows.

m
> d (xi, yi)?

i=1

D(x,y) =

For a qualitative or nominal (only binary in our datasets) variable a distance value d(x;, y;)
is

L, xi #yi
d(xi,yi) =141, x; or y; missing

and for a quantitative variable (ordinal, interval or ratio scales) a distance value is assigned
with

i —yi |

d(xi,yi) = [ Ri

1,x; or y; missing

in which R; is the range of the variable i used to normalize the absolute difference.

The maximum distance was assumed if one or both variable values were missing. This
is the so-called “pessimistic” way assuming that the difference is then as great as possible
concerning the variable of a missing value. The “optimistic” way would define to be the
minimum distance. The use of variable medians and modes is their “in-between” alternative
relying on central values as estimates. This sounds a good approach, but its weakness is that
they can be precisely estimated only along with classwise values, i.e. for a training set, where
class labels are known. For unsupervised classification and always for a test set this is not
possible, but they have to be estimated by applying the whole training (or test) set at a time.
This is sometimes a clear weakness, because their actual values can vary from a class to class
considerably. In fact, this variation is the key point of any classification.

Second, as mentioned earlier, we tested with k-nearest neighbour searching employing
only the imputed versions of the data sets. Thirdly, we executed linear discriminant analysis
and naive Bayesian classification. Fourthly, we still studied the influence of actual missing
value distributions when missing values were increased on the basis of these distributions
in the Incontinence and Vertigo datasets. Some variables can have more missing values than
others. Some may frequently contain missing values, but others do no include them at all.
These circumstances may also differ between classes.

4 Tests and results

For the first test condition of no missing value where there is no randomness the tests were
run once. For all other, 100 test runs were repeated to average any possible variation due to
the random selection of missing values. Test conditions were 0, 10, 20, ..., 90% of missing
values from the total. Of course, such numbers as high as 90% are not sensible in reality
at all, but we illustrate here how classification results changed in the course of increasing
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Fig. 1 Average true positive rates and accuracies of the Buba dataset when HEOM was used for the distance
calculations of 1-nearest neighbour searching

numbers of missing values. Instead, in the earlier study they tested up to 40% only (Markey
et al. 2006).

Originally, the Buba, Haberman and New-thyroid datasets included no missing values.
Instead, the Incontinence dataset included approximately 20% missing values and the vertigo
dataset around 10 %. In order to simulate complete datasets, when HEOM was used, these
missing values were first substituted with either a median or mode depending on the type of
variable as mentioned above. The medians and modes were computed class by class in order
to restore the two datasets as if they were originally complete. Only after this substitution
procedure missing values were randomly selected. For the second test series after the actual
imputation the Incontinence and Vertigo datasets were used as such by starting to consider
them from the conditions of 20 and 10% missing values, respectively. The imputation was
then performed on the basis of modes and medians computed from the whole datasets (not
class by class) since it was now our objective to simulate actual classification situations
without any prior information about the classes of test cases.

Figures 1, 2, 3, 4 and 5 introduce results computed when HEOM was used to handle
distance calculations when missing values were present. Those figures describe both average
true positive rates and accuracies. Figure 6 considers results when the imputation approach
was employed. Figure 6 only includes accuracies. Here the true positive rates were excluded
since their characters essentially resembled those in Figs. 1, 2, 3, 4 and 5.

True positive rate is defined with

n = *X100%
ng

in which r¢ is equal to the number of correctly classified cases in class k and ny is that of all
test cases in class k. Accuracy is given by

100%

C
a = Zk=1 Tk
n

where c is the number of classes and n all test cases.
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Fig. 2 Average true positive rates and accuracies of the Haberman dataset when HEOM was used for the
distance calculations of 1-nearest neighbour searching
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Fig. 3 Average true positive rates and accuracies of the New-thyroid dataset when HEOM was used for the
distance calculations of 1-nearest neighbour searching

