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Abstract
Learning curves can support a competency-based approach to assessment for learning. 
When interpreting repeated assessment data displayed as learning curves, a key assessment 
question is: “How well is each learner learning?” We outline the validity argument and 
investigation relevant to this question, for a computer-based repeated assessment of com-
petence in electrocardiogram (ECG) interpretation. We developed an on-line ECG learning 
program based on 292 anonymized ECGs collected from an electronic patient database. 
After diagnosing each ECG, participants received feedback including the computer inter-
pretation, cardiologist’s annotation, and correct diagnosis. In 2015, participants from a sin-
gle institution, across a range of ECG skill levels, diagnosed at least 60 ECGs. We planned, 
collected and evaluated validity evidence under each inference of Kane’s validity frame-
work. For Scoring, three cardiologists’ kappa for agreement on correct diagnosis was 0.92. 
There was a range of ECG difficulty across and within each diagnostic category. For Gen-
eralization, appropriate sampling was reflected in the inclusion of a typical clinical base 
rate of 39% normal ECGs. Applying generalizability theory presented unique challenges. 
Under the Extrapolation inference, group learning curves demonstrated expert–novice dif-
ferences, performance increased with practice and the incremental phase of the learning 
curve reflected ongoing, effortful learning. A minority of learners had atypical learning 
curves. We did not collect Implications evidence. Our results support a preliminary validity 
argument for a learning curve assessment approach for repeated ECG interpretation with 
deliberate and mixed practice. This approach holds promise for providing educators and 
researchers, in collaboration with their learners, with deeper insights into how well each 
learner is learning.
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Introduction

Competency-based education requires a shift in assessment approaches from biopsies of a 
learner’s performance at a single point in time to repeated assessment of performance over 
time to ensure that competency is attained and maintained (Schuwirth and van der Vleuten 
2011a). Increased integration of assessment into the learning environment may facilitate 
this shift, so that while discrete moments of assessment still occur (traditional assessment 
of learning), there is an increased emphasis on ongoing assessment for learning (Schu-
wirth and van der Vleuten 2011b). Examining the shape of learners’ learning curves across 
their repeated practice of some aspect of knowledge and/or skill may be an ideal method 
of interpreting assessment data for competency-based medical education. Specifically, the 
use of repeated assessment compared against a competency standard and expected progres-
sion rates, all integrated with immediate feedback on performance, models assessment for 
learning (Pusic et al. 2015a).

Typical learning curves plot performance along a y-axis against effort on an x-axis (e.g., 
time, number of cases) and have 4 components: (a) a y-intercept indicating baseline per-
formance; (b) a rapid upward initial slope indicating an efficient early learning phase; (c) a 
slower incremental learning phase where more difficult concepts are mastered; and (d) an 
upper asymptote of maximal performance (Pusic et al. 2015a). Both individual learner and 
group-level (typically based on level of expertise) learning curves may be plotted and ana-
lyzed either descriptively or mathematically (Pusic et al. 2016).

While surgical domains have a long history of using learning curves during skill acqui-
sition (Ramsay et al. 2001), learning curves have been underexplored for use with cognitive 
skill development aside from a series of studies examining learning curves during pediat-
ric ankle radiograph interpretation in a computer-based learning application. Those studies 
established learning curves and competency standards for different levels of learners (Pusic 
et al. 2011), emphasized the importance of fidelity to normal/abnormal image ratios in real 
clinical practice (Pusic et al. 2012a), and reported the development of improved self-moni-
toring during practice (Pusic et al. 2015b).

Approaches such as the pediatric ankle radiograph learning system offer a potential 
advantage over current approaches to learning to interpret visual information in clinical 
settings, where learning is often fragmented (i.e., occurring in some clinical settings but 
not others), limited by the few cases available to an individual learner, and limited by a lack 
of feedback on performance (Ericsson 2015). Thus, in clinical settings, the range of ability 
required to interpret visual material is both enormous and arbitrary whereas a computer-
based system may provide a more controlled learning environment. Furthermore, a com-
puter-based system capturing both process metrics (e.g. time per page, sequence through 
the material) and outcome metrics (e.g. diagnosis, confidence) facilitates the integration of 
learning analytics to understand both learner and learning system performance, thus pro-
viding richer information to both learners and educators (Pecaric et al. 2017).

