
Artif Intell Rev (2011) 35:223–240
DOI 10.1007/s10462-010-9192-8

Combining bagging, boosting, rotation forest
and random subspace methods

Sotiris Kotsiantis

Published online: 21 December 2010
© Springer Science+Business Media B.V. 2010

Abstract Bagging, boosting, rotation forest and random subspace methods are well known
re-sampling ensemble methods that generate and combine a diversity of learners using the
same learning algorithm for the base-classifiers. Boosting and rotation forest algorithms are
considered stronger than bagging and random subspace methods on noise-free data. How-
ever, there are strong empirical indications that bagging and random subspace methods are
much more robust than boosting and rotation forest in noisy settings. For this reason, in
this work we built an ensemble of bagging, boosting, rotation forest and random subspace
methods ensembles with 6 sub-classifiers in each one and then a voting methodology is used
for the final prediction. We performed a comparison with simple bagging, boosting, rotation
forest and random subspace methods ensembles with 25 sub-classifiers, as well as other well
known combining methods, on standard benchmark datasets and the proposed technique had
better accuracy in most cases.

Keywords Data mining · Machine learning · Pattern recognition · Ensembles of classifiers

1 Introduction

Both empirical studies and specific machine learning applications verify that a given learn-
ing algorithm outperforms all others for a particular problem or for a specific subset of the
input data, but it is abnormal to find a single expert achieving the best results on the overall
problem domain (Dietterich 2001). As a consequence multiple learner systems (an ensemble
of classifiers) try to exploit the local different behaviour of the base classifiers to improve the
accuracy and the reliability of the overall inductive learning system. There are also hopes that
if a learner fails, the overall system can recover the error. Many methods have been proposed
for the creation of ensemble of classifiers. Mechanisms that are used to build ensemble of
learners include: (i) Using different subset of training data with a single learning technique,

S. Kotsiantis (B)
Department of Mathematics, University of Patras, Patras, Greece
e-mail: sotos@math.upatras.gr

123

224 S. Kotsiantis

(ii) Using different learning methods, (iii) Using different training parameters with a single
learning method. A handy and informal reasoning, from computational, statistical and rep-
resentational viewpoints, of why ensembles can get better results is provided in Dietterich
(2001). The key for success of ensembles is whether the classifiers in a system are diverse
enough from each other, or in other words, that the individual classifiers have a minimum
of errors in common. If one classifier makes an error then the others should not be likely to
make the same error.

Four of the most popular ensemble algorithms are bagging (Breiman 1996), boosting
(Freund et al. 1996), rotation forest (Rodríguez et al. 2006) and random subspace method
(Ho 1998). In bagging (Breiman 1996), the training set is randomly sampled k times
with replacement, producing k training sets with sizes equal to the original training set.
Since the original set is sampled with replacement, some training instances are repeated
in the new training sets, and some are not present at all. Theoretical results show that the
expected misclassification probability of bagging has the same bias component as a sin-
gle bootstrap replicate, while the variance component is reduced by a factor N (Fumera
et al. 2005). Boosting, on the other hand, induces the ensemble of classifiers by adap-
tively changing the distribution of the training set based on the accuracy of the previ-
ously created classifiers. There are several boosting variants; AdaBoost (Freund et al. 1996,
Freund and Schapire 1997) is the most well-known. These methods assign a weight to each
example. Initially, all the examples have the same weight. In each iteration a new classi-
fier, named base or weak, is constructed using the base learning method. The construction
of the base classifier must take into account the weights distribution. Then, the weight of
each example is adjusted, depending on the correctness of the prediction of the base classi-
fier for that example. The final classification is obtained from a weighted vote of the base
classifiers.

There are two main differences between bagging and boosting. First, boosting changes
adaptively the distribution of the data set based on the performance of previously created
learners while bagging changes the distribution of the data set stochastically. Second, boosting
uses a function of the performance of a learner as a weight for voting, while bagging utilizes
equal weight voting. On the other hand, in random subspace method (Ho 1998) the classi-
fier consists of multiple learners constructed systematically by pseudo-randomly selecting
subsets of components of the feature vector, that is, learners constructed in randomly chosen
subspaces. The main idea of Rotation Forest (Rodríguez et al. 2006) is to simultaneously
encourage diversity by using PCA to do feature extraction for each base classifier and accu-
racy is sought by keeping all principal components and also using the whole data set to train
each base classifier.

Boosting and rotation forest algorithms are considered stronger than bagging and random
subspace method on noise-free data; however, bagging and random subspace methods are
much more robust than boosting and rotation forest algorithms in noisy settings. For this
reason, in this work, we built an ensemble combing bagging, boosting, rotation forest and
random subspace version of the same learning algorithm using a voting methodology. We
performed a comparison with simple bagging, boosting and random subspace method ensem-
bles as well as other known ensembles on standard benchmark datasets and the proposed
technique had better accuracy in most cases. For the experiments, representative algorithms
of well known machine learning techniques, such as decision trees, rule learners and Bayesian
classifiers were used.

Section 2 presents the most well known algorithms for building ensembles that are based
on a single learning algorithm, while Sect. 3 discusses the proposed ensemble method. Exper-
iment results using a number data sets and comparisons of the proposed method with other

123

Combining bagging, boosting, rotation forest and random subspace methods 225

ensembles are presented in Sect. 4. We conclude with summary and additional research topics
in Sect. 5.

2 Ensembles of classifiers

Learning algorithms try to discover a hypothesis in a given space H of hypotheses and in
many cases if we have sufficient data they can find the best one for a given problem. But in
real cases we have only limited data and sometimes only few instances are available. In these
cases the learning algorithm can find different hypotheses that emerge equally accurate with
respect to the available training set, and although we can sometimes select among them the
simplest or the one with the lowest capacity, we can keep away from the problem combining
them to get a good approximation of the unknown true hypothesis.

Hence, there is a growing realization that combinations of learners can be more effective
than single learner. Why rely on the best single learner, when a more reliable and accurate
result can be obtained from a combination of quite a few? This fundamentally is the reasoning
behind the idea of multiple classifier systems. This section provides a short survey of methods
for constructing ensembles using a single learning algorithm. This set of ensemble creating
techniques relies on varying the data in some manner. Methods of varying the dataset include;
sampling, use of different data sources, use of different pre-processing methods, distortion,
and adaptive re-sampling.

The Bagging algorithm (Bootstrap aggregating) (Breiman 1996) votes classifiers gener-
ated by different bootstrap samples (replicates). Given the parameter T which is the number
of repetitions, T bootstrap samples S1, S2, . . . , ST are generated. From each sample Si a
classifier Ci is induced by the same learning algorithm and the final classifier C* is formed
by aggregating T classifiers. A final classification of object x is built by a uniform voting
scheme on C1, C2, . . . , CT, i.e., it is assigned to the class predicted most often by these base
classifiers, with ties broken arbitrarily.

