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Abstract  The high complexity of natural language and the huge amount of human and
temporal resources necessary for producing the grammars lead several researchers in the area
of Natural Language Processing to investigate various solutions for automating grammar gen-
eration and updating processes. Many algorithms for Context-Free Grammar inference have
been developed in the literature. This paper provides a survey of the methodologies for infer-
ring context-free grammars from examples, developed by researchers in the last decade. After
introducing some preliminary definitions and notations concerning learning and inductive
inference, some of the most relevant existing grammatical inference methods for Natural Lan-
guage are described and classified according to the kind of presentation (if text or informant)
and the type of information (if supervised, unsupervised, or semi-supervised). Moreover, the
state of the art of the strategies for evaluation and comparison of different grammar inference
methods is presented. The goal of the paper is to provide a reader with introduction to major
concepts and current approaches in Natural Language Learning research.

Keywords Grammatical inference - Natural language - Context free grammar

1 Introduction

Grammatical inference (also known as grammar induction, or grammar learning) deals with
idealized learning procedures for acquiring grammars on the basis of exposure to evidence
about languages (Pullum 2003).

Given the complexity of natural language (NL) and the high amount of human and tempo-
ral resources necessary for producing the grammars, the automation of grammar generation
is and will continue to be one of the major areas of research in Natural Language Process-
ing (NLP). To this aim, many grammar inference algorithms have been developed in the
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literature for natural language. These algorithms have been differently classified by several
authors, according to the various features of the inference process. Roberts and Atwell (2002)
provided a classification based on the underlying learning paradigm into: models based on
Categorial Grammar, memory-based learning models, evolutionary computing models, and
string-pattern searches. Edelman et al. (2005) classified grammar induction methods accord-
ing to the type of input, splitting them in methods that learn from tagged corpora and methods
that learn from raw (untagged) corpora. Analogously, Cramer (2007) classified the existing
approaches in tag-based and word-based methods.

In this paper, a structured overview of the existing grammar inference methods for natural
language is given. This survey provides a comprehensive summary of the present state of the
literature, considering a wide scope of grammar inference methods. A classification of these
methods is provided, based on the presentation set (e.g., text and informant) and the type of
information (e.g., supervised, unsupervised and semi-supervised) they use for learning the
grammar. A comparative review of the grammar inference methods, in light of the classifi-
cation proposed, is given. Moreover, in order to identify the future trends of these methods,
an analysis of their temporal evolution and the computational techniques applied to perform
the language learning is provided.

Compared to the previous classification works, we review a much wider number of gram-
mar inference algorithms and focus much more on the evaluation of these methods, performed
by the authors using one of the three main evaluation strategies, that are the “Looks-Good-
to-me”, the “Compare Against Treebank” and the “Rebuilding Known Grammars”. The goal
of this review is to provide a reader who may not be very familiar with Natural Language
Learning with introduction to major concepts and current approaches in this research.

The remainder of the paper is organized as follows. Section 2 is an introduction of some
basic notions from language learning. Section 3 is dedicated to review the most relevant
grammar inference methods for natural language developed in the last decade. Section 4
overviews the evaluation techniques usually applied for grammar inference, and describes
how they have been applied to evaluate and compare the investigated grammar inference
methods. Finally, Section 5 concludes the paper.

2 Basic notions from grammars and language learning

This section provides an introduction to the language learning issues, including the definition
of context-free grammars, the most popular kind of grammar that has been firstly used to
define the syntax of natural language, as well as a brief review of some preliminary notions
from the language learning theory.

2.1 Context-free grammars

Context-free grammars (CFGs) were firstly defined by Chomsky in the mid-1950s (Chomsky
1957). A grammar is context-free when the expansion of a symbol does not depend on its
context (i.e., the position of the symbol in a sequence or the relationship with surrounding

symbols). A context-free grammar consists of four components:

isafinitesetof terminal symbols;

T?
N, isafiniteset of non — terminal symbols;
P, isafinitesetof productionrules;

X,

isastart symbol inN.
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S— NP VP A sentence (S) is a noun phrase (NP) plus a verb
phrase (VB)

NP - N A noun phrase is a noun

VP - V PP A verb phrase is a verb plus a prepositional

phrase (PP)

PP —» PREPNP |A prepositional phrase (PP) is a preposition
plus a noun phrase

N - Jolm ‘John’ and ‘CNR’ are nouns
N - CMR

PREP — at ‘at’ is a preposition

V - works ‘works’ is a verb

Fig. 1 Example of production rules of a CFG for a small fragment of English

Terminal symbols are the words that constitute the alphabet of the language (represented
in italics in the subsequent examples).

Non-terminal symbols represent the grammatical categories, such as sentence (in short
S), noun phrase (in short NP), verb phrase (in short VP), prepositional phrase (in short PP),
determiner (in short DET), noun (in short N), verb (in short V'), preposition (in short PREP),
etc.

A production rule consists of a single non-terminal symbol, followed by an arrow — that
is followed by a finite sequence of terminal and/or non-terminal symbols. Production rules
express how different grammatical categories can be built up.

Any sequence of terminal symbols derived from the start symbol using production rules
is called sentence. The set of sentences that can be derived from the start symbol applying
the set of production rules constitutes the language generated by the grammar.

An example of production rules of a CFG for a small fragment of English is described in
Fig. 1:

Let us now consider the string of words “John works at CNR”. This is a correct sentence in
the language defined by the grammar, since the sequence of terminal symbols “John” “works”
“at” “CNR” can be derived from the start symbol S by repeatedly applying the production
rules shown in Fig. 1.

Actually, natural language is characterized by a large variety of linguistic phenomena,
which are not completely represented by CFGs, but need of the expressiveness of the class
of context-sensitive grammars!. The name context-sensitive comes from the fact that the
expansion of a symbol depends on its context (i.e., the position of the symbol in a sequence
or the relationship with surrounding symbols).

Context-sensitive grammars, however, have two shortcomings with respect to natural lan-
guage processing:

— parsing complexity: all known algorithms for parsing these grammars have exponential
time complexity.

— too needless expressiveness: only a few linguistic phenomena, such as cross-serial depen-
dency (that can occurs in Dutch and Swiss-German languages), require the expressiveness
of context-sensitive grammars.

Consequently, although CFGs have less expressive power than context-sensitive ones, they
are able to model all frequent linguistic phenomena of natural language assuring, at the same

I A context-sensitive grammar is a formal grammar G = (T, N, P, X) in which every production rule p € P
is of the form wAB — wypB, with A € T (i.e., A is a non-terminal symbol) and w and 8 € (T U N)*
(i.e., w and B are strings of non-terminals and terminals) and y € (T U Mt Ge,yisa nonempty string of
non-terminals and terminals).
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time, a lower parsing complexity. For these reasons, the majority of grammars for natural
language has been developed opting for context-free grammars instead of context-sensitive
ones.

2.2 Language learning

All the main research studies in language learning agree with the fact that the learnability
of various language classes, either in the Chomsky hierarchy (i.e. regular languages, con-
text-free languages, context-sensitive languages, and unrestricted languages) or not, is a hard
problem (i.e. there exists no polynomial time algorithm that can learn the target grammar
from an arbitrary set of labeled examples).

