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Abstract  The shuffled frog leaping (SFL) optimization algorithm has been successful in
solving a wide range of real-valued optimization problems. In this paper we present a dis-
crete version of this algorithm and compare its performance with a SFL algorithm, a binary
genetic algorithm (BGA), and a discrete particle swarm optimization (DPSO) algorithm on
seven low dimensional and five high dimensional benchmark problems. The obtained results
demonstrate that our proposed algorithm, i.e. the DSFL, outperforms the BGA and the DPSO
in terms of both success rate and speed. On low dimensional functions and for large values
of tolerance the DSFL is slower than the SFL, but their success rates are equal. Part of this
slowness could be attributed to the extra bits used for data coding. By increasing number of
variables and the required precision of answer, the DSFL performs very well in terms of both
speed and success rate. For high dimensional problems, for intrinsically discrete problems,
also when the required precision of answer is high, the DSFL is the most efficient method.

Keywords Optimization - Binary genetic algorithm - Discrete shuffled frog algorithm -
Discrete particle swarm algorithm

1 Introduction

The difficulties of using classic mathematical optimization methods on large-scale engi-
neering problems have contributed to the development of alternative methods. The linear
programming and the dynamic programming techniques, for example, often fail to solve
NP-hard problems with a large number of variables and non-linear objective functions
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(Lovbjerg 2002). To overcome these shortcomings, researchers have developed evolutionary
algorithms (EAs) to find suboptimal solutions. The evolutionary algorithms are stochastic
search methods that mimic the metaphor of biological evolution and/or the social behavior
of species.

The very first group of evolution-based techniques introduced in the literature, were the
genetic algorithms (GAs) (Holland 1975). The GAs were developed based on the Darwinian
principle of “the survival of the fittest” and the natural process of evolution through exchange
of genes and mutation. Based on its demonstrated ability to reach near-optimal solutions for
large scale and non-linear problems, the GAs techniques have been used in many applica-
tions in science and engineering (Al-Tabtabai and Alex 1999; Grierson and Khajehpour 2002;
Hegazy 1999). Despite their benefits, the GAs may require long processing time for a near
optimal solution to evolve. Also, not all the problems lend themselves well to a solution with
the GAs (Joglekar and Tungare 2003).

In an attempt to reduce the processing time and to improve the quality of the solutions,
particularly to avoid being trapped in local optima, other EAs have been introduced during
the past 20 years. An example of an evolutionary algorithm, which has been demonstrated to
be successful on high dimensional benchmark problems, is the particle swarm optimization
(PSO). The PSO is a population-based optimization method first introduced by Kennedy and
Eberhart (1995). It was inspired by the swarming behavior as is displayed by a flock of birds, a
school of fish, or even human social behavior being influenced by other individuals. The PSO
consists of a swarm of particles moving in n-dimensional real-valued search space of possible
problem solutions. Every particle has a position vector encoding a candidate solution to the
problem and a velocity vector. Moreover, each particle contains a small memory that stores
its own best position visited so far and a neighborhood/global best position obtained through
communication with its neighbor particles. The information about good solutions spreads
through the swarm, and thus the particles tend to move towards promising areas in the search
space. In every iteration, the velocity is updated and the particle moves to a new position.
This new position is calculated as the sum of the previous position and the velocity vector.
In 1997, Eberhart and Kennedy proposed a discrete version of the PSO algorithm (DPSO).
In a binary space, a particle may be seen to move to different corners of a hypercube by
flipping various numbers of bits (Eberhart and Kennedy 1997); in a discrete space, velocity
defines the probability of the position component to take the value one. The DPSO algorithm
can solve the simple discrete optimization problems effectively. But, for some complicated
problems, it may fail to converge or need too long time to find a good solution (Xu et al.
2006).

Another example of the evolutionary algorithms is the shuffled frog leaping algorithm
(SFL). The SFL algorithm (Elbeltagi et al. 2005; Eusuff and Lansey 2003), in essence,
combines the benefits of the genetic-based memetic algorithms (MAs) and the social behav-
ior-based PSO algorithms. In the SFL, the population consists of a set of frogs (solutions)
that is partitioned into subsets referred to as memeplexes. The different memeplexes are
considered as different cultures of frogs, each performing a local search.

Within each memeplex, the individual frogs hold ideas, that can be influenced by the ideas
of other frogs, and evolve through a process of memetic evolution. After a predefined number
of memetic evolution steps, ideas are passed among memeplexes in a shuffling process. The
local search and the shuffling processes continue until satisfying the stopping criteria.

In this paper, we present a discrete shuffled frog algorithm. Essentially, it combines the
benefits of the BGA and the DPSO algorithm for improving the search process, but the main
idea is like the SFL algorithm. Then its performance is compared against the SFL, the DPSO
and the BGA on 12 benchmark functions.
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The rest of paper is organized as follows. In Sect. 2, we give a short review of the utilized
BGA. Considering that the DSFL algorithm is obtained by combining the methods of the
DPSO and the SFL algorithms, the DPSO algorithm is reviewed in Sect. 3. Then in Sect. 4
the SFL algorithm is presented and the proposed DSFL algorithm is introduced in Sect. 5. In
Sect. 6, the experimental results on seven low dimensional and five high dimensional bench-
mark functions are presented and analyzed. In Sect. 7, the general conclusion is presented.
The descriptions of benchmark functions are given in Appendix A.

2 The binary genetic algorithm

The BGA is inspired by biological systems’ improved fitness through the process of evolu-
tion (Holland 1975). A solution to a given problem is represented in the form of a string,
called chromosome, consisting of a set of elements, called genes, which hold a set of values
for the optimization variables (Goldberg 1989). The BGA utilizes some operators whose
performances are similar to those of natural biological process, such as selection, crossover
and mutation.

