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Abstract A new learning technique for local linear wavelet neural network (LLWNN)
is presented in this paper. The difference of the network with conventional wavelet neural
network (WNN) is that the connection weights between the hidden layer and output layer of
conventional WNN are replaced by a local linear model. A hybrid training algorithm of Error
Back propagation and Recursive Least Square (RLS) is introduced for training the parameters
of LLWNN. The variance and centers of LLWNN are updated using back propagation and
weights are updated using Recursive Least Square (RLS). Results on extracted breast cancer
data from University of Wisconsin Hospital Madison show that the proposed approach is
very robust, effective and gives better classification.

Keywords Local linear wavelet neural network · Recursive least square ·
Gradient descent algorithm · Wisconsin breast cancer (WBC)

1 Introduction

Recently, instead of using common sigmoid activation functions, the wavelet neural network
(WNN) employing nonlinear wavelet basis functions (named wavelets), which are localized
in both the time space and frequency space, has been developed as an alternative approach to
nonlinear fitting problem (Wang et al. 2000; Zhang and Benveniste 1992). Two key problems
in designing of WNN are how to determine WNN architecture and what learning algorithm
can be effectively used for training the WNN (Chen et al. 2000). These problems are related
to determine an optimal WNN architecture, to arrange the windows of wavelets, and to find
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the proper orthogonal or non orthogonal wavelet basis. Curse of dimensionality is a mainly
unsolved problem in WNN theory which brings some difficulties in applying a WNN to
high dimension problems. The basis function neural networks are a class of neural networks,
in which the output of the network is a weighted sum of a number of basis functions. The
usually used basis functions include Gaussian radial basis functions (V D Sanchez 1994,
1998; Karayiannis 1999; McGarry et al. 1999; Samantaray et al. 2006), wavelet basis func-
tions Yang et al. (2004), neuro fuzzy basis functions (Chen et al. 2001; Kawaji and Chen
2001). Some have used nature inspired parameter identification techniques (Chen et al. 1999;
Kermani et al. 1995; Kennedy et al. 1995; Araujo 2007; Al-Obaidy et al. 2008). The recursive
least square (RLS) is a parameter identification technique. Some of the attractive features of
the RLS include ease of implementation and the fact that no gradient information is required.
It has a faster rate of convergence compared to gradient search and least mean square.

Pattern Classification is an important research and application area. Much effort has been
devoted over the past several decades to the development and improvement of Pattern Clas-
sification models. This paper, a local linear wavelet neural network (LLWNN) extends the
application of Chen et al. (2006, 2004) and is proposed for breast cancer detection, in which
the connection weights between the hidden layer units and output units are replaced by a
local linear model. The usually used learning algorithm for WNN is gradient descent method.
But its disadvantages are slow convergence speed and easy stay at local minimum. A com-
bination approach of RLS with adaptive diversity learning and gradient descent method is
proposed for training the LLWNN. Simulation results for Pattern Classification problems
show the effectiveness of the proposed method. The main contributions of this paper are (1)
the LLWNN providing a more parsimonious interpolation in high-dimension spaces when
modeling samples are sparse; (2) a novel hybrid training algorithm for LLWNN was pro-
posed. The paper is organized as follows. The LLWNN is introduced in Sect. 2. The RLS
learning algorithm for training LLWNN is described in Sect. 3. Learning Algorithm using
Kalman Filter (http//ww.cs.unc.edu/~welch) (Sum et al. 1999) is explained in Sect. 4. The
experimental results on Pattern Classification for Wisconsin Breast Cancer (WBC) problem
is given in Sect. 5. Finally, concluding remarks are derived in the last section.

