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Abstract
Understanding the response process used by test takers when responding to multiple-choice 
questions (MCQs) is particularly important in evaluating the validity of score interpreta-
tions. Previous authors have recommended eye-tracking technology as a useful approach 
for collecting data on the processes test taker’s use to respond to test questions. This study 
proposes a new method for evaluating alternative score interpretations by using eye-track-
ing data and machine learning. We collect eye-tracking data from 26 students responding 
to clinical MCQs. Analysis is performed by providing 119 eye-tracking features as input 
for a machine-learning model aiming to classify correct and incorrect responses. The pre-
dictive power of various combinations of features within the model is evaluated to under-
stand how different feature interactions contribute to the predictions. The emerging eye-
movement patterns indicate that incorrect responses are associated with working from the 
options to the stem. By contrast, correct responses are associated with working from the 
stem to the options, spending more time on reading the problem carefully, and a more deci-
sive selection of a response option. The results suggest that the behaviours associated with 
correct responses are aligned with the real-world model used for score interpretation, while 
those associated with incorrect responses are not. To the best of our knowledge, this is the 
first study to perform data-driven, machine-learning experiments with eye-tracking data for 
the purpose of evaluating score interpretation validity.

Keywords Eye tracking · Machine learning · Score interpretation · Validity

 As computer administration of tests has become widespread, more attention has been 
given to collateral information collected during administration, often referred to as process 
data. Process data provides information about how the test takers respond that goes beyond 
whether the response was correct or incorrect. These types of data can provide important 
evidence to evaluate the validity of intended score interpretations and uses.

Kane and Mislevy (2017) provide a detailed discussion of the role of process data in evalu-
ating validity claims for score interpretations. The basis of the argument is that there should be 
an alignment between the cognitive process used for problem solving in the real-world setting 
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of interest and the cognitive process used by test takers in responding to test items. While the 
two processes do not need to be identical, it is important that key features of the process used 
for real-world responses are necessary for successfully completing the examination task.

Although Kane and Mislevy (2017) argue for the importance of an evaluation of process 
data as part of an overall validity argument, they note that process data is much more likely 
to provide a definitive rejection of the intended interpretation of test scores than definitive 
support. In this context, they repeat a frequently quoted comment from Lee Cronbach, “The 
job of validation is not to support an interpretation, but to find out what might be wrong with 
it. A proposition deserves some degree of trust only when it has survived serious attempts to 
falsify it” (p. 103, Cronbach, 1980). For example, process data showing that test takers run 
out of time and answer at random near the end of a math test might lead to the rejection of 
the hypothesis that the resulting test scores can be interpreted as valid measure of math pro-
ficiency. If in the same context process data showed that test takers typically had more time 
than they needed, we might reject the alternative interpretation that the test is speeded, but suf-
ficient time is not evidence in itself that the test appropriately measures the construct of inter-
est. Kane and Mislevy maintain that process data is nonetheless important because a complete 
validity argument requires both positive evidence supporting the intended interpretation as 
well as evaluation of alternative interpretations.

In the case of MCQs, understanding the response process used by test takers can be par-
ticularly important in evaluating the validity of score interpretations. Consider an example 
from a math test. An item might instruct the test taker to examine an equation, solve for x, and 
select the corresponding answer from a list of five options. One process that might be used to 
respond to the question is to solve for x. An alternative process is to consecutively substitute 
each of the five options into the equation until the test taker finds the one for which the equity 
holds. The first process supports a conclusion about the test taker’s algebra skills; the second 
probably does not. Evidence of the second process would likely argue against interpreting the 
scores as a reflection of the test takers proficiency in algebra. Again, evidence that falsifies an 
alternative interpretation of the scores may be critical to the overall validity argument, even if 
it does not, in itself, prove that the intended interpretation can be accepted.

One way to provide such evidence is to collect fine-grained process data by tracking the test 
taker’s eye movements. Eye-tracking data provides a continuous record of an individual’s gaze (i.e., 
where the individual is looking). Several authors have specifically pointed to the importance of 
this technology for evaluating the validity of score interpretations (e.g., Gorin, 2006; Oranje et al., 
2017) because it provides evidence about the cognitive process that test takers use in responding to 
test questions (although that evidence may be indirect). In the words of Fitts et al. (1950) who used 
eye tracking to evaluate cockpit design, “If we know where a pilot is looking, we do not necessarily 
know what he is thinking, but we know something of what he is thinking about.”

In this paper we investigate whether data-driven approaches to analyzing eye-tracking data 
can provide a basis for rejection of the intended interpretation of test scores based on clinical 
MCQs. To provide context for the study, the next section discusses previous work on the use 
of eye tracking in assessment.