Standard deviations were computed, but not presented to keep figures clearer. They were
mostly small, less than 10% for all subsequent results. Figure 1 shows results given by the
Buba dataset. Figure 2 illustrates results computed from the Haberman dataset. Both data-
sets include two classes. Therefore, the larger class regarding the number of cases in each
class begins to predominate with improving true positive rates in 40% missing cases in the
Buba dataset and already in 10% of missing cases in the Haberman dataset. This means
that the larger class, say the “majority class” obtains slowly improving true positive rates,
while the smaller one, “minority” class obtains poorer true positive rates. For the Haberman
dataset, the average accuracies computed even increase slightly along with the number of
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Fig. 4 Average true positive rates and accuracies of the incontinence dataset when HEOM used for the
1-nearest neighbour searching
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Fig. 5 Average true positive rates and accuracies of the Vertigo dataset when HEOM used for the 1-nearest
neighbour searching

increasing missing values. This comes from the property that the majority ‘healthy’ class with
74% (225) from 306 in the Haberman dataset is clearly greater than ‘survivors’ 58% (200)
from 345 of the Buba dataset, where this is quite close to 50-50% between the two classes.
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Fig. 6 Average accuracies of all datasets imputed with modes and medians before the 1-nearest neighbour
searching

Even the conditions of 30% missing values for the Buba dataset and 40% for the Haberman
dataset generated tolerable true positive rates which decreased no more than approximately
6% compared to the situation of no missing value.

Figure 3 indicates the results with the New-thryroid dataset. Now there are three classes
and the majority class ‘normal function’ of 70% (150) of the 215 cases is much greater than
the two others together. Thus, the true positive rates of the two small minority classes begin
to get worse after 10% missing values. When the majority class produced high true positive
rates, the average accuracy deteriorates slowly. This situation seems to be typical with imbal-
anced classes, when there are great differences between the sizes of majority and minority
classes. The conditions of 10 or 20% missing values were still tolerable with an approximate
10% decrease of the true positive rates of the minority classes.

Figure 4 contains the results computed with the Incontinence dataset, which includes five
classes. The majority class of 61% (323) of the 529 cases again yielded the best true positive
rates and the three smallest classes were poor except the class ‘normal’ for 20% of missing
values. Nevertheless, the ‘normal’ class was the only that was entirely detected from the
other in the situation of no missing value. Thus, it can be seen as an exceptional class. The
condition of 20% missing values was acceptable with a maximum drop of 10% in the true
positive rates, except for the smallest ‘motor urge’ class. In Fig. 4 the accuracy values slowly
get down.

Figure 5 depicts the results obtained from the Vertigo dataset. ‘Meniere’s disease’ is the
majority class with 39% (313) of the 815 cases. Once again, the majority class produced
the best true positive rates along with increasing missing values. Because its part was not so
predominant as above, it clearly got worse in the course of increasing missing values. The
true positive rates of the two smallest classes of ‘sudden deafness’ and ‘traumatic vertigo’
immediately began to deteriorate after the increase of missing values. The condition of 10%
missing values was acceptable for the classes with a maximum drop of approximately 10%,
except 15% for the smallest ‘Sudden deafness’ class, and even 20% for the other than the
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Fig. 7 Average accuracies of all datasets imputed with modes and medians before the 3-mearest neighbour
searching

two smallest classes. The accuracy values more rapidly went down than in Fig. 4. There was
one class more than in Fig. 4 and the majority class was not as predominant as in Fig. 4.

Next we made another test series imputing missing values with either variable modes or
medians. Because originally the Incontinence dataset included approximately 20% of missing
values and the Vertigo dataset 10% of missing values, we started from those conditions with
them. Otherwise, we randomly marked values as missing as described above and executed
1-nearest neighbour searching 100 times for every test condition with missing values. The
average accuracy results are seen in Fig. 6. Again the average accuracies slowly increased
after 60% missing values for the Buba dataset and after 30% missing values for the Haberman
dataset which is seemingly contradictory, but is caused by the ratios of their two classes. The
three other datasets of three, five or six classes behaved more “naturally” while increasing
missing values. True positive rates not presented here were clearly alike as those in Figs. 1, 2,
3, 4 and 5. Standard deviations computed were also mostly below 10% for all test conditions
with missing values. The average accuracies in Fig. 6 were very similar to those in Figs. 1,
2, 3, 4 and 5 for other than the Vertigo dataset, for which the results in Fig. 6 were 8% better
on average. Otherwise, the differences were at most 1-2% larger or less between the two test
series.

