
Artif Intell Rev (2010) 34:145–176
DOI 10.1007/s10462-010-9167-9

A performance evaluation of three multiagent platforms

Juan M. Alberola · Jose M. Such · Ana Garcia-Fornes ·
Agustin Espinosa · Vicent Botti

Published online: 4 June 2010
© Springer Science+Business Media B.V. 2010

Abstract In the last few years, many researchers have focused on testing the performance
of Multiagent Platforms. Results obtained show a lack of performance and scalability on cur-
rent Multiagent Platforms, but the existing research does not tackle poor efficiency causes.
This article is aimed not only at testing the performance of Multiagent Platforms but also the
discovery of Multiagent Platform design decisions that can lead to these deficiencies. There-
fore, we are able to understand to what extent the internal design of a Multiagent Platform
affects its performance. The experiments performed are focused on the features involved in
agent communication.

Keywords Multiagent platforms · Multiagent systems · Performance evaluation

This work has been partially supported by CONSOLIDER-INGENIO 2010 under grant CSD2007-00022,
and projects TIN2008-04446 and PROMETEO/2008/051. Juan M. Alberola has received a grant of
Ministerio de Ciencia e Innovación de España (AP2007-00289). Jose M. Such has received a grant of
Conselleria d’Empresa, Universitat i Ciència de la Generalitat Valenciana (BFPI06/096).

J. M. Alberola (B) · J. M. Such · A. Garcia-Fornes · A. Espinosa · V. Botti
Departament de Sistemes informàtics i Computació, Universitat Politècnica de València,
Camí de Vera s/n, 46022 Valencia, Spain
e-mail: jalberola@dsic.upv.es

J. M. Such
e-mail: jsuch@dsic.upv.es

A. Garcia-Fornes
e-mail: agarcia@dsic.upv.es

A. Espinosa
e-mail: aespinos@dsic.upv.es

V. Botti
e-mail: vbotti@dsic.upv.es

123

146 J. M. Alberola et al.

1 Introduction

Multiagent Systems (MASs) development has increased in the last few years, in the fields of
both research and industry. MAS developers need software that helps them in the developing
process. Multiagent Platforms (MAPs) provide some tools that improve the development
and implementation of MASs. Due to the large number of existing MAPs, the choosing of a
suitable one to develop a MAS becomes a difficult task for MAS developers.

As stated in Luck et al. (2005), the next generation of computing systems is likely to
demand a large number of interacting components, be they services, agents or otherwise.
Current tools work well with limited numbers of agents, but are generally not yet suitable for
the development of large-scale (and efficient) agent systems, nor do they offer development,
management or monitoring facilities able to deal with large amounts of information or tune
the behavior of the system in such cases.

In the last few years, many researchers have focused on testing the performance of exist-
ing MAPs. Some studies like Mulet et al. (2006), Chmiel et al. (2004), Vrba (2003), Silva
et al. (2000), Camacho et al. (2002), Burbeck et al. (2004), Cortese et al. (2003), Lee et al.
(1998) focus on testing the performance of some MAPs; Bitting et al. (2003), Giang and
Tung (2002), Shakshuki (2005) and Ricordel and Demazeau (2000) classify MAPs using
criteria catalogues which focus on several features of MAPs: performance, security, avail-
ability, environment, development, etc.; finally, Omicini and Rimassa (2004) gives a brief
evolution of MAPs.

Most of these studies highlight a lack of performance and scalability on current MAPs,
but without providing reasons for such weaknesses. We want to perform an in-depth study of
some MAPs in order to find out their weaknesses. As stated in Lee et al. (1998), performance
of MAPs can be obtained by measuring the response time of the services they provide (e.g.
time to send a message, to register a service, to search for a service, etc.), the resources they
use (e.g. amount of memory, CPU time and network bandwidth needed) and the number
of concurrent agents in the system. Moreover, scalability refers to how well the MAS per-
formance adapts to increases in the size of the system Lee et al. (1998) (by increasing the
number of the agents being executed and the number of requests they do for the services
offered by the MAPs).

To achieve this goal, we have studied some well-known MAPs in order to understand
to what extent the internal design of a MAP influences its performance. Among all of the
current MAPs, only those whose source code is available are feasible for us, since part of
our study requires the inspection of specific parts of the code.

Three of these MAPs have been selected: Jade (Bellifemine et al. 2003), MadKit
(Gutknecht and Ferber 2000) and AgentScape (Brazier et al. 2002). These three MAPs are
representative of different design principles and different programming models.

The behavior of a MAP is based on the services it offers. Indeed, the overall MAP perfor-
mance is likely to be affected by the way in which services are designed. This article includes
the definition of specific experiments to measure performance in some significant scenarios,
the results obtained, and the explanation of those results in terms of MAP design principles.
The experiments are focused specifically on the messaging and service directory1 services.
Other experiments regarding MAP memory usage, network occupancy, and CPU time usage
of each MAP thread are discussed. Thus, we present an in-depth study of the three selected
MAPs, from internal structure design and bottlenecks to performance.

1 For the sake of clarity we will denote only directory service instead of service directory service in the rest
of the article.

123

A performance evaluation of three multiagent platforms 147

According to Wooldridge and Jennings (1995), an agent is defined by its flexibility, which
implies that an agent is: reactive, an agent must answer to its environment; proactive, an agent
has to be able to try to fulfill its own plans or objectives; and social, an agent has to be able
to communicate with other agents by means of some kind of language. Moreover, as stated
in Wooldridge (2002), a MAS consists of a number of agents that interact with one-another.
Since sociability is a key feature of agents, many messages are exchanged in a MAS, which
means that the messaging service is a key service in every MAP and its performance may
determine MAS application efficiency. Furthermore, there are some MAP services that are
implemented using messaging service, e.g. directory service in Jade.

There are other services that may have an impact on the overall performance of a MAP
such as directory, mobility, security, logging, and so on. However, only the directory service
is offered by all three of the MAPs selected. Therefore, an evaluation comparing the other
services mentioned among the three MAPs selected is not possible.

Another reason to choose the messaging and directory services is the fact that both of
them are defined by the Foundation for Intelligent Physical Agents (FIPA 2000) standard,
currently the most widely accepted.

The rest of the article is organized as follows. Section 2 details some previous related
works. Section 3 gives an overview of current MAPs. Section 4 gives a brief description of
each selected MAP. Section 5 describes the experiments performed. Finally, in Sect. 6 there
are some concluding remarks.

2 Related work

In the last few years, many researchers have focused on testing the performance of existing
MAPs. One of the main properties tested in these works is the performance of the MAPs for
sending messages. Therefore, these works usually show the performance of several MAPs
when running MASs which are composed by sender and receiver agents. Vrba (2003) presents
an evaluation of the messaging service performance of four MAPs. From the tests presented
in this paper the authors conclude that Jade provides the most efficient messaging service
(among the four tested MAPs) and ZEUS(Collis et al. 1998) the worst one (among the four
tested MAPs). However, the design reasons that cause this performance are not given and the
implementations of the messaging service for each MAP are not detailed. Therefore, these
conclusions can only be valid to choose the MAP that performs the better than the other three
MAPs tested. Burbeck et al. (2004) test the messaging service performance of three MAPs.
They claim that Jade performs better than the others because is built on Java RMI2 but give
no proofs confirming this claim. As far as we are concerned, these conclusions do not provide
any clue for MAP developers to improve MAP designs. Moreover, these experiments scale
up only to 100 pairs of agents. A deeper study is required in order to assess MAP perfor-
mance and to what extent design decisions influence MAP performance. Furthermore, other
services apart from the messaging service should also be tested.

Some other works test the performance of other services but only for a single MAP. Most
of these works test the Jade MAP which seems to be the most used one. Chmiel et al. (2004)
test the Jade messaging, agent creation and migration services. The tests they perform related
to the messaging service only scale up to 8 agent pairs. Cortese et al. (2003) test the scala-
bility and performance of the Jade messaging service. As in the works cited in the previous
paragraph, conclusions are not related to any design decision. Therefore, these conclusions

2 http://java.sun.com/docs/books/tutorial/rmi/index.html.

123

http://java.sun.com/docs/books/tutorial/rmi/index.html

148 J. M. Alberola et al.

can allow MAS developers to check if Jade fulfills their requirements when designing a MAS,
but they do not suggest any design decision for MAP developers.

There are also other works that are not focused on testing MAP performance but the
performance of a specific MAS running on top of a MAP. Camacho et al. (2002) shows the
performance of MAPs when a MAS composed by a several web agents is launched. This
MAS provides documents requested by a user agent. In this sense, the authors measure the
number of requested documents per time. Therefore, the conclusions are only valid for this
MAS. Lee et al. (1998) presents a MAS in which agents coordinate themselves for carrying
out tasks. They evaluate how the topological relations between agents affects the number of
CPU times needed to accomplish these tasks.

Finally, other studies are focused on detailing the functional properties of MAP. In Bitting
et al. (2003) four MAPs are compared according several criteria: implementation languages,
tools provided, agent deliberation capabilities and so on. Shakshuki (2005) presents a meth-
odology to evaluate MAPs based on several criteria such as availability, environment, devel-
opment, and so on. A similar work is carried out in Giang and Tung (2002). Omicini and
Rimassa (2004) gives a brief evolution of MAPs. These works provide ratings of properties
provided by MAPs in order to help users to choose the MAP according their needs. Our
work is not only intended to be useful for MAP users (MAS developers) but also for MAP
developers.

3 Overview of current multiagent platforms

The main purpose of a MAP is to provide a framework for the development and execution
of agent systems. Nowadays, a MAP is always implemented as a middleware between the
operating system and the agents. As MASs usually need to be executed in distributed envi-
ronments, a MAP may consist of a set of hosts running agents. We can also see a MAP as
a set of services for managing and developing applications based on MASs. For instance, a
MAP must allow the creation and deletion of agents, as well as the management of their life
cycle.

