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Abstract Recent years have seen a significant increase in the usage of computers and their
capabilities to communicate with each other. With this has come the need for more security
and firewalls have proved themselves an important piece of the overall architecture, as the
body of rules they implement actually realises the security policy of their owners. Unfor-
tunately, there is little help for their administrators to understand the actual meaning of the
firewall rules. This work shows that formal logic is an important tool in this respect, because
it is particularly apt at modelling real-world situations and its formalism is conductive to
reason about such a model. As a consequence, logic may be used to prove the properties of
the models it represents and is a sensible way to go in order to create those models on com-
puters to automate such activities. We describe here a prototype which includes a description
of a network and the body of firewall rules applied to its components. We were able to detect
a number of anomalies within the rule-set: inexistent elements (e.g. hosts or services on
destination components), redundancies in rules defining the same action for a network and
hosts belonging to it, irrelevance as rules would involve traffic that would not pass through
a filtering device, and contradiction in actions applied to elements or to a network and its
hosts. The prototype produces actual firewall rules as well, generated from the model and
expressed in the syntax of IPChains and Cisco’s PIX.
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1 Introduction

In today’s world, information has become all pervasive. The global media business sells
masses of information everyday and Screen Digest (2007) in its January 2007 report about
the broadcast and media technology business quotes its value at USD 11 billion, forecast to
grow at a rate of 12% every year until 2010. This has been made possible, in part, through the
development of the Internet. The Internet Systems Consortium, Inc (2007) shows the number
of hosts on the Internet to be in excess of 433 million as of January 2007. The Internet has
grown incredibly, as an increasing number of organisations have relied upon this medium to
facilitate or improve their operations. Some use it to advertise their presence and their capa-
bilities, others to gather information and find new opportunities, others still incorporate the
so-called e-commerce to increase their revenue by widening their customer base or retaining
existing relationships (Desmet et al. 2006). Unfortunately, those capabilities rest on a number
of principles which expose those who are connected to vulnerabilities and an organisation
can become a victim of various classes of attacks. Table 1 sums up the frequency of attacks
reported, classed by types, with an estimation of the losses incurred following those attacks.

After having experienced computer intrusions, 70% of the respondents patched the holes
that allowed the intrusions to take place, 30% did not report the attacks, 25% reported them
to law enforcement authorities and 15% reported them to legal counsel. Those who did not
report the intrusions, chose not to because they feared the negative publicity would hurt them
(reported by 78%), because they feared competitors would use this knowledge to their advan-
tage (reported by 36%), because civil remedy seemed the best course of action (reported by
27%) or because they were unaware of the law enforcement interest in such cases (reported by
22%). This highlights the importance of prevention. In spite of those risks, as it has become
inconceivable to conduct business without widespread communication, the enterprises have
to manage their security with increased efficiency. Therefore, a number of tools have reached
the market and, among them, firewalls have become a centrepiece. Security is an important
matter and that a lot of effort has been put in the development of theories, concepts and tools,
all forming the foundation for organisations to find a compromise between the protection of
their resources and the need to access information or share it with others. To date however,
there seems to be comparatively little work based on logic programming techniques.

Organisations should be concerned about the security of their information systems. There
are vast financial resources at stake. On the one hand, taking advantage of the global

Table 1 Types of attacks with their frequency and financial impacts (Gordon et al. 2006)

Type of attack Experienced by % Losses (thousands USD)

Insider abuse of net access 42 1,850

Unauthorised access to information 32 10,617

Denial of service 25 2,992

System penetration 15 758

Theft of proprietary information 9 6,034

Financial fraud 9 2,557

Misuse of public web application 6 270

Web site defacement 6 163

Sabotage 3 260
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communication environment may boost the economic situation of enterprises. On the other
hand, the means to guarantee an efficient security may involve substantial investments that
weight heavily on their financial health. Past decades have seen a significant increase in the
usage of computers and, more recently, the emphasis has been on the capabilities of systems
to communicate with each others. This trend has put a heavier weight on security to help
organisations protect their electronic properties. In this domain, firewalls have proved them-
selves an important piece of the overall architecture, as the body of rules they implement
actually realises the security policy of their owners. Unfortunately, there is little help for
their administrators to understand the actual meaning of the firewall’s rules and this becomes
even more difficult as the body of rules is usually created in an ad-hoc manner with little
opportunity for in-depth analysis. This work shows that formal logic is an important tool
in this respect. In an ideal logic programming environment, the programmer makes a series
of true assertions and the interpreter, using some logical inference process, run those as a
program to solve a problem. The declarative nature, the potential power of expression and
the flexibility make the difference when compared with other strategies. This approach is
particularly apt at modelling real-world situations and its formalism is most relevant to reason
about such models. Logic may be used to prove the properties of the elements it represents
and is a sensible way to go in order to create the models on computers to automate relevant
activities. Prolog was chosen to create a prototype to present a practical implementation of
the concepts described. Its name stands for PROgramming in LOGic and it is based on the
mathematical notions of relations and logical inference. It differs from other languages in
that, rather than running a program to obtain a solution, it prompts users to ask questions.
The databases created for the prototype consist of facts presenting network models and the
body of firewalls’ rules applied to their components, along with a number of logic rules to
reason about the facts, made available for firewalls’ administrators to query in order to detect
anomalies and reason about the security policy.

2 The need for network security

Attacks on the Internet are a frequent occurrence, most of them using software available on
the Internet, such as probes (Guster and Hall 2001). The Internet is an influence on criminal,
as well as legitimate, activity and that the growth of Internet access (28.5 million adults on
line in 2006, up from 3.4 million in 1996) has spurred the number of illegal acts (Garlik
2007). In 2006 there were 92,000 reported cases of identity theft and fraud, of which 40%
were facilitated online, and expected to increase because the fraudsters increase their tech-
nical sophistication; 207,000 cases of financial fraud, up 32% from 2005; 1,944,000 cases
of online harassment, of which at least 90% remain unreported; 6 million virus incidents,
leading to 100 prosecutions. For integrated value chains to reach their potential, security
must be in place to give trading partners and customers’ confidence that their transactions
are handled safely by the network. Therefore, network security services make one of the
major elements of interoperability between business partners and firewalls represent one of
the primary mechanisms for protecting an organisation’s internal network and computers
from the outside (Yang and Papazoglou 2000).

Security requirements can be defined in a policy hierarchy as objectives and their corre-
sponding implementation policies as concrete plans to realise them. Hence, access control,
security coverage, content access and security association requirements define classes of
security requirements, the conditions that are to be met to satisfy them lending themselves
to a formal, logic-based description (Fu et al. 2001. A corporate security policy must be
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expressed in order to deal with the needs of the enterprise and with the risks it is ready to
accept in mind. There are two types of policies: one is authorisation-based to specify activi-
ties permitted or forbidden, the other is obligation-based to specify activities a subject must
or must not perform. Policy inconsistencies may arise from omissions, errors or conflicting
requirements (Lupu and Sloman 1997). Conflict analysis deals with the following subjects:
modality conflicts as authorisation and obligation policies, and application-specific conflicts
that are related to the required consistency of the policies with external criteria. There is a
number of concepts to deal with conflict detection (e.g. identification of overlaps between
policies), with special emphasis on the role of policy precedence relationships. There is a
need to bridge the gap between policy statements and their enforcing configurations. For
instance, a policy condition can be tested against a number of properties in order to enforce
the constraint when the condition is matched and given some information about the topology
of the environment, the mapping from global intent to local mechanism is well suited to
translation automation (Hinrichs 1999).

