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Abstract This paper studies the use of multiple scale factor values within distributed
Differential Evolution structures employing the so-called exponential crossover. Four differ-
ent scale factor schemes are proposed, tested, compared and analyzed. Two schemes simply
employ multiple scale factor values and two also include an update logic during the evolu-
tion. The four schemes have been integrated for comparison within three recently proposed
distributed Differential Evolution structures and tested on several various test problems. The
results are then compared to those of a previous study where the so-called binomial crossover
was employed. Numerical results show that, when associated to the exponential crossover, the
employment of multiple scale factors is not systematically beneficial and in some cases even
detrimental to the performance of the algorithm. The exponential crossover accentuates the
exploitative character of the Differential Evolution, which cannot always be counterbalanced
by the increase in the explorative aspect of the algorithm introduced by the employment of
multiple scale factor values.

Keywords Differential evolution · Evolutionary algorithms · Distributed algorithms ·
Scale factor

1 Introduction

Differential Evolution (DE) (see e.g., Price et al. 2005; Storn and Price 1995; Storn 1999)
is an evolutionary optimizer, simple yet versatile, which is specially suited for continuous
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optimization problems (see e.g., Chakraborty 2008; Neri and Tirronen 2010; Karaboga and
Akay 2009).

DE is population-based metaheuristic (see Price et al. 2005) where, in the original defi-
nition of the algorithm, new candidate solutions (called offsprings) are created in a two-step
process, often named mutation and crossover. The mutation step consists in creating a pro-
visional offspring by perturbing a parent candidate solution with the weighted difference
between two other, randomly chosen candidate solutions (the weight is called the scale fac-
tor). Randomly selected variables from the provisional offspring are then exchanged with
those of the parent in the crossover step to produce the offspring. The offspring is then
evaluated by means of an objective function and compared to the parent. The parent is then
replaced by the offspring if the former is outperformed by the latter; otherwise the offspring
is discarded.

As explained in Feoktistov (2006), the success of DE as an optimization algorithm is
due to the implicit self-adaptation that arises from the algorithm. As described above, the
generation of an offspring depends on the distribution in the search space of the other can-
didate solutions, and more specifically, of the Euclidean distance between pairs of those. In
the early stages of the algorithm, the population of those solutions is widely spread over the
search space, leading to the creation of provisional offsprings that are geometrically distant
from their parent, relatively to the boundaries of the search space: the step size of the search
move can be considered as large. However, in the later stages of the optimization process,
as the population tends to converge towards specific areas of the search space, the distance
between two randomly chosen candidate solutions within these areas decreases and the step
size becomes smaller. In other words, due to its structure, a DE scheme is highly explorative
at the beginning of the evolution and subsequently becomes more exploitative during the
optimization.

The scale factor is obviously one of the parameters of DE that control the convergence
by limiting the size of the search step. The number of parent variables that are replaced by
variables from the provisional offspring during the crossover step of the algorithm further
regulates the distance between a parent and its offspring. This number of variables is deter-
mined by the behavior of the crossover scheme, which itself is controlled by another key
parameter of DE, the crossover rate. Two common crossover schemes, described in Price
et al. (2005), are the binomial crossover and the exponential crossover. While the binomial
crossover is dominating in the literature, DE with the exponential crossover has been used as
a baseline algorithm in Weber et al. (2010), where it is exhibiting much better performance
than the variant with a binomial crossover.

The self-adaptation of DE, although seemingly efficient, conceals a limitation: if the no
parent in the population is replaced during the course of a given generation, due to the algo-
rithms inability to produce an offspring that outperforms its parent, the next generation will
start with exactly the same parent population, and the optimization process will fall into an
undesired stagnation condition (see Lampinen and Zelinka 2000; Neri and Tirronen 2010).
Stagnation is that undesired effect which occurs when a population-based algorithm does
not converge to a solution (even suboptimal) while the population diversity is still high. In
the case of DE, stagnation is defined by the inability of the algorithm, for a prolonged num-
ber of generations, to improve upon its population. A closer examination of DE’s mutation
mechanism reveals that the number of possible exploratory moves is limited by the size of
the population; if none of those moves lead to an improvement, the optimization process is
compromised. A theoretical analysis of the convergence properties of DE is given in Zaharie
(2002a).
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The choice of the correct exploratory moves, for a given problem, thus depends on the
proper setting of the algorithm’s parameters. The influence of the scale factor on the optimi-
zation process is very important, as shown e.g., in Zielinski et al. (2006). Several works, e.g.
Price and Storn (1997), Storn and Price (1997), Liu and Lampinen (2002b), Liu and Lampinen
(2002a), Rönkkönen et al. (2005), have investigated the proper choices in the parameter set-
ting and modern papers, see Gämperle et al. (2002), Liu and Lampinen (2002b), Mallipeddi
and Suganthan (2008), have shown that an efficient parameter setting is very prone to prob-
lems. Recently, in Tirronen et al. (2009) and Neri et al. (2009), it has been observed that
a proper scale factor choice does not depend only on the problem but also on the stage of
the optimization process. In other words, to ensure a proper DE functioning, the scale factor
must vary over time.

Several works developed various time-varying scale factor mechanisms. According to
Das et al. (2005), where a time varying scale factor is, a decrease in the scale fac-
tor value during the optimization process can lead to high quality final results. The
explanation for success of this mechanism can be seen as a progressive narrowing of
the search during evolution and thus an exploitative behavior at the end of optimiza-
tion with the likelihood of preventing stagnation. Randomization of the scale factor (see
e.g., Das et al. 2005) is a popular mechanism for enhancing the DE performance and
can be implemented in multiple manners. In Zaharie (2002a), the scale factor is sam-
pled by means of a normal distribution. By following a similar idea, in Rönkkönen
and Lampinen (2003), Omran et al. (2005), and Salman et al. (2007), a normal dis-
tribution is employed in order to perform the selection of the scale factor. A Cauchy
distribution in the self-adaptive scheme is proposed in Soliman et al. (2007) and Soli-
man and Bui (2008). It is worthwhile mentioning the distinction between dither and jit-
ter, extensively explained in Price et al. (2005): dither is a randomization of the scale
factor which samples a scale factor for each candidate solution (vector), the jitter is
a randomization of the scale factor for each parameter within each candidate solution.
More sophisticated randomization schemes have been proposed in order to integrate a
(self-)adaptive logic within the DE frameworks. For example in Brest et al. (2006) a controlled
randomization based on uniform distribution is employed. In Neri and Tirronen (2009) the
optimal scale factor is periodically determined by means of local search. In Qin et al. (2009)
search strategies and parameters are adaptively adjusted during the evolution. In Zhang and
Sanderson (2009) the scale factor, as well as other parameters, are sampled from truncated
normal distributions. The mean values of these distributions are adapted on the basis of a
success rule.

The general trend in the examples above is that the randomization of the scale factor leads
in many cases to an improvement in the quality of the final solutions and to a diminution in
the risk of stagnation. One possible interpretation to this fact is that a random scale factor
increases the possible search moves, allowing to reach solutions that would otherwise be
inaccessible, due to DE’s inherent limitation in the number of search moves. As a corol-
lary, stagnation conditions may be escaped, the random value of the scale factor allowing an
infinite number of potential moves.

