
Artif Intell Rev (2013) 39:133–149
DOI 10.1007/s10462-011-9262-6

Solution approaches to the course timetabling problem

S. A. MirHassani · F. Habibi

Published online: 29 May 2011
© Springer Science+Business Media B.V. 2011

Abstract University course timetabling is one of the most important administrative activ-
ities that take place in all academic institutions. In this work, we go over the main points
of recent papers on the timetabling problem. We concentrate on university timetabling and
introduce hard and soft constraints as well as most currently used objective functions. We
also discuss some solution methods that have been applied by researchers. Finally, we raise
more questions to be explored in future studies. We hope the directions lead to new researches
that cover all aspects of the problem and result in high-quality timetables.

Keywords Course timetabling · Hard and soft constraint · Combinatorial optimization ·
Heuristic

1 Introduction

Timetabling problems have attracted the attention of the scientific community from a num-
ber of disciplines (including (OR) and Artificial Intelligence (AI)) since the 1960s for about
45 years and over the last decade; there has been an increased interest in the field. The
timetabling problem is defined as “allocation, subject to constraint, of given resources to
objects being placed in space-time, in such a way to satisfy a set of desirable objectives”
(Luis et al. 2009). Timetabling problems arise in various forms including educational timet-
abling, nurse scheduling, sports timetabling, transportation timetabling and entertainment
timetabling. It is one of the most important and time-consuming tasks occurring periodically
(i.e. annually, quarterly, etc) in all academic institutions. Yet in many real-world situations,
particularly where resources (such as people, space or time) are not abundant, the problem
of constructing workable and memorable timetables can be a very challenging one, even for
the experienced timetable designer. However, timetables will often have a large effect on the
everyday lives of the people who use them. Timetable creation is certainly a problem that

S. A. MirHassani (B) · F. Habibi
Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
e-mail: a_mirhassani@aut.ac.ir

123

134 S.A. MirHassani, F. Habibi

we should try to solve in the best possible fashion. Moreover, a timetable will often need
to be updated or completely remade (e.g. school timetables will often be redesigned at the
beginning of each academic year, bus timetables will need to be modified to accord with new
road layouts and bus stops, etc.). Preparing timetables is also a problem that people will have
to face regularly. Among instances of the multifarious problem of timetabling, educational
timetabling is one of the most widely studied one. An educational timetabling problem can
be defined to be the problem of assigning a number of events (course, exams, etc) or activ-
ities into a limited number of time periods (time-slots) in such a way to satisfy almost all
constraints. In computing terms, timetabling problems are often modeled as Combinatorial
Optimization Problems (COP). The overall objective in a COP is to find an assignment of
discrete values to variables (e.g. timeslots for each event which needs to be timetabled) so
that the solution be optimal according to some criteria. In other words, the problem is to
find the best possible solution from among all possible solutions. The manual solution of the
timetabling problem usually requires several days of work. In addition, the solution obtained
may be not satisfactory in some respect. Thus, a considerable attention has been devoted to
automated time tabling. Many papers related to automate timetabling have been published in
conferences proceedings and journals. In addition, several applications have been developed
and employed which have been quite successful. For example see Burke et al. (1994a,b,
1997, 2003, 2004, 2010), Newall et al. (1996b), Burke and Ross (1996), Carter and Burke
(1998), Burke and Petrovice (2002), Carter (1986a), Carter (1986b), Carter et al. (1996),
Carter and Laporte (1998), Carter and Laporte (1996a), Birbas et al. (1977) and Daskalaki
et al. (2004). Also a extensive review of timetabling problems is done by Carter and Laporte
(1996a, 1998) and Schaerf (1999). Carter and Laporte (1998), reorganized the approaches
from 1986 to 1996. Later Burke and Petrovice (2002) review the latest works and research
directions about timetabling problem until 2002. We are going to complete their work from
2002 to present. Burke et al. (2004), offered a definition of general timetabling, which covers
many cases. They state: “A timetabling problem is a problem with four parameters: T, a finite
set of times; R, a finite set of resources; M, a finite set of meetings; and C, a finite set of
constraints. The problem is to assign times and resources to the meetings so as to satisfy the
constraints as much as possible.

The rest of this paper is organized as follows: Sect. 2 describes the timetabling problem
in general and concentrates on university course timetables. In Sect. 3 we review modeling
based methods that have been used by researchers so far. Section 4 describes the heuris-
tic methods. Directions for future work and a list of new ideas comprise Sect. 5. Finally,
conclusions are given in Sect. 6.

Some of the most recent papers have been included below. But undoubtedly, there are
many that we have omitted. Despite these omissions, we believe that the bibliography below
will be a valuable summary of recent research in this area.

2 Problem description

Educational timetabling problems need to be solved in schools, colleges and universities reg-
ularly. There are some similarities between these problems, for example, teacher/lecturers
can only teach one group of students at a time and rooms have size limitations. However,
there are also some key differences. Overall different educational timetabling problems can
be divided into two mains categories:

123

Solution approaches to the course timetabling problem 135

Fig. 1 No. of works on university course timetabling problem (2000–2010)

• Exam timetabling: most educational institutions need to schedule a set of examinations
at the end of each semester or year. In its simplest form, the problem can be defined as
assigning a set of examinations to a fixed number of time periods so that no student is
required to take more than one exam at any time.

• Course timetabling: Course timetabling often involves conditions in which students have
requested a set of courses (seminars, tutorials, laboratories, etc), and the aim is to mini-
mize the total number of conflicts and satisfy all constraints that is discussed in educa-
tional institutions.

There are, of course, substantial differences between two broad categories of the univer-
sity timetabling problem, namely, course and exam timetabling. For example, a number of
exams may be scheduled in one room or an exam may be split across several rooms, while
in course timetabling one course (usually) has to be scheduled into exactly one room. Exam
timetabling often aims to decrease the number of students who have exams in adjacent periods
while in course timetabling it is usually desirable for students to have two or more courses
in a row. Course timetabling problems will generally involve assigning events to a fixed set
of timeslots (e.g. those occurring in exactly one week), whereas exam timetabling problems
might sometimes allow some flexibility in the number of timeslots being used. MirHassani
(2006b) predefined examination schedule that must be modified in order to maximize paper
spread in course of examination. Azimi (2005), applied four techniques (Simulated Anneal-
ing, Tabu Search, Genetic Algorithm and Ant Colony) and three novel hybrid combinations
of them to the classical examination timetabling problem, as an NP complete problem.