The core of bagging’s potential is found in the majority voting over results from a sub-
stantial number of bootstrap samples. As a first approximation, the majority voting helps
to cancel out the impact of random variation. However, it still exhibits at least two main
open issues: First, there is no clear understanding yet of the conditions under which bagging
outperforms an individual classifier. Second, only empirical and rough guidelines have been
proposed so far to determine a suitable ensemble size for a task with given computational
requirements in terms of memory size and CPU time.

With regard to the former issue, currently the main explanation of bagging operation is
given in terms of its capability to reduce the variance component of the misclassification
probability, which was related to the degree of “instability” of the base classifier (Breiman
1996), informally defined as the tendency of undergoing large changes in its decision function
as a result of small changes in the training set: The more unstable a classifier, the higher the
variance component of its misclassification probability and, thus, the improvement attained
by bagging. Theoretical investigations of why bagging works has also been found in Bühlman
and Yu (2002), Buja (2006), Freidman and Hall (2007). With the influence equalization view-
point, bagging is interpreted as a perturbation technique aiming at improving the robustness
against outliers (Grandvalet 2004).

With regard to the latter issue above, it is well known that bagging misclassification rate
tends to an asymptotic value as the ensemble size increases. Works in the literature focused
on determining the ensemble size sufficient to reach the asymptotic misclassification rate,
empirically showing that suitable values are between 10 and 20 depending on the particular

123

226 S. Kotsiantis

data set and base classifier (Bauer and Kohavi 1999; Opitz and Maclin 1999). Fumera et al.
(2008) applied an analytical framework for the analysis of linearly combined classifiers to
ensembles generated by bagging. This provides an analytical model of bagging misclassi-
fication probability as a function of the ensemble size. This allowed the authors to derive a
novel and theoretically grounded guideline for choosing bagging ensemble size according to
the dataset characteristics.

If there is too little data, the gains achieved via a bagged ensemble cannot recompense for
the decrease in accuracy of individual models, each of which now sees an even less training
data. On the other end, if the data set is extremely large and computation time is not an issue,
even a single classifier can be quite adequate. Important shortcomings of ensemble methods
are the loss of speed in classification with respect to the base classifier and the growth in
storage needs with increasing numbers of inducers. In order to remedy these drawbacks, one
can try to retain only those classifiers that are essential to solve the classification task at hand
and eliminate those whose contribution is redundant. Ensemble pruning reduces the storage
needs, speeds up the classification process and has the potential of improving the classifica-
tion accuracy of the original ensembles. Bootstrap samples are simple random samples of
size n selected with replacement from the original n sized sample, so not all bootstrap samples
are equally informative, due to the randomness associated to the number of distinct original
observations in the bootstrap sample. The variability of this number is neither necessary nor
desirable, having negative effects on the performance of the bootstrap technique in certain
applications. Dagging (Ting and Witten 1997) produces a number of disjoint, stratified folds
out of the data and feeds each chunk of data to a copy of the supplied base learner. Predictions
are made via majority vote.

Quite well known is Random Subspace Method (Ho 1998), which consists of training sev-
eral classifiers from input data sets constructed with a given proportion k of features picked
randomly from the original set of features—the author of this method suggested in his exper-
iment to select around 50% of the original set of features. Latinne et al. (2000) proposed to
combine the standard bagging with random selection of feature subsets over each bootstrap
sample. They showed that this combination outperformed each of the single approach.

Bryll et al. (2003) presented attribute bagging (AB), a similar technique for improving
the accuracy and stability of classifier ensembles induced using random subsets of features.
AB is a wrapper method that can be used with any learning algorithm. It establishes an
appropriate attribute subset size and then randomly selects subsets of features, creating pro-
jections of the training set on which the ensemble classifiers are built. The induced classifiers
are then used for voting. Bryll et al. (2003) compared the performance of AB method with
bagging and other algorithms on a hand-pose recognition dataset. It is shown that AB gives
consistently better results than bagging, both in accuracy and stability. Bryll et al. (2003)
also demonstrated that ranking the attribute subsets by their classification accuracy and vot-
ing using only the best subsets further improves the resulting performance of the ensemble.
Stefanowski (2007) studied to integrate bootstrap sampling with more advanced methods of
feature selection, which are based on evaluation of the relationship between single feature,
or feature subsets, and the target class. Shirai et al. (2008) introduced a method for selecting
both samples and features at the same time and demonstrate the effectiveness of the method.

Random forests (Breiman 2001) are another method for constructing ensembles. They
derive their strength from two aspects: using random subsamples of the training data (as in
bagging) and randomizing the algorithm for learning base-level classifiers (decision trees).
The base-level algorithm randomly selects a subset of the features at each step of tree con-
struction and chooses the best among these. Panov and Dzeroski (2007) proposed to use a
combination of concepts used in bagging and random subspaces. The latter randomly select

123

Combining bagging, boosting, rotation forest and random subspace methods 227

a subset of the features at the start and use a deterministic version of the base-level algorithm
(and is thus somewhat similar to the randomized version of the algorithm). The results of
the authors’ experiments show that this approach has a comparable performance to that of
random forests, with the added advantage of being applicable to any base-level algorithm
without the need to randomize the latter. In classification scenarios, the random resampling
procedure in bagging induces some classification margin over the dataset. In addition, when
perform bagging in different feature subspaces; the resulting classification margins are likely
to be diverse. Cai et al. (2008) took into account the diversity of classification margins in
feature subspaces for improving the performance of bagging. Cai et al. (2008) first studied the
average error rate of bagging, convert the task into an optimization problem for determining
some weights for feature subspaces, and then assigned the weights to the subspaces via a
randomized technique in classifier construction.

The resampling mechanism in Bagging leads to that the performance of each weak classi-
fier is independent of one another and the weak classifiers can be built in parallel. However,
the training set for each ensemble member of Boosting relies on the performance of the
earlier trained classifiers. The probability of a specific instance being selected to be part of a
particular classifier’s training set depends on the performance of the previously built classi-
fiers on that instance, that is, the probability distribution in each iteration is updated so that
the instances being incorrectly predicted by previous classifiers can be chosen more often
than those being correctly predicted. Thus, Boosting attempts to generate new classifiers that
are able to better classify the “hard” instances for the previous ensemble members. There
are several boosting variants; AdaBoost (Freund et al. 1996; Freund and Schapire 1997) is
the most well-known. In boosting-by-resampling, the fixed training sample size and training
instances resampled according to a probability distribution are used in each iteration; whereas
in boosting-by-reweighting, all training instances with weights assigned to each instance are
used in each iteration to train the base classifier and this technique is only useful when the
weak learning algorithm can handle weighted instances.

Kuncheva et al. (2002) carried out experiments on seven data sets for different sample
sizes, different number of classifiers in the ensembles, and the two linear classifiers. On each
of these, the authors calculated the measures of diversity and the accuracy of the eight different
combination methods, averaged over 50 runs. The results confirmed in a quantitative way the
intuitive explanation behind the success of Boosting for linear classifiers for increasing train-
ing sizes, and the poor performance of Bagging in this case. Diversity measures indicated that
Boosting succeeds in inducing diversity even for stable classifiers whereas Bagging does not.