The majority of the language learning models studied in the literature takes as input an ini-
tial set of positive training examples (i.e. sentences that should be recognized by the grammar)
and produces in output the language description, i.e. the specific grammar able to recognize
only these examples. To achieve that, a set of negative examples (i.e. sentences that should
not be recognized by the grammar) is also needed for limiting the extent of generalisation,
as an overly general grammar will never be refuted considering a new positive example.

Therefore, the two main issues that grammar inference methodologies have to face are the
over-specialisation (or over-fitting) and the over-generalisation. The former occurs when the
inference process produces a grammar whose language is smaller than the unknown target
language (which is always the case when algorithms are not trained ad infinitum). This issue
can be prevented by some extent setting aside some data (which takes part of the so-called
“validation set”) and measuring the performance on this data after each training example has
been processed. The latter occurs when the inference process produces a grammar whose
language is larger than the unknown target language. Over-generalisation can be controlled
by using a set of negative examples.

One of the main results in language learning theory was reached by Gold (1967) in the
middle 1960s. He proved that context-free grammars are not learnable from positive exam-
ples only. However, Gold’s theorem does not cover all kinds of CFGs, such as for example
stochastic CFGs and finite grammars that are indeed learnable, as showed by Horning (1969)
and Adriaans (1992), respectively.

2.2.1 The presentation set

Following Gold’s seminal paper (Gold 1967), the specification of a learning algorithm
requires the definition of:

— the class of languages L to be inferred;

— the language description (or hypothesis) class H used to describe the languages in L,
which corresponds to the grammar in our case. Let 1 € H, L£(h) denotes the language
described by h;

— the way the learning process obtains information.

Gold models a learning algorithm £ 4 as a function that takes as input a finite sequence of
examples and gives as output a language description.

A presentation is an infinite sequence of examples. Two kinds of presentations are usually
allowed:

— A text for alanguage L is an infinite sequence of strings x1, x2, ...from £ such that every
string of £ occurs at least once in the text. The inference algorithms that use this type of
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A survey of grammatical inference methods for natural language learning 5

information are said to learn from positive examples. Note that the class of all the possible
text presentations for a language £ is denoted by Py..

— An informant for a language L is an infinite sequence of pairs (x1, d1),(x2, d2), ...in
L x B, (where B is the set of Booleans) such that every string of £ occurs at least once
in the sequence and d; = true < x; € L. The inference algorithms that use this type
of information are said to learn from positive and negative examples. Note that the class
of all the possible informant presentations for a language £ is denoted by PNL.

In NLP, large sets of positive examples may be available but it is rarely possible to obtain a set
of negative examples for learning. To overcome this lack of negative evidence, the following
two solutions have been proposed in the literature:

— torestrict the language to one of the classes of formal languages, which have been proven
to be learnable from positive examples only, such as reversible languages (Angluin 1982),
k-testable languages (Garcia and Vidal 1990), code regular and code linear languages
(Emerald et al. 1996), pure context-free languages (Koshiba et al. 1997) and strictly
deterministic automata (Yokomori 1995).

— to introduce various heuristics aiming to avoid over-generalisation without the use of
negative examples, such as simplicity (Langley and Stromsten 2000).

In this survey, we take into account the kind of presentation (if text or informant) to broadly
classify the grammar inference methods for natural language into informant-based methods,
which learn from positive and negative examples, and text-based methods, which learn from
positive examples only.

2.2.2 The type of information

In the model proposed by Gold (1967), the learning process involves two parties, the Learner
and the Challenger (also called Teacher). The former is the party that has to identify the lan-
guage, while the latter has to give to the learner examples of (unstructured) sentences taken
from the language. In addition, a critic (also called an oracle) may be used by the learner for
verifying if a certain sentence is a valid sentence in the language, i.e. it can be derived from
the start symbol applying the set of production rules.

According to the Learner and the Challenger role and the use of a critic, language learning
methods are classified in supervised, unsupervised, and semi-supervised.

Language learning methods are said to be supervised if they use a challenger to provide the
examples of (unstructured) sentences and a critic to validate hypotheses about the language.
This means that the method defines a connection between one set of sentences, called inputs
and given by the challenger, and another set of sentences, called outputs and given by the
critic. Generally, a learning method that uses a treebank or a structured corpus is a supervised
method, as the structure of the sentences in the corpus can be considered the critic.

Language learning methods are said to be unsupervised if they only use a challenger.
This means that they do not receive information from the critic about the structure of valid
sentences in the language, and therefore they do not know what the output should look like.

A third class of language learning methods, called semi-supervised learning, is halfway
between supervised and unsupervised learning. Semi-supervised learning methods use avail-
able unstructured data to improve supervised learning tasks when the structured data are
scarce or expensive.

Therefore, in this survey, we take into account the type of information (if supervised,
unsupervised, or semi-supervised) to broadly classify the grammatical inference methods
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Table 1 Current grammar inference methods for NL and their classification

Presentation set Type of information
Text Informant  Supervised Unsupervised ~ Semi-super-
vised
ADIOS X X
EMILE X X
e-GRIDS X X
CLL X X
CDC X X
INDUCTIVE CYK X X
LAgtS X X
GA-based X X
ALLis X X
ABL X X
UnsuParse X X
Incremental parsing X X
Self-training X X
Co-training X X

for natural language into supervised methods, which use a treebank or a structured corpus,
unsupervised methods, which do not have knowledge of the structure of the language, and
semi-supervised methods, which combine unstructured linguistic data with small structured
training sets.

3 Grammatical inference methods for natural language

The main research studies in grammatical inference have been made in various application
domains, such as speech recognition (Baker 1979), computational linguistics (Adriaans
1992), computational biology (Sakakibara et al. 1994; Salvador and Benedi 2002), and ma-
chine learning (Sakakibara 1997; de la Higuera and Oncina 2003).

As explained in Sect. 2.1, the majority of grammars for natural language has been devel-
oped opting for context-free grammars instead of context-sensitive ones. Therefore, this sur-
vey aims at giving a comprehensive review of grammar inference methods for NL developed
in the last decade and based on CFGs, classifying them according to the features highlighted
in the previous section, i.e. the presentation set and the type of information. Table 1 summa-
rizes the analysed methods that are deeply described in Sect. 3.1 and its sub-sections. The
table shows that the majority of NL learning methods, proposed in the literature, is based on
a text-based and unsupervised approach. The reason for that is threefold:

e First of all, unsupervised learning enables to learn larger and more complex models than
supervised learning. This is because supervised learning aims at defining connections
between one set of input sentences (i.e. training examples) and another set of output
sentences (provided by the structured corpus). Therefore, the complexity of the learning
task increases notably when learning models with deep hierarchies.
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A survey of grammatical inference methods for natural language learning 7

e Second, although supervised methods typically generate better results, due to the fact that
they know the structure of the language for tuning their output, unsupervised methods
are less time-consuming and costly because they do not require the onerous creation of
the initial tree-bank of the language.

e Third, in NL it is problematic to specify all sentences that have not to be included into
the grammar because learners typically get evidence about what is grammatical (correct
sentences or positive examples), but no details about what is not grammatical (incorrect
sentences or negative examples).