2 Local linear wavelet neural network

In terms of wavelet transformation theory, wavelets in the following form:

ψ =
{
ψi = |ai |ψ

(
x − bi

ai

)
: ai , bi ∈ Rn, i ∈ Z

}
,

X = (x1, x2, . . . xn),

ai = (ai1, ai2, . . . ain),

bi = (bi1, bi2, . . . bin),

are a family of functions generated from one single function�(x) by the operation of dilation
and translation. �(x), which is localized in both the time space and the frequency space, is
called a mother wavelet and the parameters ai and bi are named the scale and translation
parameters, respectively. The x represents inputs to the WNN model.

In the standard form of WNN, the output of a WNN is given by

f (x) =
M∑

i=1

ωiψi(x) =
M∑

i=1

ωi |ai |−1/2 ψ

(
x − bi

ai

)
, (1)
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Fig. 1 A local linear wavelet neural network

where �i is the wavelet activation function of i th unit of the hidden layer and ωi is the
weight connecting the i th unit of the hidden layer to the output layer unit. Note that for the
n-dimensional input space, the multivariate wavelet basis function can be calculated by the
tensor product of n single wavelet basis functions as follows

ψ(x) =
n∏

i=1

ψ(xi ) (2)

Obviously, the localization of the i th units of the hidden layer is determined by the scale
parameter ai and the translation parameter bi. According to the previous researches, the two
parameters can either be predetermined based upon the wavelet transformation theory or be
determined by a training algorithm. Note that the above WNN is a kind of basis function
neural network in the sense of that the wavelets consists of the basis functions. Note that
an intrinsic feature of the basis function networks is the localized activation of the hidden
layer units, so that the connection weights associated with the units can be viewed as locally
accurate piecewise constant models whose validity for a given input is indicated by the acti-
vation functions. Compared to the multilayer perceptron neural network, this local capacity
provides some advantages such as the learning efficiency and the structure transparency.
However, the problem of basis function networks is also led by it. Due to the crudeness of the
local approximation, a large number of basis function units have to be employed to approx-
imate a given system. A shortcoming of the WNN is that for higher dimensional problems
many hidden layer units are needed.

In order to take advantage of the local capacity of the wavelet basis functions while
not having too many hidden units, here we propose an alternative type of WNN. The
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architecture of the proposed LLWNN is shown in Fig. 1. Its output in the output layer is
given by

y =
M∑

i=1

(ωi0 + ωi1x1 + · · · + ωin xn)ψi(x)

=
M∑

i=1

(ωi0 + ωi1x1 + · · · + ωin xn) |ai |−1/2 ψ

(
x − bi

ai

)
, (3)

where X = [x1, x2, . . . , xn] Instead of the straightforward weight ωi (piecewise constant
model), a linear model is introduced.

vi = ωi0 + ωi1x1 + · · · + ωin xn (4)

The activities of the linear models vi (I = 1, 2, . . . .,M) are determined by the associated
locally active wavelet functions ψi(x) (I = 1, 2, . . . .,M) thus vi is only locally significant.
The motivations for introducing the local linear models into a WNN are as follows: (1) local
linear models have been studied in some neuro-fuzzy systems and shown good performances
(Chen et al. 2001; Kawaji and Chen 2001); and (2) local linear models should provide a more
parsimonious interpolation in high-dimension spaces when modelling samples are sparse.
The scale and translation parameters and local linear model parameters are randomly initial-
ized at the beginning and are optimized by recursive least square algorithm discussed in the
following section.

3 Recursive least square

The recursive least square (RLS) is a parameter identification technique. In RLS algorithm
there are two variables involved in the recursions (those with time index n- 1): ŵ(i −1), Pi−1.
We must provide initial values for these variables in order to start the recursions:

·w(0)
If we have some apriori information about the parameters ŵthis information will be used to
initialize the algorithm. Otherwise, the typical initialization is

w(0) = 0

·P(0)

P(i) =
[

i∑
n=1

λi−1ψ(n)ψ(n)T
]−1

the exact initialization of the recursions uses a small initial segment of the data ψ(i1);
ψ(i1 + 1) . . . , ψ(0) to compute

P(0) =
[

o∑
n=1

λ−1ψ(n)ψ(n)T
]−1

(5)

All the necessary equations to form the RLS algorithm are

k(i) = P (i − 1) φT(i)

λ+ P (i − 1) φT(i)
(6)

w(j) = wj (i − 1)+ k(i)
[
dj(i)− wj (i − 1) φT(i)

]
(7)
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P(i) = 1

λ
[P (i − 1)− k(i)φ(i)P (i − 1)] (8)

where λ is real number between 0 and 1, P(0) = a−1I, and a is a small positive number and
wj(0) = 0.