Schapire et al. (1998) identified two scenarios where AdaBoost is likely to fail:
(i) when there is insufficient training data relative to the “complexity” of the base classi-
fiers, and (ii) when the training errors of the base classifiers become too large too quickly.
Schapire and Singer (1999) proposed Real AdaBoost, a generalized version of AdaBoost, in
which weak classifiers are piece-wise functions whose output is a real value representing the
confidence-rated prediction. Normally, to construct such weak classifiers, one splits the input
space X into non-overlapping blocks (or subspaces) X1, X2, . . . , XN so that the predictions
of the weak classifier are the same for all instances falling into the same block. In the case of
one-feature-based weak classifiers, this is equivalent to dividing the real line into intervals.
Meanwhile, determining the appropriate number of bins for weak classifiers learned by Real
AdaBoost is a challenging task because small ones might not accurately approximate the
real distribution while large ones might cause over-fitting, increase computation time and
waste storage space. Freidman et al. (2000) imported an additive logistic regression model
into AdaBoost and exactly explained the boosting algorithm from a statistical view. From

123

228 S. Kotsiantis

the perspectives of additive regression model and exponential loss function, Freidman et al.
(2000) proposed some new boosting algorithms including “GentleBoost” and “LogitBoost”.

Although Adaboost has become a very popular classification method over the past years
for its simplicity and adaptivity, there is increasing evidence to show that it is quite suscepti-
ble to noise. One of the most convincing experimental studies that find this phenomenon has
been reported in Dietterich (2000). In his experiments, Dietterich (2000) compares the per-
formance of Adaboost and bagging on some standard learning benchmarks and investigates
the dependence of the performance of these methods on the addition of classification noise
to the training data. As expected, the prediction accuracy of both Adaboost and bagging
deteriorates as the noisy level increases. However, the increase in the error is much more
significant in Adaboost.

Yin et al. (2005) introduced a strategy of boosting based feature combination, where a
variant of boosting is proposed for integrating different features. Different from the general
boosting, at each round of this variant boosting, some weak classifiers are built on different
feature sets, one of which is trained on one feature set. And then these classifiers are combined
by weighted voting into a single one as the output classifier of this round. Redpath and Lebart
(2005) identified feature subset by the regularized version of Boosting, i.e., AdaboostReg.
Additionally, their search strategy is the floating feature search.

Garcıa-Pedrajas and Ortiz-Boyer (2008) proposed a boosting approach to random sub-
space method (RSM) to achieve an improved performance and avoid some of the major
drawbacks of RSM. RSM is a successful method for classification. However, the random
selection of inputs, its source of success, can also be a major problem. For several problems
some of the selected subspaces may lack the discriminant ability to separate the different
classes. These subspaces produce poor classifiers that harm the performance of the ensem-
ble. Garcıa-Pedrajas and Ortiz-Boyer (2008) search subspaces that optimize the weighted
classification error given by the boosting algorithm, and then the new classifier added to the
ensemble is trained using the obtained subspace.

Shirai et al. (2008) compared boosting with bagging in different strengths of learning
algorithms. The authors’ conclusions are (1) boosting is effective for simpler algorithms
whose difference between training and testing errors is small and bagging is effective for
more complicated algorithms whose difference between training and testing errors is large,
(2) boosting algorithm using random feature subset selection works almost always regardless
of base algorithms, and (3) bagging using random feature subset selection works better than
simple bagging on samples.

MultiBoosting (Webb 2000) is another technique of the same category that can be consid-
ered as wagging committees formed by AdaBoost. Wagging is a variant of bagging; bagging
uses re-sampling to get the datasets for training and producing a weak hypothesis, whereas
wagging uses re-weighting for each training instance, pursuing the effect of bagging in a
different way. Based on Principal Component Analysis (PCA), Rodríguez et al. (2006) pro-
posed a new ensemble classifier generation technique Rotation Forest. Its main idea is to
simultaneously encourage diversity and individual accuracy within an ensemble classifier.
Specifically, diversity is promoted by using PCA to do feature extraction for each base clas-
sifier and accuracy is sought by keeping all principal components and also using the whole
data set to train each base classifier.

Melville and Mooney (2003) presented a new meta-learner (DECORATE, Diverse Ensem-
ble Creation by Oppositional Re-labeling of Artificial Training Examples) that uses an exist-
ing “strong” learner (one that provides high accuracy on the training data) to construct a
diverse committee. This is accomplished by adding different randomly constructed instances
to the training set when building new committee members. These artificially constructed

123

Combining bagging, boosting, rotation forest and random subspace methods 229

instances are given category labels that disagree with the current classification of the com-
mittee, thereby directly increasing diversity when a new learner is trained on the augmented
data and added to the committee.

3 Proposed methodology

Several authors (Breiman 1996; Freund et al. 1996; Rodríguez et al. 2006; Ho 1998) have
proposed theories for the effectiveness of bagging, boosting, rotation forest and random
subspace method based on bias plus variance decomposition of classification error. In this
decomposition we can view the expected error of a learning algorithm on a particular target
function and training set size as having 3 components:

• A bias term measuring how close the average classifier produced by the learning algo-
rithm will be to the target function;

• A term measuring the minimum classification error associated with the Bayes optimal
classifier for the target function (this term is sometimes referred to as the intrinsic target
noise).

• A variance term measuring how much each of the learning algorithm’s guesses will vary
with respect to each other (how often they disagree)

Unlike bagging and random subspace method, which is largely a variance reduction method,
boosting appears to reduce both bias and variance. After a base model is trained, misclassi-
fied training instances have their weights increased and correctly classified examples have
their weights decreased for the purpose of training the next base model. Clearly, boosting
attempts to correct the bias of the most recently constructed base model by focusing more
attention on the instances that it misclassified. This skill to reduce bias enables boosting to
work especially well with high-bias, low-variance base models.

It must be mentioned that weak classifiers can create problems in bagging, especially when
the distribution of the response is highly unbalanced. Weak classifiers are sometimes defined
as those that do no better than the marginal distribution. Suppose the marginal distribution
of the response is unbalanced so that it is very difficult for a model using the predictors to
perform better than the marginal distribution. Under those circumstances the rare class will
likely be misclassified most of the time because votes will be typically being won by the
class that is far more common. To illustrate this point, suppose there is a binary response
variable, and for the moment, we are interested in a single observation that happens to be a
“success.” For a given set of trees, that observation is classified as a success about two times
out of ten. So, the classification for that observation will be wrong about 80% of the time.
But if one classifies by majority vote, the class assigned would be a failure and that would be
wrong 100% of the time. Because the classifier does a poor job, the majority vote produces
a disappointing result.