2.1 Network security

Firewalls have become relevant tools to help organisations realise their intended level of secu-
rity. They may be compared to a router but additionally they are a protection from danger
based on the principle that some packets are not forwarded from one interface to the other on
a multi-homed host (Hunt 1992). However, they have evolved to become quite sophisticated
systems. Firewall techniques can be classified in two categories: packet filtering and appli-
cation-level gateways (Srinivasan et al. 1999). Firewalls have seen technological advances,
but the tools involved in their management and the means available to their administrators
have not kept pace with that evolution. One tool is the Firmato management toolkit (Bartal
et al. 1999). It comprises an Entity-Relationship model to represent the roles involved in
the security policy and the network topology, a Model Definition Language to define an
instance of the Entity-Relationship model through parsing, a Model Compiler to translate the
model into firewall configuration files, and a Rule Illustrator to provide the administrators
with a graphical representation of the configuration files (Bartal et al. 1999). Direction-based
filtering is an approach to help administrators achieve anti-spoofing, egress-filtering and
zone-spanning. Anti-spoofing is addressed with the notion of direction to an interface, in
order to drop a packet whose source address had been spoofed on the Internet (Wool 2004b).
Graph theory is used in the RADIS algorithm of Firmato to check whether the claimed path
of a packet is consistent with the network topology (Bartal et al. 1999). Firewall Analysis and
Configuration Engine (FACE) deals with configurations of firewalls to prevent spoofing, a
problem described as originating from compromised hosts (Verma and Prakash 2005). Such
a mechanism is critical because those attacks increase in number and because the Internet
Protocol (IP) lacks the property to provide any assurance about the true source of a packet.
Therefore, FACE uses the notions of trust assumption, trusted path, implementable policy,
identification of unimplementable policies and correctness of generated rule-sets.

A network can configure itself automatically while maintaining global security properties
(Burns et al. 2001). This is based on the notion of invariant, a network property that has to
be maintained even when the network state changes, for example in response to an attack.
The ultimate goal would be a self-configuring network driven by changes in the network
itself. The security policy must not be inferred from the network state and the task of policy
administration is defined as finding the ‘right’ configuration for all network elements relative
to the given security policy and topology. The policy specification must be separated from
the network model to let the network evolve without disturbing the security model and let
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the administrators express their intents. Multiplying defence devices to increase robustness
of the network through redundancy makes the protection task less straightforward as adding
interfaces also means adding attack points (Uribe and Cheung 2004). Packet transformation
can occur due to issues such as Network Address Translation, Port Mapping or IPSec that
transform fields in the packets as they move across the network. One possibility to counter this
difficulty is to include a history of the packets as part of their trajectory (Uribe and Cheung
2004). Detection and containment of compromised hosts can be used to deceive traditional
protections between the intranet and the Internet, such as firewalls. Self-securing network
interfaces provide a scalable extension to intrusion detection and containment facility. One of
the ways this can be achieved is by looking inward at a host and watching for misbehaviour.
Therefore there is a need for cooperation among filtering devices in order to enforce the
security policy (Guttman 1997). This is required whenever several filtering devices and the
traversal of a succession of network areas are involved. It involves the formalisation of security
goals as policy statements, a network model, an abstraction of addresses and packets, and the
assignment of inbound and outbound filtering constraints to each communication interface,
referred to as ‘filtering postures’. A specification language allows representation of rules, net-
works and services, and sets of hosts and services. This formalism leads to reasoning about
policies and ‘postures’. Operational Research (O.R.) techniques can optimise the placement
of firewalls in large networks (Smith and Bhattacharya 1997). To achieve this, the network
must be represented in a way that allows O.R. to deal with the optimisation of cost and delay.
Firewalls can help focus the attention to key regions of the network to protect them from the
likeliest attacks (Guttman 1997) and there should be cooperation among the filtering devices.

There are those who are more critical regarding the role of firewalls. Firewalls represent a
single point where security functions may be aggregated and that they may be used beyond
TCP/IP and the Internet. There is a difficulty in using them and their interference with the
usability and vitality of the Internet as disadvantages. A lax security within the perimeter,
resulting from a false sense of confidence, can be considered more worrying since many
attacks are perpetrated from the inside of the network (Oppliger 1997). Optimisation tech-
niques can remain static and do not adapt to the varying dynamics of the network (Acharya
et al. 2006). Internet firewalls can be evaluated with security analysis tools such as SATAN
which is aimed at the verification of firewall hosts and protected networks, combined with
the observation of the possible interactions with the firewalls both from inside and outside
the private network (Al-Tawil and Al-Kaltham 1999). Team Cymru (2007) have classified
packets with addresses that should never appear in Internet routing tables and have found
that 60% of naughty packets belong to either unallocated network blocks or private and
reserved addresses as defined in RFC 1918 and RFC 3330, and should therefore be easy to
tag. Web Application Firewalls (WAFs) may counter shortcomings of traditional network
firewalls, particularly in dealing with application layer attacks (Desmet et al. 2006). Web
applications are widespread, but are still error-prone and hosting bugs offering welcome tar-
gets for attackers due to their high accessibility and possible profit gain. The subject of rules
ordering appears in a number of contributions. Rule ordering creates interdependencies that
were neither intended, nor controlled and that it makes understanding the rules more difficult
(Burns et al. 2001). However correcting shadowing and redundancy errors by rewriting the
rules into a set equivalent to the original one can be done, but where the rules are disjoint,
this makes their order irrelevant (Cuppens et al. 2005). There is also a potential untoward
effect on performance. Some advocate reordering the rules, but the behaviour of the routers
may become difficult to figure out and the actual actions of the set of filters may be changed
(Chapman and Zwicky, 1995). Networks that were originally created to share resources and
enhance cooperation among their end-users, and were later opened to the outside world, must
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be designed and managed with security in mind. The issue has made life more complex for
the owners of those networks.

2.2 Relevance of performance

The cost of lookup in a filtering strategy may add some latency in operations. Binary Deci-
sion Diagrams (BDDs) may represent rules lists and hence facilitate quicker lookup, analysis
and hardware support (Hazelhurst et al. 2000). As performance improves, more complex
rules become feasible and better security may be guaranteed. The BDDs also constitute the
base of change analysis. The Boolean formulas representing the rule-set before and after
modification are compared for equivalence, logical implication or other relationships. The
need for thorough tests of a set of complex rules is considered as well and this is achieved
by replaying actual traffic captured earlier, combined with a production grammar to generate
additional traffic. BDDs form the representation of rules in Hazelhurst (1999) as well. This
representation lends itself to analysis in order to deal with modifications and to verify the
rule-set automatically. A set of ‘what-if’ questions helps validate the meaning of the rule-set.
Highlighting the topic of efficiency, the cost of performing look-ups in a complex list of rules
may significantly decrease the performance of the system, in addition to the inherent diffi-
culty in understanding their purpose. Indeed, the ability to classify packets rapidly has seen
a number of contributions. A filter of highest priority that applies to the packet can be repre-
sented geometrically as a multi-dimensional hyper-rectangle and conflict detection is added
by locating overlapping regions where the corresponding actions are in conflict (Eppstein
and Muthukrishnan 2001). Another approach is through a combination of filter reordering,
priority assignment to individual filters’ and fields’ priority assignment where conflicts are
solved implicitly through filter ordering (Hari et al. 2000). Data structure size reduction plays
an important role in allowing the filter base to fit into the high-speed memory of its host (Qiu
et al. 2001). Thus, it is important to analyse trading storage for time as well as backtracking
searches, set pruning tries structures, compression algorithms and pipelining backtracking
searches. Regularities in the rule-set improve the search for the tuple corresponding to a given
packet (Srinivasan et al. 1999). This rests on speeding up tuple search with a combination of
hashing and additional heuristics involving a tuple pruning algorithm, precomputation and
rectangle search.

The majority of flows consists in a small number of large flows (skewed flow size) or in
long-lived flows (skewed flow duration) therefore a dynamic firewall rules reordering based
on online traffic statistics can be used to optimise packet filtering in order to cope with
improvement in network performance (Hamed and Al-Shaer 2006). Aggregated Bit Vector
(ABV) is a rule aggregation scheme to enhance scalability (Baboescu and Varghese 2005)
based on the observation that existing solutions based on two-field classifications, usually
source and destination addresses, do not scale well in one of time or storage on more general
cases, where more fields are involved. BPF+ is a framework (Begel et al. 1999) to explore
the trade-off between flexibility and performance in packet filtering.