3.1 Description of the methods

This section takes an in-depth look at the grammatical inference methods for NL, summarized
in Table 1.

3.1.1 ADIOS

The ADIOS (Automatic DIstillation Of Structure) algorithm (Solan et al. 2005) was proposed
as a statistical method of grammar induction that yields symbolic results in the form of a
context-free grammar. It induces grammars from a corpus of strings (such as text, transcribed
speech, nucleotide base pairs, etc.), using only positive examples in an unsupervised fashion.
Therefore, ADIOS can be classified as a text-based and unsupervised grammatical inference
method.

The algorithm works in three phases: initialization, pattern distillation and generalization.
Initialization involves loading the corpus onto a directed pseudograph (i.e. a non-simple graph
in which both loops and multiple edges are permitted) whose vertices are all lexicon entries,
augmented by two special symbols, begin and end. A sentence in the graph is represented
by a path over the graph, starting at begin and ending at end, and is indexed by the order
of its appearance in the corpus. In the top of Fig. 2, the pseudograph for the sentence “that
the cat is eager to please disturbs Beth” is initialised. Initialization is followed by pattern
distillation that consists in the extraction of significant patterns (i.e. sequences of nodes) from
the pseudograph by finding sub-paths of high probability, considering the number of outgo-
ing and incoming edges of a sub-path. After the candidate patterns have been generated, the
generalization phase looks for finding the most significant pattern, then generalizes over the
graph by creating equivalence classes from all of the variable node elements in the pattern.
For instance, in Fig. 2 the equivalence class E50 consisting of the nouns {bird, cat, cow, dog,
horse, rabbit} is created. At the end of each iteration, the most significant pattern is added
to the lexicon as a new unit, the sub-paths it subsumes are merged into a new vertex, and the
graph is rewired accordingly. An example of the working of the algorithm, highlighting the
hierarchical construction of a context-free grammar and the resulting tree structure is shown
in Fig. 2.

3.1.2 EMILE

EMILE (Adriaans 2001) was firstly proposed by Adriaans in 1992 and successively updated
through the years until the latest version (Adriaans and Vervoort 2002). It is based on a
teacher/pupil metaphor, where the teacher generates grammatically correct sentences (posi-
tive examples) and the pupil can ask the oracle which one is valid. Therefore, EMILE belongs
to the class of text-based and supervised grammatical inference methods.
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pegin at P49 s eager 10 piease aisturos Bemn ena

P63 Bath  end

liid"k s 3 begin P116 end P63 —> PSOES4
23RIELE P116 — P52 Po@ P59 —> fo E6O
gecs38 P52 — that E53 E60—> pieass | read
855 % E53 —3 Beth| George | P49 E64 —> annoys | bothers | disturbs | wormies
P49 —> the ES0 EBS —» Beth | Cindy | George | Joe | Pam |
E50 —3 rabbit| horse | caf P40 | P74
dog | bird | cow P74 —> aET5
P88 —> iseager PB4 E75—3 cow| dog | horse

P84 —» PBIEBS

—y -

bothers o-
disturbs
worries

Fig. 2 Working of the ADIOS algorithm (Solan et al. 2005)

More in detail, the EMILE algorithm consists of five main steps: first order explosion,
verification, clustering, rule induction and rule rewriting. Given an input set of positive
example sentences, each sentence is examined to discover how it can be broken up into
subexpressions. For instance, considering the example sentences “John loves Mary” and
“Mary walks”, a possible set of subexpressions is the following: {“John”, “John loves”,
“John loves Mary”, “loves Mary”, “Mary”, “Mary walks”, “walks”}. The resulting set of
subexpressions is passed to an oracle to verify substitutions of all expressions in each context.
The oracle returns whether or not each subespression is a valid sentence. Afterwards, the next
stage consists in clustering context rules (passed by the oracle) into types. Expressions that
can be substituted into the same contexts belong to the same type. For instance, the context
rules S/lovesMary — John and S/lovesMary — Mary imply that John and Mary can
be substituted in the same context and therefore they belong to the same type A. In the rule
induction phase, the basic and complex rules, associated to specific types during the clustering
phase, are generalized toward more general types and consequently new grammar rules are
introduced. For, instance, the grammar rules S/lovesMary — Aand A — John|Mary
are introduced. Finally, the rules are rewritten with the outcome of producing context-free
grammar rules.

3.1.3 e-GRIDS

The e-GRIDS algorithm (Petasis et al. 2004) is a grammar inference method that is based on
the GRIDS algorithm (“Grammar Induction Driven by Simplicity”) (Langley and Stromsten
2000) and, like its predecessor, it utilizes a simplicity bias for inferring CFGs from positive
examples only. Moreover, it does not use an oracle to check the validity of sentences. For
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Fig. 3 The e-GRIDS algorithm (Petasis et al. 2004)

these reasons, it can be classified as a fext-based and unsupervised grammatical inference
method.

A general workflow of the e-GRIDS algorithm is shown in Fig. 3. e-GRIDS uses the
training sentences in order to construct an initial grammar by converting each one of the
training examples into a grammatical rule. Subsequently, the learning process takes place,
which is organised as a beam search. Having an initial hypothesis (the initial grammar) in
the beam, e-GRIDS uses three learning operators in order to explore the space of CFGs:

— MergeNT operator, which merges two non-terminal symbols into a single symbol X,
thereby replacing all their appearances in the head and the body of rules by X;

— CreateNT operator, which creates a new non-terminal symbol X from two existing non-
terminal symbols that are its constituent symbols.

— Create Optional NT, which duplicates a rule created by the CreateNT operator and ap-
pends a non-terminal symbol to the rule, thus making this symbol optional.

The learning process occurs in three steps, according to the operator that is applied. In the
first step, called “merge” step, the MergeNT operator is repeatedly applied for merging non-
terminal symbols in each grammar in the beam. The resulting grammars are then evaluated
for deciding if replacing the grammar in the beam that has the lowest score with the newly
generated grammar that has a better score. The second step is the “create” step that consid-
ers all ways of creating new terms from pairs of symbols that occur in sequence within the
grammar, by repeatedly applying the CreateNT operator. Finally, in the “create optional” step
all ways of duplicating a rule by the addition of an optional extra symbol at the end of the
rule body are examined by repeatedly applying the CreateOptionalNT operator. The learning
process terminates when it is unable to produce a successor grammar that scores better than
the ones in the beam.

As mentioned above, the e-GRIDS algorithm uses a simplicity bias for directing the search
through the space of CFGs and avoiding overly general grammars. This criterion measures
the simplicity of a grammar through its description length that is defined as the sum of the
number of symbols required to encode the grammar and the number of symbols required to
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Fig. 4 A general workflow of the CLL algorithm (Watkinson and Manandhar 2001)

encode the training examples. Therefore, the algorithm directs the learning process described
above towards grammars that are compact, i.e. ones that have minimum description length.

3.1.4 CLL

The CLL algorithm (Watkinson and Manandhar 2001) aims to learn natural language syntax
from a corpus of declarative sentences and without the need of an oracle for validating hypoth-
eses about the language. Therefore, it belongs to the class of text-based and unsupervised
grammatical inference method.