As the boosting algorithms iterate, the error rates on the new training sets for each new
learner tends to rise because the examples used to train on become more difficult to learn
although the ensemble training error rate decreases. For the two-class case, keeping the error
rate below 50% is not too difficult with any reasonable choice of weak learner. It should
be made clear that even if the weak learner has a terrible error rate such as 80%, we could
always reverse classifications and turn this weak learner into one with an error rate of 20%.
Therefore, when we say that we want the error rate less than 50% in the two-class case we
mean that weak learner should do better than a random decision. In the multi-case, the error
rate still must remain below 50%. For the n-class case, a random classifier will give an error

123

230 S. Kotsiantis

rate of (n − 1)/n which can be far from 50%. Therefore, for the multi-class case, we must
investigate weak learners that are more powerful than those for the two-class case.

As mentioned in Buja (2006) the main trouble with boosting seems to be robustness to
noise. This is expected because noisy examples tend to be misclassified, and the weight
will increase for these instances. They present several examples were the performance of
boosting algorithms degraded compared to the original algorithms. Bagging uses a voting
technique which is not capable to take into account the heterogeneity of the instance space.
When the majority of the base classifiers give a wrong prediction for a new instance then the
majority vote will result in a wrong classification. The trouble may consist in discarding base
classifiers (by assigning small weights) that are highly accurate in a restricted region of the
instance space because this accuracy is swamped by their inaccuracy outside the restricted
area. It may also consist in the use of classifiers that are accurate in most of the space but still
unnecessarily confuse the whole learning committee in some restricted areas of the space.
The gain of boosting over bagging is that boosting acts directly to reduce error cases, whereas
bagging works indirectly.

Rotation Forest is another successful ensemble classifier generation technique (Rodríguez
et al. 2006), in which the training set for each base classifier is formed by applying PCA to
rotate the original attribute axes. Specifically, to create the training data for a base classifier,
the attribute set F is randomly split into K subsets and PCA is applied to each subset. All
principal components are retained in order to preserve the variability information in the data.
Thus, K axis rotations take place to form the new attributes for a base classifier. The main idea
of Rotation Forest is to simultaneously encourage diversity and individual accuracy within
the ensemble: diversity is promoted through doing feature extraction for each base classifier
and accuracy is sought by keeping all principal components and also using the whole data
set to train each base classifier.

For additional improvement of the prediction of a classifier, we suggest combing bag-
ging, boosting, rotation forest and random subspace methodology with sum rule voting (Vote
B&B&R&R). The approach is presented briefly in Fig. 1.

It has been observed that for bagging, boosting, rotation forest and random subspace
method, an increase in committee size (sub-classifiers) usually leads to a decrease in pre-
diction error, but the relative impact of each successive addition to a committee is ever
diminishing. Most of the effect of each technique is obtained by the first few committee
members (Breiman 1996; Freund et al. 1996; Ho 1998). We used 6 sub-classifiers for each
sub-ensemble for the proposed algorithm.

The presented ensemble is effective owing to representational reason. The hypothesis
space h may not contain the true function f (mapping each example to its real class), but sev-
eral good approximations. Then, by taking combinations of these approximations, classifiers
that lie outside of h may be represented. The core of Vote B&B&R&R algorithm’s potential is
found in the majority voting over results from a substantial number of samples. The majority
voting helps to cancel out the impact of random variation. In addition, when different feature
subspaces are used; the resulting classification margins are likely to be diverse. Boosting
attempts to generate new classifiers that are able to better classify the “hard” instances for
the previous ensemble members.

4 Comparisons and results

For the comparisons of our study, we used 33 well-known datasets mostly from many domains
from the UCI repository (Frank and Asuncion 2010). These data sets were selected so as to

123

Combining bagging, boosting, rotation forest and random subspace methods 231

(input LS learning set; T(=6) number of bootstrap samples; LA learning algorithm output C classifier)
begin
 for i =1 to T do
 begin
 Si := bootstrap sample from LS; {sample with replacement}
 Ci := LA (Si) ; {generate a base classifier}
 end;{endfor}
begin
 for i =T+1 to T+6 do
 begin
 Si := random projection from the d-dimensional input space to a k-dimensional subspace;
 Ci := LA (Si) ; {generate a base classifier}
 end;{endfor}
 Initialize the observation weights wk=1/n, i=1,2,..n
for i =T+7 to T+12 do
begin
 Produce from LA classifier Ci to the training data using weights wk

 Compute err(i)= ∑ ∑
= =

≠
n

i

n

i
kik wCyw

1 1

/)(

 Compute a(i) =)(

)(1
log

i

i

err

err−

 Set wk= wk*exp(a(i))(iCy ≠)

 for i=1 to n Re-normalize wk

end;{endfor}
for i =T+13 to T+18 do
begin
 The input variables are randomly grouped.
 For each group of input variables:
 – Consider a data set formed by this input variables and all the examples.
 – Eliminate from the data set all the examples from a proper subset of the classes.
 – Eliminate from the data set a subset of the examples.
 – Apply PCA (Principal Component Analysis) with the remaining data set.
 – Consider the components of PCA as a new set of variables. None of the components is discarded.

Si := the training data set using as new variables the components selected by PCA for each group
 Ci := LA (Si) ; {generate a base classifier}
 end;{endfor}

Output = ∑
=

==
T

i
iy yxCC

1
K

*))((maxarg
jε {the most often predicted class}

End

Fig. 1 The Vote B&B&R&R algorithm

come from real-world problems and to vary in characteristics. Thus, we have used data
sets from the domains of: pattern recognition (anneal, mushroom, iris, zoo), image recogni-
tion (ionosphere, sonar), medical diagnosis (breast-cancer, colic, breast-w, diabetes, heart-c,
heart-h, heart-statlog, hepatitis, lymphotherapy, primary-tumor) commodity trading (autos,
credit-g) music composition (waveform), computer games (monk1, monk2, kr-vs-kp), var-
ious control applications (balance), language morphological analysis (dimin) (Bosch and
Daelemans 1999) and prediction of student dropout (student) (Kotsiantis et al. 2003).

Table 1 is a brief description of these data sets presenting the number of output classes,
the type of the attributes and the number of instances. In order to calculate the classifiers’

123

232 S. Kotsiantis

Table 1 Description of the data sets

Data sets Instances Categ. features Numer. features Classes

Anneal 898 32 6 6

Audiology 226 69 0 24

Autos 205 10 15 6

Badge 294 4 7 2

Breast-cancer 286 9 0 2

Breast-w 699 0 9 2

Colic 368 15 7 2

Credit-g 1,000 13 7 2

Diabetes 768 0 8 2

Dimin 3,949 12 0 5

Haberman 306 0 3 2

Heart-c 303 7 6 5

Heart-h 294 7 6 5

Heart-statlog 270 0 13 2

Hepatitis 155 13 6 2

Hypothyroid 3,772 22 7 4

Ionosphere 351 34 0 2

Iris 150 0 4 3

kr-vs-kp 3,196 35 0 2

Lymphotherapy 148 15 3 4

monk1 124 6 0 2

monk2 169 6 0 2

Primary-tumor 339 17 0 21

Segment 2,310 0 19 7

Sick 3,772 22 7 2

Sonar 208 0 60 2

Soybean 683 35 0 19

Student 344 11 0 2

Titanic 2,201 3 0 2

Vote 435 16 0 2

Vowel 990 3 10 11

Waveform 5,000 0 40 3

Zoo 101 16 1 7

accuracy, the whole training set was divided into ten mutually exclusive and equal-sized
subsets and for each subset the classifier was trained on the union of all of the other subsets.
Then, cross validation was run 10 times for each algorithm and the average value of the
10-cross validations was calculated.