Previous eye‑tracking research in assessment

As we noted, several authors have advocated for using process data from eye tracking as 
a means of understanding how test takers respond to test questions. In early studies, this 
simply meant using this technology to distinguish between the time spent reading the item 
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for the first time from the time spent re-reading it and looking for specific information 
(Hegarty et  al., 1992). Later studies report differences in eye movements between more 
and less proficient individuals in responding to science-based MCQs and suggest that these 
may be associated with an individual’s level of expertise with the specific topic area (Tai 
et al., 2006). This was subsequently supported by evidence that students “paid more atten-
tion to chosen options than rejected alternatives, and spent more time inspecting relevant 
factors than irrelevant ones”, with unsuccessful problem solvers experiencing difficul-
ties in decoding the problem and recognizing the relevant factors (Tsai et al., 2011). Hu 
et al. (2017) also report that low-performing participants adopt a trial-and-error strategy, 
while high-performing students have fewer fixations across tasks. Finally, Langenfeld et al. 
(2020) report that unsuccessful problem solvers miss key pieces of information and focus 
on irrelevant information.

One commonality of these studies is that they all report evidence of differences between 
high- and low-performing test takers, with many of them deliberately recruiting partici-
pants of differing levels of proficiency. Differentiating between the response process used 
by successful and unsuccessful test takers is important because validity arguments—and 
challenges to those arguments—are typically based on the idea that the cognitive processes 
used for a correct response reflect important aspects of the cognitive processes used to 
respond in the real-world setting. The processes used by unsuccessful test takers are typi-
cally less important than those of successful test takers.

Most previous studies employ a small number of eye-tracking features1 (usually between 
1 and 4), mainly related to fixation durations and their locations. The number of partici-
pants is modest in earlier studies (e.g., 6) and somewhat larger in later studies (e.g., 28, 
14, 18). The sampling rate of the devices used in these previous studies is 60 Hz (with one 
exception being 120 Hz in Hu et al. (2017)), meaning that they capture 60 pictures of the 
eye positions per second.2 (See Appendix A for a summary comparison between the stud-
ies in terms of number of participants, type of items, and gaze features). In addition, most 
previous work uses a similar approach in which a hypothesized cognitive model used to 
develop the items is evaluated by comparing those eye-tracking features that the research-
ers assume would be relevant in discriminating between more and less proficient test 
takers. Although this approach has provided useful results, it has significant drawbacks. 
First, these studies use a small number of eye-tracking features. This may have limited 
the researchers’ ability to identify fine-grained differences between processes. The second 
drawback is that the methodology requires an initial hypothesis regarding where the differ-
ences between successful and unsuccessful problem solvers may be found, which may miss 
important information contained in the data. The third drawback is that the exploration of 
between-participant differences is done at the level of single variables, ignoring the possi-
bility that the interactions between variables may reveal important patterns. In other words, 
the existing assessment-related eye-tracking studies have generally focused on identifying 
simple patterns through assumption-based comparisons as opposed to complex interac-
tions using data-driven approaches. Finally, these studies assume that the differences in 
response process are a characteristic of the test taker, with more proficient test takers using 

1 Gaze features are eye-tracking variables related to fixating the eyes on a given location (“gaze fixations”) 
or moving the eyes from one location to another (“saccades”).
2 For comparison, the sampling rate of the device used in this study is 1000  Hz, leading to more fine-
grained eye movement recordings.
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one process and less proficient test takers using another. This ignores the possibility that 
the same test taker may use different response processes for different items.

The proposed approach

The present study addresses the potential drawbacks of previous work by presenting an 
eye-tracking study to evaluate the problem-solving strategies of successful and unsuc-
cessful test takers. This work utilizes a data-driven machine-learning approach to extract 
response patterns from a large number of gaze-based features. Identification of the process 
features that discriminate between correct and incorrect responses is not determined by a 
working hypothesis but by training an algorithm to use the gaze data as input to predict 
whether the selected response is correct or incorrect. This approach allows us to deter-
mine: (1) whether the eye-tracking features contain signal useful for predicting whether 
the response is correct, and (2) what feature combination is most predictive of the outcome 
variable. In this context, the purpose of the analysis is not to make the prediction but to 
identify the response processes that are associated with correct and incorrect responding. 
Again, we are not looking for differences associated with varying levels of proficiency; 
instead, we are looking for patterns associated answering correctly (admittedly the two 
phenomena are related).