The BGA starts with a random population of solutions (chromosomes). The fitness of
each chromosome is determined by evaluating the objective function. To simulate the natural
survival of the fittest, a predetermined percent of chromosomes that have lower fitness are
eliminated, and the remaining better ones receive a chance to find a mate and to produce off-
spring. The selection operator determines the parent individuals, which should mate. There
are many ways for choosing parents (Haupt and Haupt 2004). The most common methods
are roulette wheel and tournament selection methods. Since in our simulations we have used
roulette wheel selection method, it is described here, briefly.

In the roulette wheel selection, first a fitness value is assigned to every remaining individ-
ual, as a function of its either cost value or its rank in the poll. That is to say, better individuals
with lower cost values, receive higher fitness values. Then a selection probability is attributed
to every individual. In our simulations, we have used the following simple formula:

_ Nkeep_n“r‘l

Py = ey
Nree,
3,5 n

where Nieep is number of remaining chromosomes, and 7 is the rank of chromosome in
the poll. Then the cumulative probabilities (3"}, P;) are listed in an increasing order and a
random number in the interval [0, 1] is generated. Starting from top of the list, the first chro-
mosome with a cumulative probability that is greater than the random number is selected as
the first parent; the second parent is selected similarly.

After selection of parents, the crossover operator should be applied to produce two off-
spring by exchanging some genetic information between the parents. There are some variants
of crossover operator such as single-point, two-point, uniform, arithmetic etc. In our simu-
lations, we have used a two-point crossover, which is described below.

In the two-point crossover, two random crossover points are selected throughout the chro-
mosomes. Then the parents swap the bits staying between these two points. Alternatively,
one of the three parts of the chromosomes could be randomly selected for swapping.

This process of selection and reproduction is repeated until the number of offspring
becomes equal to the number of eliminated chromosomes; by adding the offspring to the
population, its size becomes equal to the initial size.
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The mutation is the third operator, which is applied on the population (parents and their
offspring) excluding the best chromosome; this policy of excluding the best chromosome
from mutation is called elitism, without which the BGA normally fails to converge. A simple
mutation operator selects a few percent of the genes of the population randomly and flips
their values from zero to one and vice versa (Elbeltagi et al. 2005). In our simulations, we
set the mutation rate at 0.15. The benefit of mutation is introducing new genetic material to
the population, thus it prevents the algorithm from early convergence and stagnation around
local minima (Goldberg 1989). The obtained population is called a new generation whose
members are evaluated and the stopping criteria are checked.

More details on the mechanism of the BGA could be found in (Al-Tabtabai and Alex 1999;
Goldberg 1989). Four main parameters which affect the performance of the BGA are popu-
lation size, number of generations or function evaluations, crossover type and mutation rate.
A larger population size (i.e. hundreds of chromosomes) and large number of generations
(thousands) increase the likelihood of obtaining a global optimum solution, but substantially
increase processing time (Elbeltagi et al. 2005).

3 The discrete particle swarm optimization algorithm

Chronologically the continuous variant of the PSO was introduced first, and the discrete
variants were introduced based on the concepts used in the continuous variant. Hence, we
first present the continuous variant briefly, then the discrete variant is described.

The continuous PSO algorithm is a population-based, self-adaptive search technique intro-
duced by Kennedy and Eberhart (1995). The development of this method was based on the
simulation of simplified social behaviors such as fish schooling and bird flocking or even
human social behaviour being influenced by other individuals. Similar to other population-
based optimization methods (e.g. genetic algorithms), the PSO starts with a random popula-
tion of individuals (particles) in the search space. It finds the global best solution by simply
adjusting the trajectory of each individual towards its own best position and towards the best
position of the neighborhood or the entire swarm. The PSO method has become very popular
due to its simplicity, efficiency, and fast convergence properties. There are two major variants
of the PSO algorithm, local and global. The global variant of the original PSO algorithm is
as follows (Kennedy and Eberhart 1995):

1. Initialize a population of M particles with random positions and velocities in the
D-dimensional search space.

2. Evaluate the fitness function for all particles.

3. For all particles, compare particle’s current position with its personal best position
achieved so far PB; = (pb;1, pbia, ..., pbip). If its current position is better than
P B;, set P B; equal to the current position.

4. Identify the best-ever position visited by any particle in the swarm as the global best
position G B.

5. Update velocity and position vectors of all particles using Egs. (2) and (3).

6. If stopping criteria are not met, go to step 2 and repeat the algorithm.

The velocity and position vectors are updated based on these formulas:
Vi = Vig +e1-rand0) - (gbiy = xjy)
+c2 - Rand() - (pbl; — x7)); ford=1,...,D 2)
+1 +1
X =X+ @
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where V; represents the velocity of particle i, n is iteration number, ¢; and ¢, are the acceler-
ation constants which are positive numbers in the range [0.5, 2], rand() and Rand () are two
random numbers in the range [0, 1]; X; represents the ith particle’s position. PB and GB
represent the best-ever position achieved by the particle itself and all particles in the swarm,
respectively.

In the local version of the PSO, the global best position (G B) is replaced with the neigh-
borhood best position of each particle (N B). It has been suggested that the global version of
PSO converges faster than the local version (Shi 2004).