In the following Tables, we represent with “*” that the specific ensemble looses from the
proposed ensemble. That is, the proposed algorithm performed statistically better than the
specific ensemble according to t-test with p < 0.01. In addition, in Tables, we represent
with “v” that the proposed ensemble looses from the specific ensemble according to t-test

123

Combining bagging, boosting, rotation forest and random subspace methods 233

with p < 0.01. In all the other cases, there is no significant statistical difference between
the results (Draws). It must be mentioned that the conclusions are based on the resulting
differences for p < 0.01 because a p value of 0.05 is not strict enough, if many classifiers
are compared in numerous data sets (Salzberg 1997).

In the last rows of the Tables one can see the aggregated results in the form (a/b/c). In
this notation “a” means that the specific ensemble algorithm is significantly more accurate
than the proposed ensemble in a out of 33 data sets, “c” means that the proposed ensemble
is significantly more accurate than the specific ensemble in c out of 33 data sets, while in the
remaining cases (b), there is no significant statistical difference between the results.

For bagging, boosting and random subspace methodology, much of the reduction in error
appears to have occurred after ten to fifteen classifiers. But Adaboosting continues to mea-
surably improve their test-set error until around 25 classifiers (Bauer and Kohavi 1999). For
this reason, we used 25 sub-learners for all the tested ensembles of classifiers. The time com-
plexity of the proposed ensemble is about the same with simple bagging, boosting, rotation
forest and random subspace methodology with 25 sub-learners. This happens because we
use 6 sub-classifiers for each sub-ensemble (totally 24). The proposed ensemble also use less
time for training than Multiboost (Webb 2000) and Decorare (Melville and Mooney 2003)
combining methods.

In the following subsection, we present the experiment results for different base classifiers.
For the experiments, representative algorithms of well known machine learning techniques,
such as decision trees, rule learners and Bayesian classifiers were used. We tried to minimize
the effect of any expert bias by not attempting to tune any of the algorithms to the specific
data set. Wherever possible, default values of learning parameters were used. This naive
approach results in lower estimates of the true error rate, but it is a bias that affects all the
learning algorithms uniformly.

4.1 Using decision tree as base classifier

Firstly, we used a decision tree algorithm as base classifier in the ensemble. Decision trees are
trees that classify examples by sorting them based on attribute values (Murthy 1998). Each
node in a decision tree represents an attribute in an example to be classified, and each branch
represents a value that the node can take. Examples are classified starting at the root node
and sorting them based on their attribute values. The attribute that best divides the training
data would be the root node of the tree. The same process is then repeated on each partition
of the divided data, creating sub trees until the training data sets are divided into subsets of
the same class. However, a decision tree is said to overfit training data if there exists another
hypothesis h’ that has a larger error than h when tested on the training data, but a smaller error
than h when tested on the entire data set. For this reason, there are two common approaches
that decision tree algorithms can use to avoid overfitting training data: (1) Stop the training
algorithm before it reaches a point in which it perfectly fits the training data, (2) Prune the
induced decision tree. The most commonly used C4.5 algorithm (Murthy 1998) was the
representative of the decision trees in our study. At each level in the partitioning process a
statistical property known as information gain is used by C4.5 algorithm to determine which
attribute best divides the training examples. The approach that C4.5 algorithm uses to avoid
overfitting is by converting the decision tree into a set of rules (one for each path from the
root node to a leaf) and then each rule is generalized by removing any of its conditions that
will improve the estimated accuracy of the rule. Decision trees are very unstable in this regard
as small perturbations in the training data set can produce large differences in the structure
(and predictions) of a model.

123

234 S. Kotsiantis

Table 2 Comparing the proposed ensemble with other well known ensembles that uses as base classifier the
C4.5

Dataset Vote
B&B
&R&R
C4.5

Bagging
C4.5

Dagging
C4.5

Boosting
C4.5

Multi-
Boost C4.5

Decorate
C4.5

Rotation
forest C4.5

Random-
Subspace
C4.5

Anneal 99.22 98.79 83.73* 99.61 99.62 98.72 99.22 98.73

Audiology 84.87 80.76* 46.69* 84.62 85.27 81.97* 80.57* 79.08*

Autos 86.24 83.95 50.19* 86.05 86.24 83.38* 84.31 85.37

Badges 100 100 100 100 100 100 82* 99.32*

Breast-cancer 73.16 72.64 71.84 66.6* 68.61* 70.3* 72.76 73.68

Breast-w 96.67 96.12 96.08 96.51 96.55 96.17 97.14 96.5

Colic 85.32 85.29 81.76 81.76* 83.56 84.31 84.51 84.85

Credit-g 75.04 74.27 70.71* 72.79 74.59 72.53 75.8 74.44

Diabetes 75.55 76.38 75.48 72.81 74.67 74.91 76.44 74.61

Dimin 97.36 97.16 89.83* 96.03 96.33 96.95 97.39 95

Haberman 72.16 72.62 73.16 71.12 71.08 72.66 72.86 73.07

Heart-c 81.46 79.47 82.34 79.6 80.16 78.58 83.46 81.39

Heart-h 80.82 80.11 81.92 78.25 79.97 79.09 81.69 81.48

Heart-statlog 82.41 81.19 83.44 80.15 80.93 80.56 83.33 83.59

Hepatitis 83.50 81.5 79.38 82.74 82.93 82.19 83.13 82.81

Hypothyroid 99.64 99.59 98.65 99.67 99.68 98.65 99.66 95.62*

Ionosphere 93.62 92.45 81.05* 93.62 93.5 92.6 93.17 93.71

Iris 94.53 94.67 81* 94.47 94.4 95.33 94.67 94.33

kr-vs-kp 99.51 99.43 94.48* 99.62 99.62 99.53 99.41 96.97

Lymphography 81.71 78.75* 77.41* 83.09 82.42 80.38 86.48v 79.76

monk1 92.18 82.99* 58.71* 96.54 93.49 90.13 96.67 85.97*

monk2 64.58 60.33 60.87 61.86 60.44* 59.19* 70.48v 61.9

Primary-tumor 45.73 45.16 31.74* 41.65* 41.71* 44.22 45.12 45.4

Segment 98.27 97.55 92* 98.42 98.34 98.18 98.23 97.54

Sick 98.90 98.85 97.55 99.06 99.01 97.55 98.91 95.83*

Sonar 82.59 79.78 70.45* 83.03 83.33 78.33* 85.14 82.08

Soybean 94.19 93.15 62.9* 93.21 93.28 94.29 94.58 94.36

Students 85.70 86.29 86.81 81.46* 82.78 80.52* 86.08 86.19

Titanic 78.56 78 77.6 78.89 78.65 79.05 78.83 78.19

Vote 96.64 96.5 95.61 95.33 95.52 94.94 96.79 95.42

Vowel 95.17 91.6*8 56.57* 95.42 95.11 95.96 98.79 95.26

Waveform 83.59 83.02 83.24 83.32 83.64 79.48* 85.52 83.78

Zoo 95.07 93 46.37* 95.38 95.37 93.18 91.18* 94.27

W/D/L 0/29/4 0/17/16 0/29/4 0/30/3 0/26/7 2/28/3 0/28/5

We compare the presented ensemble with bagging, boosting, Random-SubSpace and Mul-
tiBoost version of C4.5 (using 25 sub-classifiers), as well as, with DECORATE, Dagging
and Rotation Forest combining method using C4.5 as base classifier. In the last raw of the