Particle swarm optimization was used to find the initial centers of the clusters. The cen-
ters as well as spreads were updated using Error back propagation. Recursive Least Square
approach was used to update the weights associated between the hidden layer and the output
layer.

4 The discrete kalman filter

The Kalman filter addresses the general problem of trying to estimate the state x−
k ∈ �n of a

discrete-time controlled process that is governed by the linear stochastic difference equation

xk = Axk_l + Buk_l + wk_l, (9)

with a measurement z ∈ �m that is

zk = H xk + νk (10)

The random variables wk and νk represent the process and measurement noise (respectively).
They are assumed to be independent (of each other), white, and with normal probability dis-
tributions

p(w) ∼ N(0,Q), (11)

p(v) ∼ N(0,R). (12)

In practice, the process noise covariance Q and measurement noise covariance R matrices
might change with each time step or measurement, however here we assume they are constant.

The n x n matrix A in the difference Eq. (9) relates the state at the previous time step k-l
to the state at the current step k, in the absence of either a driving function or process noise.
Note that in practice A might change with each time step, but here we assume it is constant.
The n x l matrix B relates the optional control input u ∈ �l to the state x. The m x n matrix
H in the measurement Eq. (10) relates the state to the measurement zk. In practice H might
change with each time step or measurement, but here we assume it is constant.

4.1 The computational origins of the filter

We define x̂k ∈ �n to be our a priori state estimate at step k given knowledge of the process
prior to step k, and x̂k ∈ �n to be our a posteriori state estimate at step k given measurement
zk, can then define a priori and a posteriori estimate errors as

e−
k ≡ xk − x̂−

k

ek ≡ xk − x̂k (13)

The a priori estimate error covariance is then

Pk = E
[
ek − e−T

k

]
, (14)

and the a posteriori estimate error covariance is

Pk = E
[
eke−T

K

]
. (15)

123



156 M. R. Senapati, P. K. Dash

In deriving the equations for the Kalman filter, we begin with the goal of finding an equation
that computes an a posteriori state estimate xk as a linear combination of an a priori estimate
xk and a weighted difference between an actual measurement zk and a measurement predic-
tion Hxk as shown below in (16). Some justification for (16) is given in “The Probabilistic
Origins of the Filter” found below.

x̂k = x̂−
k + K

(
zk − H x̂−

k

)
(16)

The difference (zk − H x̂−
k ) in (16) is called the measurement innovation, or the residual.

The residual reflects the discrepancy between the predicted measurement Hx̂−
k and the actual

measurement zk. A residual of zero means that the two are in complete agreement. The n x
m matrix K in (16) is chosen to be the gain or blending factor that minimizes the a posteriori
error covariance (15). This minimization can be accomplished by first substituting (16) into
the above definition for ek substituting that into (15), performing the indicated expectations,
taking the derivative of the trace of the result with respect to K, setting that result equal to
zero, and then solving for K. One form of the resulting K that minimizes (15) is given by

Kk = P−
k HT (

HP−
k HT + R

)−

= P−
k HT

HP−
k HT + R

(17)

Looking at (17) we see that as the measurement error covariance R approaches zero, the gain
K weights the residual more heavily. Specifically,

lim Kk = H−l

Rk→0

On the other hand, as the a priori estimate error covariance P−
k approaches zero, the gain K

weights the residual less heavily. Specifically,

lim Kk = 0

Rk→0

Another way of thinking about the weighting by K is that as the measurement error covari-
ance R approaches zero, the actual measurement zk is “trusted” more and more, while the
predicted measurement Hx̂−

k is trusted less and less. On the other hand, as the a priori estimate
error covariance P−

k approaches zero the actual measurement zk is trusted less and less, while
the predicted measurement Hx̂−

k is trusted more and more.