A dynamic scale factor is not the only way to improve the performance of DE: the use of
structured population is another possible algorithmic enhancement for DE. A structured pop-
ulation consists in distributing the population’s individuals into several subpopulations which
evolve independently and interact by exchanging data and information details, contributing to
a unique simultaneous evolution. When individuals are exchanged between populations, the
process is called migration. Algorithms employing structured populations are also known as
distributed algorithms, see Alba and Tomassini (2002). Multiple, small-sized subpopulations
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impose a high exploitation pressure within the population, while migration prevents stagna-
tion by injected new, unrelated individuals, effectively refreshing the population’s genotype
in order to prevent stagnation by modifying the set of possible search moves. If the migration
gives precedence to the best solutions, the new search moves promote the detection of promis-
ing new search directions and thus allows the DE search structure to be periodically updated.
Thus, the migration is supposed to mitigate risk of stagnation of the DE (sub-)populations and
to enhance the global algorithmic performance. The employment of structured populations
has been applied in literature and has proven to be promising in DE schemes, especially in a
large scale optimization since it assists the evolutionary framework in overcoming the curse
of dimensionality from which the DE suffers, see Brest and Maučec (2008), Olorunda and
Engelbrecht (2007), Noman and Iba (2005), Brest et al. (2008).

Several works have been carried out in the field of distributed DE. In Kwedlo and Bandurski
(2006) a distributed DE scheme employing a ring topology (the cores are interconnected in
a circle and migrations occur following the ring) has been proposed for the training of a
neural network. In Salomon et al. (2005), an example of DE parallelization is given for
a medical imaging application. A few famous examples of distributed DE are presented in
Zaharie (2002b), Zaharie (2003), and Zaharie and Petcu (2003); in these papers the migration
mechanism as well as the algorithmic parameters are adaptively coordinated according to
criterion based on genotypical diversity. In Zaharie (2002b), a distributed DE for preserving
diversity within the niches is proposed in order to solve multi-modal optimization problems.
In Tasoulis et al. (2004), a distributed DE characterized by a ring topology and the migra-
tion of individuals with the best performance, to replace random individuals of the neighbor
sub-population, has been proposed. An application of the algorithm in Tasoulis et al. (2004)
for training of a neural network has been presented in Pavlidis et al. (2005). Following sim-
ilar logic, Kozlov and Samsonov (2006) proposes a distributed DE where the computational
cores are arranged according to a ring topology and, during migration, the best individual
of a sub-population replaces the oldest member of the neighboring population. In De Falco
et al. (2007a), De Falco et al. (2007b), and De Falco et al. (2007c) a distributed DE has been
designed for the image registration problem. In these papers, a computational core acts as a
master by collecting the best individuals detected by the various sub-populations running in
slave cores. The slave cores are connected in a grid and a migration is arranged among neigh-
bor sub-populations. In Apolloni et al. (2008), a distributed DE which modifies the scheme
proposed in Tasoulis et al. (2004) has been presented. In Apolloni et al. (2008), migration is
based on a probabilistic criterion depending on five parameters. It is worthwhile mentioning
that some parallel implementations of sequential DE (without structured population) are also
available in literature, see Nipteni et al. (2006). An investigation of DE parallelization is
given in Lampinen (1999).

The combination of structured populations and variable scale factor have been studied
in Weber et al. (2011), analyzing the effects on three different variants of DE employing
structured populations i.e., those proposed in Tasoulis et al. (2004), Apolloni et al. (2008),
and De Falco et al. (2007a), combined to four different schemes varying the value of the scale
factor. In the present study, the same algorithms, originally chosen because they are amongst
the most popular and most cited modern distributed DE schemes and can thus be considered
as state-of-the-art in the field, are modified to employ a DE with an exponential crossover.
The study is performed on the same set of various, complex large scale problems, and its goal
is to analyze the effect of combining a varying scale factor and the exponential crossover
on large-scale problems, and to compare these results to the ones obtained with a binomial
crossover. The differences between the results of the present study and those described in
Weber et al. (2011) are also presented.
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A study on scale factor/crossover interaction 199

The remainder of this paper is organized in the following way. Section 2 describes the
working principles of DE and introduces the notation used throughout this paper. Section 3
gives a short description of the distributed versions of DE presented in Tasoulis et al. (2004),
Apolloni et al. (2008), and De Falco et al. (2007a). Section 4 describes the four proposed
update schemes for the scale factor. Section 6 shows the experimental setup and numerical
results of the present study. Section 7 gives the conclusions of this paper.

2 Differential evolution

In order to clarify the notation used throughout this article we refer to the minimization
problem of an objective function f (x), where x is a vector of n design variables in a decision
space D. This section gives the description of DE according to its original definition given in
Storn and Price (1995). A schematic description of DE highlighting the working principles
of the algorithms is given in Fig. 2.

An initial sampling of Spop individuals is performed randomly with a uniform distribution
function within the decision space D (for simplicity, the term random will be used instead
of random in the remainder of this paper). At each generation, for each individual xi of the
Spop, three individuals xr , xs and xt are randomly extracted from the population. According
to the DE logic, a provisional offspring x ′

off is generated by mutation:

x ′
off = xt + F(xr − xs) (1)

where F ∈ [0, 1 + ε[ is a scale factor which controls the length of the exploration vector
(xr − xs) and thus determines how far from point xi the offspring should be generated. With
F ∈ [0, 1 + ε[, it is meant here that the scale factor should be a positive value which cannot
be much greater than 1 (i.e. ε is a small positive value), see Price et al. (2005). While there
is no theoretical upper limit for F , effective values are rarely greater than 1.0. The mutation
scheme given in Eq. (1) is also known as DE/rand/1. Other variants of the mutation rule have
been subsequently proposed in literature, see Qin and Suganthan (2005):

– DE/best/1: x ′
off = xbest + F (xs − xt )

– DE/current-to-best/1: x ′
off = xi + F (xbest − xi ) + F (xs − xt )

– DE/best/2: x ′
off = xbest + F (xs − xt ) + F (xu − xv)

– DE/rand/2: x ′
off = xr + F (xs − xt ) + F (xu − xv)

– DE/current-to-best/2: x ′
off = xi + F (xbest − xi ) + F (xr − xs) + F (xu − xv)

where xbest is the solution with the best performance among individuals of the population,
xu and xv are two additional randomly selected individuals. It is worthwhile to mention the
rotation invariant recombination shown in Price (1999):

– DE/current-to-rand/1 xoff = xi + K (xt − xi ) + F ′ (xr − xs)

where K is the combination coefficient, which, as suggested in Price (1999), should be cho-
sen with a uniform random distribution from [0, 1] and F ′ = K · F . Since this expression
includes mutation and crossover (see below), the offspring does not undergo the crossover
operation described below.
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Fig. 1 Exponential crossover
pseudo-code

Recently, in Price et al. (2005), a new mutation strategy has been defined. This strategy,
namely DE/rand/1/either-or and represented in Eq. 2, consists of the following:

x ′
off =

{
xt + F (xr − xs) if rand (0, 1) < pF

xt + K (xr + xs − 2xt ) otherwise
(2)

where for a given value of F , the parameter K is set equal to 0.5 (F + 1).
When the provisional offspring has been generated by mutation, some of the genes of the

individual x ′
off are exchanged with the corresponding gene of xi in an operation referred to as

crossover. The most widely used crossover scheme in DE is the binomial crossover, where
each gene has a fixed, uniform probability to be exchanged. The variant of DE used in this
paper however uses the so-called exponential crossover, where a design variable of the pro-
visional offspring x ′

off ( j) is randomly selected and copied into the j th design variable of the
solution xi . This guarantees that parent and offspring have different genotypes. Subsequently,
a set of random numbers between 0 and 1 are generated. As long as rand (0, 1) ≤ Cr , where
the crossover rate Cr is a predetermined parameter, the design variables from the provisional
offspring (mutant) are copied into the corresponding positions of the parent xi . The first
time that rand (0, 1) > Cr the copy process is interrupted. Thus, all the remaining design
variables of the offspring are copied from the parent. For the sake of clarity the pseudo-code
of the exponential crossover is shown in Fig. 1

The resulting offspring xoff is evaluated and, according to a one-to-one spawning strategy,
it replaces xi if and only if f (xoff ) < f (xi ); otherwise no replacement occurs. It must be
remarked that although the replacement indexes are saved one by one during generation,
actual replacements occur all at once at the end of the generation. For the sake of clarity, the
pseudo-code highlighting working principles of the DE with exponential crossover is shown
in Fig. 2.

