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Abstract An intelligent robotic system must be capable of making the best decision at any
given moment. The criteria for which task is “best” can be derived by performance metrics as
well as the ability for it to satisfy all constraints upon the robot and its mission. Constraints
may exist based on safety, reliability, accuracy, etc. This paper presents a decision framework
capable of assisting a robotic system to select a task that satisfies all constraints as well as is
optimized based upon one or more performance criteria. The framework models this decision
process as a constraint satisfaction problem using techniques and algorithms from constraint
programming and constraint optimization in order to provide a solution in real-time. This
paper presents this framework and initial results provided through two demonstrations. The
first utilizes simulation to provide an initial proof of concept, and the second, a security robot
demonstration, is performed using a physical robot.

Keywords Constraint programming · Mobile robots · Applied artificial intelligence

1 Introduction

An important requirement of all robotic systems is the ability to rationally choose the “best”
task to execute at any moment of its operation. Often, constraints upon the system limit
which tasks are available of those from which the robot can choose. Constraints exist based
on safety, accuracy, mission needs, performance, robot capabilities, etc. In addition to satis-
fying constraints, the best solution available would be one that also maximizes some utility.
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68 R. S. Stansbury, A. Agah

This paper presents a new framework for task selection in which the decision making logic
is modeled as a constraint satisfaction problem (CSP) using constraint programming (CP)
and constraint optimization (CO) tools.

The constraint satisfaction problem is a research domain from the Artificial Intelligence
community. A problem is comprised of a set of variables, each variable’s domain of available
assignments, and constraints. Constraints define the valid assignment of values between one
or more variables within the model. They are capable of defining very simple rules similar
to those seen in rule-based systems to complex relations between variables necessary to bind
the solution based on the problem domain.

CSPs have been applied to many application areas include scheduling, design, and image
processing. Their utilization within the domain of robotics has been historically very limited
due to their computational complexity (NP-Complete). As algorithms and heuristics for solv-
ing CSPs improve, CPU speeds increase, and software on-a-chip techniques become more
prevalent, real-time constraint satisfaction will be possible within the next decade.

This paper presents a new framework for task selection and configuration that models
the decision making as a constraint satisfaction problem. It begins with some relevant back-
ground regarding constraint satisfaction problems and constraint programming. Next, the
framework for task selection is revealed. A simulation-based proof of concept experiment
is next presented for an antarctic field robot. A concrete demonstration is then presented in
which physical robots utilize the framework in which a robot must act as a sentry and choose
the best way to define a restricted area. The paper then concludes with some discussion of
these initial results and future work.

2 Background

This section discusses the background of this research approach including: constraint satis-
faction problems and constraint programming.

2.1 Constraint satisfaction problems

The constraint satisfaction problem (CSP) is a problem solving technique in Artificial Intel-
ligence (Russel and Norvig 2002). A CSP is defined as a set of variables, each variable’s
domain, and the constraints upon the variables. Constraints define the valid assignment of
values between one or more variables. A CSP is solved when every variable is assigned a
value such that no constraints are violated. A problem may have more than one solution. If
a utility method is available, the solution that maximizes the utility function is the optimal
solution (Russel and Norvig 2002). Algorithms for solving or optimizing constraint satisfac-
tion problems have been presented in a number of textbooks and journal articles including
(Dechter 1991; Kumar 1992; Tsang 1993; Mackworth 1997a).

CSPs provides a domain-independent representation of problems such that general search
techniques can be used to solve the problem. These search algorithms may involve a global
search for a solution, or a local search in which a valid solution is obtained by revising a
temporary and invalid solution until a satisfactory solution is reached (Russel and Norvig
2002).

The constraint satisfaction problem approach has been used to solve several real-world
problems. Scheduling and planning are common application domains for which CSP tech-
niques are applied. A few areas in which such systems have been applied include univer-
sity course timetabling (Deris et al. 1997), scheduling tasks for manufacturing processes
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(Syrjanen 1998), and scheduling resources for a trucking company (Chun and Wong 2004).
Airline scheduling is another common application of CSPs (Russel and Norvig 2002).