Similar to radiographs, ECG interpretation is another visual perception task that 
is difficult to learn in the clinical setting and where a computer-based system may 
be advantageous (Fent et  al. 2015). Though numerous approaches to teaching ECG 
interpretation have been described, they are frequently time-limited, provide few prac-
tice examples to learners, and assess learning at discrete moments in time (e.g., at an 
immediate or delayed post-test) (Fent et  al. 2015; Rourke et  al. 2018). Furthermore, 
validity evidence to support the assessment approaches used in the literature is lack-
ing (Rourke et al. 2018). In recent review papers summarizing the ECG instructional 
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literature, no single approach to or format of ECG teaching was superior when com-
pared each to the other (Fent et al. 2015; Rourke et al. 2018), although eliciting learner 
performance and providing feedback led to larger learning gains as assessed from pre- 
to post-test (Rourke et  al. 2018). A computer-based ECG learning system has been 
described, where learners practice 15 diagnoses over 75 ECGs. Students’ ECG inter-
pretation skills after implementation of this computer-based system were superior to 
an historical cohort taught with classroom-based methods (Chudgar et al. 2016). How-
ever, while this system provided an improved opportunity for practice with feedback, 
learner performance was only assessed with a 10-item post-test.

Addressing ECG competency is an important clinical issue as ECG diagnostic 
errors are made at all levels of learners and clinicians (Jablonover et al. 2014; Salerno 
et al. 2003a). There is no standard, reliable, competency-based assessment addressing 
ECG diagnostic accuracy (Salerno et  al. 2003b). In addition, there are no evidence-
based data as to how many ECGs are necessary to achieve competence and expert rec-
ommendations vary widely (Salerno et al. 2003a). Computerized interpretation is not a 
panacea; depending upon the diagnosis, studies suggest computer accuracy is approxi-
mately 90% (Guglin and Thatai 2006; Shah and Rubin 2007). The implications for 
missed abnormalities are serious.

The implementation of an ECG computer-based program based on a high-volume 
of cases, immediate feedback on performance and examination of learners’ learning 
curves, may aid in predicting a learner’s expected trajectory of learning with consistent 
practice. Individual learning curves may be examined for formative purposes, aiding 
the learner and educator in understanding the learning that is taking place by examin-
ing the shape of the curve. In an ideal world, everyone learns to the asymptote. How-
ever, competency thresholds may be established to put boundaries on learning. Captur-
ing group-level learning curves could contribute to competency standard-setting, and 
subsequently suggest the estimated volume of ECGs required to attain that competence. 
Standard-setting committees could decide if expert-level performance defined compe-
tency [as is common in surgical skills training captured by learning curves (Ramsay 
et al. 2001)] or if the competency standard should be set at a different threshold.

Any new assessment approach requires validation (Cook et  al. 2015). The validity 
investigation process focuses on examining the key assumptions and inferences that link 
the assessment tool with its intended use. While various validity frameworks are avail-
able, we prefer the approach proposed by Kane (2013) as it encourages educators to 
describe the educational decision that the assessment addresses. The approach not only 
outlines the types of evidence that may be relevant to support the validity argument [as 
does Messick’s validity framework (Messick 1989)], but also helps to prioritize among 
the various evidence sources in order to build a coherent validity argument (Cook et al. 
2015; Kane 2013).

