
Artif Intell Rev (2012) 38:313–324
DOI 10.1007/s10462-011-9256-4

Toward understanding the optimization
of complex systems

Jiming Liu · Yu-Wang Chen

Published online: 22 June 2011
© Springer Science+Business Media B.V. 2011

Abstract In response to the increasing demands for solving various optimization prob-
lems arisen from complex systems, the paper focuses on the study of a general-purpose
distributed/decentralized self-organized computing method, with the help of agent-oriented
modeling method. The goal of this paper is to unravel the microscopic characteristics and
the hidden complexity of complex computational systems, and furthermore, construct proper
mechanisms that will support self-organized computation.

Keywords Complex systems · Optimization · Self-organized computation · Complexity ·
Agent-oriented modeling

1 Introduction

Large-scale, highly-distributed optimization problems are pervasive in the field of com-
plex systems, such as optimal path routing in public transportation systems, planning and
scheduling in manufacturing systems, microarray gene ordering in biological genomics,
search optimization in social networks. Traditionally, to a specific optimization problem,
a well-defined mathematical model is indispensable for finding the optimal solution of
extremizing the functional objective. However, in complex systems there exist an enormous
number of interacting and dynamically-evolving entities, modules, or subsystems, and so their

The abstract of this paper was accepted for the poster session at the European Conference on Complex
Systems (ECCS) 2009.

J. Liu · Y.-W. Chen (B)
Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong
e-mail: ywchen@comp.hkbu.edu.hk

J. Liu
e-mail: jiming@comp.hkbu.edu.hk

Y.-W. Chen
Manchester Business School, The University of Manchester, Manchester M15 6PB, UK

123

314 J. Liu, Y.-W. Chen

optimization requirements are hardly possible to be satisfied by strict mathematical tools or
centralized optimization methods. Consequently, in past decades computer scientists have
developed a series of autonomic, distributed and nature inspired computing techniques
for solving specific optimization problems in complex systems. For example, Autonomy-
Oriented Computing (AOC) (Liu et al. 2005) could collectively detect certain image features
by numerous autonomous imaging entities; Google’s PageRank (Brin and Page 1998) used a
distributed search engine, and could return the searching results in a few seconds from billions
of websites; Message-passing method (Frey and Dueck 2007) could efficiently cluster the
data points by affinity propagation. Generally speaking, all these computing methods implic-
itly utilize the locally interacting mechanisms and the collective characteristics in tackling
the optimization requirements of complex systems.

In response to the increasing demands for solving various optimization problems arisen
from complex systems, in this paper we will try to build a fundamental understanding of the
optimization of complex systems. The ultimate motivations of this study are two-fold: (1) to
unravel the microscopic mechanism and the hidden complexity of computational systems; (2)
to explore a general-purpose distributed/decentralized self-organized computing architecture
for large-scale optimization problems.

This structure of this paper is organized as follows: In Sect. 2, we propose the agent-
oriented modeling method for complex computational systems. We then apply a hierarchical
framework to analyze the computational complexity in Sect. 3. In Sect. 4, we present a
self-organized computing architecture, with comparative and analytical studies. In Sect. 5,
we conclude this paper.

2 Agent-oriented modeling of complex computational systems

For characterizing the optimization requirements, the agent-oriented modeling method has
become very popular in complex systems.

2.1 Autonomous agents

Agent-oriented methods have been extensively applied to model various large-scale distrib-
uted complex computational systems, such as human systems (Bonabeau 2002), economic
systems (Samanidou et al. 2007), software engineering systems (Jennings and Bussmann
2003), etc. In virtue of agent-oriented modeling methods, a computational system A can be
modeled as a set of autonomous entities called agent. Consequently, the system state can
be formulated by the microscopic state of the agents, and the dynamics of system evolution
can be described by the interactions between agents. Here, the notion of agent is an abstract
concept, which can be considered as decision variable, constraints, modules, and even if
problem-specific sub-subsystems. For example, the computing agents can represent the dis-
crete variables called spins in the Ising model (McCoy and Tsun Wu 1973), the variables
or clauses in constraints satisfaction systems (Tsang 1993), the nodes or communities in
complex networks (Strogatz 2001; Newman 2003). Generally, the agents, like its biological
counterpart, can collect local (limited) information and assess its environment. At the same
time, each of them can compete or cooperate with neighboring agents for achieving individ-
ual or global objectives, and then make reasonable actions on the basis of a set of behavioral
rules. More specifically, an autonomous computing agent a can be characterized with the
following basic properties:

123

Toward understanding the optimization of complex systems 315

• a finite number of possible states Sa ;
• local fitness function f (a) for evaluating its current state and environmental conditions;
• behavioral rule repository Ra .