The CLL algorithm consists of three main stages (see Fig. 4): parsing of the examples,
parse selection and lexicon modification. First of all, the algorithm takes an example sentence
at a time from the corpus, which is then parsed using a n-best probabilistic chart parser, devel-
oped from a standard stochastic CYK algorithm (Kasami 1965). The parsing stage results
in a number of possible parses, which are sent to the parse selector for determining which
one creates the most compressive lexicon. To do that, the algorithm measures the sum of the
sizes of the categories for each lexical entry and evaluates the effect of the new lexicon on
previous parses by re-parsing examples that may be affected. The final stage takes the current
lexicon and replaces it with the most compressive lexicon selected in the previous stage. The
three steps are repeated until all the example sentences of the corpus have been parsed.

3.1.5 CDC

The CDC (Context distribution clustering) algorithm was proposed by Clark (2001) for the
unsupervised induction of stochastic context-free grammars from tagged text. Consequently,
CDC can be classified as a text-based and unsupervised grammatical inference method.
The CDC algorithm makes use of two techniques: distributional clustering and mutual
information. The former allows clustering together sets of tag sequences according to tags
immediately preceding and following the tag sequence. This technique is used to identify
sets of sequences that can be derived from a single non-terminal. An example of cluster is
composed of the following tag sequences that can be derived from the non-terminal ATO:

{ATO AJO NNO; ATO AJO NN1; ATO AJO NN2; ATO AVO AJO NN1;
ATO NNO; ATO NN1 PRP ATO NN1; ATO NN1} .
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A survey of grammatical inference methods for natural language learning 11

The latter allows evaluating the dependencies between the symbol occurring before and after
the constituent (terminal or non-terminal) and it is used in the CDC algorithm to remove
incorrect non-terminals.

The goal of the algorithm is to obtain the grammar with minimum description length.
It therefore starts with a grammar with maximum description length, which has one rule
for each sentence type in the corpus, and a single non-terminal. At each iteration, the algo-
rithm clusters all frequent strings, using distributional clustering, and filter according to the
mutual information criterion. It greedily selects the cluster that will give the best reduction
in description length.

3.1.6 Inductive CYK

The inductive CYK algorithm was proposed by Nakamura et al. in several works (Nakamura
and Ishiwata 2000; Nakamura and Matsumoto 2002; Nakamura 2003) and was implemented
in an inductive grammar inference system called Synapse (Synthesis by Analyzing Positive
String Examples). The algorithm synthesizes CFGs from positive and negative sample strings
generating the minimum production rules, which derive positive strings, but do not derive any
given negative strings. Moreover, inductive CYK does not make use of a critic. Therefore, it
belongs to the class of informant-based and unsupervised grammatical inference methods.

The inductive CYK algorithm takes as input two ordered sets of positive and negative
sample sentences and an initial set of production rules. For each positive sample sentence,
the algorithm performs two steps that have to be repeated until the positive sentence is derived
from the production rules. The first step tests whether the positive sentence can be derived
from the given set of production rules by applying the CYK algorithm (Kasami 1965). During
the execution of this algorithm, the set of terminal and non-terminal symbols candidates of
the body of newly generated rules are tracked. The second step provides a function for adding
production rules when the current set of rules does not derive the positive sample sentence.
This function creates new rules starting from candidate terminal and non-terminal symbols
that are produced during the first phase.

Each time the algorithm finds a rule set that derives the positive sample sentence, it
checks all the negative sample sentences. The inductive CYK algorithm has non-determin-
istic branches, or choice points, to which the control backtracks when the process fails.
Moreover, a control on the search is performed by iterative deepening on the number of rules
to be generated. Starting from an initial limit of the number of rules, this limit is increased by
one when the system fails to generate enough rules to parse the sample within this limit and
repeats the search. If the algorithm terminates with success, it returns the set of production
rules and non-terminal symbols as a result.

3.1.7 LAgts

The LAgts (Language agents) method (Briscoe 2000) relies on a computational simulation
that models the behaviour of a population of language agents, which can be learners, genera-
tors and parsers. The generator (or adult) always randomly generates a positive sentence and
the learner always attempts to parse and learn from it, without the aid of an oracle. For such
a reason, LAgts can be classified as a text-based and unsupervised grammatical inference
method.

The LAgts grammatical acquisition procedure adopts: a Generalised Categorial Grammar
(GCG) with associated parameters as its underlying framework, a parser for finding the cate-
gory sequences representing the input sentences, and an algorithm for updating the parameter

@ Springer



12 A. D’Ulizia et al.

settings. The GCG notation represents each lexical syntactic category as a sequence of p-set-
tings (where p denotes parameters) based on a ternary sequential encoding. For instance, the
lexical categories N and S are represented by a p-setting, encoding the presence, absence or
lack (true, false or ?, respectively) of specification of the category in the grammar. The parser
uses a deterministic algorithm that operates by shifting lexical categories from an input buffer
to the analysis stack, where reductions are carried out on the categories in the top two cells
of the stack, if possible. When no reductions are possible, a further lexical item is shifted
into the stack. When all possible shift and reduce operations have been carried out, the parser
outputs either the start symbol in the top of the stack, if parsing succeeds, or a sequence of
categories, if parsing fails. The algorithm for updating the parameter settings works if the
parser fails. The core of this algorithm is the update function, which is applied to a sequential
p-setting encoding, and returns a new setting, which is retained only if the new setting results
in a successful parser.

3.1.8 GA-based

The GA-based algorithm (Sakakibara and Muramatsu 2000) inductively learns context-free
grammars from partially structured examples (positive and negative), i.e. only some partial
information about the grammatical structure of the given examples is available. Therefore,
the GA-based algorithm belongs to the class of informant-based and supervised grammatical
inference methods.

The GA-based algorithm consists of three steps:

— construction of the tabular representation of the primitive CFG for the given positive
examples;

— elimination of the unnecessary non-terminals and production rules from the primitive
CFG based on the given partially structured examples;

— merge of the remaining non-terminals using a genetic algorithm in order to make the
grammar consistent with the given positive and negative examples.

The algorithm results in the identification of a CFG having the intended structure that is
structurally equivalent to the unknown grammar.

3.1.9 ALLiS

The ALLIS (Architecture for Learning Linguistic Structures) method (Déjean 2000) gener-
ates syntactic structures from a tagged corpus and from correct (positive) examples of the
language to be learned. Consequently, ALLIS can be classified as a text-based and supervised
grammatical inference method.

The ALLiS method is based on theory refinement, which consists of improving an existing
knowledge base so that it fits more with tagged training examples. The method is composed
of two main steps. The first step builds an initial grammar composed of a set of rules that
assigns to each tag of the corpus a default syntactic category, corresponding to its most
frequent behaviour. The second step (refinement) compares this initial grammar with the
training examples in order to identify the revision points, i.e. points that are not correctly
described by the grammar. For these revision points, possible revisions are created. The best
of these revisions is chosen to revise the grammar. This is repeated until no more revision
points are found.
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Fig. 5 A general workflow of the ABL algorithm (van Zaanen 2001)

3.1.10 ABL

The ABL (Alignment-Based Learning) algorithm (van Zaanen 2001) learns syntactic struc-
tures from positive sentences without any a priori knowledge of the language (not even
part-of-speech tags of the words). Consequently, it can be classified as a fext-based and
unsupervised grammatical inference method.