As well as offering services and facilities for designing and developing MAS based appli-
cations, MAPs provide some abstractions. Thus, these applications can be managed and
designed without taking into account internal aspects of the MAP.

There are many MAPs developed by research groups around the world. The large number
of MAPs available makes it difficult to select a specific one to create a MAS. This paper
aims to analyze the current MAP deficiencies through the in-depth research of MAPs and
their internal design. A full study of every MAP is not feasible due to the large number in
existence. So, it is necessary to select some from among them to perform the tests.

Table 1 shows the results of a study of current MAPs taking into account some of the
features they provide. These features were considered to choose the MAPs we test in this
article, as shown later on in this section. The Language field shows the language in which
each MAP is implemented, O.S. indicates whether a MAP is open-source or not, FIPA is set
if the MAP is FIPA-compliant, Sec. points out whether security is taken into account, Org.
shows if agent organizations are supported, and finally, Comm indicates what communica-
tion technology each MAP uses. A “

√
” mark indicates that a MAP has a feature. On the

other hand, a “–” mark indicates that a MAP does not have a feature.
Most of these MAPs are usually implemented in Java and run on top of an operating

system. Other languages like Python and C# are also used to develop MAPs. As most of the
programming languages used when developing MAPs are interpreted, the execution of these

123

A performance evaluation of three multiagent platforms 149

Table 1 Features provided by various multiagent platforms

Platform Language O.S. FIPA Sec. Org. Comm

3APL (Ten Hoeve 2003) Java
√ √

– – RMI

AAP (Dale 2002) April
√ √

– – ICM

ABLE (Bigus et al. 2002) Java
√

– RMI

ADK (Xu and Shatz 2003) Java – –
√

–

AgentDock (Jarvinen 2002) Java –
√

RMI

AgentScape (Brazier et al. 2002) Java/Python
√

– – – SunRPC

Aglets (Venners 1997) Java
√

–
√

– RMI

Ajanta (Tripathi et al. 2002) Java
√

–
√

– RMI

Ara (Peine and Stolpmann 1997)
√

–
√

– RMI

CAPA (Duvigneau et al. 2003) Java
√

– –

CapNet (Contreras et al. 2004) C# –
√ √

– Several

Concordia (Ita 1997) Java – –
√

– RMI

Cougaar (Helsinger et al. 2004) Java
√

–
√

– RMI/Corba/http

CrossBow (Kusek et al. 2004) Java – Proxy

Cybele (Inc 2004) Java
√

– –

Dagents (Gray 1995)
√

–
√

RPC

Decaf (Graham et al. 2003) Java
√

– –

Genie (Riekki et al. 2003) Java
√ √

– – RMI

Grasshopper (Bäumer et al. 1999) Java –
√ √

– RMI

Gypsy (Lugmayr 1999) Java
√

–
√

– RMI

Hive (Minar et al. 1999) Java
√

–
√

– RMI

Jade (Bellifemine et al. 2003) Java
√ √

– – RMI/Corba/http

Jack (AOS Group 2008) Java – – –
√

tcp/ip

Jackal (Cost et al. 1998) Java – –
√

tcp/ip

Jason (Bordini et al. 2007) Java
√

– –
√

Jade

Mage (Shi et al. 2004) Java
√ √

– RMI

MadKit (Gutknecht and Ferber 2000) Java
√

– –
√

Sockets

Sage (Ahmad et al. 2005) Java
√ √ √

– RMI

Semoa (Roth and Jalali-Sohi 2001) Java
√

–
√

– RMI

Soma (Bellavista et al. 1999) Java
√

–
√

Corba

Spade (Escriva et al. 2006) Python
√ √ √ √

Jabber

Spyse (Meyer 2004) Python
√ √

–

Voyager (Software 2007) Java – –
√

– RMI/Corba

Zeus (Collis et al. 1998) Java
√ √ √ √

MAPs requires an extra software layer, e.g. Java Virtual Machine for MAPs implemented in
the Java programming language.

Another feature of MAPs is source code availability. Open source code is a code that is
available to the general public with relaxed or non-existent intellectual property restrictions.
However, closed source code is a code that is not available. Thus, source code availability
is an important feature when the inspection of the source code of an application is required.
Indeed, the source code availability plays a crucial role in order to assess to what extent
implementation details affect performance.

123

150 J. M. Alberola et al.

FIPA specifications represent a collection of standards which are intended to promote the
interoperability of heterogeneous agents and the services that they offer. Being interoperable
with other MAPs is a desired feature, so FIPA compliance is important for us. As one can
see in Table 1, there are several MAPs (over 40%) that are FIPA compliant.

Most current MAPs use Java Remote Method Invocation (Java RMI) to implement their
communications. There are some exceptions, such as AgentScape (Brazier et al. 2002),
which uses SunRPC, Spade (Escriva et al. 2006), which uses Jabber,3 MadKit (Gutknecht
and Ferber 2000), which uses raw Java TCP Sockets, and AAP (Dale 2002), which uses
Interagent Communication Module4 (ICM), to name a few. Java RMI, Java TCP Sockets and
SunRPC technologies are further explained in Sect. 5.1.1.

Security issues are not usually taken into account on current MAPs. Only a few of them
have their own security mechanisms for controlling agent execution on the MAP. Among
them are Semoa (Roth and Jalali-Sohi 2001), which uses filters and agent grants on each
node of the MAP, Cougaar (Helsinger et al. 2004), which utilizes authentication and encryp-
tion, Soma (Bellavista et al. 1999), which applies a policy to protect agents from each other,
CapNet (Contreras et al. 2004), which has a policy manager and agent credentials, and so on.

Another important functionality that a MAP should offer is an organizational/relation
model. Agent organizations allow agents to coordinate, structure and cooperate with each
other. As stated in Argente et al. (2005) and Nwana (1994), agents need these for several rea-
sons: to prevent anarchy or chaos, to fulfill global restrictions, to share and exchange knowl-
edge, to control interdependences between agent actions, to improve efficiency, etc. This
concept becomes increasingly important in complex systems in which hundreds of agents
are running, with many interactions among them. As one can see in Table 1, only a few
MAPs provide a minimal organizational/relation model. For example, MadKit (Gutknecht
and Ferber 2000) offers an Agent/Group/Role model to implement relations among agents.
Jackal (Cost et al. 1998) has a Conversation Manager that establishes rules in every agent
communication and Zeus (Collis et al. 1998) provides a tool that helps users to define agent
relations.

There are many other criteria for choosing a MAP such as the degree of support, doc-
umentation, tutorials, availability of software for different operating systems, support for
development (editors, IDEs, libraries and APIs), discussion forums, and so on. We know that
these other issues are also very important and should be taken into account. In this work we
do not analyze these features.

After an analysis of several current MAPs has been carried out, three of them are chosen
to be evaluated. All of the features described above have been taken into account in our selec-
tion. Jade, MadKit and AgentScape have been chosen. We need to study the source code of
the MAPs to carry out an in-depth study of their internal design, so the three MAPs selected
are Open Source. As stated in Bellifemine et al. (2008), Jade can arguably be considered the
most popular MAP available today, and it is FIPA compliant. MadKit provides an organi-
zational/relation model based on Agent, Group and Role concepts. AgentScape MAP is not
only implemented in Java but also in Python, and according to the AgentScape developers,
its approach to management is targeted to scalability and autonomy.

In order to evaluate the performance of the selected MAPs, an in-depth study of these
MAPs is carried out in this article.

3 http://www.jabberes.org/.
4 http://www.nar.fujitsulabs.com/icm/.

123

http://www.jabberes.org/
http://www.nar.fujitsulabs.com/icm/

A performance evaluation of three multiagent platforms 151

4 Description of selected platforms

This section introduces the three selected MAPs. It only shows the basic concepts of each
MAP. In Sect. 5, more specific features are explained in each experiment description, focusing
on the issues of the internal design of each MAP that could affect the results obtained.

Java Agent DEvelopment Framework, (Bellifemine et al. 2003) (Jade) is a MAP that is
entirely built in Java. It is made by Telecom Italia Lab and its code is open source. This MAP
has become the most frequently used by MAS developers. There are some advantages of
using Jade: it is FIPA compliant, and it offers a complete API that makes agent programming
easier.

Jade architecture is based on the container concept. A container provides the environ-
ment and services required for executing agents. There is a special container called Main
Container, which is the container launched by default when the MAP is issued. The Agent
Management Service (AMS) and Directory Facilitator (DF) FIPA agents are located in this
container. A single container is usually located per host in the MAP, but more than one
container can stay in the same host.

Multi Agent Development KIT, (Gutknecht and Ferber 2000) (MadKit) is a non FIPA-com-
pliant MAP. It is a project developed by LIRMM (Laboratorie d’Informatique de Robotique
et de Microélectronique de Montpellier). The MAP is fully implemented in Java and is based
on the agent-group-role (AGR) model.

The MadKit micro-kernel is a small, optimized agent kernel; it only handles a few basic
tasks. It controls local groups and roles, manages the agent life-cycle, handles local message
sending, and also offers monitoring tools. MadKit saves information about groups and roles
in a replicated table in all of the hosts of the MAP.

AgentScape (Brazier et al. 2002) is a middleware system that provides support for dis-
tributed MASs. It is a research project at the Intelligent Interactive Distributed Systems
Group, Section Computing Systems, Department of Computer Science, Vrije Universiteit
Amsterdam.

AgentScape provides minimum support for agent applications and is configurable accord-
ing to specific requirements. The current AgentScape version provides basic functionality
such as the creation and deletion of agents, messaging service between agents, and weak
mobility.