Usually, the autonomous agents in most of computational systems are considered as
homogenous, and their state space can be represented with consistent domain of defini-
tions. However, in more general cases, the agents are heterogeneous and each class of them
should be defined, respectively. In the process of evolution, each agent needs to build a
local objective function for evaluating the pressure of updating its transient state. The local
evaluator can collect local information, including the current state of the agent, the states of
neighbors and the incomplete information of environment, and then guide the agent to take
specific behaviors from its behavioral rule repository.

After defined the basic elements, a complex computational system can now be described
as:

• a group of autonomous agents A = {a1, a2, . . ., an};
• interactions between agents, which implicitly affect global patterns at the system level;
• a set of reactive rules, governing the interactions among agents.

As a result, the solution of computational systems can be formulated as the state vec-
tor of all agents s = {s1, s2, . . ., sn}. Since the optimization solution is usually a nontrivial
combination of a large number of locally constrained variables, the distributed nature of
agent-oriented model may provide the possibility of solving the computing problems by
local behaviors of agents.

2.2 Interactions among agents

In agent-oriented computational systems, agents are not isolated from each other. The behav-
iors taken by each agent are usually influenced by its neighboring agents, and the global
patterns are emerged from those local interactions. Commonly, there exist two types of inter-
actions, direct interactions and indirect interactions. Direct interactions could occur directly
between any pair of agents. Indirect interactions could only be achieved through the long-
range aggregated effects or nonlinear feedback between agents and environments, and the
shared environments will serve as the media for indirect interactions (Liu 2001, 2008).

Usually, different complex systems have different types of direct and indirect interactions.
For the sake of explanation, here we take the Ising computing model as an example. Suppose
that the state vector σ = {σ1, σ2, . . ., σn} represent the assignment of the Ising spins, in
which each state variable takes on the value of 1 or -1, and so the energy function of the Ising
computing model can be represented as:

F(σ) =
n∑

i=1

hiσi +
n∑

i=1

n∑

j=1

Ji jσiσ j (1)

The first summation is the biased energy excitated by magnetic fields. The second is the
interacting energy, which can be calculated over all edges in complete graph G. Ji j is the
coupling coefficient. As the discussion of the Ising model, we find that direct interactions
can be represented by the interaction matrix J = {Ji j }. However, indirect interactions are
usually difficult to be explicitly expressed in objective function or constraints.

123

316 J. Liu, Y.-W. Chen

2.3 Local-to-global mapping

Having described the basic elements and bonds of agent-oriented computational systems,
namely, agents and interactions, in this section we will develop several general guidelines
and principles for designing local self-organized mechanisms that can realize a desired global
optimization objective.

2.3.1 Local fitness function

In self-organized computational systems, inputs are concerned with locally interacted agents
and a specific microscopic configuration. Outputs refer to the desired global solution or
the macroscopic behavioral patterns. When deploying emergent computing mechanisms to
manipulate the input agents and generate the desired microscopic configuration, a local
fitness function should be developed firstly, and through it each agent can assess its current
state and sense the environments, then select behaviors and perform interactions (Liu et al.
2002). However, a natural question arising is which types of local fitness function are capa-
ble of guiding the computational systems to evolve toward the global optimum. In order to
answer this question, let us firstly take a view on an elementary case in Fig. 1, which is
abstracted from the fitness landscape of epistasis (Poelwijk et al. 2007).

In Fig. 1, we try to illustrate the requirements of building local fitness function with three
tentative fitness landscapes, in which each path evolves from the initial solution ‘ab’ to the
global optimum ‘AB’ through updating each agent once, and the solid paths are regarded
as the favored evolutionary paths. For selecting the favored trajectories, Fig. 1a indicates
that local fitness function for each agent should reflect the sign of the global fitness changes,
seemingly, in the intermediate process updating ‘a’ to ‘A’ yields the opposite fitness effect for
updating ‘b’ to ‘B’; Fig. 1b, c show that local fitness function should be capable of measuring
the magnitude of the global fitness changes, e.g., updating ‘a’ to ‘A’ has more positive or less
negative fitness effect than updating ‘b’ to ‘B’.