3 Distributed differential evolution: recently developed algorithms

This section describes three distributed algorithms based on a DE structure recently
proposed in literature. The algorithms described in this section are, according to our judge-
ment, representative of the state-of-the-art structured DE algorithms and have been included
as distributed structures which can integrate the proposed scale factor update rules. In order to
avert misunderstanding regarding the usage of the terms “parallel” or “distributed”, the reader
must be aware that even though the algorithms described below were originally designed to
be run on parallel computers such as clusters or multi-core systems, the subdivision of the
population into multiple sub-populations as an algorithmic change from the original defini-
tion of the DE has in itself an important impact on the performance of the algorithm. The
implementations by the authors of this paper of the algorithms described below were designed
to be run on a single processor, by serializing the instructions that would otherwise be run
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Fig. 2 DE pseudo-code

concurrently on a parallel computer. Those serialized algorithms were however actually run
on a cluster of ten computers in order to speed-up the process of obtaining multiple, inde-
pendent trial runs of the same algorithm and therefore statistically significant results. In the
descriptions below, we decided to keep the original terminology defined by their respective
authors regarding the use of the terms “parallel” or ”distributed”.

3.1 Parallel differential evolution

In Tasoulis et al. (2004), the problem of parallelization for DE schemes has been studied
through an experimental analysis and an algorithm, namely Parallel Differential Evolution
(PDE) has been proposed.

The original PDE implementation uses the Parallel Virtual Machine (PVM), allowing
multiple computers (called nodes) to be organized as a cluster and exchange arbitrary mes-
sages. PDE is organized around one master node and m sub-populations running each on
one node, and organized as a unidirectional ring, as illustrated in Fig. 3. It must be noted that
although the logical topology is a ring which does not contain the master node, the actual
topology is a star, where all communications (i.e., the migrations of individuals) are passing
through the master.

The Spop individuals constituting the populations are distributed over the m sub-pop-

ulations composing the ring. Each sub-population is composed of Spop
m individuals. Each

sub-population runs a regular DE algorithm while the master node coordinates the migration
of individuals between sub-populations. On each generation, the sub-population has a given
probability φ to send a copy of its best individual to its next neighbor sub-population in the
ring. When migration occurs, the migrating individual replaces a randomly selected individ-
ual belonging to the target sub-population. Figure 4 describes the behavior of both the master
node and the sub-populations in more detail.
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Fig. 3 Unidirectional ring
topology in the parallel
differential evolution algorithm

Master node

Sub−population node

(a)

(b)

Fig. 4 Pseudo-code of the PDE

The DE variant run by each sub-population is the same across all sub-populations. In
Tasoulis et al. (2004), six mutation strategies have been compared, namely DE/best/1,
DE/rand/1, DE/cur-to-best/1, DE/best/2, DE/rand/2 described in Sect. 2, as well as the trigo-
nometric operator described in Fan and Lampinen (2003). Each strategy is used with different
values of the migration constant φ and compared over seven test functions whose dimensions
vary between 2 and 30. The results in Tasoulis et al. (2004) showed that DE/best/1 is the
most efficient mutation strategy and quite stable across different values of φ for the low
dimensional problems analyzed.
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Fig. 5 Pseudo-code of the
IBDDE for the sub-population P

3.2 Island based distributed differential evolution

In Apolloni et al. (2008) a distributed DE, namely Island Based Distributed Differential
Evolution (IBDDE) has been proposed. The IBDDE is a modified version of the PDE
described in Sect. 3.1. With the IBDDE the population, having size Spop, is structured in

m sub-populations. Thus, each sub-population is composed of Spop
m individuals. The migra-

tion policy is then defined as a five-tuple M = (γ, ρ, φs , φr , τ ). γ ∈ N is the number of
generations between two migrations, ρ ∈ N is the number of individuals which migrate from
a sub-population P during each migration, φs is the selection function which, applied to
a sub-population, returns the migrating individuals v′i

g , φr is the replacement function that
selects individuals to be replaced by immigrants in the receiving sub-population, and τ is the
topological rule, which selects the target sub-population Q. The individuals to be migrated
are randomly (uniformly) chosen by the selection function φs . Incoming individuals from
other sub-populations replace randomly chosen local individuals, that is if the former are
better, by the replacement function φr .

Figure 5 describes the algorithm as pseudo-code.
In Apolloni et al. (2008), the experiments have been run with a population size Spop equal

to 20. The population is divided into two sub-populations of 10 individuals in one experi-
ment, and into four sub-populations of 5 individuals in a second experiment. The migration
parameters are set to γ = 100, ρ = 1, the functions φs and φr are defined to randomly select
an individual, the topology τ is a unidirectional ring very similar to the logical topology used
by PDE (see Sect. 3.1). The mutation strategy for DE is DE/rand/1, and the algorithm is
tested on 25 different test functions in 30 and 50 dimensions, for a total of 50 test functions.

3.3 Distributed differential evolution

In De Falco et al. (2007a,b,c), in order to solve some image registration problems a distrib-
uted DE (indicated here with DDE) has been proposed. This algorithm differs from PDE
and IBDDE by the topology it uses. Instead of a unidirectional ring, DDE uses a locally
connected topology, where each node is connected to μ other nodes. Figure 6 represents
such a topology, where the nodes are arranged in a mesh folded into a torus.

In De Falco et al. (2007a,b,c), it has been proposed to set μ = 4, i.e. each node (such as
the black disc in the Fig. 6) has exactly four nearest neighbors (represented by the four grey
discs). In DDE, each node represents one processor running a DE algorithm with a DE/rand/1
mutation strategy on a sub-population. Every MI generations (the migration interval), each

123



204 M. Weber et al.

Fig. 6 Torus topology in the
distributed differential evolution

initialize the sub-population
while the stopping condition is not met do

perform a DE generation
if the last migration was MI generations ago then

send a copy of the best individual to each neighbor
end if
if there are incoming individuals then

replace the worst SI × µ individuals by the SI × µ incoming ones
end if

end while

Fig. 7 Pseudo-code of the DDE algorithm at a sub-population

sub-population is allowed to exchange SI (the migration rate) individuals with its nearest
neighbors. In the experimental setup, each node sends a copy of its best individual to its
neighbors. Figure 7 describes the algorithm as pseudo-code.

DDE also makes use of a master node, whose role it is to collect the best solutions found
in each sub-population and to present these results to the user.

4 Multiple scale factor variants

As mentioned above, the employment of structured populations greatly improves the per-
formance of DE since each sub-population is supposed to explore the decision space from
complementary perspectives, thus enhancing the efficiency in the search for the optimum.
With all distributed DE schemes present in literature (see for example the algorithms described
in Sect. 3), a unique scale factor is employed for each sub-population and the same scale
factor is used throughout the entire optimization process. This paper aims at testing the effect
of multiple and variable scale factors on the performance of a distributed DE, in order to
propose an enhanced version of distributed DE.

In order to pursue this aim, four simple scale factor variation schemes for distributed DE
have been proposed here. Let us consider a generic distributed DE where the Spop individ-
uals of the population are distributed over m sub-populations. The sub-populations evolve
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separately, are arranged according to a certain topology (e.g. the ring as in Tasoulis et al.
2004 or the torus as in De Falco et al. 2007a), and interact in some ways (e.g. exchanging
individuals).

The scale factors within each sub-population are managed according to one of the follow-
ing schemes.

4.1 Random initialization of the scale factor: scheme-1

At the beginning of evolution a random scale factor is randomly sampled from a uniform
distribution between 0 and 1 for each sub-population. More formally, for the m sub-popula-
tions, Fk = rand(0, 1) for k = 1, 2, . . . , m. At each subsequent generation, the scale factors
related to each sub-population are kept constant throughout the entire evolution.