Starting from the assumption that packet classification can become a complex opera-
tion that can overwhelm filtering devices, efficient classification schemes that parses a large
portion of the packets’ headers to define precise decision can be applied (Lakshman and
Stiliadis 1998). Ordered Binary Decision Diagrams (OBDDs) are shown to improve per-
formance of firewalls analysis tools in order to process larger bodies of rules (Uribe and
Cheung 2004). Security is often thought of as a methodology but the importance of perfor-
mance, either in terms of processing required or in terms of data structure size is an issue
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that should not be underestimated. As performance increases, more exhaustive actions may
be considered, resulting in better protection (Gupta and Keown 2001).

2.3 Firewall policy modelling

The domain of security is vast and, among its various components, the rules representing
the firewall’s configuration appear to be critical because they embody the actual security
policy of the organisation administrating them. Still, one common difficulty is identified as
understanding the purpose of those rules. Therefore, modelling them is a way to improve
this understanding. Rules can be defined as sets of filtering fields bound to one action field
each. Such a body of rules is complex to manage and systems’ administrators require tools
in order to perform an efficient job. Policy modelling can be done by a formal definition
of rules relations and policy representation (Al-Shaer and Hamed 2003) so then the issue
can be treated as a policy anomaly through classification and through a discovery algorithm.
Thus there is a need for strategies for rule insertion, removal and modification. Inter-firewall
anomalies in distributed environments complete previous considerations on intra-firewall
anomalies (Al-Shaer and Hamed 2004), where multiple firewalls are used to specialise the
controls as they may be required for given domains behind the firewalls. As it is critical to
find out what a set of rules actually does. Geometry can be relied on to formalise each rule as
a multi-dimensional, axis-parallel hyper-rectangle (Eronen and Zitting 2001). Thus, packet
classification is reduced to locating a point in a partition of space formed by overlaying the
rectangles and conflict detection becomes a search to find overlapping regions among the
rectangles.

The difficulties in understanding firewall rules may stem from arcane languages, less than
ideal user interfaces, order sensitivity and the complexity of interactions between rules (Wool
2001). Naming objects to make them more explicit may help and a simulation of the firewall’s
behaviour against all possible incoming packets may play an important role in understand-
ing the security policy actually enforced by the rules. The shortcomings of another tool,
the Fang system, are addressed in the Lumeta Firewall Analyzer, which describes the fire-
wall connectivity, generates typical queries automatically and uses various sources to name
objects. It supports multiple vendors and deals with some specifics from Check Point prod-
ucts. The ‘Rigorous Automated Security Management’ is a four-step procedure to achieve
the intended security (Guttman and Herzog 2003). It consists in modelling all components
involved, expressing security goals as properties of trajectories based on the actual path and
the claimed path of the packets, deriving algorithms to match the policy and implementing
the derived configurations. Network configuration can be represented as a sequence of Horn
clauses that must be generated automatically as an abstraction of the effects of the configu-
rations of firewalls, routers, switches (Ou 2005). Those clauses form the basis upon which
reasoning tools may conduct ‘what-if’ analysis. An argumentation framework which is a
representation of security requirements and firewall rules can be used in a formal, logic-
based fashion (Bandara et al. 2006). Here the tasks of firewall rules analysis should consist
in errors detection, properties verification and resolution of anomalies. The Ponder language
addresses the requirements for a policy specification language, along with access control
policies, constraints on policies and composition of policy specifications (Damianou et al.
2001). Automated rule generation and analysis tools can be used to simplify the configu-
ration of firewalls especially in the cases of distributed firewall models whose inclusion of
all components makes their management even more complex (Verma and Prakash 2005).
Understanding what a security policy really achieves is critical to manage an IT environment
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and one way to help administrators understand this is by modelling the rule-sets of firewalls
(Gouda and Liu 2004).

2.4 Anomaly detection

Administrating firewalls and their rule-sets is a complex task. Inevitably, errors creep into the
configurations and, thus, the detection of anomalies has seen a number of texts covering this
topic. There is a clear correlation in firewalls between the number of errors and the complex-
ity of the rule-set as a function of the number of rules, the number of objects (e.g. hosts and
networks) and the number of communication interfaces involved (Wool 2004a). New fire-
walls should be added instead of adding new networks to existing ones in order to keep the
rule-set complexity low. Distributed firewalls ensure filtering is executed at endpoints, allow-
ing more detailed information to be processed and opening the door for specialised control
(Wool 2001). The unlikelihood of bandwidth bottleneck at the perimeter is seen as another
advantage however there does exist increased complexity arising from the need for a central
policy to control the filtering actions in a coherent fashion and the need to ensure that every
device is protected. Firewall rules can be multiplied to resolve conflicts but this increases the
complexity of the rule-set and, thus, the likelihood of errors (Hari et al. 2000). Static analysis
tools offer the advantage of full coverage, a characteristic facilities that answer queries do
lack (Yuan et al. 2006). Firewall analysis should be fully automated as most security admin-
istrators would not know what queries to submit and have difficulties understanding query
answers when they are too general therefore tools that are as exhaustive as possible should
be used (Mayer et al. 2006). Parsers are required to bridge various semantic discrepancies in
order to achieve multi-vendor support but generating automatically a network topology file
from the firewall’s routing table will save complex coding at a later date. Shadowing is the
term used when a rule’s packets have already been matched by a previous rule, but that their
actions are different. The term correlation defines rules matching some common packets,
while their actions are different (Yuan et al. 2006). Generalization is when a rule matches
all packets of a previous rule and their actions are different. Redundancy is when rules share
identical actions for the same packets (Yuan et al. 2006). Irrelevance describes errors where
the source and destination belong to the same zone, implying that such traffic will not pass
through a filtering device. The complexity of administering a rule-set may unavoidably create
anomalies or errors. Their detection is not a trivial activity.

2.5 Logic programming

The complexity of the security topic leads researchers to contemplate various techniques
to deal with the problem. Data mining techniques can be used to analyse traffic log files
in order to generate an efficient rule-set and reflect an up-to-date traffic trend. Hence, they
achieve five goals: analysis of firewall policy rules, mining of association rules, frequency
analysis of each rule, generation of a decision tree to improve the efficiency of the policy
rules and detection of anomalies. Their detection of anomalies rests on shadowing, correla-
tion, generalisation, redundancy, blocking legitimate traffic to existing service and allowing
traffic to non-existing services. CBR is a paradigm that uses the knowledge from past expe-
riences, stored in a database as cases, to propose a solution in new situations by comparison
with the stored cases. In Xie et al. (2005), a graph is the means to analyse the reachability
issues between hosts taking every elements into consideration. Sadly, their work remains
only theoretical, whilst it provides a deep and very formal formulation of reachability. Still,
logic programming techniques look promising because the languages based on the concept
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of formal logic enable the programmer to specify what has to be computed, instead of coding
how the processing will be done (Salus 1998). Logic programming is a declarative method of
knowledge representation and programming, based on the idea that the language of first-order
logic is well-suited for representing data and describing desired outputs (Dantsin et al. 2001).
The syntax of logic programs is biased towards their declarative reading (Ralston and Reilly
1995). Contrary to its imperative counterpart, logic programming combines declarative and
procedural knowledge in the same representation. Thus, the declarative statements are more
abstract and may correspond to several distinct procedures. One purpose of logic, in the con-
text of computer science, is to model situations in order to reason formally about them. Thus,
this allows one to prove that arguments are valid and that they can be defended rigorously
and executed on a machine (Huth and Ryan 2004). The latter allows a separation between the
reasoning logic and the implementation of the reasoning engine, and favours a clear specifi-
cation of the reasoning logic. This, in turn, facilitates the incorporation of third-party security
knowledge into a global security strategy. Logic programming may still however suffer from
performance issues (Ou 2005). Event Calculus formalism is particularly well adapted to an
event-driven system and may be combined with abductive reasoning. This association has
the capacity of dealing with incomplete specifications of the initial state and can thus be
used to analyse the rules, detect conflicts and provide explanations. A meta-policy about
priorities may resolve conflicts among the rules and declarative understanding of anoma-
lies facilitates their resolution. The combination of Event Calculus and abductive reasoning
is well-adapted to represent policies and managed systems because they are event-driven,
and the latter is selected for specifications analysis (Bandara et al. 2003). The role of logic-
based tools is emphasised in support of formal reasoning methods and the activity of policy
refinement is clearly defined. Event Calculus in conjunction with abductive reasoning can
implement policies derived from high-level goals (Bandara et al. 2004; Russo et al. 2002) for
instance through error detection, even when only partial requirement specification or partial
knowledge about the domain is available. Event Calculus is a suitable technique because
it possesses an explicit time structure, which is event-independent and because it is close
enough to event-based requirement specifications to permit the automation of mapping into
a logical representation. Abduction can be used in a refutation mode to verify global sys-
tem invariants with respect to event-based system descriptions. In refutation mode, failure to
identify a counterexample establishes the validity of the invariant with respect to the system
description.