2.2 Constraint programming

Constraint programming provides a means of specifying constraint satisfaction problems
(Bartak 1999). Constraint programming is often declarative in which a system is modeled
using either a special language or a software library that is often accompanied with a CSP
solver. These constraint programming environments support a set of constraints that are
commonly encountered when specifying a constraint satisfaction problem.

Constraint programming has been implemented in several environments using a variety
of languages and methodologies. Some constraint programming environments use their own
custom language to define the problem. Others environments provide software APIs written
in a variety of common programming languages (Java, C/C++, LISP, etc) (Bartak 1999).
ILOG (IBM 2009) and Koalog Java Constraint Solver (Georget 2009) are both commer-
cially available libraries/engines for solving constraint satisfaction problems using constraint
programming techniques.

3 Related work

As this research focuses upon the application of constraint satisfaction problems for robot
control and decision making, a literature survey was performed to look at previous exam-
ples of CSPs entering the robotics domain. ThingLab (Borning 1981) was developed in the
early 1980s as a software package that allowed users to graphically design and simulate a
system that utilized constraints to define the properties of the system and guided simulation
of circuits, mechanical linkages, and other geometries.

D. K. Pai at Cornell University proposed a framework for robot programming using con-
straint satisfaction techniques (Pai 1989, 1991). Linear inequality constraints were used to
define the relationship between mechanical components within the system. Pai defined two
special classes of CSP variable. Input variables were used to capture current state and output
variables were defined such that their values can be taken from the solution and translated
to vehicle actuator commands. For each iteration, the previous solutions were fed into the
solver, and then the input variables were updated. A repair algorithm then fixed the solution
given the changes and the constraints.

At the University of British Columbia, Zhang and Mackworth developed a constraint-
based system for the design of intelligent agents (Mackworth 1997b; Zhang and Mackworth
1994, 2005). The system was designed to support hybrid agents i.e., agents with both continu-
ous and discrete interactions with their environment. A constraint satisfying controller could
be synthesized by driving the system toward satisfying all constraints. During operation, if
the robotic system deviated from a satisfactory state, the controller would act to drive it back
toward a satisfying state (Mackworth 1997b; Zhang and Mackworth 1994, 2005).

4 Decision making framework

This research focuses upon the use of constraint programming as a tool for modeling robot
decision making for task selection and configuration. It does not focus upon the algorithms
to solve constraint satisfaction problems. The Koalog Java Constraint Solver is only a tool
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used to support this project by providing a stable constraint programming and constraint
optimization environment (using a constructive search algorithm).

In this section, the constraint-based framework for robot task selection and optimization
shall be presented. First, the components and structure of the task models is defined. Next, the
techniques involved with constructing the mission-level task selection process is discussed
including the merging of constraint models, the inclusion of mission level constraints, and
the utilization of performance objectives. Finally, the cyclic process of build, solve/optimize,
and execute are defined.

4.1 Linguistic data representation

A CSP algorithm’s efficiency is dependent upon the size and shape of the search space.
Reduction of the variable domains within the CSP will reduce the solution time. To address
this issue, all data used within the framework is linguistically specified or enumerated rather
than given a continuous integer domain. Most often a set of five linguistic values is used:
{LOW, MED_LOW, MED, MED_HIGH, HIGH}, which are enumerated {−2,−1, 0, 1, 2}.
For most variables in our models, this is the sparse domain used. For the experiments pro-
vided, this domain size was sufficient; however, for future work, it is perfectly reasonable to
define other linguistic domains such as for heading, distance, duration, etc.

For this research, the conversion for continuous-to-linguistic and linguistic-to-continuous
is handled through a set of rules. To take a continuous sensor value to a linguistic value,
thresholds are used to determine under which linguistic descriptor it should fall. To take a
solution parameter and convert it to a robot specific value, a similar mapping is made for
each. This does place some burden on those creating the constraint model to identify the
performance of the robot (sensing and actuation) and derive these mappings.

4.2 Task models

For each possible task the robot may execute, a constraint model must be defined. The con-
straints within the model define the relationship between the robot’s state and whether or
not the task is an acceptable output. If acceptable, the model will also define the relationship
between the state of the robot and the configuration of the task’s execution (i.e. if the robot
can execute the task, are there any parameters such as speed regarding how it is executed?).
Given this configuration, constraints also define the level of acceptability of this solution as
some configurations are more desirable than others.