The current study outlines the validity investigation process and validity argument, 
using Kane’s framework, for a computer-based learning system with repeated assess-
ment of ECG interpretation. The program was designed using the principles of deliber-
ate practice and immediate feedback with a repeated, learning curve-based approach to 
conceptualizing performance and drawing inferences about learners. We outline, col-
lect and examine the validity evidence relevant to this repeated assessment approach. In 
addition to providing the direct evidence supporting learning curves as an assessment of 
ECG interpretation skills, the current study is the first to our knowledge to articulate a 
validity argument for a repeated assessment approach using learning curves.
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Methods

Development of the computer‑based ECG system

Selection and annotation of ECGs for the on‑line learning system

The goal of the ECG image bank underlying the computer program is to create an authen-
tic representation of ECGs encountered in clinical practice (Pusic et al. 2012a). Using an 
iterative Delphi technique which included a panel of expert cardiologists at the University 
of British Columbia (UBC) as well as the study investigators, we chose a guiding clinical 
context of plausible ECG diagnoses in patients who present with chest pain. Based on con-
sensus discussion by the panel, the following ECG diagnoses were included in the digitized 
image bank: normal; ST-elevation myocardial infarction; myocardial ischemia; pericardi-
tis; bundle branch blocks; and ventricular hypertrophy. Arrhythmias were excluded from 
these diagnoses (i.e. all examples were in normal sinus rhythm) as a narrower differential 
diagnosis list was felt to be more consistent with the abilities of early undergraduate medi-
cal students. These diagnoses were also consistent with the diagnoses used in a previous 
investigation of ECG instruction (Hatala et al. 2003).

The study was approved by the UBC Behavioural Research and NYU Research Ethics 
Boards. We subsequently amassed a collection of 299 anonymous ECGs representing each 
diagnostic category using the MUSE© electronic patient ECG database at a tertiary care 
hospital, including inpatient, outpatient and emergency department settings. Each ECG 
was read by three independent cardiologists: (1) the original staff cardiologist within the 
hospital’s electronic database; (2) a second, masked staff cardiologist who interpreted each 
ECG and who digitally annotated each ECG by circling key features on the ECG that lead 
to the diagnosis; and (3) a third cardiologist who interpreted each ECG. Disagreements 
were resolved by consensus and 7 ECGs were removed from the final set as they contained 
a significant arrhythmia.

Development of the on‑line learning system

The refined set of 292 ECGs, including the cardiologist’s annotations, were embedded 
into a Web application developed using the Python Django programming framework and a 
MySQL database. The set contained 113/292 (39%) normal ECGs. This proportion repre-
sents a balance between learning efficiency (which requires a higher proportion of abnor-
mals) versus fidelity to the base prevalence of 60–75% normal in actual clinical care (which 
requires a higher proportion of normals) (Ashley et al. 2000; De Bacquer et al. 1998; Pusic 
et  al. 2012a). Click-level data were logged for each user’s actions at every step of each 
ECG into a MySQL database. An example ECG is available at: https ://educa tion.med.nyu.
edu/ecg/examp le.

Secure entry was ensured via a username and password given to each participant. The 
software tracked their progress through the ECGs and recorded every response to the 
database. ECGs were randomly presented in a mixed order which was different for each 
participant. For each ECG, the participant was presented the ECG without computerized 
interpretation and was instructed to check rate, rhythm, and axis; note abnormal features; 
and consider the diagnosis. Proceeding to the second screen, the participant provided a 
confidence rating on their presumptive diagnosis by rating the ECG on a 4-point scale from 

https://education.med.nyu.edu/ecg/example
https://education.med.nyu.edu/ecg/example
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Definitely Abnormal to Definitely Normal. Proceeding to the third screen, the participant 
selected the final diagnosis for the ECG based on a drop-down list. Entering their diagnosis 
led them to the final screen, where customized feedback on their responses was provided 
in the form of the ECG with computerized interpretation, expert annotation, and a descrip-
tion of the correct diagnosis. Participants were given the chance to review this information 
before moving on to the next ECG; thus, deliberate practice [practicing a specific aspect 
of performance with repetition and reflection (Ericsson et  al. 1993)] and mixed practice 
(practicing all ECG diagnoses in mixed sequence as opposed to practicing a set of one 
diagnosis, then a set of the next diagnosis, etc.) were the dominant instructional strategies 
(Hatala et  al. 2003). Participants could access the on-line system at any time and log-in 
over multiple occasions with their progress book-marked. Participants were not restricted 
from using other ECG learning materials in addition to the on-line system.