4.2 The probabilistic origin of the filter

The justification is rooted in the probability of the a priori estimate x̂−
k conditioned on all

prior measurements zk (Bayes’ rule). For now let it suffice to point out that the Kalman filter
maintains the first two moments of the state distribution,

E [xk] = x̂k

E
[
(xk − x̂k)(xk − x̂k)

T
]

= Pk .
(18)

The a posteriori state estimate (16) reflects the mean (the first moment) of the state distribu-
tion—it is normally distributed if the conditions of (11) and (12) are met. The a posteriori
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Fig. 2 The ongoing discrete
Kalman filter cycle

Time update  Measurement update
(“Predict”)           (“Correct”)

estimate error covariance (15) reflects the variance of the state distribution (the second non-
central moment). In other words,

p(xk |zk) ∼ N (E [xk] , E
[
(xk − x̂k)(xk − x̂k)

T
]

= N (x̂k, Pk) (19)

4.2.1 The discrete kalman filter algorithm

We will begin this section with a broad overview, covering the “high-level” operation of one
form of the discrete Kalman filter. After presenting this high-level view, we will narrow the
focus to the specific equations and their use in this version of the filter.

The Kalman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter fall into two groups: time update
equations and measurement update equations. The time update equations are responsible for
projecting forward (in time) the current state and error covariance estimates to obtain the a
priori estimates for the next time step. The measurement update equations are responsible for
the feedback—i.e. for incorporating a new measurement into the a priori estimate to obtain
an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the measure-
ment update equations can be thought of as corrector equations. Indeed the final estimation
algorithm resembles that of a predictor-corrector algorithm for solving numerical problems
as shown below in Fig. 2.

The time update projects the current state estimate ahead in time. The measurement update
adjusts the projected estimate by an actual measurement at that time.

The specific equations for the time and measurement updates are presented below
Discrete Kalman filter time update equations

x̂−
k = Ax̂k−1 + Buk−1 (20)

P−
k = APk−1 AT + Q (21)

Again notice how the time update equations given below project the state and covariance
estimates forward from time step k − 1 to step k. A and B are from (9), while Q is from (10).
Initial conditions for the filter are discussed in the earlier references.

Discrete Kalman filter measurement updates equations.

Kk = P−
k H T

(
H P−

k H T + R
)−1

(22)

x̂k = x̂−
k + Kk

(
zk − H x̂−

k

)
(23)

Pk = (I − Kk H)P− (24)
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Fig. 3 A complete picture of the operation of the Kalman filter

The first task during the measurement update is to compute the Kalman gain, Kk. Notice
that the equation given here as (22) is the same as (17). The next step is to actually measure
the process to obtain zk, and then to generate an a posteriori state estimate by incorporating
the measurement as in (23). Again (23) is simply (16) repeated here for completeness. The
final step is to obtain an a posteriori error covariance estimate via (24).

After each time and measurement update pair, the process is repeated with the previous a
posteriori estimates used to project or predict the new a priori estimates. This recursive nature
is one of the very appealing features of the Kalman filter—it makes practical implementations
much more feasible. The Kalman filter instead recursively conditions the current estimate on
all of the past measurements. Figure 3 below offers a complete picture of the operation of
the filter, combining the high-level diagram of Fig. 2 along with the equations from Eq. 20
to Eq. 24.

4.3 Filter parameters and tuning

In the actual implementation of the filter, the measurement noise covariance R is usually
measured prior to operation of the filter. Measuring the measurement error covariance R is
generally practical (possible) because we need to be able to measure the process anyway
(while operating the filter) so we should generally be able to take some off-line sample
measurements in order to determine the variance of the measurement noise.