In 1997, Eberhart and Kennedy proposed the first discrete version of the PSO algorithm
(DPSO) (Eberhart and Kennedy 1997). Since 1997 many variants of DPSO algorithm have
been presented. Afshinmanesh et al. (2005) introduced a method based on the theory of
immunity in biology. Al-kazemi and Mohan (2002b) proposed the Discrete Multi-Phase
Particle Swarm Optimization (DiMuPSO) algorithm. The main feature of the DiMuPSO is
utilizing multiple groups of particles with different goals that are allowed to change with time,
i.e. alternately moving towards or away from the best solutions found recently. The DiMu-
PSO also enforces steady improvement of solutions qualities by accepting only those moves
which improve fitness (Al-kazemi and Mohan 2002a,b; Al-kazemi 2002). Xu et al. (2006)
proposed three sub-swarm discrete particle swarm optimization algorithm (THSDPSO) and
introduced two ways of handling the position of a particle. Tseng and Liao (2007) developed
the DPSO for solving lot-streaming flow shop scheduling problem. The new DPSO improves
the existing DPSO by introducing an inheritance scheme, inspired by a genetic algorithm into
particles construction. Xu et al. (2008) presented an improved DPSO based on cooperative
swarms, which partitions the search space into lower dimensional subspaces. The k-means
split scheme and regular split scheme are applied to split the solution vector into swarms. Then
the swarms optimize the different components of the solution vector cooperatively. Sharaf
and EI-Gammal (2009) developed a novel discrete optimization approach to optimally solve
the optimization problem of power system shunt filter design based on Discrete Multi Objec-
tive Particle Swarm Optimization (MOPSO) technique to ensure harmonic current reduction
and noise mitigation on electrical utility grid.

The DPSO algorithm which is used as a benchmark for comparing the performance of
new algorithms is given below (Eberhart and Shi 2001).

1. Initialize a population of M particles with random positions and velocities in the
D-dimensional search space.
Remark- The components of velocity vector are interpreted as the probability measures
for the position bits to take the value one (See step 5).

2. Evaluate the fitness function for all particles.

3. For all particles, compare particle’s current position with its personal best position
achieved so far PB; = (pbii1, pbia, ..., pbip). If the current position is better than
P B;, then set P B; equal to the current position.

4. Identify the best-ever position achieved by any particle in the swarm as the global best
position GB.

5. The velocity of all particles and their new positions are updated according to the follow-
ing three equations:
ford=1,...,Dandi=1,..., M:

VI =& (vl e (pbYy — X))+ ea - 1o - (gD — xI1)) 4
S@HY = 1/1 + exp(—vi™) 5)
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(©)

o 1 ifrand() < S (vfd“)
id 0 otherwise

where £ is the constriction factor which is used to limit the maximum velocity, ¢1 and ¢
are two positive constants called acceleration coefficients (c; = ¢, = 2), which respec-
tively determine the impacts of particle’s personal experience and social experience on
the future movements of the particle; r; and rpare two random numbers uniformly dis-
tributed between 0 and 1, rand() is also a random number between 0 and 1 which is
different for every component, w is called the inertia weight (Kennedy and Spears 1998)
and is calculated from Eq. (7):

w=0.7+rand()

- (1 —exp(—iter)) (7)
6. If stopping criteria are not met, go to step 2 and repeat the algorithm.

Equation (4) updates the velocity of a particle using three parts: The first part is the current
velocity of the particle; the second is the distance between the particle’s current position and
the best personal position visited by the particle (personal experience); the last part is the
distance between the particle’s current position and the global best position visited by any
particle so far, which reflects sharing the knowledge and co-operation among particles.

Equations (5) and (6) indicate that every position component of the particle is determined
using the corresponding velocity component as a probability measure.

Implementation of this algorithm requires enforcing boundary limits on v values. If v
in one dimension exceeds the boundary limit, it is set to vmax, this parameter controls the
convergence rate and can prevent the algorithm from divergence (Clerc and Kennedy 2002;
Zhang et al. 2003). As such, the main parameters used in the DPSO technique are: the pop-
ulation size, maximum number of generation cycles or function evaluations, number of bits
for each variable, & (the constriction factor), c1, ¢2, w (the inertia weight) and the maximum
velocity.

The suggested values for constriction factor and maximum velocity are 0.729 and 7 respec-
tively (Eberhart and Shi 2001). Both ¢ and ¢ are equal to 2 and w is calculated using Eq. (7).

4 The shuffled frog leaping algorithm

The SFL algorithm (Elbeltagi et al. 2005; Eusuff and Lansey 2003), in essence, combines
the benefits of the genetic-based memetic algorithms and the PSO algorithms.

Let us consider a group of frogs in a swamp. The swamp has a number of stones at discrete
locations where the frogs can leap onto. The goal of all frogs is to find the stone with the
maximum amount of available food as quickly as possible through improving their memes.
The frogs can communicate with each other, and can improve their memes based on the
received information. Improvement of the memes results in changing an individual frog’s
position by adjusting its leaping direction and step size. A shuffling strategy allows for the
exchange of information between local groups to move toward a global optimum.

The difference and potential advantage of the memetic representation over genetic algo-
rithms is that information is passed among all individuals in the population, whereas in a
BGA only parent-sibling interactions are allowed.

The SFL algorithm is as follows:

1. Initialize a population of P frogs with random positions in the search space.
2. The fitness function for each frog is evaluated.
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3. The frogs are sorted in a descending order according to their fitness.

4. The whole population is divided into m memeplexes, each containing / frogs (i.e.P =
m x [). In this process, the first frog goes to the first memeplex, the second frog goes to
the second memeplex, frog m goes to the mth memeplex, and frog m + 1 goes back to
the first memeplex, etc.

5. Within the ith memeplex, the frogs with the best and the worst fitness are identified as
X B; and X W;, respectively. Also, the best-ever position visited by any frog is identified
as the global best position G B.