Implementation of the on‑line learning system

In 2015, the on-line learning system was implemented across undergraduate and postgrad-
uate medical education programs at UBC. We purposely sampled across a range of ECG 
‘expertise’ from novice (i.e., no prior ECG exposure) to expert (i.e., frequently interpret 
ECGs in clinical practice). The system was implemented among first-year (pre-clinical) 
undergraduate students, third- and fourth-year (clinical) undergraduate students during 
clerkship and UBC PGY-1 internal medicine residents during their summer ‘boot-camp’ 
to prepare them for residency training. A voluntary cohort of UBC cardiology fellows were 
recruited to serve as the expert group. While accessing the on-line system and working 
through a minimum of 30 ECGs was mandatory for the first year medical students and first 
year residents, all participants in this report voluntarily consented to allow their data to be 
used for study purposes.

Validation process

Kane’s approach to assessment validity investigation begins with outlining the educational 
decision which the assessment is intended to support (Cook et al. 2015; Kane 2013). Next 
the intended use argument (IUA) is delineated, where the key assumptions underlying the 
assessment scores are outlined a priori. Validity evidence is then gathered under four cat-
egories of inference: Scoring, Generalization, Extrapolation and Implications (see Fig. 1 
for definitions of each inference). The evidence is examined as to how well it supports the 
intended use argument and the relevant assessment decisions.

In a model of repeated assessment using learning curves, a key assessment decision 
is the educator’s answer to the question: “How well is each learner learning?” Within 
that broad question, several sub-questions might be asked. Examining the slope of the 
learning curve can help answer “Is the rate/effort/efficiency of learning appropriate?” 
Examining the incremental phase, we might further ask “Has the learner sustainably 
achieved the intended level of competence?”, “Is this learner’s curve so flat that altering 
the learning environment is indicated?”, and “Comparing achievement between learn-
ers, is there sufficient consistency among this group of learners with respect to com-
petence?” Answering each of these questions could lead to an action on the part of the 
educator. Within these questions, the focus of the educator and learner is on the shape 
of the curve and what that implies about the learning trajectory towards a competency 
standard, rather than solely focussing on attainment of the competency. The richness of 
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this IUA is in contrast to a single biopsy of performance where the educator is only able 
to address the question “Did each learner learn?”.

However, before we can answer these questions, we must determine if the validity 
argument holds up to scrutiny. Kane’s framework helps us to plan the research required 
to support our repeated assessment of ECG learning. Our validity investigation is out-
lined here in brief, and in more detail in Fig.  1. We began by specifying the IUA as 
above: “How well is each learner learning?”. We subsequently outlined the assumptions 
under each inference which could support this IUA, beginning with Scoring and with 
diagnostic accuracy as our primary scoring measure. If our approach to Scoring was 
accurate, we would expect experts to agree on the diagnosis for each ECG and we would 
expect a range of ECG difficulties. Under Generalization, we would expect adequate 
sampling of ECGs and high reliability of the scores in order to support decisions as to 
how well a learner was learning under the specific study conditions. Under Extrapola-
tion, we would expect relationships between learning curve and real-world performance, 
such as expert-novice differences for the group learning curves and typicality of the 
individual learning curves [i.e. typicality, as defined by the 4 key phases of y-intercept, 
efficient learning phase, incremental learning phase and upper asymptote (Pusic et  al. 
2015a)]. Finally, examination of the impact of the repeated assessment on the learner, 
the educational system or patients would form the Implications part of the validity argu-
ment. However, as the assessment was being used for research purposes, we anticipated 
being unable to collect meaningful Implications evidence.

The validity evidence required to support each of these inferences form our research 
hypotheses and lay out the plan for data analysis. As is apparent from the breadth of the 
assumptions in Fig. 1, it is not feasible to gather all the possible validity evidence within a 
single study. Thus, our plan for data collection and analysis was guided by Fig. 1.