4.3 Variables

The constraints are defined upon variables. There are four types of variables that have been
defined as part of this research: input, output, hidden, and performance. To maintain a reason-
able problem size, each variable is discretized and linguistic values as described above. Input
variables are constrained at run-time to equal the current state of the robot. Output variables
define the execution parameters of the task as discussed above. Hidden variables are used
to simplify constraint declaration by combining one or multiple input variables into a single
internal variable. Each task may have one or multiple performance variables (i.e. quality,
timeliness, etc.) and a hidden performance variable such that constraints may tie multiple
performance variables into a single value. For each task, at runtime, a unique identifier is
given to each task, which is treated as an input variable. These terms and special variable
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types are used to define the model, but are transparent to any CSP search or optimization
algorithm.

4.4 Constraints

The remainder of the constraint model is comprised of the constraints themselves. Each task
may have zero, one, or multiple constraints. The constraints limit the domain of an output
variable given the current state of input and/or hidden variable(s). Constraints may also tie
the domain of the performance variable to value(s) of input, output, and hidden variable(s).

4.5 Extending task models

As part of the implementation of this task model framework, it was determined that it would
be highly desirable to extend” a task model similar to the extension of classes in object-ori-
ented programming. Consider a “move-to” task in which the robot must go to a location at
a predefined speed maintaining a minimum safe distance from obstacles. A designer could
define must of the task model without any knowledge of the target robot platform. However,
once a platform is selected, additional constraints may need to be added. Under the current
framework, it is possible to create a new constraint model that extends an existing model by
adding new constraints and/or variables to the model.

4.6 Task selection model

Each individual task model, once solved, produces three distinct products. First, if a solution
may be derived, then it may be concluded that it would be valid for the task to be executed
under the solution parameters. Second, it provides the necessary configuration of parameters
for the task such that when it executes it will satisfy all of the existing constraints. Third,
if the model is optimized, the solution will also provide an indication of how “optimal” a
solution is based on the defined performance metric.

Rather than determine if just one task is valid, it is the goal of this research to be able
to determine which task among a set of possible tasks may be executed and how it must be
executed such that it is the best task to execute at the moment and such that it meets all task
and mission constraints. To accomplish this goal, a task selection model must be generated
that is composed of the set of task models from all possible tasks that may be considered.
Mission constraints and any additional mission level variables may also be added to the task
selection model to provide any global constraints upon the system. The optimization of such
model should provide the single best solution.

Since the optimizer only attempts to maximize a single variable, constraints must tie each
task’s performance variable to a single, mission-level performance variable. Therefore, if
the solution picks a particular task, the mission-level performance variable will store the
performance of the selected task.

Construction of the task selection module is relatively straight forward as it builds upon
some common principles of constraint programming. Each model is composed of the con-
straints and the variables. If optimizing the model, one of the variables must be designated as
the optimization variable. So long as each model has unique variables, it is possible to create
a new model by merging the set of variables and the set of constraints into a single problem.
This merge is similar to the “extend” operation described above. If mission level variables
and constraints exist, they can be added to those two sets. A constraint solver will not care
about where the variables and constraints originated.
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Fig. 1 Composition of task selection model from multiple task models (in the graph variables are nodes and
constraints are arcs)

Figure 1 depicts the task selection model as composed of its constituent parts: variables
and constraints. The circles represent the possible variables within each model. The arcs
represent the constraints between variables. For global variables related to the entire mission
such as percepts, only one instance of each variable exists and they are tied into each of the
task models through constraints.

Once the model is constructed, a constraint satisfaction problem optimization algorithm
produces a single solution in which a near optimal solution is generated. Given model size, it
may be too time consuming to find the global optimal solution. Many constraint optimization
solvers operate such that once an initial solution is found it will iteratively work to improve
the solution. Thus, if the algorithm is preempted due to a time limit, if a solution exists, it
will satisfy the problem.

4.7 Task selection process: model-optimize-execute

Given the task models and the process for creating the task selection model, let’s now con-
sider the complete process of modeling tasks, optimizing for a solution, and executing the
given solution. It should be noted that the process executes asynchronously and is triggered
to begin at the completion or failure of the robot’s current task.