5 Evaluation of the multiagent platforms’ performance

All of the developed experiments are explained in the following subsections. We use two
PCs Intel Pentium IV @ 1.5 GHz, 256 MB of RAM memory running the Fedora Core 3
Linux operating system. Sun JDK 1.5 version is also used and MAP versions are: MadKit
4.0, AgentScape 0.8.1 and Jade 3.3.

5.1 Messaging service

In this section, we present an in-depth evaluation of messaging service for each one of the
selected MAPs. First, some design details are explained in order to understand how the mes-
saging service is implemented in each selected MAP. Then, the set of experiments performed
and their results are presented. Finally, the bottlenecks detected in each messaging service
implementation are shown.

123

152 J. M. Alberola et al.

(b)

(a)

Fig. 1 Jade message sending. a 1 Containers. b 2 Containers

Our messaging service study does not take into account some aspects that may affect
messaging performance like message ordering or the Java serialization of the messages to be
sent. These aspects are future work.

5.1.1 Messaging service design details

As stated in Sect. 4, Jade is based on the container concept. All containers in a Jade MAP
communicate with each other via peer-to-peer (P2P), using Java RMI. Services provided
by the MAP are distributed among these containers. For each container, there is an Outbox
where messages are enqueued due to a message sending request made by any one of the
agents located in this container. There are also five threads in each container called, deliver-
ers5 which wait for new messages in the Outbox and perform the sending. This sending is
carried out in two different ways.

If the receiver agent is located in the same container as the sender agent, the deliverer
carrying out the sending copies the message object directly from the Outbox to the receiver
agent, as can be seen in Fig. 1a.

5 By default, there are five deliverer threads per container, but this can be changed when compiling the Jade
MAP from Java source code to Java bytecode.

123

A performance evaluation of three multiagent platforms 153

(a)

(b)

Fig. 2 Madkit message sending. a 1 kernel. b 2 kernels

If the receiver agent is located in a different container to the sender agent, the deliverer
carrying out the sending copies the message from the Outbox to the container where the
receiver agent is located via a remote procedure call using Java RMI technology. This can be
seen in Fig. 1b.

In MadKit, the SiteAgent is in charge of remote kernel synchronization. The NetAgent,
the NetConfigAgent, the StatAgent, the RouterAgent, the P2PAgent, and others are part
of the NetComm agents. NetComm agents perform the communication of agents located
in different kernels2(b). The NetAgent carries out the local kernel requests. The Router-
Agent is responsible for routing messages received from the NetAgent to the P2PAgent. The
P2PAgent is responsible for the connections with other kernels, and is basically composed of
two threads: the Incoming Processor thread, which is in charge of the incoming messages and
the MultiSock thread, which carries out the message sending to remote P2PAgents. MadKit
also uses different mechanisms when sending a message depending on the location of the
receiver agent of the message.

As shown in Fig. 2a, if the receiver and the sender agents are located in the same kernel,
MadKit uses a direct copy-write mechanism, i.e., the thread of the sender agent copies the
message object directly to the receiver agent. The NetComm agents are not involved in the
message sending.

However, if the receiver and the sender agents are located in different kernels (Fig. 2b),
when an agent sends a message the kernel checks where the receiver agent is placed. If the
receiver agent is placed in a different kernel the steps detailed below are carried out:

123

154 J. M. Alberola et al.

1. The kernel sends the message to the SiteAgent.
2. The SiteAgent checks the kernel where the receiver agent is placed, then the SiteAgent

sends the message to the local NetAgent.
3. The NetAgent sends the message to the RouterAgent which then delivers the message

to a P2PAgent.
4. The P2PAgent sends the message through Java TCP sockets to a remote P2PAgent placed

in the host of the receiver agent.
5. Finally, the P2PAgent delivers the message to the receiver agent.

AgentScape is composed of a lookup service (represented as a Python process) and a set of
AgentScape Operating System (AOS) kernels distributed among several hosts. AOS Kernels
in AgentScape can find each other by means of the lookup service that acts as a coordinating
entity. Inside a single AOS Kernel, the AgentServer is the entity that manages the agents.
By default a single AgentServer runs on each AOS Kernel, so every agent in the same AOS
Kernel is managed by the same AgentServer.

When the sender of the message is running on the same AOS Kernel as the message
receiver (Fig. 3a), the AgentServer copies the message straight to the queue of received
messages of the target agent through the Message Center component.

When the two agents are not placed in the same AOS Kernel (Fig. 3b), there is a thread
in every AgentServer called MessageBuffer which carries out the task. This thread finds
the AgentServer where the target agent is running by means of the lookup service of the
MAP. Thus, the message is delivered to this AgentServer using SunRPC. Internally, the tar-
get AgentServer puts the received message in the queue of received messages of the target
agent. Therefore, one single thread per AOS Kernel performs the message delivery to remote
agents.

The three MAPs analyzed provide different mechanisms for sending messages depending
on whether the sender and receiver agents are placed in the same kernel (container in Jade
terminology) or not. The three MAPs use similar mechanisms of message copies for send-
ing messages to agents placed in the same kernel. Nevertheless, although their mechanisms
are very similar, this does not mean that their performance is similar. The specific design
of each messaging service is the most important feature when it comes to achieving good
performance.

In order to send messages to agents placed in different kernels, the three MAPs use dif-
ferent technologies to contact remote objects. We can briefly see the most important features
of each one:

Sockets are a service which allows programs to exchange information. TCP sockets6 are
connection oriented: once the connection is established between the two points, they are able
to exchange information until the connection is closed. Java TCP Sockets are an abstraction
which provides some classes that allow users to develop Java applications that require sockets
TCP. Sockets can be considered a low-level communication method.

Remote Procedure Call7 (RPC) is a high-level communication mechanism. It allows a
program running on one computer to execute a function that is actually running on another
computer. One of the first UNIX RPC’s was developed by Sun. SunRPC8 uses eXternal Data
Representation (XDR) and messages can be sent using both TPC and UDP protocols.

Java RMI is a type of RPC mechanism. RMI can be viewed as a newer object-oriented
version of SunRPC. RMI creates a stub in the client-side to communicate with the server-side

6 http://www.csc.villanova.edu/~mdamian/Sockets/TcpSockets.htm.
7 http://www.ietf.org/rfc/rfc1057.txt.
8 http://web.cs.wpi.edu/~rek/DCS/D04/SunRPC.html.

123

http://www.csc.villanova.edu/~mdamian/Sockets/TcpSockets.htm
http://www.ietf.org/rfc/rfc1057.txt
http://web.cs.wpi.edu/~rek/DCS/D04/SunRPC.html

A performance evaluation of three multiagent platforms 155

(a)

(b)

Fig. 3 AgentScape message sending. a 1 kernel. b 2 kernels

more easily. RMI is specifically designed for Java and thus, it is easier for the programmers
to use.

The fastest mechanism of the three mentioned would be sockets TCP because they are a
low-level mechanism. Moreover, RMI is a stronger Java object-oriented mechanism and for
this reason it would perform worse than RPC or sockets. We could think that the mechanism
used to develop the messaging service of any MAP is crucial to its performance, but this is
not the only key issue. In our experiments the most efficient messaging service is the one pro-
vided by Jade, which uses RMI to communicate its containers. Therefore, the performance
of a messaging service is not only determined by its underlying technologies but also its
internal design.

5.1.2 Messaging service evaluation

As described in the introduction, a MAS is composed of agents that interact with one-another
to solve a problem. All of the interactions between agents are carried out via communicating
acts that involve message exchanges. Agents are not required to produce a response when they
receive a message. However, measuring one way message time consumption requires host

123

156 J. M. Alberola et al.

Fig. 4 Full-load measurement

synchronization when agents are placed in different hosts in such a way that times obtained
are accurate enough. Therefore, we measure the Round-Trip Time (RTT) of each message
sent between a sender agent and a receiver agent, i.e. the time elapsed between when the
message is sent to the receiver and when it comes back to the sender so that only the time in
a host is taken into account and does not require any synchronization.

Firstly, we measure the RTT between a single agent pair. Secondly, we increase the num-
ber of pairs in order to observe the MAP’s scalability, and how the MAPs respond to this
change.

Due to the fact that the creation and deletion of agents is not performed simultaneously,
agent pairs may take their measurements in different message load conditions. As a result,
the measured RTT time of each pair may vary considerably. In order to solve this problem
the technique shown in Fig. 4 is used. Near each agent pair its starting and finishing time
is shown. The message sending time interval for each agent pair is divided into three parts:
T1, T2, T3. The T1 interval corresponds to the time that an agent pair lasts exchanging 500
messages. During this interval there is no measurement collection, the aim being to ensure
that the rest of the agent pairs will be sending messages once this interval finishes. Measures
are collected by each agent pair during the T2 interval. Although there are agent pairs that
start sending messages later, during their T2 interval the rest of agent pairs will be sending
messages too. Therefore, measures are taken at full load, i.e. there cannot be more message
load in the MAP (this corresponds to the gray part of Fig. 4). Finally, once measures are
collected, each pair exchanges 500 more messages (T3) to keep the full-load conditions for
all of the agent pairs that are still in their T2 interval.

During its T2 interval each agent pair exchanges 1,000 messages and the RTT time of each
message is collected. All of the statistics are calculated from all of the RTT times for each
pair taking part in the test. For instance, if the test is run with 50 pairs, statistics are calculated
using 1,000 RTT times from each pair, i.e. 50,000 RTT times. Using these times we calculate
the average RTT time, the RTT time 95% confidence interval, and perform Student’s t tests9

to assess whether the differences among MAPs are significant (a remark is only made when
the differences are not significant).

The results obtained are processed in order to calculate an average and a standard devia-
tion for each MAP and for each configuration. The results are presented in this paper as an
average and its 95% confidence interval (calculated using the average and its standard devi-
ation). When the results are shown graphically the 95% confidence interval can be invisible
if it is too small.