Next we computed k-nearest neighbour searching (k = 3 or 5) to deal with greater k
values. This and all subsequent tests were executed after having imputed with medians and
modes, similarly to the tests with the results described in Fig. 6. This approach was chosen
since the differences between the results were virtually non-existent between HEOM and
imputation, except for the largest Vertigo dataset including more classes and variables than
the other. Figure 7 shows accuracy results with k equal to 3. The results of k equal to 5 not
presented here were almost similar to those of Fig. 7. The results in Fig. 7 indicate mainly
small differences compared to Fig. 6. For the Buba dataset, k equal to 3 produced better
accuracies, less than approximately 1%. For the Haberman dataset, k equal to 1 aroused
1-4% better accuracies. For the New-thyroid dataset, the situation varied between k equal
to 1 and 3 and the differences were 0—3%. For the Vertigo dataset, k equal to 3 yielded
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1-3% better accuracies. However, there were significant drops as large as 4-10% for the
Incontinence dataset from Figs. 6 to 7. Obviously, the increase of k to 3 began to disturb
correct decisions on its three small classes, from which two included so few as 15 and 18
cases. These were the least classes of all five datasets exploited. While comparing accuracies
between k equal to 3 and 5, the situations varied between them for the Buba, New-thyroid
and Incontinence datasets including differences mostly less than 1%, whereas for Haberman
and Vertigo datasets, k equal to 5 caused 1-2% better accuracies.

Next we classified with naive Bayesian (Fig. 8) and linear discriminant analysis (Fig. 9)
techniques after the imputation with medians and modes. The Buba, Haberman and New-
thyroid datasets were tested, because the other two aroused frequently such matrices which
were not possible to invert. Looking at the accuracies of nearest neighbour searching with
k equal to 3 we obtained the following results. Nearest neighbour searching and linear
discriminate analysis yielded 2-5% better accuracies than naive Bayesian technique for the
Buba dataset. For the Haberman dataset, naive Bayesian technique produced 2-4% better
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than nearest neighbour searching, while linear discriminant was between them. For the New-
thyroid dataset, the situation was similar to that of Buba, but for 60% missing values and
over naive Bayesian technique was slightly inferior to two other.

Ultimately, we studied the influence of missing values on classification accuracies when
actual missing value distributions were followed variable by variable in each class. Because
the Incontinence and Vertigo datasets only included missing values, these datasets were tested
here. When the former included originally 19.9% and the latter 13.3% missing values, as
to the total numbers of variable values, we applied multiplied numbers of missing values
marked randomly. At first, we calculated the numbers of the missing values of all variables
in every class. To insert missing values, we followed these distributions in order to simulate
their “natural” occurrences. This was done by doubling, tripling etc. their numbers variable
by variable in each class. Total numbers of missing values in a class varied from 10 to 36%
in the Incontinence dataset and from 9 to 21% in the Vertigo dataset. There could be even
more than 50% of missing values for a few individual variables in some classes. Therefore,
by doubling the numbers of their missing values, this deleted all original values of such a
variable in some class. Similarly, it happened if there were originally 25% of missing values
and missing values were inserted three times. After all, these situations were rare, since in
most situations there were less than 10% missing values per a variable and a class. In some
situations there were no missing value per a variable and a class. Then, of course, no missing
value was inserted for such a variable.

We performed the tests by using nearest neighbour searching with k equal to 3 after
imputing with medians and modes as above. To simulate real classification circumstances,
we computed means and modes over the whole test data, i.e. no classwise knowledge was
used for them. Assuming that we would know all medians and modes classwise in a manner
of supervised training with the known class labels of a training, our results could be better.
The latter is possible in reality when there is a data sample of known class labels available.
However, we restricted ourselves to the more difficult condition of unsupervised training
data, frequently encountered in real applications, e.g. in respect of medical datasets.