The stimuli used in the study are MCQs designed to assess clinical reasoning in physi-
cians in training. Each test item presents information about a patient and asks the test taker 
to identify the most likely diagnosis or make other relevant decisions based on that infor-
mation. The professionally developed test items we studied have been written to reflect 
content and a cognitive challenge that is relevant to real-world clinical reasoning. As we 
have noted, eye tracking cannot tell us what the test taker is thinking, but it may tell us that 
the process used to respond is inconsistent with our expectations for real-world clinical 
reasoning. Evidence to support a potential alternative interpretation that correct responses 
to the test items use a cognitive process that is inconsistent with real-world clinical reason-
ing would seriously undermine the validity argument. If this alternative interpretation is 
not supported by evidence, its credibility is reduced; this in turn means that the credibility 
of the intended interpretation is at least implicitly supported. Of course, to use this process 
data to evaluate the validity of score interpretations requires that we begin with a cogni-
tive model for the real-world behavior of interest. Without this model we have no basis for 
evaluating the process used in responding to the test questions. We describe that model in 
the next section.

A cognitive model for clinical reasoning

Kane and Mislevy distinguish between strong and weak cognitive models of the process 
used for problem solving. In general, strong cognitive models are only available for highly 
circumscribed tasks such as simple arithmetic (Tatsuoka, 1983) or other problems for 
which definitive rules can be established (Carpenter et al., 1990). For more complex and 
ill-defined activities such as clinical reasoning, weaker, more general models must suffice.

In the absence of a strong cognitive model, we rely on the simpler conceptual framework 
for clinical diagnostic reasoning presented by Bowen (2006) for this study. This model 
begins with data acquisition. The clinician may collect the relevant data by interviewing 
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and examining the patient, reviewing medical records, or interpreting the results of tests or 
studies. In the case of the test items used as the stimulus in this study, the relevant informa-
tion is presented in the form of a brief clinical scenario. The clinician then creates a men-
tal representation of the problem and generates hypotheses. If, for example, the question 
asked for “the most likely diagnosis” this mental representation might take the form of a 
differential diagnosis list. Finally, the clinician applies prior knowledge to the problem to 
either make a diagnosis by selecting the most likely choice from the hypothesis list or by 
identifying the information that is lacking to complete the diagnosis. The prior knowledge 
is sometimes referred to as an illness script—that is a succinct statement of the symptoms, 
objective data, and other characteristics associated with a specific diagnosis.

With this model for clinical reasoning in mind we might expect that test takers would 
begin by reading the item stem to gain an overview of the patient and related distinguishing 
features of the presentation. We would then expect the test taker to review the options and 
then return to the stem to review the specifics of the presentation to verify their hypothesis 
or reject it. Following this pattern in processing the information in the test item will not 
prove that the test taker is using an approach parallel to the real-world cognitive model we 
proposed, but using a substantially different process may prove that he or she is not follow-
ing our proposed cognitive model. For example, if a test taker moves quickly to review the 
options and then frequently moves between the options and the stem it may suggest that 
the test taker is attempting to logic from the options to the answer rather than beginning 
by building a hypothesis based on the presented information. If this latter pattern proved 
to be a successful approach, it could certainly change our understanding of what the items 
measure, and it may undermine our confidence that the scores can be validly interpreted as 
representing proficiency in clinical reasoning.

Again, unlike previous studies that have used eye-tracking data to evaluate the cognitive 
models used by test takers in responding to examination items, we do not start with pre-
determined view of which features are most important. Instead, we allow machine learn-
ing algorithms to identify the features that are most useful for discriminating between test 
takers who respond correctly and those who respond incorrectly. We then compare the 
two problem-solving approaches to the general cognitive model presented in the previous 
paragraph. We focus on this distinction between correct and incorrect responses because 
the real-world cognitive model we have proposed relates to successful real-world problem 
solving. If a test taker lacks an illness script for the particular condition presented in the 
stem, it would not be surprising to see him or her adopt a less structured response process 
and ultimately respond incorrectly.

Method

Implementation and evaluation of the machine-learning approach we used in this 
study was conducted in several steps. First, the test takers responded to the sample 
of items and the eye tracker recorded a range of gaze features. A model using all 
the recorded features was then trained to predict correct and incorrect responses and 
evaluated against several baseline models. An automatic feature selection procedure 
was then implemented to identify the most predictive features and evaluate whether 
these features improve the classification accuracy for correct and incorrect responses. 
The selected features were then analyzed to identify the problem-solving patterns 
they reveal. The paper concludes with a discussion of how these results contribute a 
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comprehensive evaluation of the validity of score interpretations based on test items of 
this kind.