The ABL algorithm consists of three main phases (see Fig. 5): alignment learning, selec-
tion learning, and grammar extraction phases. Alignment learning phase aligns all sentences
in the input corpus such that it finds a shared and a distinct part of all pairs of sentences.
Following a principle of substitutability, if two distinct parts of a sentence (called constitu-
ents) can be seen as being substitutable, they are of the same type. The second step takes the
same unstructured corpus as input and tries to identify the correct constituent from the pos-
sible overlapping constituents, which are found in the previous step, by using probabilistic
methods. The output of this phase is a structured tree-bank. The last phase, i.e. the grammar
extraction phase, extracts a stochastic grammar from this tree-bank.

3.1.11 UnsuParse

The UnsuParse algorithm (Hénig et al. 2008) learns syntactic structures from a corpus of
declarative sentences without any a priori knowledge of the language (not even part-of-
speech tags of the words). Consequently, it can be classified as a text-based and unsupervised
grammatical inference method.

The algorithm is based on the assumption that a word within a part of sentence (called
constituent) prefers a certain position. Therefore, the first phase of the algorithm aims at
computing the significance of the co-occurrence of words, by using the log-likelihood sig-
nificance measure (i.e. the statistical significance of having observed a word A and then a
word B n4p times), and at comparing them by using a separation value that detects intuitive
constituents boundaries. The algorithm proceeds by iteratively picking the smallest separa-
tion value for merging the two corresponding words into a new constituent until each sentence
is a single constituent.

3.1.12 Incremental parsing
The Incremental Parsing algorithm (Seginer 2007) enables the learning of the grammar of a

language from unannotated (positive) example sentences. Consequently, it can be classified
as text-based and unsupervised grammatical inference method.
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The algorithm is composed of two main processes: the incremental parsing and the learn-
ing processes. The incremental parsing process uses common cover links” for representing
the syntactic structure of the sentence in input. In particular, it reads the words of the sen-
tence one by one and adds links that have one of their ends at that word. Afterwards, the
incremental parsing proceeds by calculating, at each step, a non-negative weight for every
link, which may be added between the prefix and the word. The learning process takes as
input a sequence of training (positive) sentences and constructs an empty lexicon. At each
step, the algorithm applies the incremental parsing process for parsing one of the training
sentences and updates the lexicon, accordingly, until all training sentences are parsed.

3.1.13 Self-training

The self-training method was firstly proposed by Charniak (1997) and inspired several sub-
sequent works (McClosky et al. 2006). It learns syntactic structures from both a small set
of declarative labelled examples, which are used to train an initial model, and a larger set
of declarative unlabelled examples, which are labeled by the trained model and used for
re-train a new model. Therefore, the self-training method belongs to the class of text-based
and semi-supervised grammatical inference methods.

The self-training method proposed by Charniak (1997) applies a probabilistic model that
uses a CFG for specifying how the unlabeled sentences can be parsed and which is the prob-
ability of the possible parses. Before applying this model for parsing unlabelled sentences,
the parser is trained by using the small set of labelled sentences. Afterwards, the parsing of
the unlabelled sentences is carried out by the trained parser applying the probability model.
McClosky et al. (2006) extended the method of Charniak (1997) by introducing a further
step, in which a discriminative re-ranker reorders the possible parses of each unlabelled sen-
tence according to several features of the parses, defined in another work of the same authors
(Charniak and Johnson 2005). Roughly, each feature fj is a function that maps a parse y to a
real number. The feature’s value fj(y) is the number of times that the feature occurs for the
parse y. For example, the feature fey pizza(y) counts the number of times that a phrase in y,
headed by eat, has a complement phrase, headed by pizza.

3.1.14 Co-training

The co-training method was proposed by Blum and Mitchell (1998) and successively updated
by Steedman et al. (2003). It uses a small amount of manually parsed (labeled) training sen-
tences and a larger set of unlabelled sentences (positive examples) for defining syntactic
structures of a language. Therefore, it belongs to the class of text-based and semi-supervised
grammatical inference methods.

Unlike self-training, the co-training method requires multiple learners, each with a differ-
ent “view” of the linguistic data. In particular, the co-training method, proposed by Steedman
et al. (2003), makes use of two statistical parsers, each one trained on a small set of labeled
sentences. The method consists of two main phases: the scoring and selection phases. During
the former, each parser assigns a label to every unlabelled sentence it parses, along with a
score that estimates the reliability of the label. In the latter, these new labeled sentences are
selected for being added to the two training sets in order to re-train the parsers. This proce-
dure is iterated until the unlabeled sentences are exhausted. The method outputs, therefore,

2 A common cover link over a sentence U is a triple (x, y, d), wherex, y € U, x # y andd is anonnegative
integer. The word x is the base of the link, the word y is its head and d is the depth of the link (i.e. the maximum
number of brackets between two words).
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statistical parsers, whose learning capabilities are trained on the combined use of labeled and
unlabeled sentences.

3.2 Analysis of the leading features of the methods

This section provides an analysis of the previously introduced grammar inference methods
according to two different point-of-views: (i) the temporal evolution, and (ii) the underlying
computational technique.

3.2.1 Temporal evolution

In an attempt to gain a better understanding of the current trends regarding grammar inference
methods, the analysis of the temporal evolution of articles being published in the last decade
and dealing with each of the methods, previously introduced in Sect. 3.1, has been carried
out. The study of scientific production, based on bibliographic data, indeed, is one of the
most widely used methods for obtaining indicators about temporal evolution, variations and
trends in a specific field of research.

The total number of published papers about the fourteen analyzed grammar inference
methods during the 11 years period 1999-2009 decreased from 10 published papers in 2000
to a minimum of 1 paper in 2009.

In particular, considering the classification of methods based on the type of information,
the scientific production of supervised methods (see Fig. 6a) has been concentrated in the
period from 1999 to 2004, with a peak of 5 papers in 2000. The scientific production of
unsupervised methods (see Fig. 6b) grew from 1999 to 2001, reaching a peak of 7 papers in
2001. From that year up to 2007, there has been a decrease from 4 papers in 2002 and 2003 to
1 paper to 2007. In 2008, the production has shown a little increase with 3 published papers.
Finally, semi-supervised methods had the most recent scientific production (see Fig. 6¢), with
the first publication in 2001 and the last one in 2009, reaching a peak of 3 published papers
in 2003.

From the analysis of these results, we can observe that the current trend in grammar infer-
ence is oriented toward the use of unsupervised and semi-supervised approaches. The reason
for that is the time-consuming and costly creation of tree-banks of languages required by
supervised methods.

3.2.2 Underlying computational techniques

In this section we analyse the previously described grammatical inference approaches based
on the underlying computational techniques applied to perform the language learning. In par-
ticular, the following computational techniques have been applied in the literature: statistical
methods, evolutionary computing techniques, minimum description length, heuristic meth-
ods, greedy search methods, clustering techniques. Table 2 summarizes the computational
techniques used in the grammar inference methods, which have been introduced in Sect. 3.1.