6. The frog with the worst fitness in every memeplex (not all the frogs) is improved using
steps A to C.

A. A process similar to the PSO algorithm is applied to improve XW; = (xwj, ...,
xw;p) of each memeplex. Accordingly, the position of the frog is adjusted as
follows:

change in frog position: (AX;) = rand() - (XB; — XW;) (8)
xwih = xw + Axig;  —AXmax < AXig < AXmax )

where rand() is a random number between 0 and 1, n is iteration number, and
AXmax 1s the maximum allowed change in a frog-position’s component. If this pro-
cess produces a better solution, it replaces the worst frog. Otherwise, go to the next
step.

B. The calculations in Egs. (8) and (9) are repeated but with respect to the global best
frog (i.e. GB replaces X B;). If no improvement becomes possible, go to the next
step.

C. A new random solution is generated to replace the worst frog X W;.

Go to step 5 and repeat the improvement process for a predefined number of times (s).

7. The memeplexes are shuffled.
The frogs are sorted in a descending order according to their fitness values.
9. If stopping criteria are not met, go to step 4 and repeat the algorithm.

o

Accordingly, the main parameters of the SFL are: number of frogs p, number of memeplexes
m, number of processing cycles for each memeplex before shuffling s, maximum number
of shuffling iterations or function evaluations, and maximum step size for every component
AXmax.

Different settings were experimented to determine proper values for parameters. Six
memeplexes, 10 improvement cycles per memeplex before shuffling, and 0.0125 as the
maximum step size were found suitable to obtain good solutions.

5 The discrete shuffled frog leaping algorithm

In the DSFL algorithm each frog is represented by a number of bits and the only difference
with the SFL is in the cycle of improving the worst frog position within each memeplex. The
improving cycle has four steps, in the first step it uses a method which in concept is somehow
similar to the DPSO algorithm, and for the second and third steps it uses the operators of the
BGA, i.e. mutation and crossover.

To improve the position of the worst frog (X W) of every memeplex, follow these four
steps:

@ Springer



274 M. T. Vakil Baghmisheh et al.

1. Use Eq.(10) to calculate the speed vector of the worst frog V W;:
ford = 1,..., Nh,’[Z

Uwf’jl =&(w-vwiy +cr-r - (pbly —xwiy) +k -y -co - (ghl — xwly)

+uz - c3-r3 - (xbig — xwiy) (10

where i denotes the worst frog of ith memeplex, n represents the iteration number, P B;
is the best position visited previously by the worst frog of ith memeplex and X B; is the
position of the best frog in ith memeplex, and £ is the constriction factor; ¢, ¢; and ¢3
are three positive constants called acceleration coefficients (c1 = ¢» = ¢3 = 2);r1, 12
and r3 are three random numbers uniformly distributed between 0 and 1. p; and p, are
called the influence factors, 1t reflects the influence of the global best position on the
worst frog and ., reflects the influence of the best position of any memeplex imposed
on the worst frog. As arule 1 and p, are positive decimal fractions. The default values
of w1 and py are as u; = uy = 0.5. k reflects the movement direction, which is selected
randomly, thus if k = 1 the frog moves towards the global best position, else k = —1 and
it moves in the opposite direction. w is called the inertia weight (Kennedy and Spears
1998), and is calculated from Eq. (7).

The position of the frog is determined using Eq. (11):

xwfjl = hardlim(xw}; + vw?jl) (11)

where

1 if x>0
0 otherwise

hardlim(x) = [

If this process produces a better solution, it replaces the worst frog; otherwise go to the
next step.

2. A mutation operator is applied on the position of the worst frog. In the case of improve-
ment, the resulted position is accepted; otherwise go to the next step.

3. A crossover operator is applied between the worst frog of the memeplex and the globally
best position. The worst frog is replaced if its fitness is improved; otherwise go to the
next step.

4. The worst frog is replaced randomly.

After a predefined number of improvement cycles, memeplexes are shuffled, and if stopping
criteria are not met, the algorithm is repeated.

Accordingly, the main parameters of DSFL are: number of frogs P, number of memeplex-
es m, number of processing cycles on each memeplex before shuffling, number of shuffling
iterations (or function evaluations), number of bits for any variable, mutation rate, crossover
type, the constriction factor, acceleration coefficients and influence factors.

Based on some primary experimental results, the suitable values were found as follows:
number of frogs and number of bits for each variable are 60 and 10, respectively, number of
processing cycles on each memeplex before shuffling is 10, number of memeplexes is 6. The
values of other parameters have been mentioned before.

6 The simulation results

We applied our proposed algorithm on seven low dimensional and five high dimensional test
functions. The explanations of these functions are given in Appendix A.
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Then, we compared the performance of the proposed algorithm with those of three
evolutionary algorithms, i.e. the SFL, the DPSO and the BGA.

The population size for all algorithms is 60, and number of bits for all variables in the
discrete algorithms is 10.

The algorithms were executed on each problem for 30 runs. The performances of these
four algorithms were compared using two criteria: (1) success rate; (2) average number of
function evaluations in successful runs.

Remark - To measure the speed of algorithms we do not use number of generation cycles,
because number of function evaluations in different cycles of different algorithms are differ-
ent.

Stopping criteria: In all experiments, the algorithm is stopped if one of the following three

criteria is satisfied:

1. The objective function reaches the target value of 0.001 (i.e. reaches within an acceptable
distance from the known optimum value) or: | f — f*| < 0.001 where f* is the optimal
cost value and f is best cost value obtained so far.

2. The number of function evaluations reaches to a maximum limit, which is 20,000 and
50,000 for low dimensional and high dimensional test functions, respectively.

3. No improvement is observed in the objective function for 30 consecutive iterations.

6.1 The simulation results on low dimensional test functions

As mentioned before, we selected seven low dimensional test functions ranging from 2 to 5
dimensions. (See Appendix A).