Data

All participants completed a set of 40 MCQs sampled from the National Board of 
Medical Examiners’ (NBME) Clinical Mastery Series for Internal Medicine. This 
examination is built to the same content specifications as the NBME Clinical Science 
Subject Exams. The items were selected out of 50 items from a randomly selected 
self-assessment form, where lengthy items containing images or very long tables were 
excluded. This was done to present the items on the screen without the need for scroll-
ing, which simplified interpretation of the results. These items all had either five or six 
answer options; The psychometric characteristics of the items were available from use 
in previous operational test administrations, where the mean p-value for the sample 
was 0.73 (SD = 0.12) and the mean point biserial correlation was 0.18 (SD = 0.08).

Data were recorded using an EyeLink® Portable Duo eye tracker with a sampling 
rate of 1000 Hz and a degree of visual angle < 0.5°; this is a faster recording rate than 
has been used in the previously described studies and allows for more reliable record-
ing of quick eye movements which may not have been captured in previous studies. 
The recordings were performed in a video-based mode, where no equipment was 
attached to the participants. Data were extracted using EyeLink Data Viewer software 
package (SR Research Ltd., version 4.1.63) with its default setting for fixation duration 
threshold.

Two of the 40 items were designated as practice items used to familiarize the test 
takers with the format of the experiment. These practice items were not included in 
the analysis of the results. These items typically include information about a patient’s 
symptoms, history, a description of physical findings, and for some items the results of 
diagnostic studies. The task of the examinee was to select the most appropriate treat-
ment, diagnosis, or course of action. Figure 1 shows a sample item overlaid with the 
gaze data from one individual. The gaze data and other annotations are explained in 
the following paragraphs.

The participant sample consisted of 26 students from US medical schools. The stu-
dents were compensated for their time. The invitation to participate was available to 
all students from US medical schools who had passed USMLE Step 1 and the USMLE 
Step 2 Clinical Skills examination. All the students matriculated at medical school on 
(or before) August 2016, so at the time the data were collected (February and March 
2020) they were in the final months of their fourth year of training. Additionally, par-
ticipants had to be native English speakers to exclude potential confounding effects 
related to varying degrees of English proficiency and were screened for eye conditions 
that could interfere with interpretation of the study results. Because the experiment 
was conducted in Philadelphia, PA, our volunteers were all from local schools. Our 
protocol was reviewed and received IRB approval prior to data collection.

Features

Once the data were collected, gaze-related features were extracted using the EyeLink Data 
Viewer software package (SR Research Ltd., version 4.1.63). These were extracted once 
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for the stem region and once for the options region (noted in Fig. 1 as IA7 and IA8). For 
the benefit of readers who are not familiar with eye tracking technology, the following defi-
nitions will help with interpreting the feature descriptions that follow:

Fixation – a stable position of the eye gaze over an object of interest. Individual fixa-
tions are represented as blue circles in Figure 1 and their size corresponds to their 
duration measured in milliseconds. Fixation analysis usually focuses on the location 
and duration of fixations, as well as their sequential order. For example, when read-
ing, complex parts of the text require longer fixations or a higher number of fixations.
Saccade – the movement the eyes make between individual fixations (i.e. fast jumps 
from one location to another).
Interest Areas (IA)– areas in the stimulus that are relevant to answering the research 
question. These are defined by the researcher and refer to the area of the stem and to 
the area of the answer options in the case of this study. Other areas that were present 
on the screen but excluded from the analysis were those of the buttons associated 
with selecting an answer option and the “Save” button which recorded the selection 
(Figure 1).
Fixation Run (also known as Pass) – a sequence of fixations from the start of enter-
ing an interest area until the area is left. For example, if the stem is visited three 
times, where after each time the eyes leave the stem to move to another region, then 
the stem area has a run count of three. Each run may consist of multiple fixations.

Fig. 1  Example of gaze data from one participant over a practice item. The blue circles represent individual 
fixations, while the orange frames represent interest areas (IAs)



1408 V. Yaneva et al.

1 3

Trial – In the context of this study, a trial is defined as a test taker interacting with a 
single item.
Interest Area ID – the sequential number of an interest area (see Figure 1).

The descriptions of the different gaze features (as well as several non-gaze features) 
used in our experiments are presented in Table 1. It is important to note that these features 
were extracted for both the stem and the options regions, as well as, in certain cases, for 
specific fixations, saccades, and runs, as noted in the first column of Table 1 (e.g., once 
for the first fixation, once for the second fixation, etc.). This resulted in a total of 119 indi-
vidual features (denoted as variables within Table 1).