4.2 Equally spaced scale factors: scheme-2

The scale factor values are initialized in order to guarantee that the sub-populations work
with diverse scale factors. In order to pursue this aim, the scale factors are taken equally
spaced within the interval [0, 1], as described in Eq. (3). More specifically, for the m sub-
populations,

Fk = (k − 1)

m
+ 1

2m
(3)

where k = 1, 2, . . . , m is the sub-population number. For example, if the distributed system is
composed of four sub-populations (m = 4), the scale factor values 0.125, 0.375, 0.625, 0.875
are respectively assigned to the sub-populations. The scale factor values are kept constant in
each sub-population throughout the entire optimization process.

4.3 Adaptive-randomized update of the scale factor: scheme-3

This scheme, although very simple, is slightly more sophisticated compared to the others
considered in this paper. At the beginning of the optimization process, scale factor values
(one for each sub-population) are randomly initialized between 0 and 1 from a uniform dis-
tribution. Subsequently, the scale factor related to the sub-population which has improved
the least over a predetermined number of gr generations is replaced by another random
scale factor sampled from a uniform distribution between [0, 1], see Eq. (4). More for-
mally, every gr generation, the kth sub-population which satisfies the following criterion is
selected:

min
k

(
f g
k − f g−gr

k

)
(4)

where g is the current generation number, k = 1, 2, . . . , m is the sub-population index, f g
k

is the fitness value of the best individual of sub-population k at the generation g, and f g−gr
k

is the fitness value of the best individual of sub-population k at the generation g − gr . The
scale factor of the selected sub-population is replaced by another random number between 0
and 1 sampled from a uniform distribution.
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4.4 Random update of the scale factor: scheme-4

This trivial update scheme can be considered as a distributed version of the dither: for
each sub-population, a scale factor value is randomly initialized from a uniform distribu-
tion between 0 and 1, Fk = rand(0, 1) for k = 1, 2, . . . , m. At each subsequent generation,
a sub-population is randomly selected and its scale factor is replaced by a newly generated
random value between 0 and 1, sampled from a uniform distribution.

5 Discussion based around scale factor schemes

All four presented schemes employ multiple scale factors, one for each sub-population.
Schemes 1 and 2 assign the scale factor values during the initialization. During the entire
evolutionary process, the values are retained. On the contrary, schemes 3 and 4 employ a
scale factor update during the evolution.

Scheme-1 simply assumes that employment of multiple scale factors can be beneficial
since this allows an enlargement of the set containing the search moves, thus giving a better
chance for the algorithm to detect solutions with a high performance.

Scheme-2 makes the same assumption but, in addition, imposes an equal distribution of
the scale factor values over the sub-populations. This fact corresponds to an explicit role
division among sub-populations: those sub-populations characterized by a low scale factor
value are supposed to search in the neighborhood of the solutions while those sub-popula-
tions characterized by a high scale factor value are supposed to explore a broader area of
the decision space. Obviously, the actual exploration radius of the sub-population search
depends on the distribution of sub-population candidate solutions within the decision space.
In this sense, the scale factor does not independently control the exploration and exploita-
tion pressure. Nevertheless, the scale factor is an important parameter within a DE scheme
because it biases the amplitude of the search radius. Thus, equal spacing of the scale factor
values makes sense within the search logic.

In addition to the multiple scale factors, scheme-3 employs a success rule. Several adap-
tive evolutionary algorithms proposed in literature and, in particular, DE based algorithms
(see Qin et al. 2009) also make use of similar ideas. Scheme-3 simply aims at allowing
sub-populations which are performing well to continue exploiting their search directions and
periodically “refresh” the search logic (by means of the scale factor) of those sub-populations
which have become inefficient.

Scheme-4 employs multiple scale factors and a simple update rule based on a random
criterion. This scheme, inspired from the dither, aims at providing a constant update to the
search logic and relies on the fact that, on average, this mechanism greatly increases the
amount of search moves. In addition, this scheme introduces extra randomization within a
DE algorithm. As observed in Caponio and Neri (2009), a DE structure can be, for some
problems, overwhelmingly deterministic and thus take on a stagnating behavior. The increase
of randomization seems an easy and efficient countermeasure to assist DE structures, see Das
et al. (2005) and Brest et al. (2006).

6 Results and discussion

In order to prove the viability of the four proposed schemes, the algorithms described in
Sect. 3.1 have been considered. Within each of the three distributed DE algorithms the
multiple scale factors schemes have been integrated. The test problems listed in Table 1 have
been considered in this study.
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Table 1 Test problems

Test problem Function Decision space

Ackley −20 + e + 20 exp

(
− 0.2

n

√∑n
i=1 x2

i

)
[−1, 1]n

− exp
(

1
n

∑n
i=1 cos(2π · xi )xi

)

Alpine
∑n

i=1 |xi sin xi + 0.1xi | [−10, 10]n

Axis-parallel hyper-ellipsoid
∑n

i=1 i x2
i [−5.12, 5.12]n

DeJong ‖x‖2 [−5.12, 5.12]n

DropWave − 1+cos
(

12
√

‖x‖2
)

1
2 ‖x‖2+2

[−5.12, 5.12]n

Griewangk ‖x‖2

4000 − ∏n
i=0 cos xi√

i
+ 1 [−600, 600]n

Michalewicz − ∑n
i=1 sin xi

(
sin

(
i ·x2

i
π

))20
[0, π ]n

Pathological
∑n−1

i=1

⎛
⎝0.5 + sin2

(√
100x2

i +x2
i+1−0.5

)

1+0.001∗
(

x2
i −2xi xi+1+x2

i+1

)2

⎞
⎠ [−100, 100]n

Rastrigin 10n + ∑n
i=0

(
x2

i − 10 cos(2πxi )
)

[−5.12, 5.12]n

Rosenbrock valley
∑n−1

i=1

(
100

(
xi+1 − x2

i

)2 + (1 − xi )
2
)

[−2.048, 2.048]n

Schwefel
∑n

i=1 xi sin
(√|xi |

)
[−500, 500]n

Sum of powers
∑n

i=1 |xi |i+1 [−1, 1]n

Tirronen 3 exp

(
−‖x‖2

10n

)
− 10 exp

(
−8‖x‖2

)
[−10, 5]n

+ 2.5
n

∑n
i=1 cos

(
5

(
xi + (1 + i mod 2) cos

(
‖x‖2

)))

The rotated version of some of the test problems listed in Table 1 have been included in
the benchmark set. These rotated problems have been generated through multiplication of
the vector of variables by a randomly generated orthogonal rotation matrix. In total, twenty-
four test problems have been considered in this study with n = 500. In order to obtain
statistically significant results, each algorithm considered in this paper has been run 50 times
(50 independent runs) for 500,000 fitness evaluations.

One must make an important remark concerning the difference in the behaviours of the
binomial crossover compared to the exponential crossover. The binomial crossover will
exchange on average n × C R variables between the parent and the provisional offspring,
which for n = 500 and C R = 0.3 (the values used in Weber et al. 2011), is equal to 150. The
number of exchanged variables in the case of the exponential crossover however does not
depend on n, but is based on a geometric distribution of the form Crk(1−Cr). When one sets
C R = 0.9 as is the case in the experiments described below, the mean number of variables
which are exchanged is Cr/(1 − Cr) = 9, which is one order of magnitude smaller than the
average number of variables exchanged when using the binomial crossover. Moreover, the
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order of magnitude of the probability of exchanging 150 variables or more is 10−7, which is
much less than once in the whole evolutionary process.