123

Combining bagging, boosting, rotation forest and random subspace methods 235

Table 2 one can see the concentrated results. The presented ensemble is significantly more
accurate than Bagging C4.5 and Boosting C4.5 in 4 out of the 33 data sets, while it has sig-
nificantly higher error rates in none data set. The presented ensemble is significantly more
accurate than MultiBoost C4.5 in 3 out of the 33 data sets whilst it has significantly higher
error rates in none data set. Furthermore, Dagging C4.5 has significantly lower error rates
in none out of the 33 data sets than the proposed ensemble, whereas it is significantly less
accurate in 16 data sets. What is more, Rotation Forest C4.5 is significantly more accurate
than the proposed ensemble in 2 out of the 33 data sets whilst it has significantly higher error
rates in 3 data sets. Moremore, Random-SubSpace C4.5 has significantly lower error rates
in none out of the 33 data sets than the proposed ensemble, whereas it is significantly less
accurate in 5 data sets. The presented ensemble is significantly more accurate than DECO-
RATE C4.5 in 7 out of the 33 data sets whilst it has significantly higher error rates in none
data set.

To sum up, the performance of the presented ensemble is much more accurate than the
other well-known ensembles that use only the C4.5 algorithm.

4.2 Using Bayesian algorithm as base classifier

Secondly, we used a Bayesian method as base classifier in the ensemble. A Bayesian network
is a graphical model for probabilistic relationships among a set of attributes. The Bayesian
network structure S is a directed acyclic graph (DAG) and the nodes in S are in one-to-one
correspondence with the attributes. The arcs represent casual influences among the variables
while the lack of possible arcs in S encodes conditional independencies. Moreover, an attri-
bute (node) is conditionally independent of its non-descendants given its parents. Using a
suitable training method, one can induce the structure of the Bayesian Network from a given
training set. In spite of the remarkable power of the Bayesian Networks, there is an inherent
limitation. This is the computational difficulty of exploring a previously unknown network.
Given a problem described by n attributes, the number of possible structure hypotheses is
more than exponential in n. Naive Bayes algorithm was the representative of the Bayesian
networks (Domingos and Pazzani 1997). It is a simple learning that captures the assumption
that every attribute is independent from the rest of the attributes, given the state of the class
attribute.

We compare the presented ensemble with bagging, boosting, Random-SubSpace and Mul-
tiBoost version of NB (using 25 sub-classifiers), as well as, with DECORATE, Dagging and
Rotation Forest combining method using NB as base classifier. In the last raw of the Table 3
one can see the aggregated results. The presented ensemble is significantly more accurate
than Bagging NB in 5 out of the 33 data sets, while it has significantly higher error rates in
none data set. The presented ensemble is significantly more accurate than Boosting NB in 4
out of the 33 data sets whilst it has significantly higher error rates in 2 data sets. Furthermore,
Dagging NB has significantly lower error rates in one out of the 33 data sets than the proposed
ensemble, whereas it is significantly less accurate in 13 data sets. What is more, Rotation
Forest NB is significantly more accurate than the proposed ensemble in 3 out of the 33 data
sets whilst it has significantly higher error rates in 11 data sets. The presented ensemble is
significantly more accurate than DECORATE NB in 6 out of the 33 data sets, while it has
significantly higher error rates in one data set. The presented ensemble is significantly more
accurate than Random-Subspace NB in 5 out of the 33 data sets whilst it has significantly
higher error rates in none data set. To sum up, the performance of the presented ensemble is
more accurate than the other well-known ensembles that use only the NB algorithm.

123

236 S. Kotsiantis

Table 3 Comparing the proposed ensemble with other well known ensembles that uses as base classifier the
NB

Dataset Vote
B&B
&R&R
NB

Bagging
NB

Boosting
NB

RandomSubSpace
NB

Dagging
NB

Decorate
NB

Rotation
Forest NB

Anneal 90.43 86.91* 95.2v 88.8 79.33* 86.59* 90.31

Audiology 77.58 71.79* 78.2 68.48* 28.34* 72.42* 72.11*

Autos 60.00 57.56 57.12* 59.27 46.7* 58.16 63.29v

Badges 99.66 99.69 99.66 99.05 76.77* 96.4* 84.08*

Breast-cancer 72.28 72.84 68.57* 72.14 72.57 73.05 71

Breast-w 96.08 96.08 95.55 96.05 95.78 95.95 95.85

Colic 80.22 78.81 77.46 79.98 77.28 77.99 75.83*

Credit-g 75.34 75.14 75.09 73.83 73.11 75 70.6*

Diabetes 76.02 75.7 75.88 74.89 74.83 75.31 75.66

Dimin 94.41 92.9 92.93 91.93* 82.19* 92.86 47.99*

Haberman 74.93 74.86 73.94 74.31 73.66 74.74 74.81

Heart-c 83.50 83.27 83.14 83.23 81.19 83.31 83.46

Heart-h 84.19 84.02 84.67 83.75 80.62 83.95 83.69

Heart-statlog 83.74 83.48 82.3 83.93 84.67 83.33 83.33

Hepatitis 85.17 84.39 84.23 84.81 79.38* 82.66 83.75

Hypothyroid 95.39 95.46 95.27 94.45 95.69 94.45 81.65*

Ionosphere 86.92 81.91* 91.12 83.08* 91.03 82.62* 89.17

Iris 95.93 95.67 95.07 95.4 92.6 94 96.67

kr-vs-kp 90.49 87.78* 95.1 86.57* 86.81* 87.8* 76.69*

Lymphography 82.85 83.76 80.67 82.54 75.34* 84.38 83

monk1 73.69 73.23 72.37 73.69 70.67 75.77 78.01v

monk2 56.73 56.38 56.83 59.93 57.56 57.43 55.15

Primary-tumor 48.06 49.77 49.71 48.2 41.6* 50.13 38.38*

Segment 81.43 80.31 80.17 79.05 83.35 80.17 84.5v

Sick 92.74 92.77 93.7 95.9 96.1v 95.9v 77.44*

Sonar 70.50 68.11 81.21v 68.33 67.18* 69.31 71.71

Soybean 93.57 92.78 92.02 91.85 71.86* 92.23 93.55

Students 85.91 85.76 85.12 84.74 82.59* 85.51 84.92

Titanic 77.76 77.81 77.86 77.46 77.83 78.33 75.56

Vote 91.70 90.05 95.19v 89.75 89.77 89.9 94.49

Vowel 68.54 63.25* 81.32v 62.71* 70.74 63.13* 60.3*

Waveform 80.30 79.98 80.01 80.06 80.21 80.34 81.3

Zoo 97.33 94.97 97.23 95.35 70.42* 95.09 92.18*

W/D/L 0/28/5 2/27/4 0/28/5 1/19/13 1/26/6 3/19/11

4.3 Using Rule learner as base classifier

Thirdly, we used a rule based algorithm as base classifier in the ensemble. In rule induction
systems, a decision rule is defined as a sequence of Boolean clauses linked by logical AND
operators that together imply membership in a particular class (Frank and Witten 1998). The