Analysis

The main study analysis consists of three parts: (1) training a machine-learning classi-
fier using the 119 features from Table  1 to predict whether a given response is correct 
or incorrect, (2) performing feature selection to identify the combination of features that 
provides the best predicted classification, and (3) examining the patterns associated with 
correct and incorrect responses based on the combination of selected features. These steps 
are described in more detail in the sections that follow.

Classification

From the total of 988 trials (test taker-item encounters), a random 20% were separated as 
a test set to be used for evaluation and the remaining 80% were used to train a machine-
learning-based classifier. Since the main objective of this study is to identify predictors that 
can reliably distinguish between patterns corresponding to correct and incorrect responses, 
our primary metric of interest is classification precision (also known as specificity), rang-
ing between 0 and 1. For example, a precision score of 1 for the class of correct responses 
indicates that 100% of the responses that were predicted correct were indeed correct. We 
also report recall (sensitivity), also ranging between 0 and 1, where a recall of 1 for the 
class of correct responses indicates that of the set of responses that were indeed correct, 
all were predicted correct. Finally, we report a metric representing the harmonic mean of 
precision and recall, known as F1 score (ranging between 0 and 1, with 1 indicating perfect 
classification) (Davis & Goadrich, 2006). Precision and Recall are computed as follows, 
where TP stands for true positives, FP stands for false positives, and FN stands for false 
negatives:

Once the training and test sets were separated, several common classifiers were fit 
to the training data using the Scikit-learn library in Python 3.6 (e.g., random forests, 
support vector machines, and a gradient boosting classifier, among others). For brevity, 
we only report results from the best-performing classifier, logistic regression. This is 
also the classifier most likely to be familiar to readers. Before evaluating the full model 

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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using the features from Table 1, several baselines were defined to benchmark the clas-
sification performance of the gaze features:

• Majority class baseline: Owing to class imbalance (732 correct responses and 256 
incorrect ones), assigning an example to the majority class is more likely to turn 
out to be correct. The majority class baseline simply assigns all test-set examples to 
the correct response category and measures the resulting Precision, Recall, and F1 
scores. This is sometimes refered to as the best a priori classification.

• Response time baseline: Previous research suggests that test takers typically spend 
relatively more time on items they answer incorrectly (e.g., Harik et al., 2020). This 
baseline tests the extent to which response time can explain the differences between 
correct and incorrect responses.

• Number of options baseline: The items in our sample had either five or six possible 
answer options. This baseline tests the extent to which the number of options in an 
item can predict correct and incorrect responses.

• Participant baseline: Since our participant sample does not include specific groups 
of low-proficiency and high-proficiency test takers, this baseline tests whether know-
ing what participant responded in a specific trail is useful in predicting its category 
correctly.

• Combined baseline: All of the previous baselines consist of a single feature used as 
a predictor in a logistic regression model. The combined baseline includes all these 
features as predictors in a single model. As the gaze features are added later, the 
combined baseline allows assessing what part of the full model performance can be 
attributed to the addition of the gaze features and the interactions between features.

Feature selection

To select the most predictive features, a Least Absolute Shrinkage and Selection Opera-
tor (LASSO) feature selection was applied to the training set. LASSO is an embedded 
method for feature selection which performs regularization through penalizing the coef-
ficients of the regression variables (Tibshirani, 1996). Some of the variable coefficients 
are shrunk to zero, while those that still have a non-zero coefficient after the shrinking 
process are selected to be part of the model. This procedure was applied to the training 
set using the LassoCV command from Scikit-learn in Python 3.6, with the number of 
cross validation folds set to 20. The method tests different levels of penalization and 
selects the best performing one using the data from some of the folds as the training set 
and the data from the remaining folds as a test set; in essence, it uses a cross validation 
procedure within the training set to produce robust results.

Results

In the sections that follow we will present results on classification accuracy, feature 
selection, and analysis of the selected features.



1412 V. Yaneva et al.

1 3

Classification

Table 2 presents the performance of the baseline models and the full model based on all 
features with respect to precision, recall, and weighted F1.3 As the table demonstrates, all 
of the baseline models using a single variable regress to a majority class assignment; that 
is, the algorithm learns that assigning all instances to the majority class leads to a bet-
ter performance than using the individual predictor (Precision = 0.56, Recall = 0.75). The 
combined baseline model outperforms the majority class model, improving precision from 
0.56 to 0.64, while maintaining recall at a similar level. Adding the gaze features results 
in a model that performs noticeably better with precision of 0.75 and recall of 0.77. As 
was mentioned in the method section, these results are based on a cross validation sample, 
so the improved prediction is not explained by the increased number of predictors in the 
model.