It can be seen from Table 1 that on L F;, the DSFL, the SFL and the DPSO achieve a
success rate of 100% with all answer precisions. Also the BGA achieves a success rate of
100% with larger tolerances, but only 80% with a tolerance of 10~3. Although with large
tolerances the DSFL is seven times slower than the SFL, but with small tolerances of answer
the speed of the DSFL is comparable to that of the SFL. In comparison to the BGA, with
lower precision the BGA is faster than the DSFL and their success rates are equal, but with
higher precision, the DSFL is twice faster and achieves higher success rate. In comparison
to the DPSO, the DSFL is always faster.

The above analysis suggests that where a high precision for the answer is needed the
DSFL is a proper approach.

On L Fy4 function, all four algorithms have achieved a success rate of 100% with all degrees
of answer precision. The DSFL is the second fast algorithm, after the SFL. Although at lower
precision the speed of algorithms do not differ that much, if an answer with a high precision
is needed the convergence rate of the SFL and DSFL are three to six times faster than those
of the BGA and the DPSO.

On LF, function, the success rate of the DSFL is 100% with all precisions of answer,
although it is three times slower than the SFL. Also the success rate of the SFL is considerably
lower than others. Putting the SFL aside, we notice that when a higher precision is required,
i.e. 1072 and 1073, the DSFL becomes the fastest algorithm.

On L F5 function, with low precision of answer, the performances of all four algorithms
are much the same. By increasing the required answer precision, the success rate of the DSFL
remains untouched (100%), but those of the other three algorithms deteriorate.

On L F5 function, the DSFL’s performance is only lower than that of the SFL in terms of
speed. Fl;rther the DPSO and the BGA fail to find the answer if the tolerance is set smaller
than 107~.
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Table 1 The success rate of four algorithms on low dimensional test functions with specified tolerance

Function Algorithm Tolerance
0.5 0.1 0.01 0.001
LF1 DSFL 100% (3,730) 100% (5,000) 100% (6,346) 100% (8,936)
SFL 100% (580) 100% (1,098) 100% (2,084) 100% (6,944)
DPSO 100% (4,280) 100% (6,780) 100% (11,400) 100% (14,640)
BGA 100% (1,680) 100% (2,390) 100% (7,020) 80% (18,420)
LF2 DSFL 100% (6,603) 100% (10,150) 100% (12,707) 100% (15,296)
SFL 90% (2,656) 80% (3,987) 50% (4,789) 40% (5,944)
DPSO 100% (6,540) 100% (10,140) 100% (12,960) 70% (15,600)
BGA 100% (1,880) 100% (1,740) 80% (18,300) 60% (19,140)
LF3 DSFL 100% (907) 100% (931) 100% (1,087) 100% (1,647)
SFL 100% (980) 100% (997) 100% (1,005) 80% (1,710)
DPSO 100% (879) 100% (994) 80% (1,021) 80% (2,640)
BGA 100% (1,074) 90% (1,243) 60% (1,766) 50% (2,398)
LF4 DSFL 100% (166) 100% (643) 100% (3,704) 100% (4,500)
SFL 100% (122) 100% (555) 100% (1,833) 100% (3,315)
DPSO 100% (180) 100% (1,020) 100% (1,860) 100% (15,900)
BGA 100% (220) 100% (1,520) 100% (3,540) 100% (18,300)
LF5 DSFL 100% (6,494) 100% (7,788) 100% (10,344) 100% (12,888)
SFL 100% (540) 100% (720) 100% (917) 100% (1,364)
DPSO 80% (13,260) 10% (18,784) 0% (0) 0% (0)
BGA 100% (17,500) 70% (19,989) 0% (0) 0% (0)
LF6 DSFL 100% (10,830) 100% (10,970) 10% (11,000) 10% (15,888)
SFL 100% (5,730) 30% (7,820) 0% (0) 0% (0)
DPSO 60% (17,340) 20% (19,260) 0% (0) 0% (0)
BGA 0% (0) 0% (0) 0% (0) 0% (0)
LF7 DSFL 100% (604) 100% (6,072) 30% (12,089) 10% (16,800)
SFL 100% (3,301) 70% (5,981) 0% (0) 0% (0)
DPSO 60% (7,340) 40% (9,470) 0% (0) 0% (0)
BGA 50% (2,070) 50% (4,056) 0% (0) 0% (0)

The numbers in parentheses are the average function evaluations over successful runs

On L Fg and when the tolerance is 0.5, only the SFL has a better performance (in terms

of speed); the BGA cannot find the answer with any precision; the SFL and the DPSO fail to
find the answer if the precision is 10~ or smaller.

On L F7, although by increasing the precision of answer the performance of the DSFL
deteriorates in terms of both success rate and speed, deterioration of other algorithms’ per-
formances are much worse; in a way that with a tolerance of 1072 their success rates are
zero.

In brief, the DSFL is slower than the SFL but faster than the DPSO and the BGA. By
increasing the precision of answer its success rate becomes much better than that of the SFL.
Since, for intrinsically discrete problems, the SFL could not be used, the DSFL remains the
superior algorithm for any required precision of answer.
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Table 2 The success rate of four algorithms on high dimensional test functions (D = 10)

Function Algorithm Tolerance
0.5 0.1 0.01 0.001

HF1 DSFL 100% (5,509) 100% (11,695) 100% (13,402) 100% (15,520)
SFL 100% (1,884) 100% (4,739) 100% (4,829) 100% (7,019)
DPSO 100% (17,820) 100% (20,100) 100% (31,260) 100% (39,000)
BGA 100% (26,790) 100% (33,500) 50% (39,270) 0% (0)

HF2 DSFL 100% (5,257) 100% (7,073) 60% (8,248) 20% (10,120)
SFL 100% (1,190) 100% (1,989) 100% (2,028) 40% (3,870)
DPSO 100% (6,420) 100% (9,300) 50% (9,980) 10% (16,780)
BGA 100% (18,180) 60% (19,020) 30% (21,980) 0% (0)