6.1 Parallel differential evolution: numerical results

The PDE described in Sect. 3.1 has been run and the fours schemes presented in Sect. 4 have
been integrated within the PDE. The PDE is indicated by PDE1, PDE2, PDE3, and PDE4

and integrates the schemes 1,2,3, and 4, respectively. All the algorithms in this subsection
have been run with a population size of Spop = 200 individuals, divided into m = 5 sub-
populations, each containing 40 individuals. Despite Tasoulis et al. (2004) showing better
performance for the DE/best/1 mutation strategy in 30 and 50 dimensions, it has proven
excessively exploitative and has led to premature convergence of the solutions when used
on higher dimension problems in our preliminary tests. We have carried out an analysis on
mutation strategies, leading to the choice of DE/rand/1 and, with reference to Sect. 3.1, setting
the migration constant to φ = 0.2 as suggested in Weber et al. (2009). These settings proved
to be the best choices in terms of algorithmic performance and have, thus, been chosen for
the experiments of all the algorithms considered in this subsection. Regarding scale factor F
and crossover rate C R of the PDE, the values of 0.5 and 0.9 have been chosen in accordance
with suggestions given in Herrera et al. (2010). The crossover rate C R = 0.9 has also been
employed for all the PDE variants under investigation. In PDE3, the parameter gr has been
set equal to 30 on the basis of our preliminary tests.

Choice of the population size is worthwile commenting on. Although in Storn and Price
(1997) it is suggested that the DE population size be set equal to about ten times the dimen-
sionality of the problem, this indication is not confirmed by a recent study in Neri and Tirronen
(2008) where it is shown that a population size lower than the dimensionality of the problem
can be optimal in many cases.

Table 2 shows the average of the final results detected by each algorithm ± the standard
deviation values.

To prove the statistical significance of the results, the Wilcoxon Rank-sum test has been
applied according to the description given in Wilcoxon (1945) for a confidence level of 0.95.
Table 3 shows results of the test. More specifically, Table 3 shows a ranking of the algorithms
based on the statistical significance of the results. If one algorithm significantly outperforms
another algorithm, they appear in separate cells (over the same row). If, on the contrary, there
is no statistical significance, the algorithms have the same ranking (they appear in the same
cell).

In order to carry out a numerical comparison of the convergence speed performance and
algorithmic robustness for each test problem, the average final fitness value returned by the
best performing algorithm G has been considered. Subsequently, the average fitness value
at the beginning of the optimization process J has also been computed. The threshold value
THR = J − 0.95(J − G) has then been calculated. The value THR represents 95% of
the decay occurring in the fitness value of the algorithm with the best performance. If an
algorithm succeeds during a certain run in reaching the value THR, the run is said to be
successful. For each test problem, the average amount of fitness evaluations n̄e required, for
each algorithm, to reach THR has been computed. Subsequently, the Q-test (Q stands for
Quality) described in Feoktistov (2006) has been applied. For each test problem and each
algorithm, the Q measure is computed as:

Q = n̄e

R
(5)
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Table 3 Results of the Wilcoxon rank-sum test for the PDE and its variants

1 2 3 4 5

Ackley PDE PDE1 PDE2 PDE4 PDE3

Alpine PDE4 PDE3 PDE2 PDE PDE1

Ax.-par. hyp.-ell. PDE PDE2 PDE1 PDE3 PDE4

DeJong PDE PDE1 PDE2 PDE3 PDE4

DropWave PDE PDE1 PDE2 PDE3 PDE4

Griewangk PDE PDE1 PDE2 PDE3 PDE4

Michalewicz PDE4 PDE1 PDE2 PDE3 PDE

Pathological PDE1 PDE2

PDE3 PDE4 PDE

Rastrigin PDE3 PDE4 PDE1 PDE2 PDE

Rosenbrock PDE PDE1 PDE2 PDE3 PDE4

Schwefel PDE1 PDE3

PDE4 PDE2 PDE

Sum of powers PDE4 PDE1 PDE2 PDE3 PDE

Tirronen PDE4 PDE PDE1 PDE2 PDE3

Rt. Ackley PDE PDE4 PDE1 PDE2 PDE3

Rt. Alpine PDE4 PDE2 PDE3 PDE PDE1

Rt. Ax.-par. hyp.-ell. PDE PDE1 PDE2 PDE3 PDE4

Rt. Griewangk PDE PDE1 PDE2 PDE3 PDE4

Rt. Michalewicz PDE4 PDE1 PDE2 PDE3 PDE

Rt. Pathological PDE2 PDE1 PDE3 PDE4 PDE

Rt. Rastrigin PDE3 PDE4 PDE1 PDE2 PDE

Rt. Rosenbrock PDE PDE1 PDE2 PDE3 PDE4

Rt. Schwefel PDE4 PDE1 PDE2 PDE3 PDE

Rt. Sum of powers PDE2 PDE3 PDE PDE1 PDE4

Rt. Tirronen PDE4 PDE PDE1 PDE2 PDE3

where the robustness R is the percentage of successful runs. It is clear that, for each test
problem, the smallest value equals the best performance in terms of convergence speed. The
value “∞” means that R = 0, i.e., the algorithm never reached the THR.

Table 4 shows the Q values for PDE and its variants. The best results are highlighted in
bold face.

Some performance trends (averaged over 50 independent runs) of the PDE (solid line)
and its multiple scale factors variants (dashed and dotted lines) are displayed in Fig. 8.

Numerical results show that in nineteen cases out of the twenty-four considered, the stan-
dard PDE or the Scheme 4 significantly outperform the other schemes, see Tables 2 and 3.
The standard PDE is ranked first in ten cases, while the Scheme 4 is ranked first in twelve
cases. It is worth noting that in the cases when Scheme 4 is ranked first, the standard PDE
is systematically ranked last, while in the cases where the standard PDE is ranked first, the
Scheme 4 is ranked second (with only one exception). Table 3 also shows that in twenty cases,
three or more algorithms are ranked together, meaning that there is no significant difference
in performance between them. Table 4 shows that the standard PDE exhibits one ∞ value
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Table 4 Results of the Q-test for the PDE and its variants

PDE PDE1 PDE2 PDE3 PDE4

Ackley 2.89e + 03 2.92e + 03 2.89e + 03 2.96e + 03 3.01e + 03

Alpine 3.19e + 03 3.16e + 03 3.14e + 03 3.08e + 03 3.10e + 03

Ax.-par. hyp.-ell. 1.57e + 03 1.61e + 03 1.57e + 03 1.61e + 03 1.66e + 03

DeJong 1.63e + 03 1.63e + 03 1.62e + 03 1.64e + 03 1.71e + 03

DropWave 2.64e + 03 2.52e + 04 1.32e + 05 4.13e + 04 5.65e + 04

Griewangk 1.63e + 03 1.61e + 03 1.61e + 03 1.64e + 03 1.70e + 03

Michalewicz 4.27e + 03 4.34e + 03 4.24e + 03 4.13e + 03 4.09e + 03

Pathological 5.17e + 03 5.28e + 03 4.61e + 03 4.58e + 03 4.51e + 03

Rastrigin 3.70e + 03 3.35e + 03 3.41e + 03 3.29e + 03 3.38e + 03

Rosenbrock 1.21e + 03 1.22e + 03 1.21e + 03 1.23e + 03 1.27e + 03

Schwefel ∞ 4.06e + 03 3.91e + 03 3.79e + 03 3.91e + 03

Sum of powers 2.00e + 02 1.98e + 02 2.06e + 02 1.89e + 02 1.96e + 02

Tirronen 5.58e + 03 4.69e + 03 5.47e + 03 4.73e + 03 4.09e + 03

Rt. Ackley 3.31e + 03 4.10e + 03 3.76e + 03 3.79e + 03 3.67e + 03

Rt. Alpine 3.32e + 03 3.34e + 03 3.27e + 03 3.25e + 03 3.18e + 03

Rt. Ax.-par. hyp.-ell. 1.60e + 03 1.67e + 03 1.64e + 03 1.67e + 03 1.69e + 03

Rt. Griewangk 1.61e + 03 1.65e + 03 1.65e + 03 1.68e + 03 1.72e + 03

Rt. Michalewicz 8.70e + 03 4.37e + 03 4.37e + 03 4.01e + 03 3.93e + 03

Rt. Pathological 8.95e + 03 7.15e + 03 4.39e + 03 4.87e + 03 4.99e + 03

Rt. Rastrigin 3.68e + 03 3.52e + 03 3.53e + 03 3.41e + 03 3.41e + 03

Rt. Rosenbrock 1.18e + 03 1.24e + 03 1.21e + 03 1.23e + 03 1.25e + 03

Rt. Schwefel 2.55e + 04 4.42e + 03 3.88e + 03 3.91e + 03 3.79e + 03

Rt. Sum of powers 4.32e + 00 4.12e + 00 4.00e + 00 4.24e + 00 4.00e + 00

Rt. Tirronen 5.22e + 03 4.78e + 03 4.10e + 03 3.56e + 03 3.90e + 03

(for the Schwefel function), implying that it is less robust than the other algorithms. The best
results in that table (highlighted with a boldface font) are spread over the five algorithms,
confirming the fact that there is not one clear winner in this comparison.