Scoring
(translation of performance into 
scores on items and total score)              

•scoring accurately re
lects 
diagnostic accuracy
•Result: Supported (high 
expert agreement, with 
disagreement on most 
dif
icult ECGs)

•individual ECG dif
iculty 
should be variable
•Result: Supported (range of 
ECG dif
iculty across and 
within diagnoses (Table 2, 
Fig. 3))

Generalization
(relationship of performance on 

observed items to all potentially 
assessable items)

•adequate sampling of real-
world ECG mix and dif
iculty 
•Result: Supported (ECGs from 
patient databank; range of 
dif
iculty (Table 2, Fig. 3)

•change score reliability and 
decision consistency 
reliability
•Result: not examined (see 
"Data Analyses" for detailed 
explanation)

•greater ECG sampling leads to 
improved consistency in 
group learning curves
•Result: Partially supported 
(slope of overall group 
learning curve is statistically 
signi
icant [supplementary 
material] but con
idence 
intervals widen on group-
level learning curves [data 
not shown])

•ECG competence is uni-
dimensional; captured by 
diagnostic accuracy
•Result: Unable to determine

Extrapolation
(relationship between 
assessment and real-world 
performance)

•expert-novice differences
•Result: Supported (Fig. 2, 
Table 1) 

•competence increases with 
practice
•Result: Supported (Fig. 2)

•rate of learning varies by 
diagnostic category
•Result: Supported (Table 2)

• incremental phase of 
learning curve indicates 
effortful learning
•Result: Probably supported
(time/ECG decreases during 
incremental phase (Fig. 2))

•minority of learners have 
atypical learning curves
•Result: Supported (1/3 of 
student learners had atypical 
learning curves)

•individual level learning 
curves provide superior 
predictive power over group-
level learning curves
•Result: Probably supported
(Supplementary Material)

Implication
(impact of assessment on learner, 
program, patients or society)

•feedback on performance 
increases the ef
iciency of 
learning
•Result: not collected

•correctly identify learners 
who need additional help and 
intervention impacts learning 
curve
•Result: not collected

Fig. 1  Assumptions underlying each inference of Kane’s validity framework for the ECG learning curve-
based assessment approach. The intended use argument is “How well is a learner learning?” Each column 
reflects one inference in Kane’s validity framework. Under each inference we present the specific assump-
tions outlined prior to data collection, and whether or not the assumptions were ultimately supported by the 
data. For a more conceptual description and discussion of each inference see (Kane 2013; Cook et al. 2015)
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Data collection

We collected demographic data for each participant regarding level of training and prior 
ECG experience. The on-line system captured time on task, number of times the system 
was accessed, number of ECGs completed and diagnostic accuracy per ECG. Our primary 
outcome measure was diagnostic accuracy; a secondary outcome measure was time on 
task.

Data analyses

All analyses are based on participants who completed a minimum of 60 ECGs, which we 
determined was the minimum number of ECGs required to establish a stable learning curve 
(unpublished data). We used descriptive analyses for the demographic data and we calcu-
lated the median number of ECGs interpreted and the time per ECG by level of learner. For 
each learner, we determined their sensitivity and specificity in classifying ECGs as nor-
mal or abnormal, and computed the average sensitivity and specificity (along with standard 
errors) among medical students, first-year residents, and cardiology fellows (Genders et al. 
2012).

We modelled the group learning curve using a mixed-level hierarchical logistic model 
where the dependent variable was the log odds of correctly diagnosing the ECG while 
the independent variables were the sequence number (1–60) of the ECG item (log-trans-
formed) and the ECG item difficulty. The details of the model are presented in the Supple-
mentary Material.

To gather validity evidence under the Scoring inference, we calculated the Cohen’s 
kappa on the three experts’ agreement on the diagnosis for each ECG based on the six 
included diagnostic categories plus ‘other diagnosis’. A Welch’s t test was used to compare 
item difficulty on ECGs with and without full expert consensus. We examined the correla-
tion between scoring partially correct versus fully correct diagnoses (i.e. awarding partial 
marks if the participant gave a diagnosis of ‘ischemia, anterior leads’ when the correct 
diagnosis was ‘ischemia, inferior leads’).