HF3 DSFL 100% (12,942) 100% (15,145) 100% (19,189) 100% (23,730)
SFL 100% (8,677) 100% (10,366) 100% (13,907) 100% (16,753)
DPSO 100% (21,300) 100% (24,252) 100% (31,596) 100% (38,508)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

HF4 DSFL 100% (22,306) 100% (27,920) 100% (35,485) 100% (46,039)
SFL 100% (18,420) 100% (27,330) 100% (39,281) 100% (46,218)
DPSO 0% (0) 0% (0) 0% (0) 0% (0)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

HF5 DSFL 100% (11,222) 100% (15,155) 100% (17,680) 100% (19,637)
SFL 100% (8,226) 100% (11,302) 100% (13,719) 100% (14,751)
DPSO 100% (29,028) 100% (33,564) 100% (40,692) 100% (46,572)
BGA 100% (33,612) 100% (40,908) 100% (46,965) 0% (0)

The numbers in parentheses are the average function evaluations over successful runs

In the next subsection, we investigate the authenticity of this conclusion on high dimen-
sional problems.

6.2 The simulation results on high dimensional test functions

The performance of our proposed algorithm is evaluated on five high dimensional bench-
mark problems. The dimensions of these problems range from 10 to 100 (see Appendix A).
The obtained results are given in Tables 2, 3, 4 and 5.

Table 2 illustrates the obtained results for number of variables equal to 10. In this table,
on H Fy, the BGA is the slowest algorithm among these four algorithms. The performance
of the BGA deteriorates by increasing the answer precision; in a way that by 1073, the BGA
fails to find the answer. Also the DSFL, the SFL and the DPSO have achieved a success rate
of 100%. The SFL is the fastest algorithm among these three algorithms and the DPSO is
the slowest. Although by increasing precision of answer, the difference in the convergence
speeds of the SFL and the DSFL becomes smaller.

On H F, with a tolerance of 0.5, all algorithms achieve a success rate of 100%. Never-
theless, the performances of all algorithms deteriorate by increasing precision of answer, in
terms of both speed and success rate. The deterioration slop is sharper for the BGA, then
for the DPSO, the SFL and the DSFL; such that with a precision of 10~ the success rate is
40%, 20%, 10% and zero for the SFL, the DSFL, the DPSO and the BGA, respectively.
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Table 3 The success rate of four algorithms on high dimensional test functions (D = 20)

Function Algorithm Tolerance
0.5 0.1 0.01 0.001

HF1 DSFL 100% (10,982) 100% (12,256) 100% (14,813) 100% (17,393)
SFL 100% (6,064) 100% (7,838) 100% (11,226) 100% (14,829)
DPSO 100% (32,460) 100% (37,920) 100% (43,260) 0% (0)
BGA 60% (44,220) 30% (46,080) 0% (0) 0% (0)

HF2 DSFL 100% (3,619) 100% (7,851) 80% (8,743) 20%,(10,090)
SFL 100% (4,378) 100% (4,401) 60% (19,592) 16% (23,540)
DPSO 100% (7,823) 100% (10,240) 50% (10,860) 0% (0)
BGA 100% (6,994) 86% (19,306) 0% (0) 0% (0)

HF3 DSFL 100% (13,594) 100% (16,155) 100% (19,942) 100% (24,188)
SFL 100% (9,112) 100% (10,673) 96% (13,489) 90% (18,150)
DPSO 100% (30,973) 100% (38,604) 40% (31,100) 40% (35,676)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

HF4 DSFL 100% (27,059) 100% (33,016) 100% (42,154) 80% (48,952)
SFL 100% (26,226) 100% (31,855) 80% (42,350) 20% (48,824)
DPSO 0% (0) 0% (0) 0% (0) 0% (0)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

HF5 DSFL 100% (4,834) 100% (16,208) 100% (18,744) 100% (20,316)
SFL 100% (9,102) 100% (11,355) 100% (15,663) 100% (21,181)
DPSO 100% (32,700) 100% (36,376) 100% (44,892) 100% (47,980)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

The numbers in parentheses are the average function evaluations over successful runs

On H F3, the BGA fails to find the answer and the other three algorithms have a success

rate of 100% with any precision of answer; increasing the precision only increases the number
of average function evaluations. Therefore, if we decrease the maximum number of function
evaluations, the success rates will decrease.

On H F4, both the BGA and the DPSO fail to find the answer; and the SFL and the DSFL
have a success rate of 100% with any precision. Again, we notice that for larger tolerances,
the SFL is much faster than the DSFL, but for smaller tolerances, the difference in their speed
becomes negligible; even the DSFL becomes slightly faster than the SFL. This phenomenon
is observed also in the simulations with higher dimensions of the search space.

On H F5, all algorithms have achieved a success rate of 100% with all values of tolerance
excluding the BGA, which fails to find the answer when the tolerance is 1073 This total
failure of the BGA could be attributed to the limit of allowed function evaluations in each
run, which was set to 50,000.