The determination of the process noise covariance Q is generally more difficult as we typ-
ically do not have the ability to directly observe the process we are estimating. Sometimes a
relatively simple (poor) process model can produce acceptable results if one “injects” enough
uncertainty into the process via the selection of Q. Certainly in this case one would hope that
the process measurements are reliable.

In either case, whether or not we have a rational basis for choosing the parameters,
often times superior filter performance (statistically speaking) can be obtained by tun-
ing the filter parameters Q and R. The tuning is usually performed off-line, frequently
with the help of another (distinct) Kalman filter in a process generally referred to system
identification.

We note that under conditions where Q and R are in fact constant, both the estimation error
covariance Pk and the Kalman gain Kk will stabilize quickly and then remain constant (see
the filter update equations in Fig. 3). If this is the case, these parameters can be pre-computed
by either running the filter off-line, or for example by determining the steady-state value
of Pk.

It is frequently the case however that the measurement error (in particular) does not remain
constant. For example, when sighting beacons in our optoelectronic tracker ceiling panels, the
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Fig. 4 Error plot of LLWNN

noise in measurements of nearby beacons will be smaller than that in far-away beacons. Also,
the process noise Q is sometimes changed dynamically during filter operation—becoming
Qk—in order to adjust to different dynamics. For example, in the case of tracking the head
of a user of a 3D virtual environment we might reduce the magnitude of Qk if the user seems
to be moving slowly, and increase the magnitude if the dynamics start changing rapidly. In
such cases Qk might be chosen to account for both uncertainties about the user’s intentions
and uncertainty in the model.

5 Discussion

In order to evaluate the performance of the rule extraction algorithm, we carried out a two fold
experiment with WBC data set (http://ailab.si/orange/doc/datasets/breast-cancer-wisconsin-
cont.htm). The results show that the percentage of classification, Table 11 is better if LLWNN
is being trained by RLS as compared to other training methods. The algorithms associated
to the optimization and rule extraction method were simulated using MATLAB v6.5.

WBC database: The WBC training data contains 400 exemplars and the test set containing
299 exemplars for a total of 699 exemplars. The input data were normalized by replacing
each feature value x by x = (x − μx)/σx where μx and σx denote the sample mean and
standard deviation of this feature over the entire data set. The networks are trained to respond
with the target value yik = 1, and yjk = 0∀j �= i, when presented with an input vector xk

from the i th category.
The MATLAB m-files were used to generate the simulation results presented in this sec-

tion. The training algorithms were initialized with prototype vectors randomly selected from
the input data on a two fold basis and with the weight matrix W set to 1 and σ initialized
to 1. For the sake of simplicity and space we have drawn four figures (Figs. 4, 5, 6, 7) and
eleven Tables to verify the results.
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Fig. 5 Classification using
LLWNN

Fig. 6 Error plot of RBFNN and
RLS

5.1 Simulation results

Tabular data Figures 4 and 6 shows the error plot of LLWNN and RBFNN. Figures 5 and 7
shows the classification obtained from LLWNN and RBFN. Tables 1, 2, 3, and 4, shows the
weights, centers, spreads, scale parameter and translation parameter obtained from LLWNN.

Tables 5, 6 and 7 shows the centers, weights and spreads obtained by training RBFNN.
Tables 8, 9 and 10 shows the centers, weights and spreads obtained by training RBFNN.
The centers and spreads of all the technique were updated using error back propagation. The
weights of LLWNN were updated using RLS. The weights of RBFNN were updated using
RLS and Kalman Filter. In Table 11 the percentage of classification of each technique is
shown.
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Fig. 7 Classification using
RBFNN and RLS