Figure 10 of the Incontinence results shows how the accuracies followed fairly similarly
those in Figs. 4, 6 and 7, but the true positive rates differed from those in Fig. 4. These
differences were mainly caused by the different missing value distributions. The variation
of the true positive values of disease ‘Motor urge’ obviously comes from the property of
this smallest class of all datasets, 15 or 2.8% only from 529 cases. Random influence might
appear in this small subset. Using here more and more medians and modes instead of original
values occasionally improved the accuracies after the first condition of 20% missing values.
The corresponding event was seen for the third least class of ‘sensory urge’ (6.2% from
529), but rather opposite for the second least of ‘normal’ (3.4%). Comparing the disease-
by-disease true positive rates to those in Fig. 4, we have to remember that, in addition to
the different missing value distributions, we also applied HEOM in Fig. 4, but imputation in
Fig. 10. Further, & of the former was 1 and that of the latter 3. In Fig. 10 missing values were
increased up to 55%, as if a “saturation point”, since almost all values still present were then
in the variables with no missing values at all at the beginning. Other variables were either
completely dead (all values missing) or with rare present values.

Figure 11 shows true positive rates and accuracies of the Vertigo dataset using the “natural”
missing value distributions. Both accuracies and disease-by-disease true positive rates are
superior in Fig. 11 to those in Figs. 5, 6 and 7. The only exception is the disease ‘Sudden deaf-
ness’, which is very difficult to classify after increasing the number of missing values above
approximately 20%. Once again, this is the least class of the current dataset. It incorporates
41 cases (5.0%) only from the whole Vertigo dataset.
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Fig. 10 Average accuracies of the incontinence dataset imputed with modes and medians before the 3-nearest
neighbour searching, when missing values were increased randomly along with variable-by-variable “natural”
distributions in each class
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Fig. 11 Average accuracies of the Vertigo dataset imputed with modes and medians before the 3-nearest
neighbour searching, when missing values were increased randomly along with variable-by-variable “natural”
distributions in each class
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5 Discussion

The two-class circumstances associated with the Buba and Haberman datasets in Fig. 1
were slightly surprising because of the gently increasing accuracies, but after all logical and
coherent. Let p; and p, be the probabilities of two-class classification. Since it is always

p1+p2=1

we can name the majority class to be the one with the greater probability assuming that
they are not equal. If, for instance, p; >> p» (within interval (0,1)), we can see how the
majority class 1 predominates when the number of missing values increases. Under highly
missing information classification results start to approach an entirely random guess, i.e. a
priori probability given by p; that can be estimated with the frequency of the majority class
in a two-class dataset. Consequently, when it is equal to 225/306 &~ 0.74 (cf. the rightmost
accuracy in per cent in Fig. 2) in the Haberman dataset, the accuracy approaches this along
with the increasing number of the missing values. If there were no data available, the pure
guess would yield the majority class with this probability. Generally, for ¢ classes we define
a simple baseline value which we call “majority guess”

fmax _ frﬂax _

z;‘ZI ﬁ - n - p max

in which fihax and pmax are the frequency and a priori probability estimate of the majority
class and the sum of all class frequencies f; is the number n of all cases. In the classification,
an acceptable accuracy should exceed b to succeed better than just randomly. In extreme sit-
uations such as the Haberman dataset in Fig. 2, where the majority class prevails intensively
in an imbalanced class distribution, it is not definite. In this sense Fig. 2 also shows how it
is essential to look at the true positive rates of the classes in addition to accuracy values. Of
course, several other measures like specificity and positive predictive values not evaluated
here are useful.

For the Buba dataset b is 200/345 & 0.58 (cf. the rightmost accuracy in Fig. 1). For the
New-thyroid dataset it is 150/215 =~ 0.70 (Fig. 3). For the Incontinence and Vertigo datasets
they are 0.61 (Fig. 4) and 0.38 (Fig. 5). These trends are also seen in the accuracy values in
Fig. 6.

When we use HEOM and there are plenty of missing values, the pessimistic way to han-
dle missing values in HEOM increases distances between cases. Such an average distance
increases probability to erroneously move a case from a small class to the largest than other
way round. Thus, the majority class starts to prevail while increasing missing values. Simi-
larly, using imputations of missing values variable by variable on the basis of the whole data
modifies imputed values to more resemble the properties of the majority class than others.