We computed the item difficulties using the percent correct for each ECG.
The Generalization inference presents unique challenges such that we are unable in the 

current data collection to provide strong empirical evidence for or against the claims within 
it. Generalization would be supported if scores under our particular set of testing condi-
tions corresponded well to those that might be collected under different testing conditions. 
Each learner encountered a limited, random sample of ECGs (i.e., particular items), which 
correspond to an even more limited set of underlying diagnoses. Any noise associated with 
the random sampling along these or similar facets would threaten our intended interpreta-
tions. For instance, an educator might infer from a flat learning curve that the learner is no 
longer learning and intervention is required. If the flat slope was simply random sampling 
noise, the inference would be invalid. This can be conceptualized as an issue of change 
score reliability, i.e., the reliability with which one estimates the difference between per-
formance across two points in time (Brennan 2001). More specifically, the learning curve-
based approach calls for a marrying of change score reliability with conceptions of deci-
sion consistency reliability (Livingston and Lewis 1995; Webb et al. 2006) because it is not 
essential that the exact value of the change score (or slope) be known, but rather that the 
decision in response to that difference be reliable.
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One way of approaching these reliability concepts is with advanced generalizability the-
ory, and further psychometric theoretical work to combine them is needed, as well as a data 
collection appropriately designed to systematically represent the relevant facets. However, 
we can impute from regression modelling that if the slope of the group learning curve (i.e., 
the improvement in performance with each successive ECG) for the overall group of learn-
ers is statistically significant with a relatively precise confidence interval, then the majority 
of the learners in our set are reliably learning. That is, the items chosen from the pool of 
all possible items are indeed the ones that allow this set of learners to learn. This is analo-
gous to the testing context where the overall internal consistency of a test (e.g. Cronbach’s 
alpha) is Generalization evidence that the test is functioning as it should (Kane 2013).

An additional challenge with the Generalization inference is related to the Scoring 
assumption that diagnostic accuracy accurately captures ECG competency. This treats 
ECG competency as being uni-dimensional, while it is possible that it is multidimensional 
and thus any single y-axis measure across all ECGs is insufficient. For example, perhaps 
there are a series of important concepts (e.g., recognizing normal ECGs, understanding 
axis, etc.) that learners can only attain after reading a certain volume of specific ECGs. If 
so, then diagnostic accuracy plotted on the y-axis as a continuous variable would not fully 
reflect the development of ECG interpretation skills at an individual level. For similar rea-
sons to those that prevented us from computing generalizability theory analyses, the data 
were also not structured to be suitable for factor analysis.

For the Extrapolation inference, we generated the learning curves for a) accuracy and b) 
time as raw moving averages across the learners’ last 20 ECGs, both raw and adjusted for 
the difficulty of the ECG item. We determined the significance of an overall group-level 
learning curve model as described above. Knowing we did not have enough observations 
to regression model individual-level learning curves, two experts inspected the descriptive 
individual-level (moving average) curves for each medical student and rated the curves as 
‘typical’ or ‘atypical’ by visual inspection (Pusic et al. 2011). The assumption that each 
learner would have a typical learning curve is based on a number of theoretical foundations 
including: (a) test-enhanced learning (active questioning fosters learning) (Larsen et  al. 
2008); (b) feedback-enhanced learning (feedback fosters learning) (Shute 2008); and (c) 
learning curve theory (in an effective learning environment, individuals learn asymptoti-
cally) (Pusic et al. 2015a).

We also compared a series of nested hierarchical logistic regression models (see the 
Supplementary Material for details), beginning with the null hypothesis and successively 
adding first a parameter for random variability of the y-intercept and subsequently allowing 
both y-intercept and slope to vary randomly between individuals.

We did not collect Implications evidence.