With these two premises, we can define reasonable local fitness functions for different
computational systems. For example, in the Ising computing model the local fitness of the
spin σi can be represented as:

fσ (σi) = σi (hi +
∑

j∈N (i)

Ji jσ j) (2)

where N (i) is the set of spins directly interacted with the spin σi . And then, the global fitness
changes can be consistently calculated by the local fitness function when flipping the state
of spins. With the definition of the consistent local fitness function, the emergent computing
methods can now know how to apply the local behavioral rules in the presence of natural or
priority-based selection mechanisms.

Global optimum

Fitness

ab

aB

Ab

AB

ab
aB

Ab
AB

(a) (b)

ab

aB

Ab

AB

(c)

Fig. 1 Illustration of accessible evolutionary paths

123

Toward understanding the optimization of complex systems 317

2.3.2 Local update rules of emergent computation

In order to self-organize the agent-oriented computational system and achieve desired mac-
roscopic patterns, the agents need to be locally regulated according to their local fitness. In
the field of traditional combinatorial optimization, the local update rules are usually regarded
as neighboring operation (Ahuja et al. 2002). Theoretically, the updates must make any two
macroscopic states reachable in the fitness network of solution space, that is to say, the
computational system should be ergodic if we want to find the optimal solution. However,
agent-oriented computational systems are usually non-ergodic due to the biased selection
mechanisms. In practice almost all nature-inspired optimization methods are committed to
providing a non-ergodic searching process for efficiently finding out an optimal or near-
optimal solution. In addition, because updating those selected agents will also affect their
neighboring agents, the long-range stochasticity and historically aggregated effects can create
sufficiently diverse microscopic configurations.

3 Hierarchical analysis of computational complexity

The term “complexity” has different meanings in different disciplines, e.g., statistical phys-
ics, computational biology, complex systems, etc. In agent-oriented computational systems,
complexity is usually used to characterize the degree of difficulty in predicting the macro-
scopic properties of the system. In the paper, we try to illuminate the hidden computational
complexity at two different levels: microscopic level and macroscopic (system) level.

3.1 The characteristics of microscopic complexity

At the microscopic level, we can say that a system is complex if it consists of a number of
interacting components, and the global behavior is difficult to deduce from the local rules of
entities. For example, metal has macroscopic properties, such temperature, conductivity, etc.,
and these macroscopic properties may emerge from the microscopic interactions of atoms.
As the interactions increases, the states of each entity become more dependent on the states
of those interrelated entities, making it difficult to understand the internal mechanism. In
this section, we try to explain the complexity of computational systems by the complexity
of agents and interactions. That is to say, the increase in the complexity of computational
system may be characterized by a growth in the dimension of systems and the intensity of
local interactions.

• The dimension of systems

In computational systems, the dimension of systems can be reflected by the number of
autonomous entities. For example, a cellular automata is more complex if it has more autom-
aton, and its computation needs more space and time complexity (Mitchell 1998).

Usually, most conventional theories with the mathematical insights of measuring com-
plexity depend on the dimension of computational systems (Mertens 2002). For example, in
NP-hard theory all problems are regarded as tractable if their computational complexity in
the worst case grows polynomially with the dimension of systems. Contrarily, those problems
can only be solved by algorithms with non-polynomial time complexity, such as O(2n) or
O(n!), are called intractable. In last century the complexity theory mainly focused on this
worst-case analysis. However, the theory of phase transition recently developed by computer

123

318 J. Liu, Y.-W. Chen

scientists shows that the optimization problem with the same dimension will exhibit a drastic
change on the computational complexity (Cheesman et al. 1991).

• The complexity of entities

Firstly, the complexity of entities is directly affected by their state space. For example,
a Boolean cellular automata is less complex than a multi-valued one, in which each autom-
aton has more possible states (Mitchell 2006). Secondly, the complexity of entities can be
measured by the distribution of microscopic properties, such as the scale-free degree distri-
bution in complex network (Barabási and Albert 1999), the exponential kth nearest neighbor
distribution in random computing systems (Liu et al. 2008), etc. Here, let us consider the
K -satisfiability problem (K -SAT), which is the first optimization problem to be proved
NP-hard. The goal of K -SAT is to find a solution that simultaneously satisfies a set of M
constraints between N decision variables x ∈ {x1, x2, . . . , xN }. Generally, each constraint
is represented as a logical or clause of K variables or its negations (Mézard et al. 2002). In
naturally-generated paradigm, each clause is composed of K randomly-selected variables.
Correspondingly, each variable would be connected on average K × M/N clauses, whereas
some variable has more and some has less clauses. The generic structure of K -SAT prob-
lems was usually represented as factor graphs (Mézard and Zecchina 2002). As a result,
the degree distribution of variable nodes, i.e., the probability distribution of the number of
clauses connected to variables, can be represented as:

P(c = ξ) =
(

M
ξ

) (
K

N

)ξ (
1 − K

N

)M−ξ

(3)

Obviously, if a variable was connected to only one clause or connected to multiple clauses
with the same interactions (positive or negative), its value can be easily decided in the opti-
mal solution, and these backbone variables could remain unchanged during optimization.
However, if a variable was connected to multiple clauses with the different interactions, its
value is extremely hard to be decided, especially for those variables with relatively high
degree in the Poisson distribution. Perturbing the state of these nodes may bring avalan-
ched changes in the microscopic configurations. Similarly, the complexity in a scale-free
network may have a direct relationship with a few highly connected hubs in the power-law
degree distribution (Albert and Barabási 2007). In addition, we can also deduce that differ-
ent microscopic distributions result in the phenomenon of phase transition in computational
complexity.

• The complexity of interactions

Mathematically, the interactions of computational systems can be represented as the
interaction matrix, from which we can also analyze the complexity of interactions. The
complexity of interactions is usually having direct relationship with two factors. The first
factor is the extensity of interactions, which is less extensive if the interaction matrix is
sparser. For example, the Ising model with periodic boundary, in which couplings only
exist between the spins σi and σi+1, can be easily solved. The second is the heterogene-
ity of entities. The computational system is more complex if interactions are more het-
erogeneous. The extremely simple case is the computational system with totally identical
interactions, and it can be easily solved by statistical analysis methods. In statistical phys-
ics, the heterogeneous computational systems are usually reduced by mean-field method
(Opper and Saad 2001), in which various interactions are replaced by average or effec-
tive interaction. In past decades, computer and physical scientists have built various models

123

Toward understanding the optimization of complex systems 319

to explain the complexity of interactions. For example, Kaufman’ NK model, in which N
represents the number of elements of the system and K reflect the degree of interactions,
has been extensively used to study the relationship between the interaction of elements
and the complexity of systems (Kauffman 1993). Theoretical analysis indicated that the
microscopic parameter K directly reflects the macroscopic complexity of systems (Hordijk
1997; Merz 2004). The small K corresponds to gradual and smooth variations in fitness
landscapes. It implies that the neighboring solutions have high autocorrelation, and near-
optimal or optimal solutions tend to cluster in the same region. With the increase of K ,
the interactions make it difficult to decompose the computational system. In the extremely
complex condition of K = N − 1, all those entities are mutually entangled with nonlinear
interactions, and no algorithm will be more efficient than exhaustive search. However, in
practice the complex systems are not as complex as the worst case due to the locality of
entities.

3.2 Locality of computing agents

The locality and modularity are typical features of complex systems (Variano et al. 2004;
Newman 2006). As illustrated by Fig. 2, in agent-oriented computational systems different
agents may also have a localized control zone.

In Fig. 2, let us assume ρi to be the control radius of the agent ai , and then we only need
consider the set of agents fallen into its spatial control zone, rather than all the other agents,
when updating the state of the agent ai . The set of neighboring agents can be represented as:

N (ai , ρi) = {a : |a − ai | ≤ ρi } (4)

In heterogeneous computational systems, different agents have different influencing abil-
ities. The larger control radius is, the harder it is to decide its state during optimization.
However, the agents in real-world computational systems usually have relatively small con-
trol space compared with the dimensionality of systems. To invalidate this summing-up,
here we take a TSP computing paradigm, called kroA100 (100 entities) (Reinelt 1991), as an
example. The locality of computing agent in the optimal solution can be represented by Fig. 3.

Due to the overlaps of control zones, the computational complexity will fall on the coor-
dination efforts among local control agents, in which each agent will compete and cooperate
with neighbors for achieving the balance between selfishness and altruism.