The performance of the gaze features provides a clear evidence that they contain signal 
relevant to the classification of correct and incorrect responses. While this result shows that 
there are different eye-movement patterns (response processes) associated with correct and 
incorrect responses, it does not provide specific insights into these patterns. Identifying 
these patterns is the purpose of the feature selection procedure.

Feature selection

The LASSO feature selection resulted in the selection of nine variables presented in Fig. 2. 
The positive coefficients indicate variables that are associated with an increased probability 
of a correct response and the variables with negative coefficients are associated with an 
increased probability of an incorrect response. The larger the coefficient, the stronger the 
relationship between the variable and the outcome.

When interpreting the significance of the selected features, it is important to note that 
they were selected based the signal they contributed when interacting with each other, 
rather than their merit as individual predictors. Nevertheless, as can be seen from the cor-
relation matrix presented in Fig. 3, the majority of the selected features are not highly cor-
related, indicating that the individual features carry substantially independent information. 
When moderate correlations do exist (0.41, 0.69, 0.73) it is for features that are are likely to 
be linked to the total amount of time a test taker spent on an item.

Table 2  Results for the 
performance of the different 
baselines and the full model

Model Precision Recall Weighted F1

Majority class .56 .75 .64
Response time .56 .75 .64
Number of Options .56 .75 .64
Participant ID .56 .75 .64
Combined baseline .64 .74 .65
Full model .75 .77 .74

3 Weighted for class imbalance.
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To evaluate the quality of the feature selection step, Fig. 4 compares a model using only 
the selected features to the full model and the five baselines. Again, these results are cross 
validated. The feature selection was performed on the training set; the evaluation was per-
formed on the test set. This resulted in the highest precision of 0.79 and recall of 0.77.

Analysis of the nine selected features (shown in Fig. 2) reveals that the most important 
differences between correct and incorrect responses were in the processing of the options 
region. These results are summarized in Table 3.

Processing of the options region

The distributions of the nine selected features over the categories of correct and incor-
rect responses are presented in Fig. 5a, b, c. The two features with the strongest predictive 
power are Last Fixation Run—Options and Regression Path Duration—Options, shown in 
Figs. 6a and 6b. The Last Fixation Run—Options feature indicates that incorrect responses 
are characterized by test takers returning to the region containing the options more fre-
quently than is the case for correct responses.

The Regression Path Duration—Options feature indicates that test takers who answer 
incorrectly tend to spend more processing time after their gaze first enters the options 
region: that is the time from when they first look at the options until they respond and exit 
the item is longer for test takers who answer incorrectly. Combined with information about 
other variables presented below, this feature may suggest that the options region is accessed 
earlier in cases that resulted in incorrect responses in addition to incorrect responses hav-
ing longer overall response times.

In contrast to incorrect responses, which tend to have more passes over the options 
region, as shown in Fig.  5c, correct responses were associated with a higher number of 
fixations during the second pass over the options (Second Run Fixation % —Options). 
In addition, the first time the eyes moved inside that region happened later for correct 
reponses than for incorrect ones (First Saccade Start Time—Options).

Fig. 2  Selected features and their indices. The positive coefficients indicate variables that are associated 
with an increased probability of a correct response and the variables with negative coefficients are associ-
ated with an increased probability of an incorrect response. The larger the coefficient, the stronger the rela-
tionship between the variable and the outcome
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The only non-gaze variable that was significantly related to classification was the num-
ber of options in the item. For the sample of items used in this study five-option items were 
slightly easier than six-option items. This would seem to be an artifact of the specific items 
selected for the study.

Fig. 3  Correlations between the selected features. Most of the selected features are not highly correlated 
with each other, indicating that the individual features carry substantially independent information

Fig. 4  Precision and Recall for the different models. Higher values indicate better classification accuracy
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Overall, the data related to the options region suggest that correct responders accessed 
that region later but concentrated on the options earlier. Incorrect responders on the other 
hand, tended to access the options earlier but needed more passes over that region, indi-
cating that they were moving back and forth between the stem and the options more 
frequently.

Processing of the Stem Region

The features related to the stem region had relatively lower importance for classifiction but 
corroborrated the idea that the eyes accessed the options region earlier in cases of incorrect 
responses. For example, First Saccade Amplitude—Stems shows that incorrect answers are 
associated with a larger number of first saccades in the stem that have a large visual angle. 