Figure 8b and c are illustrations of the cases where Scheme 4 obtains marginally better
performances than the original algorithm, while Fig. 8a shows a situation where the original
PDE algorithm outperformes all its variants by a large margin.

The results above are quite different from those presented in Weber et al. (2011), which
concluded that the original PDE with the binomial crossover is exhibiting in general inferior
performance than the variants (in that paper, the original PDE was ranked last in seven-
teen cases out of twenty-four). Moreover, when using the algorithms’ average ranks over all
the twenty-four test functions as an indicator of their performance, in the previous study,
Scheme 3 was considered to be the one with the best overall performance, while in the pres-
ent study, Scheme 4 exhibits the best overall performance. Nonetheless, the results obtained
in the current study tend to indicate that multiple F values do not significantly improve or
deteriorate the performances of the PDE with exponential crossover. According to our inter-
pretation, the difference arises from the effect of the binomial crossover compared to the
exponential crossover: the latter exchanges very few variables between the parent and the
provisional offspring, meaning that the offsring does not step very far from its parent. This
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Fig. 8 Performance trends of PDE and its variants

limits very much DE’s aptitude at exploring the problem space, which is not counterbalanced
by the use of multiple values of F .

6.2 Island based distributed differential evolution: numerical results

The IBDDE has been run with populations of 200 individuals divided into 5 sub-populations
of 40 individuals each, depending on the dimensionality of the test problems. The crossover
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Fig. 9 Performance trends of IBDDE and its variants

rate for all the IBDDE based algorithms has been chosen equal to 0.9 and the scale factor of
the IBDDE has been selected equal to 0.5 in accordance to the settings in Herrera et al. (2010).
The other parameters have been chosen according to the values in Apolloni et al. (2008): the
sub-populations exchange one individual (ρ = 1) every 100 generations (γ = 100). φs and φr

have been defined so as to randomly select an individual by means of a uniform distribution,
and τ has been set to a unidirectional ring.
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Analogous to the PDE, the IBDDE integrating the schemes 1, 2, 3, and 4 are indicated as
IBDDE1, IBDDE2, IBDDE3, and IBDDE4. In IBDDE3, gr has been set equal to 30. Table 5
lists final average fitness values over 50 independent runs and respective standard deviation
values. Tables 6 and 7 show the results of the Wilcoxon rank-sum test and Q-test respectively.
The best results are highlighted in bold face.

Some performance trends (averaged over 50 independent runs) of the IBDDE (solid line)
and its multiple scale factors variants (dashed and dotted lines) are displayed in Fig. 9.

Numerical results show that, for IBDDE structures, employment of multiple scale factors
can be highly beneficial. The standard IBDDE is outperformed by all its variants in ninteen
cases out of the twenty-four considered in this study, and it is outperformed by at least one
of its variants in twenty-two cases (see Table 6). While the employment of a multiple scale
factors scheme does not lead to benefits to absolutely all cases (the original IBDDE is ranked
first in two cases), it is never detrimental (when IBDDE is randked first, it is never the only
algorithm in that position). It can be seen that Scheme 2 is ranked first in twenty-one case,
and second-best in the three other cases. When computing the average rank of the algorithms,
Scheme 3 is close second to Scheme 2. However when considering the results of the Q-test
(see Table 7), the absence of ∞ signs in the results of Scheme 3 (compared to the presence
of three such symbols for Scheme 2), indicate that while the former is presentes a slightly
lower performance, it can be considered as a much more stable algorithm. Scheme 1 is stable
as well but of lower performance than the two former ones. Finally, the original IBDDE and
Scheme 4 exhibit both poorer performance and lower stability.

For illustration purposes, Fig. 9a illustrates the case where Scheme 2 obtains the best
results, while Fig. 9b shows Scheme 3 outperforming all the other variants. Finally, Fig. 9c
is a counterexample, where the original algorithm and all its variants obtain very similar
results, and where the benefits of multiple values of F are not obvious.

These results are very similar to those obtained in Weber et al. (2011), where Schemes 2
and 3 were exhibiting the best performance, with a slight favor for Scheme 3 when con-
sidering the stability of the algorithms. This means that, while multiple values of F across
the different subpopulations significantly improve the performance of the IBDDE algorithm,
in contrast with the results obtained about PDE, it is not possible to tell whether static or
dynamic values of the scale factor are preferable. The reason why multiple values of the
scale factor are beneficial to IBDDE but not to PDE may be explained by the fact that in
IBDDE a random individual is migrated between subpopulations, on the contrary to PDE
where the best individual is migrated. The latter behavior focuses the algorithm’s attention
around current best solutions, and this fact is exacerbated by the highly exploitative character
of the exponential crossover. Such a focus point does not exist in IBDDE, where the intro-
duction in a subpopulation, by means of the migration, of a new individual, compensates the
exploitative character of the exponential crossover.

6.3 Distributed differential evolution: numerical results

The DDE has been run with a population of 200 individuals arranged according to the
torus topology represented in Fig. 6. Following the suggestions in De Falco et al. (2007b),
the mesh is composed of 4 × 4 sub-populations (μ = 4) containing 12 or 13 individuals
(8 sub-populations are composed of 12 candidate solutions and the other 8 sub-populations
of 13 solutions). Migration occurred in each sub-population with only its best individual
(SI = 1) every MI = 5 generations. The crossover rate for all the DDE based algorithms
has been chosen equal to 0.9 and the scale factor of the DDE has been selected equal to 0.5
in accordance to the settings in Herrera et al. (2010).
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Table 7 Results of the Q-test for the IBDDE and its variants