We concentrate on the university course timetabling problem. The aim is to find where
and when a course has to be scheduled subject to available resources. The works published
by researchers on this subject in the recent years are depicted in Fig. 1.

2.1 University course timetabling

University course timetabling problems tend to be large scale because of involvement in
lots of courses, classes, lecturers and other resources. Also, the interplay between resources
such as students and lecturers increase problem complexity. Timetabling in schools is usually
more constrained. For example pupils have specified start, finish and time lunch. A compact
timetable, in which there are no free periods, is normally a constraint that does not apply to
a university context.

Altogether, there are many constraints that enforce the university requirements and stu-
dents preference. These constraints are usually divided into two categories:

123

136 S.A. MirHassani, F. Habibi

Table 1 Hard constraints frequently used by researchers

Hc1 Capacity of classroom is limited

Hc2 A class cannot have the same subject for more than two lecture periods a day.

Hc3 A class cannot have a lecture with more than one lecturer

Hc4 A lecturer can only deliver one lecture at a time

Hc5 Each lecture is exactly one period long

Hc6 Students can only have one lecture at a time

Hc7 Each lecturer must deliver a specified number of lectures per week

Hc8 A classroom can only be used for one lecture at a time

Hc9 Lessons can be blocked, if required

Hc10 Lectures can be pre-scheduled to a specific time

Hc11 Lecturers’ unavailability is considered

Hc12 Allocated rooms must be large enough to accommodate the students

Hc13 Only one lecture for a particular course is allowed

Hc14 Double lectures must include two consecutive periods

Hc15 A set of precedence requirements stating that certain events should occur before others

Hc16 We have different time slots of a lecture day that some of them are overlap

I. Hard constraint: These constraints must be satisfied in order to produce a feasible time-
table. Perhaps the most usually hard constraint in timetabling is the so-called “event-
clash” constraint. Examples of such constraints are:

• A lecturer or a student cannot be assigned to more than one lecture in the same
time slot; (Causmaecker et al. 2009).

• A room cannot hold more than one lecture at the same time; (Causmaecker et al.
2009).

II. Soft constraint: Soft constraints are desirable but not absolutely essential. Such con-
straints often determine the quality of a timetable. In real-world situations, it is usually
impossible to satisfy all soft constraints. Certainly, the quality of a solution is depending
on these constraints.

For Example:

• Class timetabling should be as compact as possible, eliminating idle times for students;
(Aladag et al. 2009).

• If possible, students should not have a day with a single class; (Aladag et al. 2009)
Table 1, identifies 16 hard constraints and Table 2 classifies 22 soft constraints that have
been mostly considered by researchers. Some hard constraints (e.g. Hc1, Hc2, Hc3, Hc4,
Hc5 and Hc6) have been widely used, whereas others (e.g. constraints Hc9, Hc7, Hc13
and Hc14) are only considered by a few researchers.

Some constraints are considered as hard constraints by a group of researchers and soft
by others. For example, room capacity (Hc1) was considered as a hard constraint by (Luis
et al. 2009), but a soft constraint (Sc7) by (Pongcharoena et al. 2008) and, (Deris et al. 2000).
An interesting constraint is Hc9 that packs together the grade lessons in a specific style and
reduces the problem size. So we can solve the problem more easily (for example students
that have math 1 cannot have math 2; therefore, we can spot these as one lesson). Hc11 is
related to cases that teachers teach in more than one university or are part-time, and their

123

Solution approaches to the course timetabling problem 137

Table 2 Soft constraints frequently used by researchers

Sc1 Some lecturers require special facilities. (special tools)

Sc2 Students must not have spare periods or a day with a single session

Sc3 Conflicts between optional subjects chosen by students should be avoided

Sc4 Lecturers can specify times when they prefer not to lecture

Sc5 Some lectures should not take place late in the evening

Sc6 Lecturers’ timetables should avoid gaps

Sc7 Rooms should be fully occupied whenever possible, but
capacity constraints should not be violated

Sc8 The timetables for rooms should be as compact as possible

Sc9 Lectures should be spread uniformly over the whole week

Sc10 An hour lunch break must be scheduled between 12:00 and 14:00

Sc11 The students provide a sorted list of preferred course

Sc12 Teaching load of a faculty member must be observed

Sc13 The number of lessons per day can be limited

Sc14 The number of students having lunch at a given time should be controlled

Sc15 Lecture rooms should be close to the host department

Sc16 Students should have consecutive lectures in the same building (to avoid moving students)

Sc17 Classes should have lectures either in the morning or in the afternoon

Sc18 Some classes may be split into smaller groups (for example seminar, laboratory, etc)
the students need to be equally distributed.

Sc19 All sessions of the course should be scheduled in the same room and the same
time-slot, but in different days.

Sc20 Some classes are offered jointly with tutorials, or lab sessions, or both of them

Sc21 Some courses have more than one lecturer

Sc22 Some groups of courses must allocate to special time slots

 08:00 10:00 12:00 13:00 15:00 17:00

 | | | | | |

 (1)
 (2)

 (3)
 (4)

 (5)

Fig. 2 Separate time slots

particular situation has to be taken into account. Hc12 enforces classroom capacity. Hc15
concerns courses that have prerequisite, so this course should first survive before the course
has a prerequisite. For example, the prerequisite of math2 is math1, so if the students do not
pass math 1, they cannot take math 2. Hc16 takes into account circumstances when time-slots
overlap (see Figs. 2 and 3). In both situations the timetable should not involve conflict.