Event Calculus can deal with conflicts even if the text is targeted at the Network Dimen-
sioning part of Quality of Service techniques. Obligation policies can be used to specify
management operations that must be executed when a particular event occurs in concurrence
with some other supplementary conditions. In analysis, conflict detection can be achieved
by using one of the conflict fluents as a goal state of an abductive query (Charalambides
et al. 2005). Constraint-based programming languages have elegant theoretical properties
(Abdennadher 2001) and their relevance to the proposed research question is that constraint
solvers collect, combine and simplify constraints, and they may detect inconsistencies too.
Verification, analysis and modification of policies can be based on the Policy Description
Language (PDL) where sets of event-condition-action (ECA) rules formulate the policies.
Conflict detection and resolution may be dealt with for policies written in PDL. The policies
define transducers to map sets of events into sets of actions and those functions are defined
using Horn logic programs (Chomicki et al. 2003).

PDL can be guided by a policy specification that can be implemented efficiently and by
succinct representations of the policies (Lobo et al. 1999). PDL and ECA rules can be used
to trace or complete an event history that triggers an action given a complete history of the
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system. Hypothetical reasoning is shown to find or complete an event history that exploits
partial observations of the history of the system (Son and Lobo 2001). Abductive Logic Pro-
gramming (ALP) is a computational paradigm to resolve limitations in logic programming
with respect to higher level knowledge representation and reasoning tasks (Denecker and
Kakas 2002). ALP is seen as a framework for declarative problem solving, suitable for a
broad collection of cases. In considering logic programming, the role of abstraction comes
to mind and proves to be a recurring theme. The Oxford English Dictionary, in its second
edition 1989, defines abstraction as the result of separating in thought, of considering some-
thing independently of its associations, of considering an attribute or a quality independently
of the substance to which it belongs. To lighten systems and networks managers’ tasks, the
level of abstraction must be raised to hide the specifics (Wies 1994) and, clearly, a good level
of abstraction for the network model simplifies the reasoning process (Ou et al. 2005). Better
flexibility in the formulation and analysis of the requirements is provided by viewing prefer-
ence policies at a higher level of abstraction. Administrators should be able to interact with
management tools at the same level of abstraction as that at which the corporate security pol-
icy is defined or expressed (Mayer et al. 2006). Misconfiguration and potential security holes
may be the consequence of working at too low a level of abstraction. Logic programming
does indeed offer several avenues of investigation, even if they are less familiar to most and
may still suffer from weaknesses. Among those are performance issues (Ou 2005). Formal
logic-based approaches are not intuitive, do not map easily into implementation mechanisms
and assume a strong mathematical background (Damianou et al. 2001). Thus, in spite of
possible disadvantages, logic programming techniques should be able to help address the
research question, particularly through their formalism, their capabilities to help reasoning,
their support in analysing a model and their capacities to reach higher levels of abstraction.

We believe that formal logic methods may be applied to help understand the meaning
of a body of firewall rules and to detect anomalies among them. Binding reasoning with
a higher abstraction model of the environment seems a promising way to achieve a better
security for organisations. We propose here an approach which will help security administra-
tors understand the meaning of the configurations they manage, the importance of reasoning
and anomaly detection, and the part higher abstraction and formal logic may play. The com-
mon goal remains to reach a compromise between the mandatory protection of the resources
under the supervisors’ responsibility and the need for openness and interaction. To achieve
the desired level of security, network administrators need help, The evolution of management
tools have not kept pace with the technological advances of the systems (Bartal et al. 1999).
Some of these administrators’ concerns must be addressed by techniques beyond those offered
by standard solutions’ vendors (Wool 2004b). The assistance to administrators must involve
understanding the real meaning of a configuration. This may be based on interfaces to verify
the meaning of firewall rule-sets (Hazelhurst 1999), or use modelling techniques. Modelling
may take various forms: based on geometry (Eronen and Zitting 2001), or on a simulation of
firewalls’ behaviour against all possible incoming packets (Wool 2001). Anomalies or errors
in a firewall’s body of rules compromise the security of the organisation owning the firewall.
Reasoning about security is another way to help achieve the desired goal. This may rest on a
representation that lends itself to the activity of specialised tools (Ou et al. 2005), or a method
to verify the consistency and completeness of rules (Gouda and Liu 2004). Logic program-
ming looks well suited to the purpose that the last section was devoted to its characteristics
and relevance in the context of this work and such techniques favour a clear specification of
the reasoning logic, assisted by its separation from the reasoning engine.
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3 A formal logic approach to firewalls

Security administrators have to tackle a number of difficulties when working with traditional
software to fulfil their everyday tasks. Those difficulties range from the interdependencies of
the filtering rules among themselves to the complexity involved in understanding the actual
significance of a rule-set, including the trouble of grasping the real consequences of a mod-
ification in an existing policy because of network environment evolution or new security
requirements. This paper presents our work into a logic-based representation of network ele-
ments and filtering rules. Such a model of the environment should help administrators reason
independently on the significance of the rules they are creating and their adequacy to the
stated security policy. The model would free them from the intricacies of firewall software
and let them concentrate on the requirements to meet. On top of this, such a vendor-indepen-
dent representation would ease evolution of the components, a characteristic quite desirable
in today’s fast evolving security environment. We believe that the logical formulation of the
model eases the detection of errors and anomalies in the body of rules by applying formal
logic reasoning on the set of predicates implementing the model. As formal logic is not
only apt at helping people reason about the situation being modelled, but is also especially
adequate for creating programs to be executed on computers, the model and the reasoning
algorithms were implemented in our prototype. Our system allows the evaluation of con-
trolled experiments and proves what sort of tool can be built. Naturally, such a demonstration
is limited by nature and could never be compared with the complexity and completeness of
the facilities expected from a full commercial application. In order to support the activities of
administrators, we address network modelling, reasoning about firewall rules and ancillary
activities such as the import of data into the model, the user interfaces or the generation
of rules. As one purpose was to show the part logic programming may play to achieve the
task, the prototype was implemented with the Prolog language, because it is among the most
widely available ones in this paradigm. The facts and rules supporting the reasoning in the
prototype were written for the University of Amsterdam’s SWI-Prolog, version 5.6.31. It
is a freely available1 implementation based on a subset of the Warren Abstract Machine
(WAM), a concept used to improve performance in deductive databases. In addition to the
basic language environment, SWI-Prolog comes with some extensions, among which Con-
straint Logic Programming (CLP) looked promising. CLP provides a way to solve problems
that are defined in terms of constraints among a set of variables. Here, a problem is stated
by giving a set of variables, the domains from which the variables take their values and the
constraints the variables have to satisfy. The solution is found by finding an assignment of
values to the variables in order to satisfy all the given constraints (Bratko 2001).