123

Combining bagging, boosting, rotation forest and random subspace methods 237

general goal is to construct the smallest rule-set that is consistent with the training data.
A large number of learned rules is usually a sign that the learning algorithm tries to “remem-
ber” the training set, instead of discovering the assumptions that govern it. During classifi-
cation, the left hand sides of the rules are applied sequentially until one of them evaluates
to true, and then the implied class label from the right hand side of the rule is offered as the
class prediction. PART algorithm was the representative of the rule based algorithms (Frank
and Witten 1998) in our experiments.

We compare the presented ensemble with bagging, boosting, Random-SubSpace and Mul-
tiBoost version of PART (using 25 sub-classifiers), as well as, with DECORATE, Dagging
and Rotation Forest combining method using PART as base classifier. In the last raw of the
Table 4 one can see the aggregated results. The presented ensemble is significantly more
accurate than Bagging PART in 2 out of the 33 data sets, while it has significantly higher
error rates in one data set. The presented ensemble is significantly more accurate than Boost-
ing PART in 3 out of the 33 data sets whilst it has significantly higher error rates in none
data set. Furthermore, Dagging PART has significantly lower error rates in none out of the
33 data sets than the proposed ensemble, whereas it is significantly less accurate in 19 data
sets. What is more, Rotation Forest PART is significantly more accurate than the proposed
ensemble in 2 out of the 33 data sets whilst it has significantly higher error rates in 3 data
sets. The presented ensemble is significantly more accurate than DECORATE PART in 9 out
of the 33 data sets, while it has significantly higher error rates in none data set. The presented
ensemble is significantly more accurate than Random-Subspace PART in 5 out of the 33 data
sets whilst it has significantly higher error rates in none data set. To sum up, the performance
of the presented ensemble is more accurate than the other well-known ensembles that use
only the PART algorithm.

5 Conclusion

An ensemble of learners is a set of classifiers whose individual decisions are combined in
some way (typically by weighted or unweighted voting) to classify new examples. One of
the most active areas of research in supervised machine learning has been to study methods
for constructing good ensembles of learners. The main discovery is that ensembles are often
much more accurate than the individual learners that make them up. The main reason is
that many learning algorithms apply local optimization techniques, which may get stuck in
local optima. For example, decision trees employ a greedy local optimization approach, and
neural networks apply gradient descent techniques to minimize an error function over the
training set. As a consequence even if the learning algorithm can in principle find the best
hypothesis, we really may not be able to find it. Building an ensemble may achieve a better
approximation, even if no assurance of this is given (Bauer and Kohavi 1999).

Boosting and rotation forest algorithms are considered stronger than bagging and random
subspace method on noise-free data, however, bagging and random subspace methods are
much more robust than boosting and rotation forest in noisy settings. In this work we built
an ensemble using a voting methodology of bagging, boosting, rotation forest and random
subspace ensembles. It was proved after a number of comparisons with other ensembles,
that the proposed methodology gives better accuracy in most cases. The proposed ensemble
has been demonstrated to (in general) achieve lower error than either boosting or bagging or
random subspace or rotation forest method or other well known ensembles methods when
applied to a base learning algorithm and learning tasks for which there is sufficient scope for
both bias and variance reduction.

123

238 S. Kotsiantis

Table 4 Comparing the proposed ensemble with other well known ensembles that uses as base classifier the
PART

Dataset Vote
B&B
&R&R
PART

Bagging
PART

Boosting
PART

Random-
subSpace
PART

Dagging
PART

Multi-
Boost
PART

Decorate
PART

Rotation
forest
PART

Anneal 99.29 98.69 99.6 98.73 84.63* 99.45 98.89 99.33

Audiology 85.15 82.68* 85.28 79* 46.55* 85.5 81.32* 81.86*

Autos 84.34 81.98 84.38 83.75 50.56* 83.75 82.33 83.83

Badges 100 100 100 98.92* 100 100 99.67* 83.75*

Breast-cancer 72.07 71.33 68.93* 73.13 72.29 69.38 68.92* 74.16

Breast-w 96.54 96.37 96.5 96.72 96.08 96.61 95.57 96.99

Colic 85.02 85.21 81.3* 84.69 81.9* 83.99 83.96 84.5

Credit-g 75.58 75.18 74.03 75.81 71.56* 74.62 72.3* 77.8

Diabetes 76.03 75.95 73.78 74.96 74.79 74.88 75.53 76.43

Dimin 97.50 97.75 96.51 95.46 85.13* 96.89 95.37 97.09

Haberman 72.97 73.3 72.18 72.84 73.46 72.18 74.48 73.52

Heart-c 82.09 81.95 80.47 83.27 82.61 81.03 79.49 83.8

Heart-h 82.06 82.25 81.47 82.45 82.13 81.53 78.62* 83.71

Heart-statlog 81.74 81.7 80.78 83.44 83.33 81.22 77.78* 81.48

Hepatitis 84.35 83.71 83.52 83.83 79.38* 84.48 82.66 84.46

Hypothyroid 99.63 99.63 99.66 96.26* 98.6 99.66 98.6 99.71

Ionosphere 93.65 92.77 93.51 93.51 80.97* 93.54 92.32 95.17

Iris 94.87 94.6 94.93 94.67 79.8* 94.73 95.33 95.33

kr-vs-kp 99.57 99.46 99.67 97.28 95.68* 99.68 98.59 99.62

Lymphography 82.66 83.2 84.13 83.01 77.21* 83.19 81.67 84.38

monk1 98.65 98.57 98.81 84.74* 61.87* 98.49 91.79* 95.83

monk2 69.10 67.75 66.24 62.49* 60.12* 65.78 58.05* 68.09

Primary-tumor 46.41 45.34 42.21* 46.11 31.77* 42.6* 44.82 44.52

Segment 98.25 97.8 98.45 97.69 91.95* 98.28 97.92 98.18

Sick 98.87 98.79 98.92 96.69 97.44 98.85 97.44 98.65

Sonar 83.18 81.41 83.05 83.75 70.45* 82.95 85.6 88v

Soybean 94.14 93.26 93.22 94.13 56.79* 93.43 93.26 93.99

Students 84.28 84.08 81.37 85.44 85.73 82.43 78.5* 84.92

Titanic 78.90 78.37 78.98 78.27 77.6 78.78 78.92 78.96

Vote 96.39 96.52 94.94 95.56 95.61 95.28 94.49 96.33

Vowel 94.60 91.33 94.32 96.15 57.08* 93.71 96.36 97.98v

Waveform 84.29 84.42 84.19 84.94 83.82 84.19 83.32 86.34

Zoo 95.16 93.2 95.75 94.28 46.37* 94.28 93.27 91.18*

W/D/L 0/32/1 0/30/3 0/28/5 0/14/19 0/32/1 0/24/9 2/28/3

Our approach answers to some extent such questions as generating uncorrelated classifiers
and control the number of learners needed to improve accuracy in the ensemble of learners.
While ensembles provide very accurate learners, too many learners in an ensemble may limit