Now we are back to the soft constraints in Table 2. Sc2 represents that there are no gaps
between time-slots that students have courses. Sc19 corresponds to the case that courses
require more than one session, (e.g. have 2 sessions), in this case, both sessions must be

123

138 S.A. MirHassani, F. Habibi

 8:10 9:10 9:20 9:40 11:20

| | | | |

(1)

 (2)

(3)

 (4)

Fig. 3 Partially overlapped time slots

Table 3 Objective functions frequently used by researchers

Obj1 Maximize the students’ preferences

Obj2 Minimize the total number of non-assigned subjects

Obj3 The obtained timetable must be as compact as possible

Obj4 Minimize the number of student left without a seat at a class

Obj5 Minimize the number of distinct course-room allocation on the top of a single
course-room allocation per course

Obj6 Maximize the number of assigned course with urgency

Obj7 Minimize to offer sessions of one course in continuous days (the obtained timetable
must have one day off between two sessions of each course)

Obj8 Minimize the conflict of days and time slots for different course

Obj9 Minimize the total dissatisfaction and inequity cost associate with assignment fac-
ulty members to classes (Maximize the faculty preference)

Obj10 Minimize the empty periods of each teacher (Compact timetable for lecturers)

Obj11 Minimize the empty periods of students between two classes (Compact timetable for students)

Obj12 Minimize the conflicts between co-requisites courses that can take in the same term

scheduled in the same time slot (e.g. both of them in 13:00–15:00) and in the same class but
in different days. Sc20, is about some courses, theoretical or practical or both, that must be
offered jointly with tutorials, or lab sessions. Sc21 is related to courses that have more than
one lecturer, for example in medical branches, more than one lecturer will evaluate a course.
Sc22 shows the case in which a group of courses must be offered in a special time slot. For
example, courses with 2 and 4 (time) units must be offered in special time slots and courses
with 3 units should be offered in other time slots that are perhaps different.

Beyond this constraint, however, there are many other kinds of constraints—hard and
soft—which can affect a timetable. In the real world, it is usually the case that most univer-
sities will have their own specific probationary set of constraints that makes their particular
timetabling problem different to others.

The aim of creating a timetable can be different with administrators. Table 3 identifies 12
objective functions have been considered by previous research. Attend in more occasions,
soft constraints are spot at mould objective function. In this case, some soft constraints stand
with a penalty coefficient in objective function. For example Obj.8, in fact this function is a
soft constraint that its violation will be measured by penalty coefficient and the objective is
to minimize the penalties.

123

Solution approaches to the course timetabling problem 139

Fig. 4 Prerequisite and
co-requisite courses

Object 1, represents the preferences of student, for example, the days in which they prefer
to have classes, should maximize. Obj.2 shows how the courses, teachers, and students have
assigned to classes. Obj.4 represents whether the class allocated to the course has enough
space. To best understand Obj.8, see Fig. 4. Here we see course 3, has only 2 courses (course1
and course2) as prerequisites; therefore, if the student passed course1 and course 2 he/she can
take course 3 and course 4 and course5 (courses that only have course1 as prerequisite). So,
courses 3, 4 and 5 must not conflict. Under this condition all students can take all courses that
are not prerequisite (Note that courses that have prerequisite may conflict). Obj.12 describes
co-requisite courses that must be taken together. Therefore, these courses must not have
conflict.

3 Model based methods

Over the last 30 years, many OR techniques ranging from the use of mathematical program-
ming to heuristics are adopted to solve the timetabling problem.

Asratian and Werra (2002), considered a theoretical model which extends the basic
class-teacher model of timetabling. This model corresponds to some situations which occur
frequently in the basic training programs of universities and schools. (Nergiz et al. 2005), con-
sider a sub-problem of the general timetabling problem in the form of faculty–course–time
slot (FCT) assignments in a single stage. They develop a linear 0–1 multi-objective model for
this problem in which objective functions are related to the administration’s total preferences
on instructor–course and course–time slot assignments, and the instructors’ total preferences
on instructor–course–time slot assignments would be maximized simultaneously. Moreover,
the model includes the administration’s objective functions to minimize the total deviation
from the instructors’ upper load limits. To demonstrate the features of the model, a special
example has been constructed. Because of the multi-objective nature of the FCT model, the
solution process of this problem has been considered in two stages: secularization of the
given problem and, then, solving. Because of the 0–1 nature of the problem, a special scalar
formed approach called conic Scalarization is applied. Also the problem is formulated as a
multi-objective model by Nergiz et al. (2005), and (Ozdemir and Gasimov 2004). Ozdemir
and Gasimov (2004), also constructed a multi objective 0–1 nonlinear model for the problem,
and explained an effective way to solve it. The Analytic Hierarchy Process (AHP) and the
Analytic Network Process (ANP) are used to determine the weights of conflicting objectives.
Efficient solutions corresponding to both sets of weights have been calculated, and the results
compared.

Daskalaki and Birbas (2005) and Nergiz et al. (2005), decomposed the problem into a
series of easier sub-problems. One of the main advantages provided by the decomposition

123

140 S.A. MirHassani, F. Habibi

of timetabling problems is that the solution process becomes easier than that of the whole
problem. Compared to a solving approach that solves the problem in a single stage, com-
putation time for decomposed problems is significantly reduced; nevertheless there may
be some loss in the quality of the solution. Ozdemir and Gasimov (2004), developed
a two-stage relaxation procedure that solves the integer programming formulation of a
university timetabling problem. Relaxation is performed in the first stage and concerns
constraints that ensure consecutiveness in multi-period sessions of certain courses. These
constraints, which are computationally more complex than others, are recovered during the
second stage, and a number of sub-problems, one for each day of the week, are solved for
local optima.

In recent years, because of the advancements in computer software and hardware, IP and
MIP formulations have again started being an acceptable approach for many combinatorial
problems. The new technologies in information systems, the availability of reliable software
and the ability to solve relatively large problems in a relatively short time are the main reasons
for making this traditional modeling approach attractive for solving realistic problems. Two
decades back the problems that were solvable by classical IP techniques, mainly branch-
and-bound, carried tens of integer variables. Now a problem with many thousands and in
special occasions having millions of binary variables is not necessarily a trouble. Regard-
ing the timetabling problems, IP models have been presented for the university timetabling
problem: (Burke et al. 2010; Daskalaki and Birbas 2005; Daskalaki et al. 2004; Al-Yakoob
et al. 2006, 2007; Boland et al. 1977; Papoutsis et al. 2003; MirHassani 2006a) and (Broek
et al. 2009) among people who worked on MIP formulation.