Results

Seventy-eight participants (out of 444 learners who logged onto the system) diagnosed a 
minimum of 60 ECGs (Table 1). The group learning curves by level of expertise are pre-
sented in Fig. 2 and Table 1. 
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Fig. 2  Group learning curves. The two panels depict the group learning curves for each level of expertise 
(blue = fellow, green = resident, red = student) using two outcome measures: a diagnostic accuracy; b time 
per ECG. (Color figure online)
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Scoring inference

The correlation between diagnostic accuracy measured in terms of partial score versus 
full score was 0.94, so partial scores are reported throughout. If Scoring is accurate, and 
each ECG has a correct diagnosis, then agreement between experts on the correct diag-
nosis should be high. The Cohen’s kappa for the 3 raters across the 292 ECGs was 0.92. 
Furthermore, there was a significant difference in difficulty for the ECGS by the level of 
agreement between the three expert raters, F(2, 290) = 9.82, p < .001. A post hoc con-
trast showed the difficulty ratings of 266 ECGs for which all three experts agreed on the 
diagnosis was significantly less than the 26 ECGs for which at least one of the experts 
disagreed, with an estimated difference in difficulty of − 1.48 logits (95% CI − 2.43 to 
− .54). This corresponds to an average increase in difficulty from approximately the 49th 
percentile of ECG difficulty for an ECG with full rater agreement to the 87th percentile 
of ECG difficulty for an ECG on which at least one of the expert raters disagreed.

Further support for the Scoring inference is demonstrated in Fig. 3, where it is appar-
ent that there is a range of ECG difficulty across and within each diagnostic category.

Generalization inference

Support for the Generalization inference rests on sampling and reliability. As outlined in 
the Methods, we were unable to run Generalizability analyses. At a descriptive level, we 
would expect that greater sampling of ECGs leads to more stable individual and group 
learning curves. The individual learning curves demonstrated in Fig. 4 could be visually 
interpreted as demonstrating large variability, but generally flattening out into a coher-
ent and typical learning curve pattern as a learner reads more ECGs. Thus the reliability 
of an individual’s current state in the learning curve may be improving across ECGs. 
Furthermore, as the number of ECGs completed increases, the consistency among 
learners within a level of expertise would be expected to increase and could be reflected 
in narrowing of the confidence intervals around the group learning curve as participants 
read more ECGs. However, this is did not occur, as the confidence intervals for the 
group-level learning curves do not narrow as learners complete more ECGs, likely due 
to confounding by the decreasing number of learners who completed a greater number 
of ECGs (data not shown).

Extrapolation inference

The Extrapolation Inference would be supported by demonstrating that group learn-
ing curves by level of expertise are distinct and hence reflect varying levels of exper-
tise. As demonstrated in Fig. 2a, different levels of expertise are reflected in the group 
learning curves. The group learning curves demonstrate the expected pattern of a rapid 
upward slope indicating efficient learning (with a statistically significant slope for the 
entire population in the regression model (see Supplementary Material)), an incremen-
tal phase indicating a slower rate of learning and an upper asymptote of maximal per-
formance. Table 2 demonstrates that the rate of learning varies by ECG diagnostic cat-
egory (because we expect that some diagnoses are inherently harder than others).

Further support for the Extrapolation inference would be reflected in the incremental 
phase of the diagnostic accuracy learning curve, which should indicate ongoing effortful 
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learning. As demonstrated in Fig. 2b, while learners are in the incremental phase when 
the outcome measure is diagnostic accuracy, time per ECG is still rapidly decreas-
ing. Thus learners are still learning but the ‘rewards’ are in time per ECG rather than 

Fig. 3  ECG difficulty distribution by diagnostic category. Depicts the proportion of learners responding 
correctly to each ECG, plotted against the proportion of ECGs with this percentage of correct responses 
within each diagnostic category. The bottom panel (‘Overall’) plots the distribution of percent correct 
across all ECGs in all diagnostic categories



57How well is each learner learning? Validity investigation of…

1 3

markedly improved diagnostic accuracy (as occurs during the efficient slope phase of 
the learning curve).