9 We perform a t test for two MAPs (Jade vs MadKit, Jade vs AgentScape and AgentScape vs MadKit) for
each configuration possible in each experiment carried out with a 95% interval confidence level. We use the
R software (http://www.r-project.org/) in order to perform the t tests.

123

http://www.r-project.org/

A performance evaluation of three multiagent platforms 157

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

R
T

T
 (

m
s)

Agent Pairs

Jade
MadKit

AgentScape

Fig. 5 Message sending, 1 host, 1 Kernel

The experiments are repeated changing the agent location. The possible locations are:

– The sender and the receiver are in the same host and live in the same kernel or
container. 10

– The sender and the receiver are in the same host but live in different kernels/containers.
– The sender and the receiver are in separate hosts (obviously in different kernels/contain-

ers).

The effect of message size on messaging service performance is also tested. For this pur-
pose, an experiment modifying the message size (from 1 byte up to 100,000 bytes) is carried
out. The number of agent pairs is fixed at 50, and the senders and the receivers are located in
separate hosts.

Finally, in order to observe the MAP behavior when an agent receives many messages, we
perform a test in which many agents try to communicate with a single receiver. The number
of sender agents is increased from 1 to 200. The senders and the receivers are located in
separate hosts.

The results plotted in Figs. 5, 6, 7, 8 and 9 show the average RTT in milliseconds and the
95% confidence interval for a given number of agent pairs communicating with each other.

Figure 5 shows the behavior of the three MAPs when the sender and receiver agents are
placed in the same kernel located in a single host. Jade and MadKit have a similar response
in low load (from 1 pair to 150). Moreover, when running 150 agents the differences between
the two MAPs are not significant according to the t test performed. In contrast, when load
increases (more than 150 pairs), Jade RTT grows with respect to MadKit. This may be due to
the fact that MadKit uses a direct copy-write mechanism, i.e., the thread of the sender agent
copies the message object directly to the receiver. In Jade, the communication in one host is
based on a direct copy-write mechanism (as explained in 5.1.1) as well, but the sender agent
copies its message to the Outbox, and the message remains waiting for a deliverer, which
copies the message to the receiver agent. As a result, when load increases all of the messages
in the Outbox can only be served by only five deliverers.

10 The concept of container is used in Jade terminology while the concept of kernel is used in MadKit and
AgentScape. However, these concepts are equivalent.

123

158 J. M. Alberola et al.

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

R
T

T
 (

m
s)

Agent Pairs

Jade
MadKit

AgentScape

Fig. 6 Message sending, 1 host, 2 Kernels

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200

R
T

T
 (

m
s)

Agent Pairs

Jade
MadKit

AgentScape

Fig. 7 Message sending, 2 hosts

AgentScape provides the poorest RTT values. When the load is low, its response is similar
to or better than the other MAPs. For example, when only one pair is running the average
time for sending and receiving a message is less than 0.5 ms and when running 50 pairs the
differences with Jade are not significant according to the t test performed. However, as we
increase the number of pairs, the differences in the RTT times with respect to the other MAPs
also increase. This may be due to the internal kernel design of the MAP. A single AgentServer
has to enqueue the messages to every agent managed by it. Thus, the more we increase the
message traffic for a single AgentServer, the worse the response time is with respect to the
other MAPs. It can also be observed that the confidence interval increases as the number of
agents is increased, while the confidence interval for the other MAPs remains small enough

123

A performance evaluation of three multiagent platforms 159

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
T

T
 (

m
s)

Message size (bytes)

Jade
MadKit

AgentScape

Fig. 8 Message sending 50 pairs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200

R
T

T
 (

m
s)

Number of Senders

Jade
MadKit

AgentScape

Fig. 9 Multiple sending

to be invisible in the figure. Furthermore, when we try to launch 150 pairs (300 agents in the
same host), some agents get blocked and cannot send the whole amount of messages.

Observing Figs. 5, 6 and 7, it can be seen that the performance of the three MAPs is
worse when the receiver and sender agents are placed in different kernels (Figs. 6 and 7). It is
also easy to observe that the worst case occurs when the different kernels are not distributed
between two hosts. This is because, in the distributed case, the load is shared between the
two hosts and the experiments are performed in a local network.

When the agents are located in different kernels, the RTT delays in the message sending
process are shorter on Jade than on the other two MAPs. As explained in Sect. 5.1.1, when
the communication is made between containers, a pool of five deliverer threads are in charge
of delivering the messages that the agents are enqueuing in the Outbox of its container. This

123

160 J. M. Alberola et al.

sort of design seems to improve RTT times, with respect to the other MAPs, when more than
one kernel (or container in Jade terminology) is involved, either in one host or two.

With two hosts, when running 1 agent pair, the differences between MadKit and Jade are
not significant according to the t test performed. However, when the load increases MadKit
distributed messaging causes an overload due to the set of NetComm Agents that are responsi-
ble for communicating different kernels through sockets. As a result, several local messages
are needed to carry out distributed communication.

As stated in Sect. 5.1.1, AgentScape requires a thread (for each AgentServer) called Mes-
sageBuffer, which manages the messages when the target agent is not in the same kernel.
This thread contacts the AgentServer of the target agent using SunRPC technology. In this
experiment some agents get blocked if the overload of a host is greater than 150 or 200 agents.

Figure 8 shows RTT values when the message size is increased. In this experiment, 50
agent pairs were communicating with each other. AgentScape indicates the worst response
times, being less adaptive to size changes than Jade and MadKit, which behaves similarly.
Moreover, Jade and MadKit have no significant differences when the message size is 1,000
and 10,000 bytes according to the t tests performed.

Finally, the results of multiple agents sending messages to a single agent are shown in
Fig. 9. In these tests Jade responses the best. It manages the message queues more efficiently
than the others when many messages are received. In contrast, AgentScape and MadKit are
more affected when many messages are addressed to the same agent. In this regard, the data
suggest that Jade is more scalable under the tested messaging conditions.

The results obtained for the messaging service clearly show that this service is more effi-
cient on the Jade MAP. This is mainly due to its architectural design, explained in Sect. 5.1.1.
There are five dedicated threads in each Jade container in charge of sending messages, while
in AgentScape and MadKit there is only one thread. As a result, having a pool of threads
carrying out the message sending seems to be a good design decision. However, the level of
development that has been achieved for each MAP plays a crucial role in its overall perfor-
mance. AgentScape shows the poorest results, but of the three MAPs selected it is the MAP
with the lowest level of development. Therefore, these bad results can be attributed not only
to its architectural design but also to its level of development.

5.1.3 Messaging service bottlenecks

Once the messaging service response time has been analyzed, we want to ascertain the causes
of these response times. In this section the bottlenecks detected for each messaging service
implementation are presented. In order to identify the bottlenecks, experiments shown in
the previous Sect. (5.1.2) are repeated, but focusing on the CPU time consumed by every
component of the MAP. Thus, we can identify which threads consume more CPU time in
each experiment, therefore becoming a bottleneck for that experiment.

When using a Linux operating system, we can obtain a detailed dump of every thread
running in a Java Virtual Machine (JVM) through sending the signal SIGQUIT to the JVM
process. In this dump, a list of Linux thread identifiers associated to each JVM thread can
be obtained, including the native JVM threads and the Java threads launched by the MAP.
By means of these identifiers and the top command we are able to calculate the CPU time of
each Java thread. AgentScape also has a Python process per MAP, so, we use the Linux PID
of this process to obtain CPU usage.

Due to the great number of threads involved in each experiment, the results for related
threads are put together to make it easier to display them and to allow a better compari-
son of the MAPs tested. The jvm thread set refers to every thread that is in charge of the

123

A performance evaluation of three multiagent platforms 161

Table 2 Message sending
threads: 1 host, 1 kernel

Platform Group CPU time (ms) %CPU

Jade jvm 6334.2 +/− 36.9 14.2

mas 25481.2 +/− 151.4 57.2

map 391.0 +/− 4.4 0.9

com 12372.0 +/− 154.3 27.8

AgentScape jvm 16061.5 +/− 331.3 6.9

mas 150625.0 +/− 3221.4 65.1

map 38307.5 +/− 244.3 16.5

com 26497.5 +/− 419.8 11.4

MadKit jvm 5581.6 +/− 29.7 18.0

mas 25375.0 +/− 163.2 81.9

map 17.5 +/− 0.3 0.1

com 0.0 +/− 0.0 0.0

management of the JVM. The mas thread set is composed of every thread of the MAS, i.e. all
of the sender and receiver agents taking part in the experiment. The com set is composed of
every thread involved in the messaging service of each MAP, i.e. the threads that take part in
the communication process. Finally, the map set is composed of the rest of the MAP threads
not associated with communication.

Experiments are repeated 100 times so that an average CPU time is calculated as well
as a 95% confidence interval. Moreover, a percentage of CPU usage for each thread group
is calculated from the average CPU time in order to show the consumption requirements of
each thread group more clearly. Finally, Student’s t tests are performed to assess whether the
differences among MAPs are significant (a remark is only made when the differences are
not significant).

The experiments sending messages between the sender and receiver agents placed in dif-
ferent kernels but the same host are not shown because the results obtained were practically
the sum of the CPU time obtained when the sender and receiver agents are located in two
hosts and did not add any more interesting information.

Table 2 shows the results obtained when 100 pairs of sender and receiver agents were run-
ning on the same host. It can be observed that the mas group is the most CPU demanding in
the three MAPs. This is due to the fact that the mas group is composed of sender and receiver
agents that are continuously exchanging messages with each other during the experiment.
Moreover, the differences in the results of this group for Jade and MadKit are not significant
according to the t test performed.