Daskalaki and Birbas (2005) represented a two-stage relaxation procedure that efficiently
solves the integer programming formulation of a university timetabling problem. The relaxa-
tion is performed in the first stage and concerns the constraints that warrantee consecutiveness
in multi-period sessions of certain courses. These constraints, which are computationally
heavier than the others, are recovered during the second stage and a number of sub prob-
lems, one for each day of the week, are solved. Comparing to a solution approach that solves
the problem in a single stage, computation time is reduced significantly without any loss in
quality for the resulting timetables. The new solution approach gives a chance for further
improvements in the final timetables, as well as for a certain degree of interaction with the
users during the construction of the timetables. Daskalaki et al. (2004), presented a novel
0–1 integer programming formulation of the university timetabling problem. The model pro-
vides constraints for a great number of operational rules and requirements found in most
academic institutions. Treated as an optimization problem, the objective is to minimize a lin-
ear cost function. With this objective, it is possible to consider the satisfaction of expressed
preferences regarding teaching periods or days of the week or even classrooms for specified
courses. Moreover, with suitable definition of the cost coefficients in the objective function,
it is possible to reduce the solution space and make the problem tractable. The model is
solvable by existing software tools with IP solvers, even for large departments. The case of a
five-year Engineering Department with a large number of courses and teachers is presented
along with its solution as resulted from the presented IP formulation.

Al-Yakoob et al. (2006, 2007), presented mathematical programming models for assign-
ing faculty members to classes including, among typical academic class scheduling issues,
certain specialized central policies at Kuwait University. The time-slots for classes are ini-
tially assumed to be given and an integer programming model (CFAM) is constructed to solve
the resulting problem, which aims to minimize the individual and collective dissatisfaction
of faculty members in a fair fashion, where dissatisfaction is measured by a function of the
assignment of faculty members to time-slots and specific classes. In order to enhance the

123

Solution approaches to the course timetabling problem 141

quality of results obtained in practice, the model is modified (ECFAM) so that the time-slots
for the classes can be changed; however, with restrictions related to efficient facility utilization
and permitting an administratively regulated maximum number of changes. Gender-based
modeling considerations are also introduced in order to maintain desirable class offering
patterns. Computational results are presented based on solving the models directly by the
CPLEX-MIP (version 7.5) package and also using a specialized LP-based heuristic. The fac-
ulty schedules generated via the proposed approach based on a number of case studies related
to the Department of Mathematics and Computer Science at Kuwait University reveal that
this approach yields improved schedules in terms of fairness and enhanced satisfaction levels
among faculty members. MirHassani (2006a) stated that the integer programming approach
is well-suited for solving the timetabling problem. A novel 0–1 integer programming formu-
lation of the university timetabling problem is presented. Its implementation is immediate
by using a mathematical programming language and an integer programming solver. Broek
et al. (2009) discussed the solution of this real-world timetabling problem. They presented
a complete mathematical formulation and explained all the constraints resulting from the
situation in Eindhoven. They solved the problem using lexicographical optimization with
four sub problems. For all the four sub problems, an elegant integer linear programming
model was given which can be easily solved. Finally, they reported on their computational
experiments and results around the Eindhoven real-world data.

However, the effort required for modeling complicated operational rules, as well as the
computational difficulties that result from the size of real problems have discouraged research-
ers and forced them to turn their interest to other approaches.

4 Heuristic methods

Timetabling has been proved to be a NP-hard problem. This means that the amount of com-
putation required to solve problems increases exponentially with problem size; (Paker et al.
1988) and (Asratian and Werra 2002).This makes it time-consuming and hard to manually
build timetables that satisfy the objectives and constraints, especially for large problems.
Therefore, it is immediate to use efficacious search methods to produce optimal or near-opti-
mal solutions that satisfy the constraints.

A wide variety of approaches to timetabling problems have been described in the liter-
ature and tested on real data. They can be almost divided into four types. Carter (1986a),
Carter et al. (1996) and Carter and Laporte (1996a), describe the major components of the
course timetabling problem. They discuss some of the initial types of algorithms that have
been applied to these problems. They also provide a series of tables listing papers in refer-
eed journals that have either implemented a solution or tested their algorithm on real data.
They made no attempt to provide a qualitative comparison. They restricted their presentation
to a description of the types of technique used and the size of problem solved not includ-
ing commercial software vendors. Carter (1986a), did a survey of the actual applications of
timetabling at several universities and a tutorial guide for practitioners on selecting and/or
designing an algorithm for their own institutions.

The approaches can be roughly divided into four types (Burke and Petrovice 2002):

(1) sequential methods
(2) clustering methods
(3) constraint-based methods
(4) meta-heuristic methods

123

142 S.A. MirHassani, F. Habibi

4.1 Sequential methods

These methods order events using domain heuristics and then sequentially assign the events
into valid time slots so that no events in the period are in conflict with each other (Carter
1986a). In sequential methods, timetabling problems are usually represented as graphs where
events (courses/exams) are represented as vertices, and conflicts between the events are rep-
resented by edges, this method was used by Burke et al. (2007), Werra (1985) and Haan et al.
(2007).

Burke et al. (2007), presented an investigation of a simple generic hyper-heuristic approach
upon a set of widely-used constructive heuristics (graph coloring heuristics) in timetabling.
Within the hyper-heuristic framework, a Tabu search approach is employed to search for
permutations of graph heuristics which are used for constructing timetables in exam and
course timetabling problems. For example, if some students have to attend two events there
is an edge between the nodes which represents this conflict. The construction of a conflict-
free timetable can, therefore, be modeled as a graph coloring problem. Each time slot in the
timetable corresponds to a color in the graph coloring problem and the vertices of a graph
are colored in such a way so that no two adjacent vertices are colored by the same color. A
variety of graph coloring heuristics for constructing conflict-free timetables is available in the
Carter and Laporte (1996a). These heuristics order the events based on an estimation of how
difficult it is to schedule them. The heuristics that are often used are: Burke and Petrovice
(2002).