Fig. 2 Illustration
of locality of optimizing agents

Agent

Control radius

123

320 J. Liu, Y.-W. Chen

0 500 1000 1500 2000 2500 3000 3500 4000

-500

0

500

1000

1500

2000

2500

Fig. 3 Locality of computing agents in the TSP computing paradigm kroA100

3.3 Macroscopic fitness network

Traditionally, most literatures applied the notion of fitness landscape to explain the complex-
ity of solution space (Monasson et al. 1999; Achlioptas et al. 2005). However, the fitness
landscape is hardly possible to characterize the distribution of solutions in configuration
space. Here, we introduce the concept of fitness network. Figure 4 illustrates how to transfer
fitness landscape to fitness network by a solution space with (0, 1) binary sequences of length
3. In the fitness network, the Hamming distance between all neighboring solutions is equal
to 1, and the height of a node represents the fitness of the solution associated with it.

With the definition of fitness network, we can easily analyze the most reasonable search-
ing trajectory through the architecture of networks. As discussed in our earlier work (Liu
et al. 2008), in the fitness work an efficient searching process should consist of the two steps:
(1) depth-first search for finding a new-optimal solution efficiently; (2) width-first search for
repeatedly escaping from one local optimum to another.

110
(0.65)

100
(0.85)

111
(0.40)

101
(0.70)

010
(0.43)

000
(0.67)

011
(0.47)

001
(0.55)

100
(0.85)

110
(0.65)

101
(0.70)

Fitness

011
(0.47)

001
(0.55)

000
(0.67)

010
(0.43)

111
(0.40)

(b)(a)

Fig. 4 An example of a fitness network for binary sequence of length 3

123

Toward understanding the optimization of complex systems 321

4 Solving agent-oriented computational systems

If we want to solve an agent-oriented computational system, it is useful to describe it as
self-organized. In the self-organized computational systems, agents are designed to auton-
omously and dynamically perform their behavior and interactions which will lead to the
system function.

4.1 The architecture of self-organized computing

In self-organized systems, computing agents sense their states and environments, select
behaviors, and perform interactions, until the system A collectively achieves the desired
emergent solution.

The basic architecture of self-organized computing can be stated as follows:

1. model the agent-oriented computational system A, and define the local evaluation func-
tion and local update rules for agents;

2. while the stopping criteria (e.g., the maximum number of updates, the maximum CPU
time, or desired macroscopic patterns) are satisfied, Do the self-organized computing by
iteratively updating the states of agents:

(a) assess the current state of each agent by the local evaluation function;
(b) select some agents according to their local fitness;
(c) apply behavioral rules in those selected agents;
(d) accept a new macroscopic state, based on the collectively global aggregated effects.

It is worth noting that the in step 2(b) different selection mechanisms can be selected as the
optimization dynamics of self-organized computing. For example, extremal dynamics had
been successfully applied in self-organized computational systems (Boettcher and Percus
2000; Duch and Arenas 2005). In the optimization dynamics, the agent with the k-th “worst”
local fitness will be updated according to the following probability:

pk = Ck−λ(1 ≤ k ≤ n) (5)

In the large-scale computational systems, the constant C can be approximated by the
normalization expression:

lim
n→∞

n∑

k=1

pk = C · lim
n→∞

n∑

k=1

k−λ = Cζ(λ) = 1 (6)

where ζ(α) is the Riemann Zeta function. In natural systems, the parameter λ ≈ 1 + 1/ln(n)

seems to provide the better performance than others (Boettcher and Percus 2003; Chen and
Zhang 2006).

4.2 Computational paradigms

In this section, we try to illustrate the self-organized computing method with two simple
computational paradigms.

Paradigm 1: As the optimization counterpart of K -SAT, Max-SAT is to maximize the
number of satisfied clauses, or minimize the number of unsatisfied clauses (Schuurmans and
Southey 2001). If we model the logical variables as computing agents, the local fitness func-
tion of variable i can be defined as the difference between the number of unsatisfied clauses

123

322 J. Liu, Y.-W. Chen

0
5000

10000

0

5000

10000
0

5000

10000

(a) 1-2000 updates

0
5000

10000

0

5000

10000
0

5000

10000

(b) 1-100 updates

2000
3000

4000
5000

2000
3000

4000
5000
2000

3000

4000

5000

(c) 200-500 updates

2000
3000

4000
5000

2000
3000

4000
5000
2000

3000

4000

5000

(d) 1000-2000 updates

Fig. 5 Searching trajectory of self-organized computation

and the number of satisfied clauses connected to the variable node. We then can select the
variables according to the local fitness, and flip the value of the selected variables to try to
satisfy more constraints. Repeat the selection and flip operation until a satisfying assign-
ment is found. Simulation results indicate that the computing method can provide superior
performance in both effectiveness and efficiency.