The modeling phase involves the updating of the model to reflect the current state of the
robot. For this phase, constraints are applied to the input variables of each model such that
their domains are constrained to the current state of the robot. Next, the task selection model
is constructed through the merge process discussed above.

The optimize phase involves the use of our constraint optimization algorithms. The opti-
mizer is configured such that it has the current model and knows which variable to optimize
within the model. A time limit is set for the optimization algorithm and the algorithm begins.
The algorithm executes until either a global maxima is found or the time limit is reached.
The model’s solution is returned, but not yet in a usable form.

The execute process begins with the decomposition of the solution. The solution is ana-
lyzed and the “winning” task is determined. Then, the execution parameters for the task are
obtained from the solution. Finally, the task is executed given the execution parameters. The
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robot will carry out the task until the task either reaches some ending success for failure state.
Once the task execution ends, this cycle repeats itself.

5 Simulated proof-of-concept

Prior to implementing a constraint-based decision maker for a physical robot, a simulated sce-
nario for a mobile robot operating in Antarctica called the “Polar Robot Scenario” provides
a proof-of-concept (Stansbury 2007; Stansbury and Agah 2008).

5.1 Polar robot scenario

Polar research activities benefit from the use of unmanned systems including ground and
aerial robots. Remote sensing tasks in these environments require tedious or unsafe routes,
highly precise movement, and/or continuous long-term operation. A single mobile robot can
be equipped with a number of remote sensing instruments and a variety of power generation
sources (Stansbury et al. 2004; Lever et al. 2006).

Each sensor, each power generation source (solar, gas generator, etc), and the robotic
platform’s unique operating constraints. Likewise, the mission has its own constraints upon
how the data must be collected. Constraint-based task selection provides a valid means for
determining which task to perform and the configuration of the robotic system to perform
that task.

5.1.1 Robot and environment

The polar robot is simulated based on existing polar robot data such as Dartmouth’s Cool
Robot (Ray et al. 2005) and the University of Kansas’s PRISM mobile robot (Akers et al.
2006). The simulated robot is equipped with sensors that provide percepts of its state. It is
also equipped with a remote sensing payload: synthetic aperture radar (SAR), accumulation
radar, magnetometer, gravimeter, and IR spectrometer. Each sensor is simulated based on the
specifications of commercial off-the-shelf (COTS) components or from experimental sys-
tems (Gogineni et al. 2003). Power sources were also simulated including: primary battery,
backup battery, wind turbine generator, and deployable solar array. Each power source is
simulated based on specifications from COTS components.

The polar environment is simulated as accurately as possible to recreate some of the long-
term survivability challenges. As the robot carries out its activities, the time and current date
are incremented. Monthly weather date and the simulation’s current month provide the data
necessary to simulate the current weather conditions. For each month, an almanac stores
annual maximum and minimum measurements for climate condition including wind speed,
temperature, and solar irradiance (Center for Astrophysical Research in Antarctica 2009).
Using a pseudorandom number generator, every 24 h, a current value for each condition is
selected from between the minimum and maximum for the current month. Terrain conditions
such as hard smooth surfaces, rugged surfaces, and software surfaces are selected based on
the current wind speeds and temperature.

The robot’s operation is defined such that it may draw power from its primary battery and
one additional alternative power source. Only one remote sensing instrument can be deployed
at a given time. The robot may remain stationary to charge or may traverse the ice sheet col-
lecting data. Damage or component failure can occur if operating a sensor or power source
outside of the manufacturer’s specified operating range (wind loads, temperature, vibration,
etc).
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5.1.2 Task models

Briefly, the variables and constraints of each of the task’s models for the polar scenario are
presented.

Constraint variables Task constraints are defined in terms of performance, input, and task
parameter variables. Performance variables include TaskRiskAvoidance, TaskResourceCon-
servation, TaskTimeliness, and TaskQuality, which define from Low to High the level of
achievement of each within the solution. Input variables are variables that define linguisti-
cally the environmental percepts (e.g. wind speed, solar energy, etc) and the proprioceptive
percepts (e.g. battery level) derived from the robot’s current internal state (e.g. battery level).
Execution variables define generator selected, instrument selected, drive speed, and heater
level. Numerous hidden variables are utilized to define intermediate variables between con-
straints.