Both Jade and MadKit MAPs show a similar response for the map group, i.e. there is prac-
tically no CPU consumption by the threads of the MAP that are not related to communication
purposes. However, with regards to the com group, MadKit and Jade behavior differs. The
com group in MadKit has no CPU usage because, as explained in Sect. 5.1.1, when agents are
located in the same kernel the thread of the sender agent copies the message object directly
to the receiver agent, while in Jade the thread of the sender agent enqueues the message in
the Outbox and then a deliverer thread performs the sending.

As one could expect, judging by AgentScape’s RTT time results, its CPU times are worse
than Jade and MadKit for all of the thread groups. Moreover, the map group in AgentScape
consumes 16% of the total CPU consumption. Threads in the map group are supposed not to
take part in the sending process, so this percentage should be lower.

123

162 J. M. Alberola et al.

Table 3 Message sending threads: 2 hosts, 2 kernels

Platform Group Host A Host B

CPU time (ms) %CPU CPU time (ms) %CPU

Jade jvm 17636.6 +/− 190.1 9.0 16445.0 +/− 73.3 9.8

mas 22263.8 +/− 104.5 11.4 17644.2 +/− 104.3 10.6

map 379.6 +/− 6.2 0.2 0.0 +/− 0.0 0.0

com 155726.2 +/− 264.5 79.4 132921.4 +/− 400.6 79.6

AgentScape jvm 42948.5 +/− 673.1 10.6 67431.0 +/− 1895.9 10.7

mas 14015.0 +/− 184.4 3.5 16028.5 +/− 257.1 2.5

map 212273.0 +/− 1472.7 52.5 267236.5 +/− 3592.4 42.4

com 135435.0 +/− 777.6 33.5 280190.0 +/− 2783.4 44.4

MadKit jvm 31364.8 +/− 567.1 10.5 18864.3 +/− 85.9 8.5

mas 10130.5 +/− 94.8 3.4 7812.5 +/− 57.1 3.5

map 6944.7 +/− 22.7 2.3 7702.7 +/− 39.2 3.5

com 250752.1 +/− 176.3 83.8 188101.9 +/− 1837.2 84.5

The results obtained when the sender and receiver agents are located in different hosts
(obviously in different kernels) are shown for each MAP in Table 3. For the Jade MAP, Host
A is the host on which the Main container is running, while Host B represents the host run-
ning the other container. The only major difference between them is found in the map group,
which is composed of the DF and AMS agents, which only appear in the Main Container
(these services are centralized) so that CPU time consumption of the MAP group in Host B
for Jade is 0.

The com group increases its CPU percentage comparing to when agents are located in the
same host for the three MAPs. As a result, it can be easily concluded that the threads that
compound the messaging service for all of the MAPs have a greater load when more than one
host is taking part in the MAP, becoming a bottleneck. However, it reaches higher values for
the Jade and MadKit MAPs than for the AgentScape MAP, which requires a higher demand
of CPU cycles than Jade and MadKit for all the thread groups.

5.2 Lower bound communication time

Our messaging service tests show that Jade seems to perform better than the other two MAPs
tested. However, there is no way of knowing from the data presented whether the best MAP
is good in absolute terms. In order to address this, we compare the measurements obtained
in our tests to the time needed by simple processes when sending messages to each other.
Obtaining the message sending time when simple processes are used is useful to ascertain a
lower bound of the time that a messaging service could achieve.

The processes implemented communicate with each other using TCP sockets, which are
the underlying technology of the technologies (Java RMI, SunRPC and Java TCP sock-
ets) that are used by the messaging services of the three MAPs tested. There are different
mechanisms for communicating processes which probably have even lower response times
than shared memory or Unix sockets, but we designed this test using TCP sockets because
it is the lowest level technology used in the development of the messaging services ana-
lyzed.

123

A performance evaluation of three multiagent platforms 163

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900 1000

E
la

ps
ed

 T
im

e
(s

)

Agent Pairs

JADE
Processes

Fig. 10 Processes and Jade results in 1 host

The tests performed are similar to the ones shown in Sect. 5.1.2, but in this case, the
sender and receiver agents are replaced by the sender and receiver processes. Specifically,
we calculate message sending times when processes are located both in the same and in
different hosts, each time increasing the number of processes taking part in the test. More-
over, the same technique is carried out to assure the same message load conditions during
each test, i.e. each process pair exchanges 500 messages which are not taken into account
in the measurements. After that each process pair exchanges 1,000 messages which are
taken into account in the measurements, and finally, each process pair exchanges 500 more
messages.

As RTT values obtained when using processes were too small and not accurate enough,
for these tests we calculate the total elapsed time during the exchange of 1,000 messages
when using both Jade agents or processes. Therefore, the tests are repeated 100 times so that
an average, a 95% confidence interval and Student’s t tests are calculated. All of the t tests
performed show that the differences between the results of the two approaches tested are
significant.

Figure 10 shows the results obtained when running processes on the same host and agents
on the same Jade container. It can be observed that when increasing the number of agent pairs
in the system, the Jade MAP performs much worse than simple processes communicating
with each other using sockets, which represent the lower bound when communicating two
processes using sockets.

Figure 11 shows the results obtained when placing both processes and agents in different
hosts. The differences increase with respect to the results obtained when launching the test
in 1 host.

When using two processes communicating each other with TCP sockets, message sending
times are smaller than when using Jade agents. However, these observed times are only a
lower bound when communicating two processes, because when using Jade there are no pro-
cesses communicating with each other, but there are agents communicating with each other.
Therefore, there is an unavoidable overhead caused by agent management and by the rest of
the services that a MAP offers to the agents running on it. Nevertheless, such a large time
difference margin makes us wonder about the fact that apart from the previously mentioned

123

164 J. M. Alberola et al.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000

E
la

ps
ed

 T
im

e
(s

)

Agent Pairs

JADE
Processes

Fig. 11 Processes and Jade results in 2 hosts

unavoidable overhead, part of the overall overhead may arise when using Jade agents, caused
by the layers which exist between the Operating System and an agent. This overhead would
be avoidable if the design approach was different. For instance, a messaging service in which
a sender agent sends a message straight to the receiver agent without centralized points so
that the messaging service scales better when increasing the number of agents.

5.3 Directory service

As in Sect. 5.1, this section presents an in-depth evaluation, but in this case we focus on the
directory service offered in the three selected MAPs.

5.3.1 Directory service design details

The Jade Platform offers the Directory Service by means of the DF agent. This agent is
located in the Jade Main Container. When an agent needs to request a function from the DF
agent, it sends a message containing the request following the FIPA standard, then the DF
agent performs the action requested and replies to the requesting agent with the result of the
action performed. Thus, at least two messages between the DF agent and the requesting agent
are needed when registering, deregistering, or searching for services offered by an agent.

MadKit uses organization tables to implement the Directory Service. To register a service
an agent has to request a role. MadKit kernel carries out the role registration. After role
registration the kernel checks if the organization is distributed. If the organization of this
role is not distributed, the role registration finishes. However, if the organization of this role
is distributed among two or more kernels, the local Kernel notifies the local SiteAgent to
distribute the role registration event. The local SiteAgent sends messages (using the remote
sending mechanism described in 5.1.1) to every remote SiteAgent. Each remote SiteAgent
updates its organization table. Role deregistration is implemented like role registration.

MadKit kernel carries out the role search. When an agent wants to know the agents that
play a role, the agent asks the kernel for the information and the kernel looks up the agents

123

A performance evaluation of three multiagent platforms 165

that play a role in the organization table. The search action is very fast due to the fact that
MadKit integrates the directory service into every kernel of the MAP.

In AgentScape, every agent can register some pairs of {name,key} to be found by other
agents. This information is stored in the lookup service of the MAP. Every agent can regis-
ter its services as pairs of {name,key} and other agents can perform searches in the lookup
service to find these services. The lookup service is the centralizing entity and every register
and search is done by calling the lookup service. Deregister is automatic, specifying the time
of validity of every register in the register method call. When reaching this time since the
register was made, the corresponding pair {name,key} is automatically deleted.

5.3.2 Directory service evaluation

directory service is tested by two kinds of experiments. Firstly, registration and deregistration
time is measured by increasing the number of agent services already registered. The struc-
tures of the MAPs are changed from one host to two hosts in order to determine the influence
of agent location. In two host experiments the agents that perform the service registrations
are placed in one host, but the MAP is distributed between the two hosts. In Jade tests the
Directory Facilitator is placed in the host where there is no agent and in AgentScape the
LookupService is also placed in the host where there is no agent.

The results of service deregistration are not included because they are practically the
same as the ones obtained in registration. Figures 12 and 13 depict the registration times,
and Figs. 14, 15 and 16 show search times. In Figs. 12 and 13 we show the registration
service time according to the number of services already registered. This time is an average
time of 100 measures and a 95% confidence interval is shown as well. The 100 measures of
each configuration for each MAP are used to perform Student’s t tests to assess whether the
differences among MAPs are significant. All of the t tests performed in the experiments in
this section show that the differences among MAPs are always significant.

When registration time is taken into account, similar behavior can be observed among the
three MAPs: the number of services already registered does not have any influence on a new

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

R
eg

is
te

r
T

im
e

(m
s)

Services already registered

Jade
MadKit

AgentScape

Fig. 12 Registration in 1 host

123

166 J. M. Alberola et al.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

R
eg

is
te

r
T

im
e

(m
s)

Services already registered

Jade
MadKit

AgentScape

Fig. 13 Registration in 2 hosts

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

S
ea

rc
h

T
im

e
(m

s)

Services already registered

Jade
MadKit

AgentScape

Fig. 14 Search in 1 host

service registration time. As explained in 5.3.1, the MadKit directory service is distributed
and this distribution seems to improve the results obtained.