3.1 Network modelling

Network modelling is important we believe as it raises the abstraction level, in order to help
administrators think about the security and query the properties of the networks they manage.
A model helps hide the network specifics by raising the level of abstraction (Wies 1994).
Reasoning about policies and packet filtering based on network models can be performed
(Guttman 1997). An independent network model is important and it needs be concise for
easy management, formal and machine-readable to allow automated reasoning, vendor-inde-
pendent, human-readable and extensible to stay open to technological innovations (Burns
et al. 2001). This can be achieved with a policy implemented in a current network state

1 http://hcs.science.uva.nl/QRM/software/.
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Fig. 1 Multiple-homed host diagram

(i.e. its topology), needs models (i.e. descriptions) of the network elements and services,
and notions of device and service interactions. The models should be policy independent
and capture the intrinsic properties of devices and services. In this work, the network model
is based on an Entity-Relationship (E-R) model, chosen for its universality. To this model,
a predicate calculus language is associated to express statements about entities and about
their relationships. The choice is made to take advantage of the capacity of predicates to
express properties in combination with logical relationships and dependencies (Huth and
Ryan 2004). A logical framework should provide a means of representation and of reasoning
about permissions. Therefore, a first order language can be associated to express the rela-
tionships holding between entities (El Kalam et al. 2003). Then, those facts are translated
into the syntax of Prolog to describe the topology of the environment being modelled. On
the base provided by this representation, network managers may submit queries in order to
improve their understanding of the network properties (Chapman and Zwicky, 1995). The
implementations covered the dual-homed host and the screened subnet, with some variations
to explore the flexibility of the models. Those representations are described in more details
in the following sections.

3.2 Multiple-homed host architecture

A host installed between the internal network of the enterprise and the Internet has one of
its interfaces connected to the internal network and another one to the Internet. Compared
to a router that checks packets for their destination addresses and forwards them if possible,
the host has extended capabilities by being able to control the security policy to determine if
the packets should be forwarded. This class of hosts is termed “screening router”. The first
model was started on that base, but a third interface was soon added to the host in order to
model traffic and filtering rules that could prove a little more complex. Figure 1 is a diagram
of this model.

3.3 Screened subnet architecture

To strengthen the architecture, Chapman and Zwicky (1995) add a filtering device and insert
a perimeter network between the internal network and the Internet. There is now one host
with an interface connected to the internal network and another to the perimeter network.
It is named “interior” or “choke” router. The other host has one interface connected to the
perimeter network and another one to the Internet. It is called “exterior” or “access” router.
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Fig. 2 Screened subnet architecture with cascaded firewalls diagram

The advantage of this architecture is that the security policy of the exterior router may be
more restrictive and that the internal network is not threatened when the exterior router is
compromised. Besides those advantages, it must be said that this architecture allows security
managers to use more complex strategies. As an example, they may decide to run software
from different editors on the two systems to protect against weaknesses or bugs in the codes.
Again, work was started by adding a filtering device to the earlier version of the model, but,
the concept of cascaded firewalls proved more interesting. The model involves three filtering
devices in series to study more complex traffic and filtering rules. A “partner” network con-
nected to one interface of the internal firewall was another addition to simulate yet another
real-world possibility. In the description, the perimeter networks are identified with the term
“De-Militarized Zone “(DMZ). Figure 2 is a diagram of this model.

At this stage, the work could rely upon network models and the question of packet filter-
ing could be addressed. One purpose is to distance the model from the usual, commercial
application that takes a device-centric approach. For administrators, the real question should
be: what sort of traffic is allowed between a given origin and some destination? The model
of a firewall rule is expressed as a five-tuple of the form:

<action, source address, destination address, destination port, protocol>

where

action is one of ‘allow’ or ‘deny’
source address and destination address may be addresses of hosts or networks
destination port represents the service accessed on the destination address
protocol refers to the protocol used to transit on the network
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The security policy specification represents the goals to be reached (Burns et al. 2001) and,
thus, the rules included in the model would originally only represent traffic being allowed,
because, as the purpose is to reinforce security, everything that is not explicitly allowed
should be denied. Besides, this approach helped understanding the meaning of a rule-set as
a mixture of allowances and denials makes the comprehension more difficult. Damianou et
al. (2001) touch upon the subject by recognising that specification of negative authorisation
policies does complicate the enforcement of authorisation in a system. Nevertheless, they
note that high level access control is often expressed in terms of both positive and negative
policies and, thus, that retaining the natural way people express policies is important and
provides greater flexibility.

A mixture of acceptation and rejection is influenced by the sequence of the rules and
Cuppens et al. (2004), in their argument about the complexity of rule ordering, conclude that
a closed access control policy that includes only permissions (i.e. one with implicit ‘deny’)
may be an alternative, if it is rigorously specified. Still, those default rejections are enforced
when packets fail to match any of the rules within the rule-set and, therefore, may result in
a performance issue, because they are implemented as the last rule in the set (Acharya et al.
2006). Chapman and Zwicky (1995) encourage a default deny stance because they consider
that the fail-safe stance in security strategies should strengthen the protection, and, for Fir-
mato, Bartal et al. (1999) generate a final default rule that drops every packet. We addresses
two of Bandara et al. (2006)’s task categories in analysing firewalls: anomaly detection by
analysis of the policy specification for potential errors and property checking by conducting
“what-if” analysis to determine if a given class of traffic is blocked or allowed. The third task
category quoted in the paper, anomaly resolution, has not been dealt with in this work.

3.4 Network model creation

To create the models, several approaches are possible. The administrators could create the
clauses in the language of the reasoning engine, but it does not look like a very promising
solution. Another possibility consists in translating the E-R model of the environment into a
relational model and providing the managers with a data entry interface. A better possibility
yet would be to automate the generation of clauses from the actual (Hinrichs 1999). The
actual topology information should be either imported from an existing database (e.g. from
some network management tool) or discovered automatically. Usually, the complete topol-
ogy is unnecessary, only the details near the enforcing devices (i.e. firewalls and routers)
being relevant. Some topological facts can be discovered automatically by systems provid-
ing network monitoring and control such as NESTOR from Columbia University (Burns et
al. 2001. Still, they recognise that other facts will require human input. A scanner, OVAL
(Open Vulnerability Assessment Language) can be used to create rules (Ou et al. 2005), and
a firewall management tool, Smart Firewall can produce the network configuration. MDL
(Model Definition Language) is used to produce a front-end module that converts routing
tables into firewall connectivity files (Wool 2001). We also examined albeit in a limited
scope, the interfaces between the reasoning engine and its human users. The possibilities to
feed the model were dealt with earlier. The other side of the issue is to do with the way the
representation may be shown to its users. The reports from the Lumeta Firewall Analyzer
(LFA) are expressed in HTML to present the output at many levels of abstraction and from
multiple viewpoints (Wool 2001) therefore to provide further flexibility, the results of the
queries are dumped into formatted plain text output files, which can be converted by back-end
utilities into the desired results. The transformation into HTML Web pages is developed, but
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the contents of the files could, theoretically, be converted into other formats such as graphic
displays or charts.