Largest degree first: Events that have a large number of conflicts with other events (i.e., a
large degree) are scheduled early. The fact is that the events with a large number of conflicts
are more difficult to schedule and so should be tackled first.

Largest weighted degree: This is a modification of the largest degree first which weights
each conflict by the number of students involved in the conflict.

Saturation degree: In each step of the timetable construction an event which has the small-
est number of valid periods available for scheduling in the timetable constructed so far is
selected.

Color degree: These heuristic prioritizes those events that have the largest numbers of
conflict with events that have already been scheduled.

4.2 Clustering methods

In these methods, the set of events is split into groups which satisfy hard constraints and
then the groups are assigned to time periods to fulfill the soft constraints. An early paper
to describe this approach was written by Papoutsis et al. (2003). Beligiannis et al. (2007)
and Fisher and Shier (1983) used different optimization techniques to solve the problem of
assigning the groups of events to time slots. The main drawback of these approaches is that
the clusters of events are formed and fixed at the beginning of the algorithm and that may
result in a poor quality timetable. Haan et al. (2007), used this method in a 4-phase approach
to a timetabling problem in secondary school as it is common in the Netherlands. The prob-
lem has been stated as a graph coloring problem with extra conditions on the availability of
resources (rooms, teachers). The size of the graph involved, and the extra efforts to improve
the quality are the main reasons for the 4-phase approach. They try to control the quality by
a preprocessing phase, and a post-processing phase. In the preprocessing phase, they cluster
events in so-called cluster-schemes. These clustered events can be considered as the new
events to be scheduled. In the second and third phase a feasible timetable is constructed.

123

Solution approaches to the course timetabling problem 143

In the fourth phase a Tabu Search is used to improve the best schedule found. The developed
approach is tested by using data from the Kottenpark, in the Netherlands.

4.3 Constraint-based methods

In these methods a timetabling problem is modeled as a set of variables (i.e., events) to
which values (i.e., resources such as rooms and time slots) have to be assigned to satisfy
a number of constraints. Usually a number of rules are defined for assigning resources to
events. When no rule is practicable to the current retail solution, a backtracking is enforced
until a solution is found that satisfies all constraints. Abdennadher and Marte (2000), showed
how to model their timetabling problem as a partial constraint satisfaction problem and
gave a concise finite domain solver implemented with Constraint Handling Rules that, by
performing soft constraint propagation, allows for making soft constraints an active part of
the problem-solving process. Furthermore, they improved efficiency by reusing parts of the
timetable of the previous year. Their prototype needs only a few minutes to create a timetable
while manual timetabling usually takes a few days. Valouxis and Housos (2003), have talked
about the timetabling problem for a typical high school environment, that was modeled and
solved using a constraint programming (CP) approach. The previous timetabling problem
was defined as a constraint satisfaction problem (CSP), consisting of a set of variables and
a set of constraints. For each variable, a finite set of possible input values is defined and the
constraints main role is to restrict the values that the problem variables can simultaneously
take.

4.4 Meta-heuristic methods

Over the last two decades, a variety of meta-heuristic approaches such as Simulated
Annealing, Tabu Search, Genetic Algorithms, Ant Colony and hybrid approaches have been
investigated for the timetabling problem. Also, some very good results have been reported.
Meta-heuristic methods begin with one or more initial solutions and employ search strate-
gies that try to avoid local optima. Most of these search algorithms can produce high quality
solutions (Burke and Petrovice 2002).

4.4.1 Genetic and memetic algorithm

The grouping genetic algorithm (GGA) is a class of evolutionary algorithm mainly modified
to tackle grouping problems, i.e. problems in which a number of parts must be assigned to
a set of predefined groups. Dimopoulou and Miliotis (2001), presents a novel application of
the hybrid grouping genetic algorithm in a problem related to university timetabling.

Specifically, the assignment of students to laboratory groups is tackled. It was proposed
by Falkenauer (1992), when realized that traditional genetic algorithms had some drawbacks
while they were applied to grouping problems (mainly, the traditional encoding increases
the space search size in this kind of problems). Thus, in the GGA, the encoding, crossover
and mutation operator of traditional GAs are modified, to obtain a compact algorithm with
very good performance in grouping problems. The GGA has been successfully applied to
a number of problems, in different fields such as (Brown and Vroblefski 2004) in telecom-
munications, (James et al. 2007b) in manufacturing, (James et al. 2007a) in planning the
problem and (Hung et al. 2003) in industrial engineering. Ross et al. (2003), used genetic
algorithms to solve the timetabling problem. Beligiannis et al. (2007), used this algorithm

123

144 S.A. MirHassani, F. Habibi

for school timetabling. The proposed genetic algorithm is used in Beligiannis et al. (2007),
to create feasible and efficient timetables for high schools in Greece.

Carrasco and Pato (2001), began by presenting the timetabling problems that emerge in
the context of educational institutions. This is followed by a description of the basic charac-
teristics of the class/teacher timetabling problem. A multi-objective genetic algorithm was
proposed for this timetabling problem, incorporating two distinct objectives. They concern
precisely the minimization of the violations of both types of constraints, hard and soft,
while respecting the two competing aspects—teachers and classes. A brief description of
the characteristics of a genetic multi objective meta-heuristic is presented, together with the
non-dominated sorting genetic algorithm. This approach represents each timetabling solution
with a matrix-type chromosome and is based on special-purpose genetic operators of cross-
over and mutation developed to act over a secondary population and a fixed-dimension main
population of chromosomes. The paper concludes with a discussion of the favorable results
obtained through an application of the algorithm to a real instance taken from a university
establishment in Portugal.

Rossi-Doria and Paechter (2004), tried the memetic algorithm to improve the perfor-
mance of a genetic algorithm by incorporating local neighborhood search. The main idea of
the memetic algorithm is to explore the neighborhood of the solutions obtained by a genetic
algorithm and to navigate the search toward the local optima (for each solution) before pass-
ing back to the genetic algorithm and continuing the process. The main drawback of these
approaches is that they need initial solution that generate randomly. If initial solution is not
chosen fitly it may result in a poor quality timetable or too many algorithm iterations.