As explained in 5.3.1, in AgentScape, when an agent wants to register a new service, it
must contact the lookup service of the MAP. If the host where this service is located has been
overloaded, the process may slow down. Figures 12 and 13 show that when the agents are
in a host different from the lookup service the process is slightly faster. This is due to the
fact that lookup service can be placed in a host without any other components of the MAP.
Hence, there is less overload in this host.

Jade’s times are worse than MadKit’s because agents that want to register their services
must establish a communication act with the DF agent. This fact increases the sending time

123

A performance evaluation of three multiagent platforms 167

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

S
ea

rc
h

T
im

e
(m

s)

Services already registered

Jade
MadKit

AgentScape

Fig. 15 Search in different hosts

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

S
ea

rc
h

T
im

e
(m

s)

Services already registered

Jade
MadKit

AgentScape

Fig. 16 Search in 2 hosts with agents distributed between them

due to ACL message exchanges. Moreover, the directory service is a centralized service in
Jade (the DF agent) while in MadKit this service is distributed.

Figure 13 highlights some irregularities in MadKit registration times. These irregularities
may be caused by the information replication process between the MAP hosts. Confidence
interval of the three MAPs is nearly constant regardless the number of services already regis-
tered. Only MadKit increases this confidence interval when more than 200 services have been
registered. We can conclude that the time for service registration in MadKit is unpredictable
when replication process is required. Nevertheless, this time is always under 10 ms.

In the second experiment, we also estimate the MAP response when a service search is
requested. The experiment consists of a searcher agent that performs a search for an agent
offering a service. As explained in the register and deregister experiment, the number of

123

168 J. M. Alberola et al.

agent services already registered is increased. The location of the agents taking part in the
experiment is changed as follows:

– The searcher and registered agents are placed in the same host (Fig. 14).
– The searcher is placed in one host and the registered agents in the other host (Fig. 15).
– The searcher is placed in one host and the registered agents are distributed between the

two hosts (Fig. 16).

Each experiment was repeated 100 times and the measures plotted show an average time
for these times. We also show a 95% confidence interval. The significance between the results
obtained for each MAP is proved by the Student’s t tests performed.

In AgentScape there is a linear increase in search time. This increase in search time is
caused when the lookup service is performing the agent’s search request. It has to find the
pair {name,key} requested and this time increases according the number of pairs {name,key}
already registered.

Since Jade implements directory service processes using communication acts with the DF
agent, its result times are not as good as those in MadKit. This is a result of how MadKit
implements this service. While Jade implements it as an agent (DF agent), MadKit integrates
it into the MAP software.

5.3.3 Directory service bottlenecks

In this section directory service bottlenecks are shown for each MAP using the CPU usage,
as in Sect. 5.1.3. Thus, the experiments done in the evaluation of the directory service are
repeated taking measurements of CPU consumption for each component of each MAP. To
show the experiment results, we have grouped the threads into four groups: the jvm group
refers the native JVM threads, which are in charge of the management of the JVM; the mas
group is composed of every thread of the MAS (i.e. agents which register and search ser-
vices); the sds group is composed of the specific threads of each MAP that are related with
the agent search and registration services; and finally, the map group is composed of the rest
of the internal threads of each MAP (unlike in the messaging service evaluation, the threads
concerning communication are now included in this group).

As in previous experiments, Student’s t tests are performed to assess whether the differ-
ences among MAPs are significant.

Table 4 shows the results for service registration in a single host for the three MAPs. The
CPU time is an average time of 100 experiments with a 95% confidence interval. Student’s t
tests are also performed to assess whether the differences among MAPs are significant. All
of the t tests performed in the experiments in this section show that the differences among
MAPs are significant.

The sds group takes the most CPU time on the Jade MAP (almost 70%), while on the
other two MAPs this percentage is lower. In Jade, this group is composed of the thread cor-
responding to the DF agent. This result confirms, as described in 5.3.1, that the DF agent is
the bottleneck of the directory service in Jade because it centralizes the management of this
service. Moreover, this agent has to serve the requests sequentially (only one thread). On the
other hand, the sds group in MadKit hardly consumes CPU. As can be observed, the threads
concerning JVM consume almost 100% of CPU time because of the fact that registering
a new role in a MAP with a single host is very simple, as explained in 5.3.1. This time is
practically the same as that consumed in Jade by the same group. It can be observed that
AgentScape takes much more CPU time to complete the test than the other two MAPs.

123

A performance evaluation of three multiagent platforms 169

Table 4 Registration threads
(1 host)

Platform Group CPU time (ms) %CPU

Jade jvm 16779.6 +/− 496.1 36.1

mas 2824.4 +/− 26.2 6.1

map 6237.6 +/− 43.0 13.4

sds 20638.4 +/− 67.9 44.4

AgentScape jvm 558956.5 +/− 1511.2 47.0

mas 48198.5 +/− 357.7 4.1

map 224433.5 +/− 450.2 18.9

sds 356739.0 +/− 221.1 30.0

MadKit jvm 17231.9 +/− 116.1 96.0

mas 532.5 +/− 4.7 3.0

map 0.0 +/− 0.0 0.0

sds 176.3 +/− 2.1 1.0

Table 5 Registration threads (2 hosts)

Platform Group Host A Host B

CPU time (ms) %CPU CPU time (ms) %CPU

Jade jvm 4222.4 +/− 28.8 8.5 6374.8 +/− 55.2 21.5

mas 0.0 +/− 0.0 0.0 3600.6 +/− 28.2 12.1

map 23344.0 +/− 102.2 46.8 19700.6 +/− 88.1 66.4

sds 22279.8 +/− 66.0 44.7 0.0 +/− 0.0 0.0

AgentScape jvm 0.0 +/− 0.0 0.0 455357.4 +/− 7704.2 57.5

mas 0.0 +/− 0.0 0.0 35332.1 +/− 2516.8 4.5

map 0.0 +/− 0.0 0.0 218504.9 +/− 5133.3 27.5

sds 192357.8 +/− 7581.8 100.0 83215.6 +/− 1119.7 10.5

MadKit jvm 3614.5 +/− 12.4 7.7 4183.6 +/− 11.3 13.6

mas 0.0 +/− 0.0 0.0 1382.1 +/− 15.4 4.5

map 30909.2 +/− 171.2 65.5 24832.3 +/− 44.3 80.7

sds 12693.8 +/− 83.2 26.9 367.5 +/− 6.8 1.2

We analyze another scenario when the MAP is distributed between two hosts. The results
of this evaluation are shown in Table 5. In Jade we launch the main container in the host A
(this container is running the DF agent) and we place the agents that are registering services
in host B. The percentage of CPU used by the sds group is different in each container. This
group in Jade is composed by the DF agent. Therefore, this time is 0 in host B. Just like in
a single host, the bottleneck of this service is the DF agent, which must attend the requests
related to this service. Therefore, the threads in the map group make higher CPU usage in
two hosts than in a single one because of communication threads in charge of sending the
messages needed to request registration and search actions from the DF agent.

When the MadKit MAP is composed of two hosts, the total amount of CPU time is higher
than when it is composed of only one host. Moreover, it is quite similar to the total amount
of CPU time consumed in Jade. In MadKit, the group that consumes more CPU time is the

123

170 J. M. Alberola et al.

Table 6 Search threads (1 host) Platform Group CPU time (ms) %CPU

Jade jvm 1619.6 +/− 7.9 39.7

mas 217.2 +/− 8.1 5.3

map 589.8 +/− 10.2 14.4

sds 1656.0 +/− 8.8 40.6

AgentScape jvm 4350.8 +/− 32.1 17.8

mas 786.0 +/− 9.3 3.2

map 11303.8 +/− 42.1 46.3

sds 7928.6 +/− 25.2 32.6

MadKit jvm 1184.3 +/− 13.2 29.6

mas 2798.6 +/− 17.3 69.9

map 0.0 +/− 0.0 0.0

sds 18.2 +/− 0.4 0.5

map group. As described in 5.3.1, registering a new role in a distributed MAP needs the
distribution of its organization information. For this reason, communication threads (which
are included in map group) consume the most CPU time. Again the messaging service is the
bottleneck of the MAP.

In AgentScape we launch the lookup service in host A and the agents in host B. Because
of AgentScape design 5.3.1, we can launch the lookup service in a host without requiring a
kernel. Thus, in host A there is only CPU usage by sds group. This usage concerns the CPU
time of the lookup service python process. In host B we launch the AOS kernel the agents
are running on.

Below, we are going to detail the results of the experiments for the service search. In these
tests we have launched 200 agents which offer a service in the same host or divided into two
hosts, and a searcher agent which searches a service and takes the CPU time measurements.

Table 6 shows the results of search experiments on the three MAPs when agents that offer
services are placed in the same host as the agent which searches for a service. As in register
experiments, we show an average time of 100 repetitions with a 95% confidence interval.
AgentScape is the MAP which consumes the most CPU time. In Jade, the sds group is a
bottleneck again because the DF agent is included in this group and searching for service is
similar to registering a service: agents have to contact the DF agent. Nevertheless, searching
is faster than registering and for this reason, the jvm group time is quite similar to the sds
CPU time. In AgentScape, the map group consumes more CPU time than both the mas and
sds groups. As in Jade, searching is faster than registering. So in this case, the jvm CPU
time is considerably lower than when registering, but the lookup service does not become
a bottleneck with this amount of load. In MadKit, the most CPU time is consumed by mas
group. This CPU usage is higher than the one obtained in the register tests. This is due to the
great amount of requests made by the searcher agent.

In the case of two hosts we launch 100 agents, each one registering a service, placing the
searcher agent in host B. Results are presented in Table 7. As in the register experiments, in
Jade MAP, host B does not consume CPU time in sds group because the DF service is placed
in host A. In MadKit, when launching the agents in two kernels we can observe that the host
where the searcher agent is placed behaves in a similar way to the case of one host, due to
the fact that the searcher agent is the agent which uses the most CPU time. In this case, the
map group has CPU usage because distribution of the organization information is required.