Charge task The charge task model defines the constraints for selection of a power source,
which is used to charge the robot for 12 consecutive hours. The task’s performance is defined
by quality, which is equal to the anticipated output level of the power source. The constraints
ensure that the robot enters only safe and valid hardware states when using the power gen-
erators to avoid damage. The charge task executes by deploying the selected generator and
waiting for 12 h in order to collect energy. If no generator is selected, the robot would waits
for conditions to change for 12 h before selecting another task.

Survey task Prior to operation, the robot receives one or more survey task requests. Each
survey task is assigned at instantiation an instrument, minimum survey quality, and a total
survey distance. The survey task defines constraints in several categories: drive, remote sens-
ing instrument, and performance constraints. All constraints regarding power sources from
the charge task are also re-used. Drive constraints define the level of risk, timeliness, and
power usage of the drive system given the drive speed and the current terrain conditions
(rough, smooth, or soft). Remote sensing constraints are defined for each of the instruments.
These constraints tie the quality of the survey using an instrument to the input and output
variables of the task. For instance, the SAR is constrained such that if the terrain was rough,
the data quality was less than medium. The execution of the survey task involves the fol-
lowing procedure. First, the instruments and generators are activated and/or deployed. The
robot traverses the ice at the selected speed. Every 1,800 s, the robot determines if it has
completed the traverse or may continue onward. Once the target distance is reached, or 24 h
had elapsed, the robot terminated its traverse retracting both the power generators and remote
sensing instruments. If the survey is completed, the executed survey task was removed from
the pool of possible tasks. Otherwise, the task remains available for execution in the future.

5.1.3 Experimental setup

To evaluate the system, a simulated robot and environment were created. At the beginning
of an experimental run, the robot is assigned a set of tasks. The robot is asked to perform the
tasks and its performance is measured using three metrics described below. The experiment
terminates if one year has elapsed or if the robot becomes inoperable to due to damage or
lack of power.

Table 1 presents six configurations used to test the decision makers for the polar robot.
Each configuration is given an identifier so that it may be easily identified in the tables
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Table 1 Polar scenario configurations for evaluation

ID Number Survey distance Instrument Performance
of tasks distribution

POLAR1 5 1,000 Uniform Default

POLAR2 5 1,000 Uniform Resources=MED_HIGH

POLAR3 5 1,000 Uniform Quality=Random

POLAR4 5 1,000 Random Default

POLAR5 10 500 Uniform Default

POLAR6 10 500 Random Default

provided below. The number of survey tasks is specified in the second column. The third
column defines the distance that must be traversed for each of the assigned tasks. The instru-
ment distribution column defines how remote sensing instruments are allocated for the set
of assigned tasks. The first option is uniform where there would be an equal number of
tasks assigned with each instrument. The second option is random in which for each task
an instrument is assigned to it pseudo-randomly. The final column, performance, defines the
performance requirements set forth upon the robot when selecting and executing its task. The
default performance configuration is for medium to be assigned for each of the performance
variables. Each receives an equal weighting. For experiment POLAR2, each of the perfor-
mance variables is set to medium except resource conservation, which is set to medium high.
For experiment POLAR3, each of the performance variables is set to medium except quality
which was set to random. The quality of collecting data for each task is randomly set.

A rule-based task selector was implemented in order to compare the constraint-based
system versus a reasonable alternative. In order to keep the length of this article within the
guidelines, the implementation of the rule-based system is not described herein, but may be
viewed fully in (Stansbury 2007).

Three metrics were used when comparing the rule-based and the constraint-based systems
for each configuration. Survival time was defined as the number of days in which the robot
survives during the simulation with a maximum of 366 days (leap year). Failure rate was the
percentage of runs for each in which the robot’s operation is terminated due to failure before
the 366 days have elapsed. It is expected that the failure rate will be high as the robot has
been given more tasks and longer distances that would be feasible for it to complete over
a year. A task is classified as a failure if the robot is unable to complete the entire traverse
distance with the remote sensing instrument active. This paper will therefore compare the
performance of both systems to see which has a smaller failure rate. Mission completeness
was calculated as the distance surveyed by the robot during the simulation versus the total
distance requested for all tasks.