Paradigm 2: The traveling salesman problem (TSP) (Gutin and Punnen 2002), one of
the most typical complex computing problems, is to find the shortest path among a set of
spatially-distributed nodes. Let us assume di j to be the distance between node i and j . Given
a feasible solution s, the local fitness function of node i can be defined as:

fs(xi) = di − min
j �=i

di j , i = 1,2, . . . , n (7)

where di represents the length of the forward-directed edge starting from node i in the
current microscopic configuration. Furthermore, the k-opt move class (Gutin and Punnen
2002) is applied to update the states of those agents selected by extemal dynamics. Apply-
ing the self-organized computing method to an optimization instance ftv170 (Reinelt 1991),
a typical searching trajectory (see Fig. 5) can be constructed by the 3-dimensional time-delay
coordinates (Li and Alidaee 2002).

It can be seen from Fig. 5 that the initial period of self-organized process is a gradual
depth-first search. After reached a near-optimal solution, the searching trajectory exhibits
a chaotic behavior for finding the optimal microscopic configuration. With the simulation
of Cellular Automata, Langton presented complex living systems may come into being at
the edge between order and chaos (Langton 1995). Kauffman suggested that the maximum
fitness of complex systems may be obtained at the edges of chaos (Kauffman 1993). As we
discussed earlier, this self-organized optimization dynamics can be regarded as an effective
search process in complex fitness networks.

123

Toward understanding the optimization of complex systems 323

4.3 Comparisons and analysis

In past decades, we have witnessed a booming development on nature-inspired computing
techniques. However, most of those optimization methods neglected the inevitable rela-
tionship between the microscopic characteristics of computational systems and computing
mechanisms. For example, evolutionary algorithms seem to be a purposeless generation-test
evolutionary process since it only mimics evolution at the level of macroscopic solutions.
In ant colony, although there is also no central control, the social insects are not the coun-
terparts of the components of complex computational systems. Artificial life is mainly intro-
duced to simulate man-made systems that exhibit the behavioral characteristics of living
organisms. However, self-organized computation studied in this paper can build the intrinsic
relationships between problem characteristics and computing method. In addition, the algo-
rithm only use local information and local update rules, thus it has relatively low complexity,
and is convenient to be parallelized in programming. In addition, the distributed nature can
play an important role in the robustness of computation.

5 Concluding remarks

“We can only see a short distance ahead, but we can see plenty there that needs to be
done”

Alan M.T uring

In this paper, we try to build a fundamental understanding of the optimization of complex
systems, with the help of self-organization theory. Specifically, the paper proposed an agent-
oriented computing model and a series theoretical analysis to construct proper mechanisms
that will support self-organized computation. Although more theoretical foundations need to
be further explored, this framework might shed more light on the internal mechanisms of the
optimization of complex systems, and yield both theoretical insights and practical results in
the following applications: computational systems modeling and complex problem solving.

References

Achlioptas D, Naor A, Peres Y (2005) Rigorous location of phase transitions in hard optimization problems.
Nature 435:759–764

Ahuja RK, Ergun O, Orlin JB, Punnen AP (2002) A survey of very large-scale neighborhood search techniques.
Discret Appl Math 123:75–102

Albert R, Barabási AL (2007 August) The architecture of complexity, from network structure to human
dynamics. IEEE Control Syst, pp 33–42

Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
Boettcher S, Percus AG (2000) Nature’s way of optimizing. Artif Intell 119:275–286
Boettcher S, Percus AG (2003) Optimization with extremal dynamics. Complexity 8:57–62
Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. PNAS

99(suppl. 3):7280–7287
Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst

30:107–117
Cheesman P, Kanefsky B, Taylor WM (1991) Where the really hard problems Are. Proc IJCAI’91, pp 163–169
Chen Y, Zhang P (2006) Optimized annealing of traveling salesman problem from the nth-nearest-neighbor

distribution. Phys A 371:627–632
Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev

E 72:27104
Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315:972–976

123

324 J. Liu, Y.-W. Chen

Gutin G, Punnen AP (2002) The traveling salesman problem and its variations. Kluwer Academic Publishers,
Netherland