4.4.2 Simulated annealing

Simulated Annealing (SA) has its origins in statistical physics, where annealing involves
the slow cooling of a solid until it reaches a low-energy ground state. In general, the SA
performs a stochastic search of the neighborhood space. SA starts with an initial state (s),
which includes a point randomly selected from the search (solution) space and an initial
temperature. A next point (s*) is randomly selected from a set of neighbors to the current
point. If the objective function associated with the selected neighbor, E(s*), is better than the
objective value of the initial point E(s), it is accepted as the new point for the next neighbor-
hood search (NS). Otherwise, it is accepted with a probability where � e is the change to
the objective value. The next step is another search for a new set of neighborhoods for the
selection process. The temperature is then reduced to focus on a specific region. A cooling
rate (r) is specified that determines the amount of computation required and the quality of
solutions. The initial temperature value (t0), the number of iterations to be performed at each
temperature, the cooling rate and the termination criterion are specified by the “SA cooling
schedule”.

SA has been used to solve many types of combinatorial optimization problems includ-
ing course scheduling and examination timetabling. Among persons who have adopted this
approach are, (Grigorios et al. 2008), and, (Kustoch 2003).

4.4.3 Tabu search

One of the most efficacious algorithms for the solution of the problem is the Tabu Search (TS)
algorithm. TS has proved its efficiency in solving the combinatorial optimization problems.
A Tabu search algorithm consists of using advanced strategies and usual components such

123

Solution approaches to the course timetabling problem 145

as Tabu list, various memories, neighborhood structures, and so on. One of the most impor-
tant factors which affect the sufficiency of the algorithm is a defined neighborhood structure
pertained to the nature of the problem. The idea behind TS is to start from a random solution
and successively move to one of its neighborhoods, see Aladag et al. (2009), Cordeau et al.
(2003), Causmaecker et al. (2009), and Jaumard et al. (2002), among the other.

Causmaecker et al. (2009), presented a decomposed meta-heuristic approach to solve a
real-world university course timetabling problem. Essential aspects in this problem are the
overlapping time slots (see Fig. 3) and the irregular weekly timetables. A first stage in the
approach reduces the number of subjects through the introduction of new structures. The
next stages involve a meta-heuristic search that attempts to solve the constraints one by one,
instead of trying to find a solution for all the constraints at once. Test results for a real-world
instance are presented since their main concern was the automated generation of real-world
university course timetables and not the construction of yet another new search algorithm.
They applied Tabu search which has been proven to be very successful in a variety of timet-
abling problems.

Aladag et al. (2009), examined the four different neighborhood structures based on types
of move such as simple, swap. Two of the four neighborhood structures used in their study
were used by Aladag and Hocaoglu (2007a), and Alvarez et al. (2002). The two neighborhood
structures differ in terms of the used moves which are simple and swap. Other used neighbor-
hood structures proposed in this paper compose of combining the simple and swap moves.
By doing so, they aimed at constituting a diversification effect in the used TS algorithm.
Based on the usage of four neighborhood structures, the fall semester of course timetabling
problem of the department of statistics at Hacettepe University is solved utilizing the TS
algorithm introduced. According to the results obtained, multiple comparisons among all
neighborhood structures are statistically conducted.

As mentioned, the approach needs to start from a random solution, so a fit initial random
solution must be picked and moved toward a high quality timetable. It is the main drawback
of this approach.

Zhipeng et al. (2009), present an Adaptive TS algorithm (ATS) for solving a problem of
curriculum-based course timetabling. The proposed ATS algorithm integrates several distin-
guished features such as an original double Kempe chains neighborhood structure, a penalty-
guided perturbation operator and an adaptive search mechanism. Computational results show
the high effectiveness of the proposed ATS algorithm compared with five reference algorithms
as well as the current best known results. This paper also gives an idea about the essential
ingredients of the ATS algorithm.

Burke et al. (2010), studied an approach to such problems, which can be thought of as multi-
phase exploitation of multiple objective/value—restricted sub-models. In this approach, only
one computationally difficult component of a problem and the associate subset of objectives
are considered at first. This produced a partial solution, which defines interesting neighbor-
hoods in the search space of the complete problems. Often, it is possible to pick the initial
component so that variable aggregation can be performed at the first stage, and the neighbor-
hoods to be explored next are guaranteed to contain feasible solutions. The goal is to find an
assignment of events to slots and rooms, so that the assignment of events to slots is a feasible
bounded coloring of an associated conflict graph and the linear combination of the number
of violation of soft constraint is minimized. In the proposed heuristic, an objective restricted
neighborhood generator product assignment of periods to events, with decreasing number of
violations of two period-related soft constraints. Those are relaxed into assignment of events
to days, which define neighborhoods that are easier to search with respect to all four soft
constraints, integer programming formulation for all sub problems are given and evaluated.

123

146 S.A. MirHassani, F. Habibi

Fig. 5 Employed methods (2002–2010)

The most frequently used heuristic methods are Genetic and Memetic Algorithm (GMA),
Simulated Annealing (SA), Tabu Search (TS), Graph Coloring Algorithm (GCA) and Mixed
Integer Programming (MIP). In Fig. 5, we see that across methods said to solve timetabling
problems, in recent years, employed the MIP and the genetic algorithm more than other
approaches.

The timetabling problem can also be represented as stochastic optimization. Pongcharoena
et al. (2008), described the Stochastic Optimization Timetabling Tool (SOTT) that has been
developed for university course timetabling. GA, SA and random search are embedded in
the SOTT. The algorithms include a repair process, which ensures that all infeasible time-
tables are rectified. This prevents clashes and ensures that the rooms are sufficiently large
to accommodate the classes. The algorithms also evaluate timetables in terms of soft con-
straints; minimizing student movement; avoiding fragmentation in the timetables for students
and lecturers; and satisfying lecturers’ preferences for the timing of classes. The algorithms
were tested using two sets of timetabling data from a collaborating university. Both GA and
SA produced very good timetables, but the results obtained from SA were slightly better than
those using GA.