IBDDE IBDDE1 IBDDE2 IBDDE3 IBDDE4

Ackley ∞ 3.17e + 03 3.00e + 03 2.96e + 03 4.06e + 03
Alpine ∞ 4.29e + 03 3.28e + 03 3.29e + 03 ∞
Ax.-par. hyp.-ell. 2.81e + 03 1.88e + 03 1.72e + 03 1.72e + 03 2.34e + 03
DeJong 2.84e + 03 1.78e + 03 1.74e + 03 1.77e + 03 2.37e + 03
DropWave 2.45e + 05 7.52e + 03 6.02e + 03 1.39e + 04 1.23e + 05
Griewangk 2.84e + 03 1.88e + 03 1.74e + 03 1.75e + 03 2.37e + 03
Michalewicz ∞ 3.56e + 04 ∞ 8.97e + 03 ∞
Pathological ∞ 9.52e + 03 ∞ 2.60e + 04 ∞
Rastrigin ∞ 1.21e + 04 1.11e + 04 3.73e + 03 ∞
Rosenbrock 2.43e + 03 1.37e + 03 1.28e + 03 1.40e + 03 1.94e + 03
Schwefel ∞ 1.69e + 04 ∞ 3.70e + 03 ∞
Sum of powers 3.66e + 02 3.25e + 02 3.17e + 02 3.40e + 02 3.44e + 02
Tirronen 5.80e + 03 5.19e + 03 5.30e + 03 5.49e + 03 5.05e + 03
Rt. Ackley ∞ 3.92e + 03 3.70e + 03 3.53e + 03 8.24e + 04
Rt. Alpine ∞ 5.66e + 03 3.97e + 03 7.65e + 03 ∞
Rt. Ax.-par. hyp.-ell. 3.78e + 03 2.05e + 03 1.89e + 03 2.03e + 03 3.03e + 03
Rt. Griewangk 3.40e + 03 2.10e + 03 1.82e + 03 1.93e + 03 2.70e + 03
Rt. Michalewicz 6.56e + 03 4.55e + 03 4.32e + 03 5.02e + 03 5.54e + 03
Rt. Pathological 4.48e + 03 4.33e + 03 4.36e + 03 4.34e + 03 4.39e + 03
Rt. Rastrigin ∞ 6.67e + 03 5.12e + 03 1.43e + 04 ∞
Rt. Rosenbrock 2.91e + 03 1.66e + 03 1.49e + 03 1.65e + 03 2.43e + 03
Rt. Schwefel ∞ 6.76e + 03 4.58e + 03 1.29e + 04 ∞
Rt. Sum of powers 4.16e + 00 4.20e + 00 4.04e + 00 4.12e + 00 4.24e + 00
Rt. Tirronen 5.14e + 03 5.23e + 03 4.76e + 03 4.98e + 03 5.48e + 03

Analogous to PDE and IBDDE, the DDE integrating the schemes 1, 2, 3, and 4 is indicated
with DDE1, DDE2, DDE3, and DDE4. The parameter gr in DDE3 has been set equal to 30.
Table 8 lists final average fitness values over 50 independent runs and respective standard
deviation values. Table 9 and 10 show the results of the Wilcoxon rank-sum test and Q-test
respectively. The best results are highlighted in bold face.

Some performance trends (averaged over 50 independent runs) of the DDE (solid line)
and its multiple scale factors variants (dashed and dotted lines) are displayed in Fig. 10.

Numerical results show that employment of multiple scale factors is not beneficial for
the DDE structure. It can be noticed from Tables 8 and 9 that the standard DDE is ranked
first in seventeen out of the twenty-four cases and in ten of these, its performance cannot
be statistically distinguished from on or more of the variant algorithms. The use of multiple
scale factor values therefore seems detrimental to the performance of the DDE algorithm.
The Q-test results listed in Table 10 confirm that observation: the original DDE algorithm
obtains the best result in sixteen cases out of twenty-four. One must also notice the fact that
the table presents no ∞ symbol, indicating that the five algorithms are all robust, but also
that their performances are very similar, which confirms the performance analysis based on
Table 9.

The fitness trends presented in Fig. 10 are typical of the DDE algorithm: the algorithm
improves very much upon its initial solutions for a brief period of time, and is followed by a
a much longer period where only marginal improvement is obtained. Figure 10c illustrates a
case where Scheme 4 presents the best performance, closely seconded by the other schemes,
while the original DDE exhibit poorer peformance. On the contrary, Fig. 10a and b are repre-
sentative of the case where the original DDE outperforms its variants. In the case of Fig. 10a,
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Table 9 Results of the Wilcoxon rank-sum test for the DDE and its variants

1 2 3 4 5

Ackley DDE DDE3 DDE1 DDE2
DDE4

Alpine DDE DDE1
DDE2 DDE4

DDE3

Ax.-par. hyp.-ell. DDE DDE1 DDE2
DDE3 DDE4

DeJong DDE DDE1 DDE2 DDE3
DDE4

DropWave DDE DDE1 DDE2
DDE3 DDE4

Griewangk DDE DDE1 DDE2
DDE3 DDE4

Michalewicz DDE DDE1
DDE2 DDE3
DDE4

Pathological DDE4 DDE DDE1
DDE2 DDE3

Rastrigin DDE DDE1
DDE2 DDE3

DDE4

Rosenbrock DDE DDE2 DDE3 DDE1 DDE4

Schwefel DDE1 DDE2
DDE3 DDE4

DDE

Sum of powers DDE DDE1
DDE2 DDE3
DDE4

Tirronen DDE2 DDE DDE1
DDE3 DDE4

Rt. Ackley DDE DDE3 DDE1 DDE2
DDE4

Rt. Alpine DDE DDE1
DDE2 DDE4

DDE3

Rt. Ax.-par.
hyp.-ell. DDE DDE1 DDE2

DDE3 DDE4
Rt. Griewangk DDE DDE1 DDE2

DDE3 DDE4
Rt. Michalewicz DDE1 DDE2

DDE3 DDE4

DDE

Rt. Pathological DDE1 DDE2
DDE3 DDE4

DDE

Rt. Rastrigin DDE DDE1
DDE2 DDE3
DDE4

Rt. Rosenbrock DDE DDE1 DDE2
DDE3 DDE4

Rt. Schwefel DDE1 DDE2
DDE3 DDE4

DDE

Rt. Sum of powers DDE DDE1
DDE2 DDE3
DDE4

Rt. Tirronen DDE2 DDE4 DDE DDE1
DDE3
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Table 10 Results of the Q-test for the DDE and its variants

DDE DDE1 DDE2 DDE3 DDE4

Ackley 1.37e+03 2.59e+03 2.42e+03 1.98e+03 3.78e+03

Alpine 8.83e+02 1.23e+03 9.35e+02 1.29e+03 1.01e+03

Ax.-par. hyp.-ell. 8.04e+02 1.38e+03 2.10e+03 1.77e+03 1.61e+03

DeJong 7.52e+02 1.37e+03 1.58e+03 1.60e+03 1.50e+03

DropWave 3.74e+02 8.22e+02 7.26e+02 8.23e+02 1.20e+03

Griewangk 7.30e+02 1.34e+03 1.76e+03 1.46e+03 1.49e+03

Michalewicz 1.61e+03 1.20e+03 1.30e+03 1.50e+03 1.33e+03

Pathological 2.30e+03 1.67e+03 1.92e+03 1.77e+03 1.32e+03

Rastrigin 9.78e+02 1.34e+03 1.14e+03 1.24e+03 1.69e+03

Rosenbrock 5.70e+02 7.43e+02 8.55e+02 6.31e+02 7.90e+02

Schwefel 3.08e+03 1.07e+03 1.23e+03 1.40e+03 1.14e+03

Sum of powers 9.89e+01 1.03e+02 1.03e+02 1.08e+02 1.00e+02

Tirronen 7.40e+02 5.41e+02 4.84e+02 5.24e+02 6.00e+02

Rt. Ackley 1.34e+03 3.23e+03 3.57e+03 2.15e+03 3.13e+03

Rt. Alpine 9.55e+02 1.04e+03 1.13e+03 1.40e+03 1.16e+03

Rt. Ax.-par. hyp.-ell. 7.38e+02 1.60e+03 1.54e+03 1.44e+03 1.41e+03

Rt. Griewangk 7.73e+02 1.57e+03 1.67e+03 1.85e+03 1.37e+03

Rt. Michalewicz 1.96e+03 1.10e+03 1.61e+03 1.02e+03 1.05e+03

Rt. Pathological 1.95e+03 1.10e+03 1.07e+03 1.17e+03 9.35e+02

Rt. Rastrigin 8.45e+02 9.70e+02 1.08e+03 1.03e+03 1.11e+03

Rt. Rosenbrock 5.70e+02 9.61e+02 7.09e+02 7.02e+02 1.02e+03

Rt. Schwefel 2.03e+03 1.03e+03 1.05e+03 1.03e+03 1.48e+03

Rt. Sum of powers 4.00e+00 4.00e+00 4.20e+00 4.16e+00 4.00e+00

Rt. Tirronen 7.84e+02 7.60e+02 4.56e+02 9.18e+02 5.90e+02

the performance of DDE is not significantly better than the one of the other variants, while
Fig. 10b is an example of the opposite being true.