5.2 Results and discussion

Given the metrics, the following results were obtained:

Failure rate is presented in Fig. 2: Polar scenario: failure rate versus configuration (Fig. 2).
For the rule-based decision maker, the rate was near 100% meaning that it was unable to
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Fig. 2 Polar scenario: failure rate versus configuration

Fig. 3 Polar scenario: survival time versus configuration

choose tasks sufficiently such that the robot was capable of completing all measurements
before either the year was complete or the robot was unable to sustain itself. Using con-
straints, the maximum is near 70%. The constraint-based decision maker outperformed the
rule-based under all configurations by surviving much longer.

Survival time is presented in Fig. 3. The rule-based system under all scenarios failed near
the half-year mark during the Antarctic winter (harshest climate conditions). The constraint-
based decision maker outperformed the rule-based.

Mission completeness is presented in Fig. 4. Using constraints, the mean mission com-
pleteness for configurations POLAR1, POLAR3, POLAR5, and POLAR6 was, statistically,
significantly greater with means greater than 40%, compared to the mean when using rule-
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Fig. 4 Polar scenario: completeness of total mission versus configuration

based which were less than 40%. The POLAR4 results were too close to be conclusive.
POLAR2 performed much worse than the competing system as it was over-constrained
toward conserving resources.

6 Sentry robot demonstration

The sentry robot demonstration requires a mobile robot to defend a “restricted” area from
potential invaders. This scenario was originally envisioned for areas in which wildlife must
be kept out of an area such as near an airport. While monitoring the area, the robot could
stand still guarding a particular direction, go on patrol, scan a 360 degree area from a fixed
position, etc. If a threat is detected, the robot has several options. It could consider the threat
to be insufficient to warrant a response and continue monitoring, or it could choose to actively
engage the target chasing it out of the area. The role of the sentry is to minimize the amount
of time in which an intruder is within the restricted zone. The robot must actively attempt to
prevent the entry into the area. Should entry occur, it is the robot’s role to expel the invader
from the restricted area, but not to follow it outside of its designated mission area.

For this scenario, a simple environment was devised in which the experiments are per-
formed. The environment is flat with two designated areas. An outer rectangular perimeter
is denoted the mission environment for the sentry. It may only operate within those bounds.
Within the outer perimeter, a second perimeter denotes as the restricted area. The center of
the restricted area is denoted as the robot’s home location. The operating area is divided into
an occupancy grid, which stores locations where the robot’s sonar located potential threats.
The variable Threat Level is computed by the total number of locations in which a threat may
exist given current sensor data.

6.1 Task models

In this section, the abstract task models for the Sentry robot are defined.
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6.1.1 Chase

The Chase task directs the sentry robot to move toward and then chase a target. It is expected
for all detected targets (potential intruders) that there exists an instance of the Chase task
model for that target. Upon selection and execution of a chase task instance, the robot shall
chase the target until either a timeout occurs or the target has traveled sufficiently far enough
away from the restricted area such that the sentry may break off pursuit.

For the task model, a number of input variables define the relationship of the robot with
its environment and its relationship with the target. The currentThreatLevel and average-
ThreatLevel are input variables that are merged into a single hidden variable threatLevel.
The distance of the target from the center of the restricted area is provided as an input var-
iable, targetDistanceToHome, which may be interpreted as the level of threat generated by
the particular target. Since targets move and noisy data can result in the detection of false
targets, targetConfidence provides an indication of how confident the system is that the target
actually exists. Lastly, powerRemaining indicates the level of power remaining within the
robot platform. Two output variables exist: range and duration. Range defines the maximum
distance and duration defines the maximum time duration for which the chase may persist,
respectively.

The constraints of the chase are based upon the level of threat and the distance that the robot
must leave its home location. The further the robot is away from the center of the restricted
area, the less capable it is of handling other threats that may emerge during the case. For the
chase task, as the threat level increases, the duration of the chase is decreased. These con-
straints exist as it is desirable to restrict the time spent away from the center of the restricted
area where the sentry is more strategically positioned. If the power is low or medium low,
the duration of the scan is reduced to being less than medium in order to avoid expending
too much charge during the chase. The range of the robot is constrained based on the target’s
distance to the center of the restricted area. The further the target is away from the center of
the restricted area the less travel distance is permitted in the case.