Grammatical inference using statistical methods consists in inferring a stochastic lan-
guage, i.e. a probability distribution, in some class of probabilistic models, from empirical
data, provided generally by large text corpora. Statistical techniques have been used by four
of the grammar inference methods, described in Sect. 3.1 (see the first column of Table 2):
Self-training (Charniak 1997; McClosky et al. 2006), co-training (Steedman et al. 2003),
ADIOS (Solan et al. 2005) and UnsuParse (Hénig et al. 2008). In self-training and co-train-
ing, probabilities are assigned to all possible parses of a sentence by a statistical parser, and
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year

they are used for finding the high-probability parse for a sentence. In ADIOS, statistical
information, present in corpus data, is used to identify significant segments of a sentence and
to distil rule-like regularities. Finally, UnsuParse applies statistical methods for evaluating

the co-occurrences of words.

Grammatical induction using evolutionary computing techniques consists in evolving a
representation of the grammar of a target language through some evolutionary process. Two
analysed methods that rely on evolutionary computing techniques are GA-based (Sakakibara
and Muramatsu 2000) and LAgts (Briscoe 2000). In particular, the GA-based method uses
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Table 2 Underlying computational techniques used in the analysed grammar inference methods

Underlying computational techniques

Statistical Evolutionary ~ Minimum Heuristic Greedy Clustering
methods computing description  methods search techniques
techniques Length methods

ADIOS X X

EMILE X
e-GRIDS X

CLL X

CDC X X X
INDUCTIVE CYK X

LAgtS X

GA-based X

ALLis X

ABL X

UnsuParse X

Incremental parsing X
Self-training X

Co-training X

a genetic algorithm for partitioning the set of non-terminals consistently with the given
examples of sentences in order to eliminate unnecessary non-terminals and production rules
from the initial (primitive) grammar. LAgts applies evolutionary computing techniques in
the simulation model that supports the evolution of a population of language agents.

Minimum Description Length (MDL) is a principle of statistics introduced by Rissanen
(1982) that relies on the belief that the best way to capture regular features in data is to
construct a model in a certain class which permits the shortest description of the data and the
model itself. Grammar learning based on the MDL principle aims at constructing a gram-
mar by means of incremental compression of the grammar rules. The MDL principle has
been used by three of the grammar inference methods, described in Sect. 3.1 (see the third
column of Table 2): CLL (Watkinson and Manandhar 2001), CDC (Clark 2001), and
e-GRIDS (Petasis et al. 2004). In the CLL method, MDL is applied for selecting the best
parse (i.e. that creates the most compressive lexicon) among the possible parses resulting
from the application of a n-best probabilistic chart parser. CDC applies the MDL principle
for grouping parts of production rules of an initial grammar (which has one rule for each
sentence in the training set) yielding a reduction in the amount of information needed to
describe the grammar. In the e-GRIDS algorithm, MDL is used for comparing grammars and
selecting the one that is more “compact” in terms of the length of both the grammar and the
examples of the training set.

Heuristic methods are applied in grammatical induction for exploring the space of the pos-
sible grammars, which generate the training examples of sentences, and converging the search
towards the “correct” grammar. Several heuristic methods exist in the literature, according
to the way the “correct” grammar is defined. The ALLiS method (Déjean 2000) applies a
heuristic for reducing the number of (redundant) rules generated by the first phase of the
algorithm. This heuristic consists in selecting the rules that are most frequent and having
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the richest context. The ABL algorithm (van Zaanen 2001) makes use of the edit distance
(Levenshtein 1965) as the heuristic for finding the longest common subsequence between
two sentences and consequently denoting the unequal parts of the sentences as possible con-
stituents. In the inductive CYK algorithm (Nakamura 2003), various heuristics are adopted
for limiting the generation of rules according to their form, for avoiding the repetition of
equivalent searches and for an intelligent backtracking.

Grammar inference by greedy algorithms makes, iteratively, decisions that seem to be the
best at that stage, such as the making of a new or the removing of the existing rules, the
choosing of the applied rule or the merging of some existing rules. Because there are several
ways to define “the stage” and “the best”, there are also several greedy grammar inference
algorithms. In the Incremental Parsing algorithm (Seginer 2007), “the stage” is calculated
on the basis of the training sentence that is learnt, while “the best” lexicon is defined based
on the weights that are assigned to the links between the prefixes and the words of the sen-
tence. The CDC method (Clark 2001) employs a greedy approach that, starting with the
maximum likelihood grammar, having one rule for each sentence type in the corpus, and a
single non-terminal, clusters at each iteration all frequent strings and filters according to the
MDL principle. ADIOS (Solan et al. 2005) applies a greedy learning algorithm to the graph
representing sentences for scanning significant patterns within the graph and selecting the
best pattern to assign a new non-terminal category.

Finally, clustering techniques are applied for grammar induction with the aim of, starting
from a grammar containing all sentences in the training set, clustering the syntactic units
together until a satisfactory, generalized structure for the grammar is obtained. Clustering
techniques have been used by two of the grammar inference methods, described in Sect. 3.1
(see the sixth column of Table 2): EMILE (Adriaans 2001), and CDC (Clark 2001). EMILE
makes use of clustering of contexts and expressions. Specifically, expressions that occur in
the same context are clustered together and are thus substitutable in similar contexts. CDC
applies distributional clustering for creating sets of sequences, corresponding to syntactic
constituents, based on the contexts they appear in, and then selecting clusters that satisfy the
MDL principle.

From a combined analysis of the underlying computational techniques with the presen-
tation set and type of information of the fourteen investigated grammar inference methods,
we can observe that statistical approaches have been applied only by text-based methods,
while they have not ever been applied by supervised methods. This result is coherent with
the study of Denis (1998) that showed that languages learnable in a statistical query model
are learnable from positive and unlabelled examples.

Moreover, the MDL principle has been followed by text-based and unsupervised methods
only. This is due to the fact MDL is generally used as a principle for avoiding the over-gen-
eralisation of the grammar when no negative examples are available.

4 Evaluation of grammar inference methods

The evaluation of grammar inference algorithms is not a trivial task, and many different
approaches have been proposed in the literature. Section 4.1 discusses three of the principal
evaluation strategies usually applied for evaluating language learning algorithms. Next, a
summary of how these evaluation techniques have been applied to the fourteen grammar
inference methods, analysed in this paper, is given in Sect. 4.2, along with some results of
the evaluation, obtained by the authors in their original works. The analysis of these results
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will allow giving some indications of the advantages and shortcomings of each grammar
inference method.

4.1 Evaluation strategies

Generally, the evaluation of a grammar inference algorithm is carried out by giving in input
to the algorithm a set of unstructured data and evaluating its output. The different evaluation
techniques applied in the literature can be grouped into three strategies: the “Looks-Good-
to-me”, the “Compare Against Treebank” and the “Rebuilding Known Grammars”.

The “Looks-Good-to-me” approach has prevailed for many years due to its apparent sim-
plicity. When a grammar inference algorithm is evaluated using this approach, the algorithm
is applied to a piece of unstructured text and the resulting grammar is qualitatively evaluated
on the base of the linguistic intuitions of the evaluator, that highlights the grammatical struc-
tures which look “good”. As this approach needs only unstructured data as input, it can be
evaluated on different languages without the need of structured corpora (van Zaanen 2001).
However, the method has many disadvantages. First of all, this kind of evaluation is mainly
conducted by an expert who has specific knowledge of the syntax of the language, which is
generally the developer of the system. This leads to a high chance of a biased evaluation,
making it almost impossible to gain an accurate measure of system performance.