The purpose of the models is to help administrators think about their security policy and
execute queries to iron out any anomaly present. Once the model has reached a valid state,
the next phase is to generate firewall rules corresponding to the description of the model.
Administrators can help manage a distributed firewall environment with an analysis tool and
automatic rule generation (Verma and Prakash 2005). Firewall configuration files can be
generated automatically from the security policy to reduce the probability of errors (Bartal
et al. 1999). It is shown to be achieved in two phases: the generation of generic rules from
the E-R model, followed by a translation into vendor-specific formats (Cuppens et al., 2004).
The rules relevant for each firewall among the whole body are extracted and expressed in
a vendor-independent language based on the eXtensible Markup Language (XML) syntax.
Then, concrete configuration rules, expressed in the specific target firewall language are
derived from those original rules, thus providing support for multi-vendor solutions. In the
text, an example of such a translation is obtained by applying specific eXtensible Stylesheet
Language (XSL) transformations. The NESTOR platform can reconfigure network elements
on the basis of the output from their policy engine and it allows the manipulation of network
devices through their proxy objects in its repository (Burns et al. 2001). Likewise the Lumeta
Firewall Analyzer, rule generation involves two steps (Wool 2001) where the core engine
uses a generic and vendor-independent model of the rule-set and, after this, parsers must be
able to convert the model while respecting the vendor’s firewall semantics. Configuration is
through a simple syntax transformation from the canonical form to the particular device syn-
tax (Hinrichs 1999). There is a concrete implementation for Cisco Secure Policy Manager,
where the control agents store the configuration into a commands buffer and, upon approba-
tion, ‘telnet’ in and download the commands into the devices. However, future versions of
the tool are expected to use mechanisms for program-controlled downloads (e.g. COPS—
Common Open policy Service—or LDAP—Lightweight Directory Access Protocol).

4 Evaluation

Network representation started from an E-R model, to which a first-order language was
associated to express the properties of the components in the model. The vocabulary of the
language has three classes of symbols.

• Constant symbols: they are instances of the entities in the E-R model (i.e. they belong to
one of Protocol, Firewall, Interface, Network, Host or Service).

• Variable symbols: they belong to the same entities as the constant symbols. They are
used to reason about the relationships between entities and the filtering rules. They are
placeholders for concrete values to avoid having to refer to all instances.

• Relation symbols: they represent relationships between entities in the E-R model.

The elements of the network are represented with predicates, functions from some domain
to a truth value as quoted in the Dictionary of Computing (2004). The set of predicates con-
sidered is shown in Table 2, but it could easily be extended to suit further specific needs. The
arity of the predicates is chosen to provide enough information about the component being
modelled.

The relation symbols and their meaning are expressed in Table 3.
The formal logic representation helps administrators reason about their model. A typical

query expressed in this language would look as follows:
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Table 2 List of predicates Predicate Description

CommunicationProtocol(p) p is a communication protocol
implemented on the network

ServicePort(s, p) Service s is listening on port p for
incoming requests

Firewall(f) f is a firewall. It requires special
attention as the subject of the study

Interface(i) i is the name of a firewall interface

Network(n, s, m) n is the name of a network covering
the IP addresses starting with s and
subnet mask m

Host(h, a) h is the name (e.g. DNS name) of the
host having the IP address a

Table 3 List of relations Relation Description

FI(f,{i1, . . ., in}) The firewall whose name is f has a
set of interfaces i1 through in

IN(i,{n1, . . ., nn}) The interface whose name is i has a
set of networks n1 through nn
connected to it

NH(n,{h1, . . ., hn}) The set of hosts h1 through hn
belongs to the network n

HS(h,{s1, . . ., sn}) The host whose name is h harbours
the set of services s1 through sn.
This can be the empty set

(1) What hosts are located behind an interface?

A new predicate, HBI, expresses the relationship between an interface and the hosts to be
found behind it. It can be derived from existing predicates.

∀ i

(
interface(i) ∧ IN(i, {n1, . . ., nn}) ∧ (∀ nx ∈ {n1, . . ., nn}, ∃ NH(nx, {h1, . . ., hn}))

→ HBI

(
i,

⋃
x

{h1, . . ., hn}
))

This representation was easy to translate into a Prolog-based prototype because the lan-
guage is based on the mathematical notion of relations. The logic predicates were hence
translated into SWI-Prolog facts to produce models of various networks. Those facts are
listed in Table 4.

There is a one-to-many relationship between interface and network because, while an
interface obviously belongs to a single network, it may provide the connection to several
networks situated behind it. It is the case in the internal network if there is a non-filtering
router behind the interface and it is certainly the case for the interface leading to the Internet.
Some predicates have an arity in their Prolog form different from their counterparts in the
formal logic representation and predicates have appeared in the prototype in addition to those
of the first-order language. These differences can be traced back to the extended function-
alities provided by the prototype. As an example, the predicate calculus language defines
a ‘firewall(f)’ to declare filtering hosts. In Prolog, the equivalent predicate is ‘firewall/2’,
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Table 4 Prolog facts used to model networks

Fact Description

CommunicationProtocol(protocolName) Declares the protocols implemented in the
network

Firewall(firewallName, softwareName) Declares the hosts that will filter packets and
the software they are running

FirewallSoftware(softwareName) Declares the filtering software running on
the firewalls declared in the model

Host(hostName, iPAddr) Declares a host with the 4 bytes of its IP
address

Interface(interfaceName, IPAddress,
networkMask)

Declares the network interfaces of the
firewalls

Network(networkName, startIPAddr,
endIPAddr, networkMask)

Declares a network with its start and end IP
addresses (4 bytes for each) and network
mask

ServicePort(serviceName, portNumber) Associates the name of the services with
their port number

FirewallHasInterfaces(firewallName,
listOfInterfaces)

Associates the interfaces present on a
firewall with their host

HostHasServices(hostName,
listOfServices)

Associates a host with the services it
supports

InterfaceHasNetworks(interfaceName,
listOfNetworks)

Associates an interface with the networks
connected to it

NetworkHasHosts(networkName,
listOfHosts)

Associates a network with its hosts

where the extra argument allows the prototype to generate filtering rules in the syntax of the
target system, a functionality that is not required to reason about the model. The purpose is
to model a situation involving more than one firewall and having them run different filtering
software. Such a mix may improve the reliability of the architecture by taking care of security
holes or bugs in one filtering software. This attribute becomes relevant when generation of
firewall rules is considered in Sect. 4.3. Furthering the example, this explains as well the
existence of the ‘firewallSoftware/1’ predicate that appears only in Prolog. In the prototype,
the IP addresses of hosts and networks are represented as lists of four integers in order to
produce a code that is easier to read. This representation allows the end-user to query the
network configuration to reach a higher level of abstraction than is usually possible with
firewall software and reason about the properties of the topologies created. Modelling using
Horn clauses proved itself well suited to those activities.

4.1 Reasoning about firewall rules

One recurring difficulty seems to be the relationship between intention (i.e. the security pol-
icy) and execution (i.e. the body of rules). Thus, keeping in mind that the aim of the research is
to investigate if logic programming techniques are relevant in improving the security within
a network through their interaction with the body of firewall rules, the first-order language
described above proved itself adequate to express firewall rules as predicates. The predicate
has the form “rule(a,sa, da, dp, p)”, where

• a is the action to be applied (i.e. allow or deny)
• sa is the source address of the packet. It may represent a specific host or a network.
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• da is the destination address of the packet. Again, it may represent a specific host or a
network.

• dp is the destination port of the traffic. Naturally, dp must be present on da.
• p is the protocol with which the packet transits on the network.