Hordijk W (1997) A measure of landscapes. Evol Comput 4(4):335–360
Jennings NR, Bussmann S (2003 June) Agent-based control systems. IEEE Control Syst Mags, pp 61–73
Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University

Press, Oxford
Langton CG (1995) Artificial life: an overview. The MIT press, Cambridge
Li W, Alidaee B (2002) Dynamics of local search heuristics for the traveling salesman problem. IEEE Trans

on Syst Man Cybern 32(2):173–184
Liu J (2001) Autonomous agents and multi-agent systems: explorations in learning, self-organization and

adaptive computation. World Scientific Publishing Co., Inc., USA
Liu J (2008) Autonomy-oriented computing: the nature and implications of a paradigm for self-organized

computing. Keynote talk at the 4th International conference on natural computation (ICNC’08), and the
5th International conference on fuzzy systems and knowledge discovery (FSKD’08), October, pp 18–20

Liu J, Han J, Tang YY (2002) Multi-agent oriented constraint satisfaction. Artif Intell 136:101–144
Liu J, Jin X, Tsui KC (2005) Autonomy oriented computing: from problem solving to complex systems mod-

eling. Kluwer Academic Publishers/Springer, Heidelberg
Liu J, Chen YW, Lu YZ, Yang GK (2008) Self-organized combinatorial optimization. HongKong Bap-

tist University, Computer Science, Technical reports: COMP-08-001. http://www.comp.hkbu.edu.hk/
en/research/?content=tech-reports

McCoy BM, Wu Tai Tsun (1973) The Two-dimensional ising model. Harvard University Press, Cambridge
Mertens S (2002 May/June) Computational complexity for physicists. Comput Sci Eng, pp 31–47
Merz P (2004) Advanced fitness landscape analysis and the performance of memetic algorithms. Evol Comput

12(3):303–325
Mézard M, Zecchina R (2002) Random K-satisfiability problem: from an analytic solution to an efficient

algorithm. Phys Rev E 66:056126
Mézard M, Parisi G, Zecchina R (2002) Analytic and algorithmic solution of random satisfiability problems.

Science 297:812–815
Mitchell M (1998) Computation in cellular automata: a selected review, nonstandard computation. VCH Ver-

lagsgesellschaft, Weinheim 95–140
Mitchell M (2006) Complex systems: network thinking. Artif Intell 170:1194–1212
Monasson R, Zecchina R, Kirkpatrick S, Selman B, Troyanskyk L (1999) Determining computational com-

plexity from characteristic ‘phase transitions’. Nature 400:133–137
Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256
Newman MEJ (2006) Modularity and community structure in networks. PNAS 103(23):8577–8582
Opper M, Saad D (2001) Advanced mean field methods: theory and practice. MIT Press, Cambridge
Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible evolu-

tionary paths. Nature 445(25):383–386
Reinelt G (1991) TSPLIB-a traveling salesman problem library. ORSA J Comput 3(4):376–384
Samanidou E, Zschischang E, Stauffer D, Lux T (2007) Agent-based models of financial markets. Reports

Prog Phys 70:409–450
Schuurmans D, Southey F (2001) Local search characteristics of incomplete SAT procedures. Artif Intell

132:121–150
Strogatz SH (2001) Exploring complex networks. Nature 410:268–276
Tsang EPK (1993) Foundations of constraint satisfaction. Academic Press, London
Variano EA, McCoy JH, Lipson H (2004) Networks, dynamics, and modularity. Phys Rev Lett 92(18):188701

123

http://www.comp.hkbu.edu.hk/en/research/?content=tech-reports
http://www.comp.hkbu.edu.hk/en/research/?content=tech-reports

	Toward understanding the optimization of complex systems
	Abstract
	1 Introduction
	2 Agent-oriented modeling of complex computational systems
	2.1 Autonomous agents
	2.2 Interactions among agents
	2.3 Local-to-global mapping
	2.3.1 Local fitness function
	2.3.2 Local update rules of emergent computation

	3 Hierarchical analysis of computational complexity
	3.1 The characteristics of microscopic complexity
	3.2 Locality of computing agents
	3.3 Macroscopic fitness network

	4 Solving agent-oriented computational systems
	4.1 The architecture of self-organized computing
	4.2 Computational paradigms
	4.3 Comparisons and analysis

	5 Concluding remarks
	References