Another approach for evaluating grammar inference algorithms is the “Compare Against
Treebank”. This evaluation method consists in applying the grammar inference algorithm to
a set of plain natural language sentences that are extracted from an annotated treebank, which
is selected as a “gold standard”. The structured sentences generated by the algorithm are then
compared against the original structured sentences from the treebank. A schema describing
how a learning system is evaluated against a treebank is shown in Fig. 7. There are several
metrics that can be used to compare the learned tree against the original tree structure. Most
often, the recall, which gives a measure of the completeness of the learned grammar, and
the precision, which shows how correct the learned structure is, are used. These two met-
rics (detailed in Sect. 4.2.2), along with the crossing brackets, which is a metric counting
the number of response constituents that violate the boundaries of a constituent in the key,
belong to the PARSEVAL scoring metrics, proposed by Black et al. (1991) for comparing
a candidate parse (the output of the algorithm) with its reference parse from the annotated
corpus. Another metric is the f] score, which can be interpreted as a weighted average of
the precision and recall metrics. The “Compare Against Treebank” method does not need
an expert to indicate if some construction is correct or incorrect, allowing for a relatively
objective comparison of different algorithms. The main problem with this approach is that
structured corpora are needed.

The “Rebuilding Known Grammars” approach is another evaluation method. This method,
starting from a pre-defined (simple) grammar, generates a set of example sentences, which
are given as input to the grammar inference algorithm and the resulting grammar is compared
manually to the original grammar. If the inferred grammar is similar or equal to the original
grammar then the learning system is considered good. A schema describing how a learn-
ing system is evaluated rebuilding known grammars is shown in Fig. 8. The advantages of
this evaluation method are quite similar to the “Looks-Good-to-me” approach. An additional
advantage, similarly to the “Compare Against Treebank™ method, is that the evaluation can
be done automatically, without the need for a language expert, and, therefore, it yields a more
objective way of comparing different algorithms. One of the disadvantages of this approach
is that the evaluation heavily depends on the chosen grammar.
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4.2 Evaluating grammar inference methods

The grammar inference methods, introduced in Sect. 3.1, have been evaluated by the authors
of the methods using one of the three different evaluation techniques, described in the previ-
ous section. Table 3 summarizes the evaluation strategy applied to each grammar inference
method. The table shows that the majority of NL learning methods has been evaluated using
the “Compare Against Treebank” strategy. The reason for that is twofold. First of all, this
evaluation strategy is unbiased with respect to the evaluator and is scalable. Consequently, it
allows obtaining objective results. Secondly, it comes closest to the evaluation of a system
in a real context.

The evaluation process of each of the fourteen grammar inference methods and the ob-
tained results are discussed in the following sub-sections.

4.2.1 Grammar inference methods evaluated through the looks good to me

The “Looks-Good-to-me” approach has been used to evaluate only one of the fourteen gram-
mar inference methods, that is the LAgts algorithm. Probably, this is due to the evolutionary
nature of the LAgts grammatical acquisition process that does not fit with the use of an
evaluation method that relies on a pre-defined set of structured sentences, like the “Compare
Against Treebank” and the “Rebuilding Known Grammars” methods.
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Table 3 Evaluation strategies applied to the analysed grammar inference methods

Evaluation strategies

Looks-good-to-me Compare Against Rebuilding
Treebank Known Grammars

ADIOS X

EMILE X

e-GRIDS X

CLL X

CDC X

INDUCTIVE CYK X

LAgtS X

GA-based X

ALLis X

ABL X

UnsuParse X

Incremental parsing X

Self-training X

Co-training X

The experimental setting for the LAgts algorithm consists in enabling a linguistic interac-
tion between a randomly selected agent emitting a sentence and another randomly selected
agent parsing it. The experiments evaluate the effectiveness of the acquisition procedures
over a set of eight different languages in terms of number of input sentences required by the
agents to converge on each of the languages. Results showed that the agents converged to the
target grammar with less than a 1% error rate on the basis of 100 input sentences. Note that
these results provide a qualitative evaluation of the method, and more specific performance
is not available.

4.2.2 Grammar inference methods evaluated through the compare against treebank

The “Compare Against Treebank” strategy has been used to evaluate ten of the fourteen
grammar inference methods, as shown in the second column of Table 3. As mentioned in
Sect. 4.1, this strategy makes use of an annotated treebank that is taken as the gold stan-
dard against which to compare the learned treebank. For the evaluation of the ten grammar
inference algorithms the following treebanks are used:

— the Air Traffic Information System (ATIS) treebank (Marcus et al. 1993), which is an
English corpus containing 577 sentences (mostly questions and imperatives) on air traffic,
with a mean sentence length of 7.5 words per sentence.

— the Openbaar Vervoer Informatie Systeem (OVIS) treebank (Bonnema et al. 1997), which
is a Dutch corpus containing 10.000 sentences (mostly imperatives and answers to ques-
tions), with a mean sentence length of 3.5 words per sentence.

— the Wall Street Journal (WSJ) treebank (Marcus et al. 1993), which is an English corpus
containing sentences extracted from newspaper articles with a mean sentence length of
35 words per sentence.

@ Springer



22 A. D’Ulizia et al.

— the Penn treebank (Marcus et al. 1993), which is a corpus consisting of over 4.5 million
words of American English. The ATIS, OVIS and WSJ treebanks are extracted from this
corpus.

— the NEGRA corpus, which consists of 20.602 sentences of German newspaper text.

The following metrics have been used to compare the structure of the learned treebank against
the structure of the gold standard:

— precision, which measures the number of correctly learned constituents as a percentage of
the number of all learned constituents. The higher the precision, the better the algorithm
is at ensuring that what has been learned is correct. Formally, it is defined as:

zseSentences |correct (gold(s), learned(s))|
ZSESentences |learned(s)|
— recall, which measures the number of correctly learned constituents as a percentage of

the total number of correct constituents. The higher the recall, the better the algorithm is
at not missing correct constituents. It is formally defined as:

precision =

ZSeSemences |correct (gold(s), learned(s))|
erSemences |g01d(s)|

— £} score, which is a weighted average of precision and recall, where is assumed that these
two metrics are equally important. It is formally defined as:

recall =

precisionxrecall

1score = 2% —

/ precision + recall

— crossing brackets, which measures the number of learned constituents that overlap con-
stituents in the gold standard. The lower the number of crossing brackets, the better the
algorithm is at producing a grammar whose structure coincides with that of the gold
standard.

Table 4 shows the treebank(s) that the authors of the ten grammar inference algorithms have
adopted for the evaluation, the size of the corpus in terms of number of sentences used for the
test, the mean length of these sentences in terms of number of words, and finally the metrics
that have been measured along with the obtained results. For instance, the ADIOS algorithm
has been evaluated on the ATIS treebank, consisting of 10.000 sentences, whose mean length
is not specified in the original work of the authors (Solan et al. 2005), and the results of the
evaluation are a precision of 65.7%, a recall of 30.08% and a f-score of 42%.