Some constraints on this predicate may be expressed with the predicates defined to describe
the network:

∃ (host(sa, x) ∨ network(sa, x,x′)) ∧ ∃ (host(da, y) ∨ network(da, y,y′)) ∧
∃ servicePort(dp, z) ∧ ∃ communicationProtocol(p)

This helps administrators reason about their security model by querying the sort of traffic
allowed and detects automatically some anomalies. For instance, the query “Is there a firewall
rule that specifies a source or destination address that does not exist in the network model?”
is represented by the predicate IS, obtained as follows for a source address:

∀ s(rule(a, s, x, x′, x′′) ∧ ¬(network(s, y, y′) ∨ host(s, z)) → IS(s))

And similarly by the predicate ID for a destination address:

∀ s(rule(a, x, d, x′, x′′) ∧ ¬(network(d, y, y′) ∨ host(d, z)) → ID(s))

The corresponding classes of anomalies identified in the prototype are summed up in Table 5.
The prototype was initially written with the explicit definition of authorisations and a

default “deny” action to terminate the sequence of firewall rules for the reasons explained in
Sect. 3.2. However, experimenting with explicit deny actions proved an improvement to the
semantic capabilities of the model. This adaptation was clearly facilitated by the separation of
the network topology model from the logic rules themselves. Reflecting about the experience
leads to the conclusion that explicit rejection of traffic should be limited to flows between
components of the network under control of the administrator and the Internet. This approach
has the dual advantage of protecting the elements of the network from unsolicited access,
while keeping the rules within that very network easier to understand than they would be
otherwise. In its final form, the fact that represents firewall rules has the form “firewallRule
(action, source, destination, service, protocol)”. Besides the explicit definition of services
and protocols in the rules, a special value ‘any’ was introduced to specify that all services
or protocols were covered by the rule. This proved particularly relevant for rules rejecting
unwanted traffic (e.g. when traffic between two addresses was to be denied).

The network model is composed of a succession of facts, whereas the reasoning part of
the prototype relies on rules, which rested on two different methodologies. Some of the rules
were written in the classic Prolog form. To execute them, the end-user enters the predicate
and, when a solution is found, has to type the semicolon sign to request backtracking to try
and resatisfy the goal from the clauses following the current one. The other methodology
rested on the ‘fail/0’ predicate to force backtracking and present all the possible solutions
to the goal without user’s intervention. While the first method described above is suited to
people familiar with the Prolog environment, the latter one is easier to use and less likely to let
administrators miss one occurrence of the solutions to a query. It was systematically used for
the generation of firewall rules in the syntax of actual systems as this activity did not require
interaction with the end-user. The development of the prototype showed how the declarative
form of the language proved valuable in programming error detection. Actually, the rules
locating the anomalies could be created by ‘describing’ each situation resulting in an error and
giving them the same header to cover the cases exhaustively. Two extensions provided with
SWI-Prolog also contributed to the versatility of the software. The first is Constraint Logic
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Table 5 Anomaly detection

Type of anomaly Comments

Contradiction Pairs of rules are explored for contradicting
actions on the same source and destination;
this is considered an error. When
contradiction appears between a rule
specifying a host and another rule
specifying its network, it is considered a
warning because it could be an error, but it
could as well be the administrator’s
intention to specify a host exception within
a network

Incorrect relationship between a host and its network A host is either declared without any
relationship to a network or its IP address
lies outside the range defined for its
associated network

Inexistent element Rules are verified for inexistent sources or
destinations (hosts or networks), or for
services on a destination host that does not
support this service

Invalid format of IP address Declarations of IP addresses are checked to
confirm that they cover a valid range of
values

Irrelevance A rule is termed irrelevant when its source
and its destination are located behind the
same firewall interface, because this traffic
would not pass through a filtering device

Private IP addresses on the Internet A network is defined as connected to the
interface leading to the Internet, but has
private addresses (i.e. belonging to one of
10.0.0.0/8, 172.16.0.0/12 or
192.168.0.0/16)

Redundancy Redundancies detection involves looking for
pairs of rules specifying the same action
for a host in one rule and for the network to
which the host belongs in another rule

Programming (CLP), whose characteristics were described in chapter 3. In this work, CLP
was applied to the validation of IP addresses values and to the classification of IP addresses
as ‘private’ as defined in RFC1918.2 It must be reported that it allowed for a very simple
and readable declaration of the rule, clearly better than what could be achieved without this
extension. As an example, in checking the validity of IP addresses, the permissible ranges of
values were declared as such, instead of relying on expressing them as the conjunction of the
extreme values permissible (i.e. greater than or equal to the minimum and less than or equal
to the maximum). Similarly, the keyword ‘internet’ allowed the reasoning process to locate
a network declared with a range of private IP addresses where they could never be found in
reality. The second extension integrated into the prototype was the Constraint Handling Rules
(CHR) tool. They consist in a committed-choice rule-based language embedded in Prolog
and are considered useful for providing application-specific constraints. As an application of
CHR, the declaration of the relationship between a host and the network to which it belongs
was checked with this particular facility. Here, the validity of this relationship is linked to

2 http://www.arin.net/reference/rfc/rfc1918.txt.
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the host appearing in the clauses that specify what hosts are located within a given network
(i.e. with the ‘networkHasHosts/2’ predicate) and to the IP address of the host being within
the limits of the IP addresses covered by the network. Once this relationship is declared, it
can be used to prove the validity of the model in refutation mode through the Closed World
Assumption (CWA) inherent to Prolog’s databases. As explained in Sect. 2.1, this strategy
establishes the validity of the model through failure to find a counterexample.

The experimentation with CHR ended by declaring a number of constraints each argument
of the predicate ‘firewallRule/5’ has to satisfy to be semantically correct. Each individual
constraint was created with simplification rules, one of the three types of rules available in
CHR. The results were quite convincing, except for the type detection that was applied to
the ‘action’ argument of the firewall rule. To verify that all the actions belonged to one of
‘allow’ or ‘deny’, those legal values were declared in a type, whose violation is detected
by SWI-Prolog as a run-time error. When this happens, execution is aborted and no further
investigation is possible. However, the action value in error is clearly identified in the error
message, allowing the end-user to correct the model of firewall rules body. Rule duplication
(i.e. rules for which all components of the predicate are identical) is only processed when
actual firewall rules are generated. Semantically, this was not considered an error, but as it
could have an untoward effect on performance, the duplicates are simply removed from the
rule-set when rules are translated from the model representation into the syntax of the target
filtering device. To achieve this, the predicate ‘firewallRule/5’ is declared dynamic in the
Prolog code and the exceeding rules are removed from the database through the ‘retract/1’
mechanism. The structural tests, conducted to prove that anomalies could be detected, were
conclusive. Figure 3 shows a diagram of the architecture of the prototype.

4.2 Data for the network model

Earlier we mentioned several possibilities to create data in order to generate the network
model. The first approach mentioned would have network or security administrators writing
Prolog clauses in the representation chosen for the model. It is an obvious possibility, though
not very promising. To investigate the second possibility indicated, it was straightforward to
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Fig. 4 Data entry screen for host information

transform the E-R model into a relational model, opening the door to a host of possible data
supports to store the model. In the relational model, tables have been added that show no
relationship to the other tables, but that are used in the prototype to provide a store for data
that will be transformed into facts. On this basis, a simple application in Microsoft Access
2003 was written, which includes data entry screens and Prolog facts generation. An example
of those facilities is shown in Fig. 4.

In this implementation, the logic rules to reason about the model or detect anomalies are
written independently of the network model. This has the advantage of creating and updat-
ing the two components without undue interaction. Their integration is achieved with the
‘include/1’ directive that fetches the logic rules source code from the network model. The
Unix ‘netstat’ command quoted earlier was also included in the evaluation in order to gather
routing information. The actual environment was based on Sun Solaris and this showed how
dependent upon the flavour of Unix such a facility would be. However, it could be concluded
that, by writing parsers specific to all the required servers, it would be feasible to deduce a
number of facts about the network. In Sun Solaris, ‘netstat—r—anv’ was most promising,
with the network interfaces being recognisable by the value ‘255.255.255.255’ in the columns
‘Destination’ and ‘Mask’. To create a graph representation of the network model, we used
uDraw(Graph) 3.1, a freely available package3 from the University of Bremen, Germany.
Actually, there are two ways in which this can be relied upon in this context. The application
can connect to the uDraw(Graph) server using bi-directional TCP/IP socket communication
through the API provided, or it can be adapted to generate a file, called “term representation”
(extension “.udg”), to be interpreted by the uDraw(Graph) package. For documentation pur-
poses, it is easy to export the graph in a JPEG file and include the picture in a document.
Firewall rules could have been added to the graph by using another representation for the
edges, but it made for a much cluttered graph and it did not prove helpful at all.