123

Combining bagging, boosting, rotation forest and random subspace methods 239

their practical application. To be feasible and competitive, it is important that the learning
algorithms run in reasonable time. In our method, we limit the number of sub-classifiers to
6 in each sub-ensemble.

Nevertheless, there are still some interesting problems deserved to be investigated further,
which include but are not limited to the following items.

• Evaluation of the performance of the proposed algorithm by adopting other algorithms
such as a neural network as the base learning algorithm.

• How will the proposed method perform if it is extended to solve regression problems?
• How to automatically select the optimal number of learners in each sub-ensemble.

References

Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting,
and variants. Mach Learn 36:105–139

Bosch A, Daelemans W (1999) Memory-based morphological analysis. In: Proceedings of 37th annual meeting
of the ACL. University of Maryland, pp 285–292 (http://ilk.kub.nl/~antalb/ltuia/week10.html)

Breiman L (1996) Bagging predictors. Mach Learn 24(3):123–140
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Bryll R, Gutierrez-Osuna R, Quek F (2003) Attribute bagging: improving accuracy of classifier ensemble by

using random feature subsets. Pattern Recognit 36:1291–1302
Bühlman P, Yu B (2002) Analyzing bagging. Ann Stat 30:927–961
Buja WS (2006) Observations on bagging. Statistica Sinica 16:323–351
Cai Q-T, Peng C-Y, Zhang C-S (2008) A weighted subspace approach for improving bagging performance.

In: IEEE ICASSP, pp 3341–3344
Dietterich T (2000) An experimental comparison of three methods for constructing ensembles of decision

trees: bagging, boosting, and randomization. Mach Learn 40:139–157
Dietterich TG (2001) Ensemble methods in machine learning. In: Kittler J, Roli F (eds) Multiple classifier

systems. LNCS, vol 1857, pp 1–15
Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach

Learn 29:103–130
Frank E, Witten IH (1998) Generating Accurate Rule Sets Without Global Optimization. In: Fifteenth inter-

national conference on machine learning, pp 144–151
Frank A, Asuncion A (2010) UCI machine learning repository [http://www.archive.ics.uci.edu/ml]. Irvine,

CA: University of California, School of Information and Computer Science
Freidman JH, Hall P (2007) On bagging and nonlinear estimation. J Stat Plan Inference 137(3):669–683
Freidman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat

28:307–337
Freund Y, Robert E Schapire (1996) Experiments with a new boosting algorithm. In: Proceedings of ICML’96,

pp 148–156
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to

boosting. J Comput Syst Sci 55(1):119–139
Fumera G, Roli F, Serrau A (2005) Dynamics of variance reduction in bagging and other techniques based on

randomisation. MCS 2005, LNCS vol 3541, pp 316–325
Fumera G, Roli F, Serrau A (2008) A theoretical analysis of bagging as a linear combination of classifiers.

IEEE Trans Pattern Anal Mach Intell 30(7):1293–1299
Garcıa-Pedrajas N, Ortiz-Boyer D (2008) Boosting random subspace method. Neural Netw 21:1344–1362
Grandvalet Y (2004) Bagging equalizes influence. Mach Learn 55:251–270
Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach

Intell 20(8):832–844
Kotsiantis S, Pierrakeas C, Pintelas P (2003) Preventing student dropout in distance learning systems using

machine learning techniques. In: Proceedings of 7th international conference on knowledge-based intel-
ligent information and engineering systems (KES), Oxford, Sept. 3–5, Lecture notes series, vol 2774.
Springer, pp 267–274

Kuncheva LI, Skurichina M, Duin RPW (2002) An experimental study on diversity for bagging and boosting
with linear classifiers. Inf Fusion 3:245–258

123

http://ilk.kub.nl/~antalb/ltuia/week10.html
http://www.archive.ics.uci.edu/ml

240 S. Kotsiantis

Latinne P, Debeir O, Decaestecker Ch (2000) Mixing bagging and multiple feature subsets to improve clas-
sification accuracy of decision tree combination. In: Proceedings of the 10th Belgian-Dutch conference
on machine learning, Tilburg University

Melville P, Mooney R (2003) Constructing diverse classifier ensembles using artificial training examples. In:
Proceedings of IJCAI-2003, pp 505–510, Acapulco, Mexico, August 2003

Murthy (1998) Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min
Knowl Discov 2:345–389

Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. Artif Intell Res 11:169–198
Panov P, Dzeroski S (2007) Combining bagging and random subspaces to create better ensembles, IDA 2007,

LNCS 4723, pp 118–129
Redpath DB, Lebart K (2005) Boosting feature selection. In: The third international conference on advances

in pattern recognition, Bath, UK, Springer, Berlin, pp 305–314
Rodríguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans

Pattern Anal Mach Intell 28(10):1619–1630
Salzberg S (1997) On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min Knowl

Discov 1:317–328
Schapire RE, Freund Y, Bartlett P, Lee WS (1998) Boosting the margin: a new explanation for the effectiveness

of voting methods. Ann Stat 26:1651–1686
Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach Learn

37:297–336
Shirai S, Kudo M, Nakamura A (2008) Bagging, random subspace method and biding. SSPR&SPR 2008,

LNCS vol 5342, pp 801–810
Stefanowski J (2007) Combining answers of sub-classifiers in the bagging-feature ensembles, RSEISP 2007,

LNAI vol 4585, pp 574–583
Ting KM, Witten IH (1997) Stacking bagged and dagged models. In: Fourteenth international conference on

machine learning, San Francisco, CA, pp 367–375
Webb GI (2000) MultiBoosting: a technique for combining boosting and wagging. Mach Learn 40:159–196
Yin X-C, Liu C-P, Zhi H (2005) Feature combination using boosting. Pattern Recognit Lett 26:2195–2205

123

	Combining bagging, boosting, rotation forest and random subspace methods
	Abstract
	1 Introduction
	2 Ensembles of classifiers
	3 Proposed methodology
	4 Comparisons and results
	4.1 Using decision tree as base classifier
	4.2 Using Bayesian algorithm as base classifier
	4.3 Using Rule learner as base classifier

	5 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