Table 3 presents the obtained results for number of variables equal to 20. On H Fy, H F3
and H Fs functions, both the DSFL and the SFL have a success rate of 100%, regardless
of tolerance value. Of course by decreasing the tolerance, the average number of function
evaluations increases. On H F, and H Fy, the success rates of these two algorithms decrease
by increasing the precision of answer and the slop of deterioration for the SFL is sharper
than that for the DSFL. Thus for smaller tolerances the DSFL has a higher success rate.
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Table 4 The success rate of four algorithms on high dimensional test functions (D = 50)

Function Algorithm Tolerance
0.5 0.1 0.01 0.001

HF1 DSFL 100% (9,931) 100% (14.,204) 100% (16,764) 100% (18,032)
SFL 100% (8,641) 100% (8,761) 100% (12,691) 100% (13,450)
DPSO 100% (32,700) 100% (36,960) 100% (44,280) 40% (47,820)
BGA 10% (48,840) 0% (0) 0% (0) 0% (0)

HF2 DSFL 100% (6,272) 80% (6,957) 30% (8,743) 20% (30,090)
SFL 100% (2,335) 100% (3,475) 20% (1,259) 20% (13,239)
DPSO 100% (7,800) 100% (8,220) 50% (12,900) 10% (12,900)
BGA 100% (20,460) 90% (21,300) 0% (0) 0% (0)

HF3 DSFL 100% (13,656) 100% (16,401) 100% (20,547) 100% (24,612)
SFL 100% (9,399) 100% (10,275) 96% (16,350) 96% (23,427)
DPSO 100% (36,372) 100% (44,104) 20% (47,340) 0% (0)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

HF4 DSFL 100% (30,511) 100% (36,005) 100% (46,028) 80% (50,000)
SFL 100% (29,755) 100% (37,629) 60% (44,974) 20% (42,500)
DPSO 0% (0) 0% (0) 0% (0) 0% (0)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

HF5 DSFL 100% (15,788) 100% (17,136) 100%,(19,810) 100% (21,091)
SFL 100% (13,234) 100% (16,510) 100% (16,571) 100% (22,492)
DPSO 100% (35,268) 100% (38,436) 80% (44,640) 60% (46,640)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

The numbers in parentheses are the average function evaluations over successful runs

On HF) and H F», the DPSO fails to find the answer when tolerance of answer is 1073

or smaller. On H Fj its success rate decreases to 40% when the tolerance value is 1072 or
smaller. On H Fy, it fails to find answer with any value of tolerance. And on H Fs, increasing
the precision only increases the average number of function evaluations. Since with 1073,
its average function evaluations have approached the limit value of 50,000, it could be pre-
dicted that by increasing the precision beyond 103, the success rate of the algorithm will
deteriorate.

The BGA does not show good performance on any function. Its best performance is
obtained on H F (60%) with a tolerance of 0.5, while the average number of function eval-
uations is close to the limit (50,000). The BGA fails on H F3, H F4 and H Fs, totally, and
its success rate on H F, is 30% only when the tolerance is 0.5, and for smaller values of
tolerance, it fails totally.

Finally, Tables 4 and 5 demonstrate the obtained results for number of variables equal to
50 and 100 respectively. The DSFL, the SFL and the DPSO have achieved a success rate of
100% on H Fy, H F3 and H Fs functions, with every value of tolerance, for both D = 50
and D = 100. On H F>, their success rates are almost equal. Although with larger tolerances
the SFL is faster than the DSFL, with smaller tolerances, the speed of the DSFL approaches
the speed of the SFL. For D = 50, on H F> and H F5 the DSFL is even slightly faster than
the SFL. For D = 100 and with a tolerance of 103, the DSFL is slightly faster than the SFL
on H F3 and H Fs.
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Table 5 The success rate of four algorithms on high dimensional test functions (D = 100)

Function Algorithm Tolerance
0.5 0.1 0.01 0.001

HF1 DSFL 100% (12,931) 100% (14,211) 100% (17,048) 100% (18,963)
SFL 100% (7,324) 100% (9,644) 100% (13,649) 100% (16,310)
DPSO 100% (31,080) 100% (34,680) 100% (41,880) 40% (42,060)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

HF2 DSFL 100% (5,627) 100% (7,435) 60% (8,569) 20% (27,680)
SFL 100% (1,972) 100% (2,980) 60% (8,588) 20% (16,279)
DPSO 100% (8,260) 100% (13,020) 20% (17,690) 0% (0)
BGA 80% (19,560) 90% (21,300) 10% (23,540) 0% (0)

HF3 DSFL 100% (13,795) 100% (16,281) 100% (20,289) 100% (24,195)
SFL 100% (11,242) 100% (13,954) 96% (22,456) 96% (27,646)
DPSO 100% (37,836) 60% (41,600) 0% (0) 0% (0)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

HF4 DSFL 100% (33,943) 100% (35,325) 100% (48,362) 60% (49,879)
SFL 100% (34,761) 100% (39,020) 60% (46,352) 20% (49,665)
DPSO 0% (0) 0% (0) 0% (0) 0% (0)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

HF5 DSFL 100% (15,437) 100% (18,616) 100% (19,897) 100% (22,675)
SFL 100% (12,562) 100% (17,546) 100% (18,112) 100% (23,117)
DPSO 100% (37,308) 60% (43,580) 40% (43,380) 20% (47,940)
BGA 0% (0) 0% (0) 0% (0) 0% (0)

The numbers in parentheses are the average function evaluations over successful runs

For D = 50 and D = 100 with a tolerance of 0.5, the DPSO achieves a success rate of

100% on H F, HF,, HF3 and H Fs, but in most of the cases it is at least twice slower than
the SFL. For D = 50 with a tolerance of 1073, the success rate of the DPSO is 40%, 10%,
0%, 0% and 0% on H F) to H Fs, respectively, which are much less than the success rate
of the DSFL on these functions, i.e. 100%, 20%, 100%, 80% and 100%, respectively. For
D = 100 with a tolerance of 103, the success rates of the DSFL on H F) to H Fs are 100%,
20%, 100%, 60% and 100%, respectively, while the success rates of the DPSO are only 40%,
0%, 0%, 0% and 0%. And this comparison again demonstrates the supremacy of the DSFL
over the DPSO.