Fig. 5  a Distribution of the selected features across correct and incorrect responses (1—3). Wider sec-
tions of the violin plot represent a higher probability that the features will take on the given value; dotted 
lines represent quartiles. b: Distribution of the selected features across correct and incorrect responses (4 
– 6). Wider sections of the violin plot represent a higher probability that the features will take on the given 
value; dotted lines represent quartiles. c: Distribution of the selected features across correct and incorrect 
responses (7 – 9). Wider sections of the violin plot represent a higher probability that the features will take 
on the given value; dotted lines represent quartiles
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That is, incorrect responses tend to be associated with instances in which the eyes likely 
moved vertically or diagonally as opposed to horizontally on the line after the first fixa-
tion on the stem. This would be consistent with a less structured approach to reading the 
item: browsing different areas of the stem or moving back and forth between the stem and 
options as opposed to processing the information sequentially.

In line with the evidence that incorrect responses had more passes and overall longer 
response times, Last Run Start Time—Stems shows that incorrect responses are associated 
with a final pass of the eyes over the stem region happening relatively later than with cor-
rect responses. The correct responses on the other hand, had a slightly higher number of 
fixations belonging to the last run. This information paints a picture of higher response 
times for the incorrect responses due not only to longer fixations in given regions but due to 
more passes over the regions. This may imply that test takers who are uncertain about the 
answer are scanning for clues rather than following a hypothesis-driven search procedure.

Finally, the information revealed by the Regression Out Full Count—Stems feature cor-
responds to the number of times an interest area was exited to an area with a lower ID 
number. In this study, the only areas with lower ID numbers than the stem were the buttons 
at the bottom of the screen corresponding to the selection of the different answer options, 
as well as the “Save” button which is pressed to record the selected option and move on to 
the next item (Fig. 1). Therefore, this feature reveals that incorrect responses are associ-
ated with more cases in which the eyes move directly from the stem to an answer selection 
button.

Discussion

The analysis of the selected features reveals that incorrect responses are characterized by 
more passes of the eyes between the stem and the options. Since response time alone was 
not a highly predictive variable and since the addition of the gaze features to response time 
and other baselines boosts performance, it can be concluded that the pattern of incorrect 
responses is not one where the test-taker simply spends longer looking at the item; rather, 
it is a pattern where the test-taker accesses the options region earlier and makes multiple 
passes across the stem and the options. This behavior suggests that incorrect responses may 
be associated with working from the options to the stem instead of first reading the stem 
carefully and then processing the options after having formed a (preliminary) hypothesis. 
This pattern is also consistent with the idea that test takers who respond incorrectly simply 
use a more random approach to processing the material in the item; they may scan the item 
numerous times hoping to find a clue or recognize a pattern that was not initially apparent.

By comparison to this more random approach, test takers who answered correctly 
appear to use a cognitive model that is generally consistent with the real-world model 
described previously (see Bowen, 2006). They tend to review the material in the stem 
more carefully, review the options later, and then make fewer moves between the 
options and the stem. This pattern would be consistent with a model in which they sys-
tematically evaluate the information about the patient, formulate a hypothesis, review 
the options to identify the correct answer based on their hypothesis, and then return to 
the stem to verify their initial impressions and check that they have not missed evidence 
that contradicts their hypothesis. The fact that our results are generally consistent with 
the proposed real-world model certainly does not prove that test takers who respond 
correctly are using the same cognitive model that successful clinicians use in practice 
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(if that were possible, the task of constructing a validity argument would be relatively 
trivial). Again, evidence of the type we have collected is much more likely to provide a 
definitive rejection of the intended interpretation of test scores than definitive support. 
For example, if we had observed that successful test takers immediately accessed the 
options and then moved frequently between the options and the stem, the validity of the 
resulting score interpretations would be significantly undermined.

It is important to note that the findings of this data-driven study complement the 
findings of prior eye-tracking work presented in our literature review and are in line 
with the results from studies with other types of process data. For example, fMRI (func-
tional Magnetic Resonance Imaging) data have shown functional differences between 
correct vs. incorrect answers and guessing vs. not guessing for 17 physicians answering 
internal medicine MCQs (Durning, et al., 2012). We note that these types of inferences 
are substantially different from inferences that can be made using other types of pro-
cess data such as timing information (Margolis & Feinberg, 2020), which has been used 
to identify disengaged test-takers (Wise, 2015, 2017), item exposure (Lee & Wollack, 
2020), or that the imposed time limit is impacting the measurement of test taker profi-
ciency (Harik et al., 2020).