123

A performance evaluation of three multiagent platforms 171

Table 7 Search threads (2 hosts)

Platform Group Host A Host B

CPU time (ms) %CPU CPU time (ms) %CPU

Jade jvm 1696.0 +/− 10.6 39.6 969.4 +/− 7.4 50.3

mas 10.0 +/− 1.6 0.2 189.6 +/− 6.7 9.8

map 1216.2 +/− 14.5 28.4 768.4 +/− 9.6 39.9

sds 1361.4 +/− 12.4 31.8 0.0 +/− 0.0 0.0

AgentScape jvm 2738.2 +/− 26.0 20.5 2868.8 +/− 22.7 27.9

mas 0.0 +/− 0.0 0.0 220.2 +/− 4.1 2.1

map 5512.2 +/− 39.5 41.2 5166.0 +/− 31.5 50.2

sds 5128.6 +/− 19.2 38.2 2041.6 +/− 37.9 19.8

MadKit jvm 2419.7 +/− 21.2 70.4 2989.7 +/− 23.4 40.1

mas 0.0 +/− 0.0 0.0 4031.2 +/− 31.5 54.1

map 628.3 +/− 5.9 18.3 356.1 +/− 3.8 4.8

sds 386.9 +/− 4.2 11.3 72.8 +/− 1.2 1.0

For this reason, communication threads are needed. As in one host, we can notice that in
AgentScape, the map is the most influential group. Although the overload caused by the jvm
is significant, it does not consume the most CPU time. Moreover, the mas group does not
consume much more CPU time, which is practically consumed by the searcher agent placed
in host B. The CPU usage of the sds group is much higher in host A due to the fact that the
lookup service is running.

5.4 Consumed memory

We have also evaluated how much memory every Java thread uses because the agents of each
MAP are implemented as a Java thread. For this reason, we calculate the memory consumed
by the JVM without the MAP, the memory taken up by each MAP, and finally, the memory
used by an idle agent inside each MAP. We use both the Java API and the application jcon-
sole which shows information about memory and other parameters of the JVM processes by
means of an interface.

To perform the tests we use two methods of the java.lang.Runtime class:

– totalMemory() , returns the total memory available in the JVM.
– freeMemory() , returns the free memory available in the JVM.

To estimate JVM usage we create a Java object that only executes a few code lines and
uses the two instructions explained previously.

After repeating 100 times we can observe that the JVM (and actually this light object)
uses 176 KB of memory without any variance in the 100 repetitions.

The next step is to find out the memory usage of each MAP. This can be seen it in Table 8.
We execute each MAP over JVM and then calculate its memory usage in a similar way to
the previous test, i.e. launching an agent to measure these parameters and repeating it 100
times, but in this case there is variance among repetitions so that an average and a 95% con-
fidence interval is calculated. Jade is the lighter MAP, only using 940 KB, while AgentScape
consumes more than 5,000 KB.

123

172 J. M. Alberola et al.

Table 8 Memory usage Platform Platform mem.
usage (KB)

100 Agent mem.
usage (KB)

Jade 940.52 +/− 3.46 1102.85 +/− 6.78

MadKit 1294.21 +/− 8.34 1923.38 +/− 11.42

AgentScape 5218.35 +/− 57.46 26979.37 +/− 342.52

Table 8 also shows memory usage of 100 agents. For each MAP, we implement a MAS
formed by 100 idle agents. We launch every agent and then take the memory usage repeating
it 100 times. This amount includes the memory of the JVM, the MAP and the 100 agent
system together. To obtain the memory usage of one agent we could subtract the JVM and
the MAP memory usage. In these tests Jade also achieves the bests result.

The results obtained for memory usage prove that memory usage is not a bottleneck in
current MASs because in the worst case of the three MAPs (AgentScape) the jvm plus the
MAP plus 100 agents use 27MB.

5.5 Network occupancy rate

Another important issue to be evaluated is whether network connections are involved in
the decrease in performance when increasing the load of the MAPs. For this purpose we
designed a set of experiments with many message traffic to measure the network occupancy
rate.

In these experiments we launched two kernels in two hosts, running receiver agents
in the first one and sender agents in the second one, gradually increasing the number of
agents launched. Each pair sends 1,000 messages itself, collecting the parameters refer-
ring to the network. These experiments allow us to show if the network capacity is an
influential issue in the scalability of the MAPs. We used the iptraf program to do this
test.

Iptraf is a piece of software included in some Linux distributions (Fedora, Debian, SuSE,
Conectiva, RedHat, …). It shows network statistics like byte counters, TCP connection pack-
ages, network interface statistics, TCP/UDP traffic breakdowns and LAN station bytes and
packages. It provides us with the network throughput for each MAP while increasing the
number of agent pairs communicating. These network throughputs are collected and plot-
ted.

Figure 17 shows the test results of the three MAPs. In Jade tests, the network throughput
increases when running up to 150 pairs. From this number of agent pairs on, the network
throughput remains constant at about 8,200 Kbits/s. We can assume that 8,200 Kbits/s is the
upper limit of the Jade Message Transport System which is composed of 5 deliver threads
in each Container of the MAP. MadKit’s upper limit is 4,900 Kbits/s. When communicating
agents are more than 50 pairs the MadKit network throughput goes down to 900 Kbits/s. This
blockage is due to the communicator agents. These agents make a new socket connection for
each message sending, when the number of agent pairs increases, the threads running in the
same computer are higher and communicator thread delivering time increases. AgentScape
test’s network throughput is always below 1,000 Kbits/s in this version. In the tests where
there are few agent pairs the troughput remains low, when the agent pairs are increased the
network throughput remains around 1,000 Kbits/s. AgentScape message delivery structure
does not allow for higher network traffic.

123

A performance evaluation of three multiagent platforms 173

Fig. 17 Network throughput

Consequently, network capacity is not a bottleneck because every MAP test throughput
is much lower than network maximum throughput, which is 100,000 Kbits/s (Fast Ethernet).

6 Conclusions

This article is aimed at determining the extent to which the internal design of a MAP affects
its performance. As can be observed in the results obtained, three different internal designs of
a MAP lead to three different performances when running the experiments presented. These
experiments mainly evaluate the response time of these three MAPs when changing param-
eters like message traffic, the amount of agents running, and so on. These experiments draw
a common conclusion: all the three MAPs perform poorly and demonstrate low scalability
when the MAS being run on increases. Therefore, performance is a key issue to be taken into
account when designing a MAP.

We can also conclude from the results of the experiments performed:

– The Jade messaging service performs better than the messaging service of the other two
MAPs. Therefore, from the three MAPs tested, MAS developers should use Jade if they
are concerned about efficiency. The key issue in the Jade messaging service design is the
use of a pool of threads (the deliverers) in charge of sending the messages enqueued in
each container, while in MadKit, a message is sent through a chain of communication
agents (NetAgent, RouterAgent, P2PAgent, and so on). It seems that when increasing
the overall message traffic in the MAP, this agent chain becomes a clear bottleneck.
AgentScape messaging service design is similar to the Jade one, but it only uses a single
MessageBuffer thread for sending messages to remote kernels, becoming a bottleneck
when increasing the message traffic. Nevertheless, AgentScape poor performance could
also be attributed to its early development stage.

– Although the Jade messaging service performs better than the other two messaging ser-
vices, it may become a bottleneck if the message traffic is very high. This conclusion
is based on the differences observed with respect to simple processes communicating
to each other via TCP sockets in Sect. 5.2. Therefore, in order to design a messaging

123

174 J. M. Alberola et al.

service for a MAP that can handle large agent populations, the messaging service design
should be based on direct communication between each pair of agents. Messages are used
for communication between agents and in many MAPs, also for interacting with other
services. Therefore, the design of this service is crucial in the performance of the MAP.

– The directory service is not a bottleneck in the MAP performance. Registering a service
lasts a constant time in the three analyzed MAPs, regardless of the number of agents
running on the MAP and the services already registered. Searching for a service can
increase its response time according to the amount of services registered (only in Jade
and in AgentScape), but this increment is so small that we are inclined to believe that it
should not become a bottleneck.The best directory service design seems to be the one
implemented in MadKit, in which this service is provided by the MAP, in a distributed
way. In Jade and in AgentScape this service is centralized. What is more, in Jade this
service is provided by the DF agent so that communication acts are needed. Therefore, we
can conclude that services like directory service, which stores information and receives
a lot of requests, should be distributed among the various hosts in the MAP whenever
possible, for improving the response time of these services.