Comparing the results of the evaluation is not a feasible task, due to the differences in the
use of both the reference treebanks (gold standard) and the scoring metrics. However, some
literature studies have been dedicated to compare two or more of the previous algorithms
(van Zaanen and Adriaans 2001; Cramer 2007; Hénig et al. 2008; Steedman et al. 2003).
van Zaanen and Adriaans (2001) provided an interesting comparative analysis between the
EMILE and ABL algorithms. They computed the precision, recall, and f;-score metrics of the
algorithms on the ATIS and OVIS treebanks. Their evaluation provided f;-scores of 41.4%
(EMILE) and 61.7% (ABL) on the OVIS corpus, and 25.4% (EMILE) and 39.2% (ABL) on
the ATIS corpus.

Cramer (2007) tested the EMILE, ABL and ADIOS algorithms on the Eindhoven tree-
bank, a Dutch corpus containing 7000 sentences with an average length of approximately 20
words. The evaluation has been done according to the PARSEVAL metrics, and the results
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showed a recall of 17.3% (ABL), 0.5% (ADIOS) and 1.5% (EMILE), a precision of 11.7%
(ABL), 2.8% (ADIOS) and 17.3% (EMILE), and a f;-score of 14% (ABL), 0.9% (ADIOS)
and 2.7% (EMILE). These results are lower than those obtained by van Zaanen and Adriaans
(2001) due to the different and more complicated structure of the reference corpus used by
Cramer (2007). This fact highlights the difficulties of these algorithms in deriving meaningful
structures from more complex languages, such as the Dutch.

Hinig et al. (2008) evaluated the UnsuParse algorithm by comparing it with the Incremen-
tal Parsing. They tested the algorithms on two sets of sentences extracted from the NEGRA
corpus: the former contains sentences with at most 10 words (NEGRA10), while the latter
contains sentences with at most 40 words (NEGRA40). The results of this evaluation showed
a fy-score of 63.4% (UnsuParse) and 59% (Incremental Parsing) on the NEGRA10, and a
f1-score of 45.5% (UnsuParse) and 40.6% (Incremental Parsing) on the NEGRA40. This
demonstrates that UnsuParse performs well than Incremental Parsing, and the performances
of both algorithms decrease significantly for longer sentences.

Another comparative study is carried out by Steedman et al. (2003), which conducted
various experiments to compare the self-training and co-training algorithms. The authors
tested the algorithms on the WSJ Treebank (Sects. 2 to 21). The obtained results showed a
fi-score of 77.8% (co-training) and 75.1% (self-training) after 100 rounds of the algorithms.
Therefore, co-training results in higher performances than self-training.

4.2.3 Grammar inference methods evaluated through the rebuilding known grammars

The “Rebuilding known grammars” approach has been used to evaluate the following three
grammar inference methods: e-GRIDS, GA-based, and Inductive CYK.

Generally, the metrics used in this evaluation strategy are devoted to compare the induced
grammar against the artificial “correct” grammar, evaluating whether the inferred grammar
is similar or equivalent to the original grammar in terms of:

— errors of omission (failures to parse sentences generated by the “correct” grammar), which
indicate that an overly specific grammar has been learned;

— errors of commission (failures of the “correct” grammar to parse sentences generated by
the inferred grammar), which indicate that an overly general grammar has been learned;

— expressiveness of the inferred grammar (ability to parse correctly sentences longer than
sentences used for training).

e-GRIDS was evaluated by using an artificial grammar including declarative sentences with
arbitrarily long strings, and involving recursion in order to describe an infinite language.
From this grammar a set of 22.826 sentences was generated, which is split in two subsets: the
first containing sentences with length up to 15 words, and the second containing sentences
with length between 16 and 20 words. The algorithm was tested on the sentences taken from
the first and second sets. The results of the experiment showed that the inferred grammar
caused a number of errors of omission equal to 0.1 (10%) if more than 350 sentences are
given in input, both shorter (<15 words) and longer (16-20 words). Moreover, the inferred
grammar has a probability of 15% of causing errors of commission.

Similarly to the e-GRIDS, the GA-based algorithm was tested by using an artificial gram-
mar that is recursive. Seven partially structured examples are generated from this artificial
grammar. Giving in input these examples to the GA-based learning algorithm, the number
of iterations of the algorithm that are needed for converging toward the correct grammar is
evaluated. The results showed that more structured examples are given to the algorithm, the
lower is the number of iterations to be converged to the correct grammar.
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The Inductive CYK algorithm was evaluated by computing the computation time that the
algorithm employs for synthesizing a set of six artificial grammars, which are those presented
in the textbook by Hopcroft and Ullman (1979). The grammars are synthesized starting from
a set of positive samples with various length. The results of the evaluation showed that the
computation time increases as the longer positive samples are given first. This is due to the
fact that the algorithm generates several rules at one time and requires more time for testing
a larger number of possible sets of rules.

The “Rebuilding known grammars” evaluation strategy does not provide a unique mea-
sure of the performance of the inference algorithms. The e-GRIDS, indeed, used the errors
of omission and commission, the GA-based adopted the number of iterations and, finally, the
Inductive CYK evaluated the computation time. This is the main reason of the incomparability
of these grammar inference methods.

5 Conclusion

In this survey, we discussed the problem of natural language learning and gave an overview

of the existing grammar inference methods for natural language.

We took into account the kind of presentation (if text or informant) and the type of infor-
mation (if supervised, unsupervised, or semi-supervised) to broadly classify the grammar
inference methods for natural language into informant-based and text-based methods, and
supervised, unsupervised, and semi-supervised methods, respectively.

The introduced methods have been then analyzed considering how they have evolved in
time and taking into account their underlying computational techniques.

In particular, an analysis of scientific production, based on bibliographic data, has been
carried out for obtaining indicators about temporal evolution, variations and trends in the
field of grammar inference methods.

The current state of the art includes lots of underlying computational techniques applied to
perform the language learning: statistical methods, evolutionary computing techniques, min-
imum description length, heuristic methods, greedy search methods, clustering techniques.
An overview of the techniques that are applied in each of the investigated grammar inference
methods has been provided in the paper.

The great number of proposed grammar inference methods causes the need for systematic
evaluation and comparison. Three main evaluation strategies are proposed in the literature: the
“Looks-Good-to-me”, the “Compare Against Treebank” and the “Rebuilding Known Gram-
mars”. The majority of NL learning methods has been evaluated using the “Compare Against
Treebank” strategy, mainly due to its ability of obtaining objective results.

From this overview, the following conclusions can be drawn:

— the current trend in grammar inference is oriented toward the use of unsupervised and
semi-supervised approaches. This is due mainly to the time-consuming and costly creation
of tree-banks of languages required by supervised methods;

— the majority of NL learning methods, proposed in the literature, is based on an unsuper-
vised approach. This is due to the fact that unsupervised learning enables to learn larger
and more complex models than supervised learning and they are also less time-consuming
and costly because they do not require the onerous creation of the initial tree-bank of the
language;

— the majority of NL learning methods, proposed in the literature, is based on a text-based
approach. Learners, indeed, typically get evidence about what is grammatical (positive
samples), but no details about what is not grammatical (negative samples).
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