4.3 Firewall rule generation

The prototype was written to generate firewall rules with the information provided in the
model. This function considers the traffic between the source and the destination to deter-
mine through which interfaces it will have to pass. For each firewall in the model, a set of
rules is generated, restricted to those filtering relevant flows. As the traffic flows through
more than one filtering device, this approach is related to the concept of multiple lines of
defence evoked in the literature review. There are two classes of generation. The first pro-
duces a set of rules in an abstract syntax and is intended to be displayed on the screen to
help administrators verify what will be generated from the model. The second class creates

3 http://www.informatik.uni-bremen.de/uDrawGraph/.
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# IPChains configuration file 
ipchains -F 
ipchains -P input REJECT 
ipchains -A input -i lo0 -j ACCEPT 
ipchains -A output -i lo0 -j ACCEPT 
ipchains -A input -s 127.0.0.0/8 -j DENY -l 
ipchains -A input -p tcp -s 192.168.0.30 -d 140.120.36.30 25 -y -j ACCEPT 
ipchains -A input -p tcp -s 192.168.0.30 -d 140.120.36.30 -f -j ACCEPT 
ipchains -A input -p tcp -s 192.168.0.30 -d 140.120.36.40 25 -y -j ACCEPT 
ipchains -A input -p tcp -s 192.168.0.30 -d 140.120.36.40 -f -j ACCEPT 
ipchains -A input -p tcp -s 192.168.0.30 -d 161.120.33.15 80 -y -j ACCEPT 
ipchains -A input -p tcp -s 192.168.0.30 -d 161.120.33.15 -f -j ACCEPT 

Fig. 5 Example of rules generation for IPChains and PIX

a text file with the rules written in the syntax of actual firewall software. The text file bears
the firewall’s name taken from the model and contains a list of statements that can be copied
to the target device’s configuration (e.g. using a ‘telnet’ connection). For this research, two
systems were considered: IPChains and Cisco’s PIX. IPChains is a simple, static packet filter
facility available for Linux. PIX (Personal Internet eXchange) is a stateful packet filtering
solution from the well-known networking solutions provider. In essence, the Prolog code
generates the rules from the model by translating the appropriate elements into the target
syntax (e.g. services into port numbers, hosts names into IP addresses, forms of network
masks representation, verbs to specify the action to be applied to the traffic). The informa-
tion available in the model provided the source for the addition of statements to declare the
ports (‘fixup protocol’ statement) and the interfaces (‘ip address’ statement) besides the rules
themselves for the PIX configuration generation. Similarly, some good practice recommen-
dations (e.g. the loopback address protection) were included in the code for IPChains. The
rules were created by starting with those involving the most precise elements (e.g. host to host
traffic), to more generic values (e.g. network to network filters) and to finish with the most
generic of all, that identified in the model with the name ‘internet’. In the generated files, the
Internet is represented by a lack of address in the rules generated (i.e. ‘any’ for PIX and no
parameter for IPChains). An alternative could have been to translate the keyword ‘internet’
into a set of all networks while excepting those explicitly defined and the range of private
addresses already quoted. However, this would have created a very verbose set of rules and
would not have added a lot to the functionality of the prototype. Still, the keyword ‘internet’
in the model provided the means to detect the interface that was receiving traffic from the
Internet. Thus, for IPChains rules generation, the addition of a control that the packets had
to be incoming through this interface (parameter ‘-i’) was included in the generation to show
that such information could be relied upon to improve somewhat the level of security in the
rule-set. Referring back to the notion of closed system elaborated upon earlier, the sequence
of rules is completed with a default deny action (i.e. ‘deny ip any any’ in the syntax of PIX
and ‘ipchains—P input REJECT’ for IPChains) (See Fig. 5).

From this experience, it is clear that generating rules for sophisticated software such as
PIX allows an easier mapping to the model. To deal with the details and limitations of a
simpler language such as that of IPChains, the generation code becomes more complex and
more difficult to maintain. The aim here was to demonstrate that formal logic methods may
be applied to understand the meaning of firewalls’ rules and detect anomalies among them
in order to improve overall security. While a comparison of this approach with traditional
activities in this field is unavoidably limited because this work has only considered theo-
retical models, it remains interesting. To produce a more thorough evaluation, this method
would have to be evaluated in a concrete environment. A first conclusion is that applying
logic methods clearly raises the level of abstraction and it has been shown earlier why this
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is desirable. Another important improvement brought by this solution is that the view on the
environment is global, a characteristic that facilitates the comprehension of the interactions
when compared with the device-centric methods implemented on most filtering systems.
This does not only facilitate the understanding, but also improves the cooperation among the
components, a desirable property too. The capacity of the prototype to generate actual rules
on different target systems has a double advantage: it relieves the administrators from the
intricacies of the target software and it allows them concentrate better on the actual meaning
of the security policy without being distracted by the peculiarities of the syntax of each fil-
tering device on which it will be implemented. By running a check on a computer separate
from that on which they will be executed, the rules may be verified and their anomalies
detected before implementation. Most relevant is that the model created may be queried to
help understand its characteristics, an activity seldom available on traditional vendors’ pack-
ages, and the errors or anomalies may be detected, whereas most classic filtering software
only produce compile-time errors without addressing the semantics of the body of rules.

5 Conclusion

We aimed here to investigate whether logic could help improve security in the context of
firewalls. It is complex to efficiently manage network security. Abstraction was the starting
point of our research and the creation of a model allowing network and system managers to
reason about their environment has been demonstrated. Logic has been applied to the models
considered in order to facilitate reasoning about the properties of the networks and about
the security policy applied to it. Logic programming methods have been chosen to create a
simple prototype in order to prove that such an approach was feasible and to confront the
realities of such a strategy. However, the models have been created in a purely theoretical
way, without the possibility to involve an actual network. There is a permanent underlying
argument that logic programming is suited to the ever evolving nature of prototype devel-
opment. In a context in constant evolution, it is another advantage to be drawn from this
research. While reasoning on the properties of the model was obviously a strong element of
the prototype, the generation of actual firewall rules in the syntax of existing systems was
more ambiguous. The support for different software based on the translation of information
available in the model is certainly likely to help administrators and writing for the syntax of
systems accepting themselves a comparatively high level of abstraction proved reasonably
successful. Other target devices, either because they required instructions at a fairly low level
or because of the complexity to cover a sophisticated functionality, did not look as promising.

Our work presented here can be considered as a good starting point and this implies that
a number of improvements would be required to start using its concepts in the real world of
security. Among those improvements, there is the seamless integration of its various compo-
nents. As an example of such integration, the prototype could start reading the model stored
in the relational database instead of relying on exported text files.

Another improvement would be the support of firewall rules generation in the syntax of
systems other than those considered here. This functionality is an interesting base to consider
other needs that, in turn, bring improvements to the model. Besides, as the topic of the project
was firewall rules, the notions of Network Address Translation (NAT), known as masquerad-
ing in IPChains, were not considered. Still, use of the prototype in a real environment would
require those to be addressed. Naturally, the ultimate test would be to confront its functional-
ities with real networks. This would have two facets. First, the generated firewall rules could
be tested on actual devices to investigate how they behave when confronted with real traffic.
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The other facet of this would be to generate the model from existing networks and bodies of
rules. An obvious weakness of the prototype is that the model needs to be created somehow
from scratch, a frustrating activity for administrators dealing with an existing environment.
NESTOR (NEtwork Self managemenT and ORganization) (Konstantinou 2003) seeks to
replace labour-intensive configuration management with one that is automated and software-
intensive. This is based on policy rules that access and manipulate network elements via a
Resource Directory Server (RDS). The server accesses devices through a layer of adapters
that translate its own object-relationship model into the syntax of a number of systems. Even
if it has not been tried in the context of this work, it looks like a sensible way to generate data
input to the network model automatically.
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