On HFy, for D = 50 and 100, with a tolerance of 1073, the DSFL’s success rates are
four and three times better than those of the SFL, respectively. Excluding the H F, while the
tolerance is 0.1 or larger, the performance of the BGA is almost disastrous for both D = 50
and 100.

7 General conclusions
In this paper, we presented a discrete version of the shuffled frog leaping algorithm and

compared its performance with the SFL, the DPSO and the BGA algorithms on 12 difficult
nonlinear and multimodal functions in two states of low and high dimensions. Our obser-
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vations on low dimensional and high dimensional functions are consistent. Our proposed
algorithm, i.e. the DSFL, outperforms the BGA and the DPSO in terms of both success rate
and speed. On low dimensional functions and for large values of tolerance the DSFL is slower
than the SFL, but their success rate are equal. On high dimensional functions and for smaller
values of tolerance the DSFL becomes faster than the SFL, also its success rate is better than
that of the SFL.

The obtained results demonstrate that the DSFL performs very well by increasing the
number of variables and the required precision of answer, in terms of both speed and suc-
cess rate. For high dimensional problems, for intrinsically discrete problems, also when the
required precision of the answer is high, the DSFL is the most efficient algorithm.

A Appendix Benchmark functions
A.1 The low dimensional benchmark functions
L F;- Sphere function (Chelouah and Siarry 2005):
fix) =x7 +x5 +x3; 512 <x <5.12 (12)

It has one single minimum (local and global) with L F; = 0 at (0, 0, 0). It is smooth
and unimodal.
L F>- Zakharov function (Chelouah and Siarry 2005):

3
frx,x2,x3) = D717+ (0.5i6)7 + 05ix)*: =5 <x <10 (13)
i=1
It has several local minima (exact number unspecified in usual literature), and the
unique global minimum with L F, = 0 at (0, 0, 0).
L F3- Branin function (Liu et al. 2005):

510, 5 1
[x1,x2) = (x2 — ——5x7 + =x1)” + 10(1 — =) cos x1 + 10
4 b4 8

—5<x1<10; O0<xy <15 (14)

The global minimum is approximately 0.398 at three points: (—m, 12.275),
(7, 2.275) and (9.425, 2.475).
L F4- Rastrigin function (Liu et al. 2005):

fa(x) :xl2 +x22 —cos18x; —cos18xp; —1<x; <1 (15)

The global minimum is —2 at the point (0, 0). There are about 50 local minima
arranged in a lattice configuration.
L F5- B2 function (Chelouah and Siarry 2005):

f5(x1, x2) = x7 +2x% — 0.3 cos(3mxy) — 0.4 cos(dmxy) +0.7
—100 < x; < 100 (16)

It has several local minima (exact number unspecified in usual literature), and unique
global minimum with L Fs = 0 at (0, 0).
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L Fs- Function (Lee and Yao 2004; Leung and Wang 2001; Yao et al. 1999):

5
fo(x) = z ([x; + 0.5])2; —100 < x; < 100 (17)
i=1
It has global minimum with L Fg = 0 at (0, 0, 0, 0, 0).
L F7- Quartic function with Noise (Lee and Yao 2004; Leung and Wang 2001; Yao et al.
1999):

5

fr(x1, x2,...x5) = Z i+ l)x? + random(0, 1)
i=1
—1.28 < x; < 1.28 (18)

Quartic function is a simple unimodal function padded with noise. Expected fitness
depends on the random noise generator (Gaussian or uniform). The random noise
makes sure that the algorithm never gets the same value on the same point. But its
global minimum is approximate 0 at point (0, 0, 0, 0, 0).

A.2 The high dimensional benchmark functions

In all functions listed below, N is the dimension of search space.

H F1- Griewank’s function (Lee and Yao 2004; Leung and Wang 2001; Yao et al. 1999):

N N
1 2 p
fx) =1+ 7000 ;xi — ilj[lcos(xi/«ﬂ)
—100 < x; < 100 (19)
It is multimodal and non-linear and it has a global minimum with HF; = 0 at
(0,0, ...,0). Number of local minima for arbitrary N is unknown. By increasing

the dimensions of search space, the cost function becomes flatter.
H F>- Rosenbrock function (Lee and Yao 2004; Leung and Wang 2001; Yao et al. 1999):

N—-1

fE) =D 110007 = xi41)” + (5 — 1)’
i=1

—30 < x; <30 (20)

Rosenbrock function is considered to be difficult, because it has a very narrow ridge.
The tip of the ridge is very sharp, and it runs around a parabola. Finding the valley is
a trivial task, however convergence to the global optimum is difficult and it’s global
minimum is H Fp at (1,1, ...,1).

H F3- Ackley function (Lee and Yao 2004; Leung and Wang 2001; Yao et al. 1999):

_ [ LN 2
f(x)=20+e—20-¢ 0'2( LR x’) — oW XLy cosx)
—32 <x; <32 2n

It is non-linear and multimodal test function and it has a global minimum with
HF; =0at(0,0, ..., 0). Number of local minima for arbitrary N is unknown.
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H F4- Extended EF10 function (Al-kazemi and Mohan 2002a):

N—1
) =D (7 + x4 ) P sin® (507 + 17, ™) + 1
i=1

—100 < x; < 100 (22)

This function is non-linear, non-separable and it has a global minimum with H Fy =
0at(0,0,...,0).
H Fs- Rastrigin’s function (Lee and Yao 2004; Leung and Wang 2001; Yao et al. 1999):

N
fx)=10-N+ Zx,z — 10cos(2mx;)
i=1
=512 < x; <5.12 (23)

This function is highly multimodal and non-linear and contains millions of local
minima in the interval of consideration but it has a global minimum with H F5 =0
at (0,0,...,0).
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