Interestingly, the HEOM and imputation technique were virtually equally efficient for all
other datasets than Vertigo for which the imputation technique beat with some 8% better
accuracies. The obvious reason is the greatest number 40 of the variables and their types.
The number of the variables is 13 in Incontinence and 3, 5 and 6 in other three datasets. Since
all Incontinence variables are binary, i.e. their differences between any two cases are either
0 or 1, the dispersion between different distances in HEOM is far smaller than in the Vertigo
dataset with 40 variables from which 16 are real and only 14 binary. For the Incontinence
dataset there are only integers {0, 1, 2, ..., 13} possible for the sum of HEOM. Meanwhile,
for the Vertigo dataset there are numerous real values possible in interval [0,40] for the sum
of HEOM. This makes more probable that there are differences between the results of two
techniques for the Vertigo dataset, but not for the Incontinence dataset. In the three other

b =
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datasets, the numbers of the variables are so small that obviously they did not affect. When
there are several variables and more and more missing values in them, HEOM produces
greater and greater distances between cases. Thus, HEOM then separates cases from each
other, whereas the imputation technique makes cases more similar.

In the beginning of the present research we randomly selected missing values. This can
be too simple an assumption in reality. We may assume that they are not always missing
randomly, but some values are deliberately ignored. For instance, a physician may have a
strong hypothesis about the diagnosis and, consequently, he or she sees some variables (e.g.
laboratory tests) unnecessary for some disease. That is why several values may be absent
on purpose. In a way, this might result in a stronger endurance of missing values than those
appeared here in Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9. This possibility was supported by
the results in Figs. 10 and 11, where missing values were increased along with their actual
distributions in the Incontinence and Vertigo datasets. The class ‘Stress’ of Incontinence in
Fig. 10 clearly took advantage of its majority property. The small classes ‘Sensory urge’,
‘Motor urge’ and ‘Normal’ lost most. In addition, the next largest ‘Mixed’ lost expressly.
After all, it included 26% only from the whole dataset, less than a half from ‘Stress’ with
61%. In Fig. 11 ‘Sudden deafness’, the least class, rapidly dropped while increasing missing
values. Instead, the next least class, ‘traumatic vertigo’ did not suffer from increasing missing
values, but even obtained the best results of all classes. The reason was that it included no
missing values in its class for its most important variable (the presence of head trauma), when
typically all cases in this class have had a head trauma, but not in the other classes. Apart from
the least class, the Vertigo dataset was surprisingly tolerant of increasing missing values. This
supports the rationale that the original (actual) missing values (13.3%) of the dataset were
not missing at random, but the physicians were mostly correctly left them out understanding
some variables to be only slightly useful to investigate for some of their patient cases.

In the future we are going to extend our research to other medical datasets. It would be
useful to study larger datasets with more variables, cases, classes and class distributions.
Further, more classification methods could be studied to see whether they tolerate more or
less missing values than nearest neighbour searching, linear discriminant analysis and naive
Bayesian classification.

6 Summary

Overall the two ways to consider missing values, i.e. the pessimistic way in the heterogeneous
Euclidean-overlap metric (HEOM) and imputation with variable modes and medians, seem
to be virtually equally good means for a small dataset with few classes. The only exception
in our datasets was Vertigo including more variables and more classes than the other. The
imputation technique was then better.

If there are only two classes and the majority class is not clearly greater than the minority
class, these simple circumstances allow fairly many missing values, even 30-40%, simply
because the situation is near a random guess. The more imbalanced class distribution, the
more sensitive situation to missing values is found. At their largest, the situations with 20%
missing values of all were then tolerable among the datasets tested. Also, the more classes,
the more sensitive to missing values is encountered. This is especially true if the class distri-
bution is rather imbalanced at the same time. In our tests the conditions with 10% as missing
values were then an actual maximum. These results indicate that classifications under missing
value circumstances have to be considered carefully without lapsing into the substitution of
too frequent missing values. On the other hand, it is also possible that sometimes a dataset
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may be fairly tolerant of missing values, since at least for medical datasets missing values
do not often miss randomly but after a purposeful selection. We restricted ourselves chiefly
to the straightforward and heuristic nearest neighbour searching. Some more complicated
classification methods might suffer differently from missing values.
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