Although the present results are consistent with expectations, it is important to consider 
the extent to which these results are likely to be generalizable. The simple answer is that 
we cannot be sure until follow-up studies are completed with larger test-taker samples in 
actual testing settings. In an operational testing setting test takers may be more motivated 
to perform well and may alter their test-taking strategies accordingly. The participants in 
this study were compensated for their time and were provided with detailed feedback on 
their performance. They also completed the test in the presence of one of the experiment-
ers. The presence of the experimenter and their interest in feedback may have been moti-
vating factors. We clearly have no evidence about whether the participants performed up to 
their potential. We do know that the mean performance for the participants was modestly 
higher than the performance on the same items when they were used in operational testing 
(mean p-value of 0.73 for operational testing and 0.74 for the participants in this study). 
We also know from the timing data recorded for each item that none of the participants 
responded so quickly that we should question whether they were seriously engaged with 
the test material.

It is tempting to think that the results of this paper might provide insight into build-
ing optimal testing strategies for medical students. At this time, the results do not support 
designing such strategies. The present results describe some of the behaviors that are asso-
ciated with responding correctly to the types of clinical reasoning items included in this 
study. The results do not demonstrate a causal relationship. It may be that the behaviors we 
describe as being associated with responding correctly occur because the test takers have 
the prior knowledge to reason from the patient information to the correct answer. If this is 
true, applying this more structured approach to responding would not be helpful to individ-
uals lacking the specific knowledge. The results do suggest that in general a strategy that 
focuses on examining the options before evaluating the patient information is not, in gen-
eral, a successful strategy. This is consistent with results reported by Yaneva et al. (2021), 
showing that test takers that used that approach performed relatively poorly on clinical rea-
soning items. That said, the critical issue in a testing strategy is that it improves the test 
takers probability of success conditional on both the test takers general level of proficiency 
and his or her knowledge of the specific content area tested by the item. Differences in the 
probability of success associated with alternative response processes may provide a mis-
leading estimate of the changes in these more specific conditional probabilities.
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In interpreting these results there are a number of points that should be kept in mind. 
The first is that we have described the contrasting processes used by successful and unsuc-
cessful test takers, but these different processes are associated with a change in the like-
lihood of responding correctly—the process differences are not deterministic, they are 
probabilistic. The second consideration is that while some previous studies have reported 
on differences in processing for more and less proficient test takers, our study focuses on 
correct and incorrect responses. As such, our results suggest that the same individual my 
use different approaches for different items. The fact that the process data substantially 
improved prediction above and beyond the baseline model, which included the test taker 
as a variable, strongly suggests that test takers do change the process they use across items. 
It appears that when individuals have the required prior knowledge (e.g., a relevant illness 
script), that knowledge allows them to recognize the pattern of patient characteristics pre-
sented in the stem, and they are able to use that knowledge to form a hypothesis (e.g., a dif-
ferential diagnosis list) and evaluate that hypothesis against reasonable alternatives. Again, 
this would be consistent with the real-world model we presented. When faced with a dif-
ferent case, that same test taker may be unable to apply a systematic and efficient problem-
solving approach, and so adopt an alternative, seemingly more random strategy. In some 
ways this is consistent with the behavior of clinicians in practice, in which an otherwise 
competent clinician occasionally misses a diagnosis because of gaps in knowledge. As we 
noted, the argument here is not that real-world responding is the same as responding to the 
test item, but simply that some of the critical cognitive skills required for the real-world 
response are required to successfully respond to the test item.

The results from this study are consistent with some of the findings from previous stud-
ies, such as the evidence that unsuccessful problem-solvers tend to experience difficulties 
in decoding the problem and recognizing the relevant factors (Tsai et al., 2011) and that 
high-performing test takers have fewer fixations across tasks (Hu et  al., 2017). The pre-
sent study also goes beyond previous work by using machine-learning procedures to evalu-
ate all the features recorded by the eye-tracking system and identify those that distinguish 
successful from unsuccessful responses. This eliminates the kind of confirmation bias that 
can exist when a researcher selects a small number of features for evaluation. Again, the 
present study also differs from most previous research in that we do not assume that the 
response process is a characteristic of the individual; we allow for the possibility that the 
process may change as a test taker moves from one item to another.

• The authors were employees of the National Board of Medical Examiners at the time 
the research was conducted. There were no additional sources of funding for this work.

• The authors have no conflicts of interest to declare that are relevant to the content of 
this article.

• This study was performed in line with the principles of the Declaration of Helsinki. The 
study was granted exemption status by the Institutional Review Board of the American 
Institutes for Research (Date: 10/15/2019 /No. EX00496)

Appendix A

See Table 4.
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