References

Ahmad HF, Suguri H, Ali A, Malik S, Mugal M, Shafiq MO, Tariq A, Basharat A (2005) Scalable fault tol-
erant agent grooming environment: Sage. In: AAMAS ’05: proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, ACM Press, New York, pp 125–126, http://
doi.acm.org/10.1145/1082473.1082816

AOS Group (2008) An agent infrastructure for providing the decision-making capability required for autono-
mous systems. http://www.agent-software.com

Argente E, Julian V, Botti V (2005) From human to agent organizations. In: CoOrg-05: proceedings of the
first international workshop on coordination and organisation, pp 1–11

Bellavista P, Corradi A, Stefanelli C (1999) A secure and open mobile agent programming environment.
Autonomous decentralized systems, international symposium on 0:238, http://doi.ieeecomputersociety.
org/10.1109/ISADS.1999.838439

Bellifemine F, Caire G, Poggi A, Rimassa G (2003) Jade a white paper. Telecom Italia EXP Mag 3(3):6–19
Bellifemine F, Caire G, Poggi A, Rimassa G (2008) Jade: a software framework for developing multi-agent

applications. Lessons learned. Inform Softw Technol 50(1–2):10–21
Bigus JP, Schlosnagle DA, Pilgrimand JR, Mills WN III, Diao Y (2002) Able: a toolkit for building multiagent

autonomic systems. IBM Syst 41:350–371
Bitting E, Carter J, Ghorbani A (2003) Multiagent system development kit: an evaluation. In: Proceedings of

communication networks and services research conference, May 15–16, Moncton, pp 80–92
Bordini RH, Wooldridge M, Hübner JF (2007) Programming multi-agent systems in AgentSpeak using Jason

(Wiley Series in Agent Technology). Wiley, New York
Brazier F, Mobach D, Overeinder B, van Splunter S, van Steen M, Wijngaards N (2002) Agentscape: middle-

ware, resource management, and services. In: Proceedings of the 3rd international SANE conference,
pp 403–404

Bäumer C, Breugst M, Choy S, Magedanz T (1999) Grasshopper—a universal agent platform based on OMG
MASIF and FIPA standards. In: Karmouch A, Impey R (eds) Mobile agents for telecommunication appli-
cations, proceedings of the first international workshop (MATA 1999), October 1999, World Scientific
Pub, Ottawa, pp 1–18

Burbeck K, Garpe D, Nadjm-Tehrani S (2004) Scale-up and performance studies of three agent platforms. In:
IPCCC 2004

Camacho D, Aler R, Castro C, Molina JM (2002) Performance evaluation of zeus, jade, and skeletonagent
frameworks. In: Systems, man and cybernetics, 2002 IEEE international conference on

Chmiel K, Tomiak D, Gawinecki M, Karczmarek P (2004) Testing the efficency of jade agent platform. In:
Proceedings of the ISPDC/HeteroPar’04, 49–56

Collis JC, Ndumu DT, Nwana HS, Lee LC (1998) The zeus agent building tool-kit. BT Technol J 16(3):60–68
Contreras M, Germán E, Chi M, Sheremetov L (2004) Design and implementation of a fipa compliant agent

platform in.net. J Object Technol 3(9):5–28

123

http://doi.acm.org/10.1145/1082473.1082816
http://doi.acm.org/10.1145/1082473.1082816
http://www.agent-software.com
http://doi.ieeecomputersociety.org/10.1109/ISADS.1999.838439
http://doi.ieeecomputersociety.org/10.1109/ISADS.1999.838439

A performance evaluation of three multiagent platforms 175

Cortese E, Quarta F, Vitaglione G (2003) Scalability and performance of jade message transport system. EXP
3:52–65

Cost RS, Finin T, Labrou Y, Luan X, Peng Y, Soboroff I, Mayfield J, Boughanam A (1998) Jackal: A Java-
based Tool for Agent Development. In: AAAI-98, workshop on tools for agent development, Madison,
WI

Dale J (2002) April agent platform reference manual. Fujitsu Laboratories of America
Duvigneau M, Moldt D, Rölke H (2003) Concurrent Architecture for a multi-agent Platform. In: Giunchiglia F,

Odell J, Weiß G (eds) Agent-oriented software engineering III, vol 2585. Third international workshop,
agent-oriented software engineering (AOSE) 2002, Bologna, Italy, July 2002. Revised Papers and Invited
Contributions, Springer, Berlin, LNCS

Escriva M, Palanca J, Aranda G, Garca-Fornes A, Julian V, Botti V (2006) A jabber-based multi-agent system
platform. In: Proceedings of the fifth international joint conference on autonomous agents and multi-
agent systems (AAMAS06), Association for Computing Machinery, Inc., ACM Press, New York, pp
1282–1284

FIPA (2000) The foundation for intelligent physical agents. http://www.fipa.org
Giang NT, Tung DT (2002) Agent platform evaluation and comparison
Graham JR, Decker K, Mersic M (2003) Decaf—a flexible multi agent system architecture. Auton Agents

Multi-Agent Syst 7(1–2):7–27
Gray RS (1995) Agent Tcl: a transportable agent system. In: Proceedings of the CIKM workshop on intelligent

information agents, fourth international conference on information and knowledge management (CIKM
95), Baltimore

Gutknecht O, Ferber J (2000) The madkit agent platform architecture. Lect Notes Comput Sci 1887:48–55
Helsinger A, Thome M, Wright T (2004) Cougaar: a scalable, distributed multi-agent architecture. In: SMC(2),

IEEE, pp 1910–1917
Inc IA (2004) User guide. http://www.opencybele.org/docs/UsersGuideCybeleProVersion1.0.pdf
Ita ME (1997) Concordia: an infrastructure for collaborating mobile agents
Jarvinen J (2002) Agentdock platform bdi-agents. http://www.cs.uta.fi/kurssit/AgO/ago7a-print.pdf
Kusek M, Voncina D, Vyroubal V (2004) Design and implementation of the mobile agent platform crossbow.

In: Proceedings of the conference CTI—telecommunications & information, pp 82–87
Lee LC, Ndumu DT, Wilde PD (1998) The stability, scalability and performance of multi-agent systems. BT

Technol J 16:94–103
Luck M, McBurney P, Shehory O, Willmott S (2005) Agent technology: computing as interaction (A Roadmap

for Agent Based Computing). AgentLink
Lugmayr W (1999) Gypsy: a component-oriented mobile agent system. URL: citeseer.ist.psu.edu/

lugmayr99gypsy.html
Meyer AP (2004) A multi-agent systems engineering environment for the semantic web
Minar N, Gray M, Roup O, Krikorian R, Maes P (1999) Hive: distributed agents for networking things. In:

Proceedings of ASA/MA’99, the first international symposium on agent systems and applications and
third international symposium on mobile agents

Mulet L, Such JM, Alberola JM (2006) Performance evaluation of open-source multiagent platforms. In:
Proceedings of the fifth international joint conference on autonomous agents and multiagent systems
(AAMAS06), Association for Computing Machinery, Inc., ACM Press, New York, pp 1107–1109

Nwana H (1994) Negotiation strategies: an overview. Internal report 14, BT laboratories
Omicini A, Rimassa G (2004) Towards seamless agent middleware. In: TAPOC 2004
Peine H, Stolpmann T (1997) The architecture of the ara platform for mobile agents. In: First international

workshop on mobile agents (MA 97)
Ricordel PM, Demazeau Y (2000) From analysis to deployment: a multi-agent platform survey. In: ESAW’00,

engineering societies in the agents’ world
Riekki J, Huhtinen J, Ala-Siuru P, Alahuhta P, Kaartinen J, Roning J (2003) Genie of the net, an agent

platform for managing services on behalf of the user. Comput Commun 26(11):1188–1198 (ubiquitous
Computing)

Roth V, Jalali-Sohi M (2001) Concepts and architecture of a security-centric mobile agent server. In: ISADS
Shakshuki E (2005) A methodology for evaluating agent toolkits. In: ITCC ’05: proceedings of the international

conference on information technology: coding and computing (ITCC’05)—volume I, IEEE Computer
Society, Washington, DC, pp 391–396, http://dx.doi.org/10.1109/ITCC.2005.15

Shi Z, Zhang H, Cheng Y, Jiang Y, Sheng Q, Zhao Z (2004) Mage: an agent-oriented programming envi-
ronment. In: ICCI ’04: proceedings of the third IEEE international conference on cognitive informatics,
IEEE Computer Society, Washington, DC, pp 250–257, http://dx.doi.org/10.1109/ICCI.2004.20

Silva L, Soares G, Martins P, Batista V, Santos L (2000) Comparing the performance of mobile agent systems:
a study of benchmarking. Comput Commun 23:769–778

123

http://www.fipa.org
http://www.opencybele.org/docs/UsersGuideCybeleProVersion1.0.pdf
http://www.cs.uta.fi/kurssit/AgO/ago7a-print.pdf
citeseer.ist.psu.edu/lugmayr99gypsy.html
citeseer.ist.psu.edu/lugmayr99gypsy.html
http://dx.doi.org/10.1109/ITCC.2005.15
http://dx.doi.org/10.1109/ICCI.2004.20

176 J. M. Alberola et al.

Software R (2007) Voyager messaging developer’s guide. http://www.recursionsw.com/
Ten Hoeve EC (2003) 3APL Platform. Master’s thesis, Utrech University
Tripathi AR, Karnik NM, Ahmed T, Singh RD, Prakash A, Kakani V, Vora MK, Pathak M (2002) Design of

the ajanta system for mobile agent programming. J Syst Softw 62:123–140
Venners B (1997) The architecture of aglets. http://www.javaworld.com/javaworld/jw-04-1997/jw-04-hood.

html
Vrba P (2003) Java-based agent platform evaluation. In: Proceedings of the HoloMAS 2003, pp 47–58
Wooldridge M (2002) An introduction to multiagent systems. Wiley, England
Wooldridge M, Jennings NR (1995) Intelligent agents: theory and practice. Knowl Eng Rev 10(2):115–152
Xu H, Shatz SM (2003) Adk: an agent development kit based on a formal design model for multi-agent

systems. J Autom Softw Eng 10:337–365

123

http://www.recursionsw.com/
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-hood.html
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-hood.html

	A performance evaluation of three multiagent platforms
	Abstract
	1 Introduction
	2 Related work
	3 Overview of current multiagent platforms
	4 Description of selected platforms
	5 Evaluation of the multiagent platforms' performance
	5.1 Messaging service
	5.1.1 Messaging service design details
	5.1.2 Messaging service evaluation
	5.1.3 Messaging service bottlenecks

	5.2 Lower bound communication time
	5.3 Directory service
	5.3.1 Directory service design details
	5.3.2 Directory service evaluation
	5.3.3 Directory service bottlenecks

	5.4 Consumed memory
	5.5 Network occupancy rate

	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