6.1.2 Scan

The Scan task guides the robot to spin in place generating a 360 degree scan of the area for
threat detection and tracking. At the center of the restricted area, the robot will scan counter
clockwise at a specified rate. The scan persists until either a threat is detected within some
threshold distance or the timeout duration is reached.

Input variables are based on the current and average threat level of the environment.
The maximum of these two variables is stored in a hidden variable, threatLevel. The
powerRemaining variable defines the power available for the robot.

The output variables for this model are turn speed, threshold distance, and timeout dura-
tion respectively. The constraints in this model choose a timeout and threshold based on
the threat level. As the threat level increases, both the timeout and the threshold decrease.
The turn speed increases as the threat level increases as it seems to more actively track the
increasing number of threats.

For this task, the threshold of the scan is constrained based upon the current threat level.
As the threat level increases, the threshold is constrained to be lowered to focus on the area
of more immediate need. As the threat level increases, the turn speed also increases such that
if the threat level is high, the scan must also be high so that the robot is better at tracking of
all targets surrounding it. The duration is constrained to the power remaining. As the power
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remaining diminishes, the commitment of time to the scan is decreased to avoid wasting
power.

6.1.3 Patrol

The Patrol task attempts to overcome the limitation of the scan task; namely, the limited
range for which it is capable of scanning. The robot while patrolling will follow a rectangular
path defined by a length and width centered about the home location. The speed of the robot
following the path is constrained to the path size. The patrol continues until the time duration
is reached or a threat is detected.

Input variables are based on the current and average threat level of the environment. The
maximum of these two variables is stored in a hidden variable, threatLevel. Another variable
stores the current power/fuel remaining onboard the robot.

The output variables define a number of parameters. The pathLength and pathWidth vari-
ables define the relative length and width of the patrol path. A hidden variable, pathArea, is
used for a variety of constraints within the task model equal to the product of the pathLength
and pathWidth. Other output variables include the speed variable, the duration variable, and
the threshold variable (all related to the parameters discussed above).

A number of constraints define the model. If the threat level is greater than or equal to
medium, the duration of the search is less than or equal to medium high. If the threat level
is high, then the duration is less than medium. This ensures that the robot will not spend too
much time scanning if a large number of threats are nearby. As the threat level increases,
the threshold is reduced in order to focus on more immediate threats and the patrol area is
reduced to keep the robot closer to the center of the restricted area. Given a desire for a
consistent orbital rate, as the size of the patrol area increases, the target speed of the robot
is constrained to increase. Lastly, the duration is reduced if the power remaining is less than
medium in order to ensure that the robot does not run out of charge spending its time on
patrol.

6.1.4 Retreat

The Retreat task forces the robot to travel from its current location to the home location a
predefined location (most often located at the center of the “restricted” area). This task is
included primarily to act as a default task to be selected when no other suitable task exist
(i.e. given the constraint model, no other satisfactory solutions exist).

6.2 Experimental setup

An AmigoBot from Mobile Robots Inc (2009). was used as the sentry robot for the demonstra-
tion. It possesses six sonar sensors (four on the front and two on the rear of the robot chassis).
It has two differential drive motors, each with shaft encoders to determine the approximate
position of the robot.

The IntelliBrain Bot from RidgeSoft LLC (2009) are considerably smaller and less sophis-
ticated than the AmigoBot. They are equipped with two IR sensor (forward left and right) and
one forward looking sonar and use differential drive for mobility. Two Intellibrain Bots act as
the invaders. There are two available behaviors for invaders during the demonstration. First,
the robot can operate in accidental mode in which it wanders about randomly. Operating
under the second mode, the robot actively seeks out to invade the restricted area.
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Fig. 5 State-based decision maker presented as a finite state machine

The total time in which one or more invader robots is within the restricted area is measured
(i.e. timer starts when one enters and timer stops when the last one leaves). The experiment
runs for 5 min and the total time in which the secure area was penetrated is called the Invasion
Time.