5 Directions for future work

We believe that there is still considerable scope for further work in this general direction.
Because the university course timetables produced in this way involves some problems.

• One of the problems with many existing university course timetabling systems is that the
system is often tailored to the needs of a particular institution or user. So, it is necessary
to provide a method that easily reformulated or customized to support change.

• Also, there is no timetable that spots all constraints (hard and soft) and objectives. In
the most university course timetabling tasks, only some of these constrains, not all, are
enforced, and to compliance some objectives, jar on other objectives. Therefore a more
general timetable is essential.

• As mentioned, the general course timetabling problem is known to be NP-hard and also,
in practice, a challenging computational task; therefore, the need for an algorithm that can
solve the whole timetabling problem (relevant to each institute), and generate high qual-
ity timetables in the shortest computational time is evident. Many successful university
timetabling systems are often applied only in the institutions where they were designed.

123

Solution approaches to the course timetabling problem 147

• It pointed out that manual techniques for course timetabling problem are very time-con-
suming. It is clear that a well-established method could potentially lead to a valuable tool
in solving these problems. The MIP models are solvable by current software tools but
special software that utilize problem characteristics can lead to a powerful tool, even for
large departments.

6 Conclusion

This paper surveys approaches to the solution of university course timetabling problem. An
overall conclusion is that there are considerable benefits to be gained from studying the
course timetabling problem. Different methods are discussed and a separate literature review
is provided for each one. It seems that decomposing large problems into smaller ones and
hybridizing the heuristics methods to produce advanced search methods could lead to pow-
erful tools that function well not only on the particular problem but also create high quality
timetables in general. These tools would be the appropriate facilities for providing valuable
help to the decision maker to implement a good course and examination timetable. This
approach seems to present a promising direction in the development of efficient algorithms
that deal with large scale problems.

References

Abdennadher S, Marte M (2000) University course timetabling using constraint handling rules. J Appl Artif
Intell 143:311–326

Aladag CH, Hocaoglu G (2007) A tabu search algorithm to solve course timetabling problem. Hacettepe J
Math Stat 36(1):53–64

Aladag CH, Hocaoglu G, Basaran MA (2009) The effect of neighborhood structures on tabu search algorithm
in solving course timetabling problem. Expert Syst Appl 36:12349–12356

Alvarez R, Crespo E, Tamarit JM (2002) Design and implementation of a course scheduling system using
tabu search. Eur J Oper Res 137:512–523

Al-Yakoob SM, Sherali HD (2007) A mixed-integer programming approach to a class timetabling problem:
a case study with gender policies and traffic considerations. Eur J Oper Res 180:1028–1044

Al-Yakoob SM, Sherali HD (2006) Mathematical programming models and algorithms for a class–faculty
assignment problem. Eur J Oper Res 173:488–507

Asratian AS, Werra D (2002) A generalized class teacher model for some timetabling problems. Eur J Oper
Res 143:531–542

Azimi Z (2005) Hybrid heuristics for examination timetabling problem. Appl Math Comput 163:705–733
Beligiannis GN, Moschopoulos C, Likothanas SD (2007) A genetic algorithm approach to school timetabling.

Journal of the Operational Research Society 1:1–20
Birbas T, Daskalaki S, Housos E (1977) Timetabling for Greek high schools. Journal of the Operational

Research Society 48:1191–1200
Boland N, Hughes BD, Merlot LT, Stuckey PJ (1977) Timetabling for Greek high schools. Journal of the

Operational Research Society 48:1191–1200
Broek JVD, Hurkens C, Woeginger G (2009) Timetabling problems at TU Eindhoven. European Journal of

Operation Research 192:877–885
Brown EC, Vroblefski M (2004) A grouping genetic algorithm for the microcell sectorization problem. Engi-

neering Applications of Artificial Intelligence 17(6):589–598
Burke Ek, Kingston J, de Werra D (2004) Applications to timetabling. In: Gross J, Yellen J (eds) Handbook

of graph theory. Chapman Hall/CRC Press, London, pp 445–474
Burke EK, Kingston J, Jackson K, Weare R (1997) Automated university timetabling. The state of the art.

Comput J 40(9):565–571
Burke EK, Elliman DG, Weare RF (1994a) A genetic algorithm for university timetabling. AISB Workshop

on Evolutionary Computing, University of Leeds, UK, Society for the Study of Artificial Intelligence
and Simulation of Behaviour, pp 35–40

123

148 S.A. MirHassani, F. Habibi

Burke EK, Elliman DG, Weare RF (1994b) A university timetabling system based on graph colouring and
constraint manipulation. J Res Comput Educ 27(1):1–18

Burke EK, Ross P (1996) The practice and theory of automated timetabling. Selected papers from the 1st inter-
national conference on the practice and theory of automated timetabling, Napier University, August/Sep-
tember, Springer Lecture Notes in Computer Science Series, pp 309–324

Burke EK, Kendall G, Soubeiga E (2003) A tabu search hyper heuristic for timetabling and rostering. J Heu-
ristics 9(6):51–70

Burke EK, McCollum B, Meisels C, Petrovic A, Rong Q (2007) A graph-based hyper-heuristic for educational
timetabling problems. Eur J Oper Res 176:177–192

Burke EK, Mrecek J, Parkes AJ, Rudova H (2010) Decomposition, reformulation, and divingin university
course time tabling. Comput Oper Res 37:582–597

Burke EK, Petrovice S (2002) Recent research directions in automated timetabling. Eur J Oper Res 140:
266–280

Carrasco MP, Pato MV (2001) A multiobjective genetic algorithm for the class/teacher timetabling problem.
Lect Notes Comput Sci 2079:3–17

Carter M (1986) A lagrangian relaxation approach to the classroom assignment. INFOR 27(2):230–246
Carter M (1968) A survey of practical applications of examination timetabling algorithms. Oper Res 34:

193–202
Carter MW, Laporte G (1998) Recent developments in practical course timetabling. In: Selected and revised

papers of the second international conference on practice and theory of automated timetabling (PATAT
1997), LNCS. Springer, Toronto, vol 1408, pp 3–19

Carter M, Burke EK (1998) The practice and theory of automated timetabling II, selected papers from the 2nd
international conference on the practice and theory of automated timetabling. University of Toronto o,
August 278 Burke EK and Petrovic S J Oper Res 140, pp 266–280

Carter MW, Laporte G (1996a) Recent developments in practical examination timetabling. In: Burke EK, Ross
P (eds), the practice and theory of automated timetabling. Springer, Berlin, Selected papers from the 1st
international conference. LNCS 1153. Springer, Berlin, Heidelberg, pp 3–21

Carter MW, Laporte G, Lee SY (1996) Examination timetabling: algorithmic strategies and applications.
J Oper Res 74:373–383

Causmaecker DBB, Demeester PA, Berghe GV (2009) A decomposed metaheuristic approach for a real-world
university timetabling problem. Eur J Oper Res 195:307–318

Cordeau JF, Jaumard, Morales R (2003) Efficient timetabling solution with tabu search. International timet-
abling competition results, http://www.idsia.ch/Files/ttcomp2002/jaumard.pdf

Daskalaki S, Birbas T (2005) Efficient solutions for a university timetabling problem through integer pro-
gramming. Eur J Oper Res 160:106–120

Daskalaki S, Birbas T, Housos E (2004) An integer programming formulation for a case study in university
timetabling. Eur J Oper Res 153(1):117–135

Deris S, Omatu S, Ohta Hiroshi (2000) Timetable planning using the constraint-based reasoning. Comput
Oper Res 27:819–840

Dimopoulou M, Miliotis P (2001) Implementation of a university course and examination timetabling system.
Eur J Oper Res 130:202–213

Falkenauer E (1992) The grouping genetic algorithm–widening the scope of the GAs. In: Proceedings of the
Belgian journal of operations research, statistics and computer science, vol 33, pp 79–102

Fisher JG, Shier DR (1983) A heuristic procedure for largescale examination scheduling problems. Technical
Report, Department of Mathematical Sciences, Clemson University 417

Grigorios N et al (2008) Likothanassisa applying evolutionary computation to the school timetabling problem.
Greek Case Comput Oper Res 35:1265–1280

Haan pd, Landman r, Post G, Ruizena H (2007) A four-phase approach to a timetabling problem in secondary
schools. 7500 AE Enschede, The Netherlands Department of applied Matematics, University Twente,
P.O. Box 217

Hung C, Sumichrast RT, Brown EC (2003) A grouping genetic algorithm for material cutting plan generation.
Comput Ind Eng 44(4):651–667

Ismayilova NA, Sagir M, Rafail N (2005) A multiobjective faculty–course–time slot assignment pr with pref-
erences. Math Comput Modell 46:1017–1029

James T, Vroblefski M, Nottingham Q (2007) A hybrid grouping genetic algorithm for the registration area
planning problem. Comput Commun 30(10):2180–2190

James TL, Brown EC, Keeling KB (2007) A hybrid grouping genetic algorithm for the cell formation problem.
Comput Oper Res 34:2059–2079

Jaumard J, Cordeau R, Morales (2002) Efficient timetabling solution with tabu search, Working Paper, Avail-
able from Metaheuristics Network. International Timetabling Competition

123

http://www.idsia.ch/Files/ttcomp2002/jaumard.pdf

Solution approaches to the course timetabling problem 149

Kustoch PA (2003) Timetabling competition SA-based heuristics. International timetabling competition results
Luis E, Blas A, Salcedo-Sanz S, Emilio G, Portilla A (2009) A hybrid grouping genetic algorithm for assigning

students to preferred. Expert Syst Appl 36:7234–7241
MirHassani SA (2006) A computational approach to enhancing course timetabling with integer programming.

Appl Math Comput 175:814–822
MirHassani SA (2006) Improving paper spread in examination timetables. Appl Math Comput 179:702–706
Newall JP, Weara RF, Burke E (1996b) A memetic algorithm for university exam timetabling Practice and

theory of automated timetabling. Lecture notes in computer science. Springer, Berlin, pp 241–250
Ozdemir MS, Gasimov RN (2004) The analytic hierarchy process and multiobjective 0–1 faculty course

assignment problem. Eur J Oper Res 157(2):398–408
Paker RG, Rardin RL, Diego S (1988) Discrete optimization. Academic Press Inc, USA
Papoutsis K, Valouxis C, Housos E (2003) A column generation approach for the timetabling problem of

Greek high schools. J Oper Res Soc 54:230–238
Pongcharoena P, Promtetb W, Yenradeec P, Hicksd C (2008) Stochastic optimization timetabling tool for

university course scheduling. Int J Prod Econ 112:903–918
Ross P, Hart E, Corne D, Chosd, Tsutsui S (2003) Genetic algorithms and timetabling. Advances in evolu-

tionary computation, theory and applications, pp 755–771
Rossi-Doria O, Paechter B (2004) A memetic algorithm for university course timetabling, in Combinatorial

Optimisation. Book of Abstracts
Schaerf A (1999) A survey of automated timetabling. Artif Intell Rev 13(2):87–127
Valouxis C, Housos E (2003) Constraint programming approach for school timetabling. Comput Oper Res

30:1555–1572
Werra D (1985) An introduction to timetabling. Eur J Oper Res 19(2):151–162
Zhipeng Lu AB, Jin-Kao Hao A (2009) Adaptive Tabu Search for course timetabling. Eur J Oper Res

200(1):235–244

123

	Solution approaches to the course timetabling problem
	Abstract
	1 Introduction
	2 Problem description
	2.1 University course timetabling

	3 Model based methods
	4 Heuristic methods
	4.1 Sequential methods
	4.2 Clustering methods
	4.3 Constraint-based methods
	4.4 Meta-heuristic methods
	4.4.1 Genetic and memetic algorithm
	4.4.2 Simulated annealing
	4.4.3 Tabu search

	5 Directions for future work
	6 Conclusion
	References