A comparison with the performance of the DDE algorithm employing the binomial cross-
over presented in Weber et al. (2011) shows that multiple scale factors are not beneficial
to DDE when combined with the exponential crossover. This result is the opposite of the
previous study (with binomial crossover), which had shown that Scheme 4 offered a clear
improvement on DDE, which is not the case anymore in the present study. In the current
case, the higly exploitative character of the exponential crossover is accentuated by the small
sizes of the subpopulations, and the limited amounts of available exploratory moves. The
numerical results in this paper show that the combined effects of those two characteristics
cannot be balanced by the use of multiple scale factors.

7 Conclusion

This paper studies the effect of four multiple scale factors schemes on distributed DE struc-
tures employing the exponential crossover. These four schemes have been applied to three
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Fig. 10 Performance trends of DDE and its variants

modern distributed algorithms, namely PDE, IBDDE, and DDE. All these schemes use dif-
ferent values of the scale factor in the different subpopulations of the distributed DE, but
while the two first schemes (1 and 2) use static values which remain constant during the
evolution, the two other (3 and 4) update the values of the scale factor in the course of the
optimization process.
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Numerical results show that while schemes 2 and 3 are beneficial to the IBDDE structure,
multiple values of the scale factor have a neutral effect on PDE and a detrimental effect on
DDE. These results go agains those obtained in a previous study, where the binomial cross-
over was employed, and which had shown that all schemes were beneficial to the distributed
structures, and schemes 2, 3 and 4 were especially beneficial for PDE, IBDDE and DDE,
respectively.

In other words, multiple scale factors lead to an important improvement when associated
to the binomial crossover, but is not necessarily improving distributed DE structures employ-
ing the exponential crossover, due to the much more exploitative characteristic of DE when
using the exponential crossover which cannot necessarily be balanced by the use if multiple
scale factors. As a more general corollary, algorithmic enhancements that improve bino-
mial-crossover based algorithms do not necessarily improve exponential-crossover based
algorithms: it is therefore a wrong approach to expect improvements by blindly combining
two algorithms that, separately, produce good results.
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ceedings of 6th international mendel conference on soft computing, pp 76–83

Liu J, Lampinen J (2002a) A fuzzy adaptive differential evolution algorithm. In: Proceedings of the 17th IEEE
region 10 international conference on computer, communications, control and power engineering, vol 1,
pp 606–611

Liu J, Lampinen J (2002b) On setting the control parameter of the differential evolution algorithm. In: Pro-
ceedings of the 8th international mendel conference on soft computing, pp 11–18

Mallipeddi R, Suganthan PN (2008) Empirical study on the effect of population size on differential evolution
algorithm. In: Proceedings of the IEEE congress on evolutionary computation, pp 3663–3670

Neri F, Tirronen V (2008) On memetic differential evolution frameworks: a study of advantages and lim-
itations in hybridization. In: Proceedings of the IEEE world congress on computational intelligence,
pp 2135–2142

Neri F, Tirronen V (2009) Scale factor local search in differential evolution. Memet Comput 1(2):153–171
Neri F, Tirronen V (2010) Recent advances in differential evolution: a review and experimental analysis. Artif

Intell Rev 33(1):61–106
Neri F, Tirronen V, Kärkkäinen T (2009) Enhancing differential evolution frameworks by scale factor local

search—part II. In: Proceedings of the IEEE congress on evolutionary computation, pp 118–125
Nipteni MS, Valakos I, Nikolos I (2006) An asynchronous parallel differential evolution algorithm. In: Pro-

ceedings of the ERCOFTAC conference on design optimisation: methods and application
Noman N, Iba H (2005) Enhancing differential evolution performance with local search for high dimensional

function optimization. In: Proceedings of the 2005 conference on genetic and evolutionary computation.
ACM, New York, pp 967–974

Olorunda O, Engelbrecht A (2007) Differential evolution in high-dimensional search spaces. In: Proceedings
of the IEEE congress on evolutionary computation, pp 1934–1941

Omran MG, Salman A, Engelbrecht AP (2005) Self-adaptive differential evolution. In: Computational intel-
ligence and security, lecture notes in computer science, vol 3801. Springer, Berlin, pp 192–199

Pavlidis NG, Tasoulis DK, Plagianakos VP, Nikiforidis G, Vrahatis MN (2005) Spiking neural network train-
ing using evolutionary algorithms. In: Proceedings of the IEEE international joint conference on neural
networks, pp 2190–2194

Price K, Storn R (1997) Differential evolution: a simple evolution strategy for fast optimization. Dr Dobb’s J
Softw Tools 22(4):18–24

Price KV (1999) Mechanical engineering design optimization by differential evolution. In: Corne D, Dorigo
M, Glover F (eds) New ideas in optimization. McGraw-Hill, New Delhi pp 293–298

Price KV, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization.
Springer, Berlin

Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In:
Proceedings of the IEEE congress on evolutionary computation, vol 2, pp 1785–1791

Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global
numerical optimization. IEEE Trans Evol Comput 13:398–417

Rönkkönen J, Lampinen J (2003) On using normally distributed mutation step length for the differential evolu-
tion algorithm. In: Matousek R, Osmera P (eds) Proceedings of ninth international MENDEL conference
on soft computing, pp 11–18

Rönkkönen J, Kukkonen S, Price KV (2005) Real-parameter optimization with differential evolution. In:
Proceedings of IEEE international conference on evolutionary computation, vol 1, pp 506–513

Salman A, Engelbrecht AP, Omran MG (2007) Empirical analysis of self-adaptive differential evolution. Eur
J Oper Res 183(2):785–804

Salomon M, Perrin GR, Heitz F, Armspach JP (2005) Parallel differential evolution: Application to 3-d med-
ical image registration. In: Price KV, Storn RM, Lampinen JA (eds) Differential evolution–a practical
approach to global optimization chap 7, natural computing series. Springer, Berlin, pp 353–411

123

http://sci2s.ugr.es/eamhco/descriptions.pdf


224 M. Weber et al.

Soliman OS, Bui LT (2008) A self-adaptive strategy for controlling parameters in differential evolution. In:
Proceedings of the IEEE congress on evolutionary computation, pp 2837–2842

Soliman OS, Bui LT, Abbass HA (2007) The effect of a stochastic step length on the performance of the
differential evolution algorithm. In: Proceedings of the IEEE congress on evolutionary computation,
pp 2850–2857

Storn R (1999) System design by constraint adaptation and differential evolution.. IEEE Trans Evol Comput
3(1):22–34

Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization
over continuous spaces. Technical Report TR-95-012, ICSI

Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over
continuous spaces. J Glob Optim 11:341–359

Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2004) Parallel differential evolution. In: Proceedings
of the IEEE congress on evolutionary computation, pp 2023–2029

Tirronen V, Neri F, Rossi T (2009) Enhancing differential evolution frameworks by scale factor local
search—part I. In: Proceedings of the IEEE congress on evolutionary computation, pp 94–101

Weber M, Neri F, Tirronen V (2009) Distributed differential evolution with explorative-exploitative population
families. Genet Program Evolv Mach 10(4):343–371

Weber M, Neri F, Tirronen V (2010) Shuffle or update parallel differential evolution for large-scale optimiza-
tion. Soft Comput (To appear)

Weber M, Neri F, Tirronen V (2011) A study on scale factor in distributed differential evolution. Inf Sci
181:2488–2511

Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83
Zaharie D (2002a) Critical values for control parameters of differential evolution algorithm. In: Matuŝek R,
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