Table 1 Centers obtained from
LLWNN

7.7888 7.7888 7.7888 7.7888 7.7888

WBC 7.7888 7.7888 7.7888 7.7888

13.0746 13.0746 13.0746 13.0746 13.0746

13.0746 13.0746 13.0746 13.0746

Table 2 Weights obtained from
LLWNN

3.2986 3.2986 3.2986 3.2986 3.2986

WBC 3.2986 3.2986 3.2986 3.2986

2.3088 2.3088 2.3088 2.3088 2.3088

2.3088 2.3088 2.3088 2.3088

Table 3 Spreads obtained from
LLWNN

2.0997
1.2149

Table 4 Scale parameter a and b
updated using RLS

a 31.8562

WBC 74.6344

b 31.8562

77.2647

Rule for classification of WBC data sets using LLWNN

if (oo(r, 1) ≥ 0.06 & oo(r, 1) ≤ 0.4627) & (oo(r, 2) ≥ 0.0611 & oo(r, 2) ≤ 0.4197)then
Benign;

if (oo(r, 1) ≥ −3.7718 & oo(r, 1) ≤ 0.0394) & (oo(r, 2) ≥ −3.2997 & oo(r, 2) ≤ 0.036)
then Malignant;

Rule for classification of WBC data sets using RLS
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Table 5 Centers obtained from
RBFNN trained by RLS

1.2352 1.2352 1.2352 1.2352 1.2352

1.2352 1.2352 1.2352 1.2352

WBC 1.6426 1.6426 1.6426 1.6426 1.6426

1.6426 1.6426 1.6426 1.6426

Table 6 Weights obtained from
RBFNN trained by RLS

1.6426 1.6426

5.7481 5.7481

Table 7 Spreads obtained from
RBFNN trained by RLS

7.8622

8.6432

Table 8 Centers obtained from
RBFNN trained by Kalman filter

1.1905 1.1905 1.1905 1.1905 1.1905

1.1905 1.1905 1.1905 1.1905

WBC 1.0019 1.0019 1.0019 1.0019 1.0019

1.0019 1.0019 1.0019 1.0019

Table 9 Weights obtained from
RBFNN trained by Kalman filter

0.9849 0.9981

1.1905 1.0019

Table 10 Spreads obtained from
RBFNN trained by Kalman filter

7.8622

8.6432

Table 11 Percentage of
classification

Technique % of classification

LLWNN with RLS 97.2818

RBFNN with Kalman filter 96.4235

RBFNN with RLS 97.1388

if (oo(r, 1) ≥ 8.5288 & oo(r, 1) ≤ 8.9768) & (oo(r, 2) ≥ 13.2243 & oo(r, 2) ≤ 13.8661)
then Benign;

if (oo(r, 1) ≥ 8.9937 & oo(r, 1) ≤ 10.6680) & (oo(r, 2) ≥ 13.8850 & oo(r, 2) ≤
16.2742) then Malignant;

Rule for classification of WBC data sets using Kalman Filter

if (oo(r, 1) ≥ 1.6277 & oo(r, 1) ≤ 1.7129) & (oo(r, 2) ≥ 1.5870 & oo(r, 2) ≤ 1.6614)
then Benign;

if (oo(r, 1) ≥ 1.7163 & oo(r, 1) ≤ 2.0338) & (oo(r, 2) ≥ 1.6651 & oo(r, 2) ≤ 1.9274)
then Malignant;
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6 Conclusion

The success of neural network architecture depends heavily on the availability of effective
learning algorithms. The object of this study is to examine the effectiveness of RLS for
training LLWNN. The theoretical strength of the LLWNN yet to be used in hundreds of
technologies, and this paper demonstrates that training LLWNN using RLS is yet another
fruitful application of LLWNN. Our simulation using MATLAB v6.5 verifies that weight
optimization of LLWNN through RLS provides better performance as compared to optimiz-
ing the weights of RBFNN through RLS and Kalman Filter, Table 11. Further research could
focus on the application of LLWNN trained with alternative forms of the generator function.
This technique can be applied to large problems to obtain experimental verification of the
computational saving of time can be included as a future work.
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