For comparison, a state-based task selector is available. It utilizes the similar expert knowl-
edge, but instead defines states in which the robot may be and the appropriate task and task
configuration to handle those tasks. The state-based model is provided in Fig. 5.

6.3 Results and discussion

For the experiment, five scenarios were tested: sentry versus one accidental intruder, sen-
try versus two accidental intruders, sentry versus one deliberate intruder, sentry versus two
deliberate intruders, and sentry versus one deliberate intruder and one accidental intruder. For
each scenario, 10 experiments were run using the state-based decision maker and 10 experi-
ments were run with the constraint-based decision maker. The difference in the averages is
noted and the percentage of this difference versus the state-based average time is computed
to determine the relative improvement or performance loss when using the constraint-based
approach as shown in Table 2.

From the experiments, the results showed that the constraint-based approach is better
capable of keeping out the invading robots than the state-based approach for all instances
except for the condition of two accidentally invading robots. Under the “two accidental”
scenario, the likely cause is that the robots may wander right on the edge or corners of the
secure area such that they are within the area, but not being adequately detected by the sentry
robot. This does not occur when deliberate robots are operating because they are actively
seeking the center and very rarely spend time at the edges and corners of the secure zone.
For all other cases, there is a significant improvement in performance.
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Table 2 Experimental results of sentry robot demonstration

Configuration Average invasion time (s) Difference (s) Percent improvement

State-based Constraint-based

One accidental 75.18 64.33 10.85 14.43

One deliberate 113.00 90.85 22.14 19.60

Two accidental 116.84 129.74 −12.90 −11.04

Two deliberate 256.48 230.53 25.95 10.12

One accidental and one deliberate 140.38 128.86 11.51 8.20

7 Conclusion

The goal of this research was to reconsider constraint satisfaction problems within the domain
of robotics. Due to their computational complexity, it has been assumed that CSPs were too
computationally intense for real-time decision making necessary for robot operation. This
research shows that by adequately framing the problem with a sufficient level of abstract,
constraint models can be solved with sufficient timeliness.

The framework builds upon research in constraint programming. Task models were com-
prised of input variables, output variables, and hidden variables. Constraints defined whether
or not the task and its configuration are valid. A constraint optimization algorithm then
generates the solution with the greatest or near-greatest utility (given time available).

The first demonstrations used simulation. A custom simulation was constructed to sim-
ulate a polar mobile robot surveying an area using remote sensing tools in Antarctica. The
robot must choose whether to sit and recharge, or perform a survey with one of its available
sensors. The goal of the simulation was to show that using constraints it would be possible
to extend the life of the robot further into the year than using a rule-based system. Both con-
straint and rule-based systems embed expert knowledge regarding vehicle operations from
previous field operations.

Early feedback called into question whether or not these tools could be support real-time
application on a physical robot. A demonstration was constructed and performed using three
robots: one sentry robot using the constraint framework and two invader robots using sim-
ple reactive controls. Constraint models were constructed for several common robot tasks
including: patrolling, guarding, scanning, and chasing. Using the constraint optimization
algorithms, the constraints limited the set of possible choices and the optimizer selected
the best available. Using similar decision logic, a state-based controller was less capable of
defending the restricted area than the constraint-based controller.

From experiments, it was shown that using constraint satisfaction problems to model the
robot task selection is a valid approach. It also shows that the framework produced is general-
izable to a number of different problems. While the results were not overwhelmingly positive,
statistical analysis shows that the mean performance under each scenario was marked a sta-
tistically significant performance increase for most cases. This supports the authors’ claim
that the application of constraints in robotics warrants further research.

This research is not without its limitations. The design and implementation of the task
models is ad hoc without any formal methods for definition, validation, or verification requir-
ing a generate-and-test approach to model development. The use of linguistic variables limits
the precision of the models. For some situations such as when a mathematical relationship
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defines the constraint, a linguistic variable would be less effective. Lastly, this approach has
only been evaluated versus rule/state-based decision makers, and the authors have not com-
pared these results versus a variety of other decision making techniques that exist from the
AI community. Each of these issues shall be addressed as future work.
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