Examining the proportion of atypical individual learning curves may add further sup-
port to the Extrapolation inference by determining whether each learner has the expected 
learning curve. If a high proportion of learners are not following this curve, then learning 
is not occurring as predicted. The kappa for two raters agreeing on typical versus atypical 
learning curve patterns by visual inspection of the 63 medical students’ learning curves 
was 0.89. We found 62% (39/63) had a typical learning curve pattern and 38% (24/63) had 
an atypical pattern which is consistent with expectations (Pusic et al. 2011). Representative 
examples of typical and atypical learning curve patterns are presented in Fig. 4. Compari-
son of the series of nested hierarchical regression models demonstrated that the model that 
takes into account random variation in slope between individuals has higher explanatory 
power then the model where all learners are predicted to have the same slope (i.e. slope 

Fig. 4  Individual learning curves for select medical student participants. x-axis = number of ECGs, 
y-axis = moving average diagnostic accuracy on last 20 ECGs either raw or adjusted for ECG difficulty. 
Note that significant variability in the shape of the learning curve is visible for the early part of the learning 
curves (within the first 40 ECGs) but the curves generally settle as more ECGs are interpreted. Of the 63 
medical student participants, 39 demonstrated typical learning curves and 24 demonstrated atypical learn-
ing curves. (Color figure online)
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from the group-level learning curve) (Supplementary Material). We did not have data on 
which to fully evaluate the clinical significance of these potential model improvements.

Discussion

In the current study, we provide a full description of learning curves for ECG interpreta-
tion skills, using an on-line ECG program. Compared to previous studies of ECG instruc-
tion, our learning system focuses on deliberate and mixed practice of ECG interpretation 
with immediate feedback and uses repeated assessment as opposed to a single post-test 
(Fent et al. 2015; Chudgar et al. 2016; Rourke et al. 2018). In a recent article on learning 
curves in health professions’ education, we argued for the need for educators to construct 
the validity argument to support the use of a learning curve for a particular assessment 
(Pusic et al. 2015a). In the current study, we provide an example of the articulation and 
examination of the preliminary validity argument that could support a repeated, learning 
curve-based assessment approach for ECG interpretation. While the data presented are spe-
cific to our learning system, the principles of the validity argument are relevant to similar 
repeated assessment approaches based on mixed practice, deliberate practice and immedi-
ate feedback.

Front-line educators are interested in the question “How well is each learner learning”? 
To answer this, we must have confidence that the assessment approach supports the edu-
cational decisions resulting from the assessment. Developing and examining the prelimi-
nary validity argument for the repeated assessment of ECG competence within the current 
study reveals a partially supported argument. Scoring of a learner’s response as correct 
or incorrect is supported by a high level of expert agreement on the correct diagnosis for 
the ECG. We have support for the sampling aspect of Generalization as ECGs within the 
program were downloaded from a patient database, and thus reflect a spectrum of real-
world ECGs with a representative mix of normal and abnormal (Pusic et al. 2012a; Boutis 
et  al. 2016). The variability of difficulty within and across ECG diagnoses is consistent 
with prior studies (Hartman et al. 2016; Jablonover et al. 2014). However, limitations in the 
Generalization inference require further study as we were unable to demonstrate reliability 
as reflected in more narrow confidence intervals (i.e., increasing consistency) of sequential 

Table 2  Log odds ratio and standard error per ECG diagnostic category

The table presents the slope on the log sequence term for each ECG diagnosis, including the reference nor-
mal ECGs. The log odds of correctly diagnosing an ECG is based on: the log of the sequence term, dummy 
indicators for each of the ECG diagnostic categories, and interaction terms between these two terms

ECG diagnostic category (N = number of ECGs = 293) Learning slope (log 
odds ratio)

Standard error of learn-
ing slope (log odds 
ratio)

Normal (N = 114) .28 .03
Bundle branch block (N = 54) .28 .05
Pericarditis (N = 22) .13 .06
Ischemia (N = 31) .12 .05
Hypertrophy (N = 39) .03 .04
ST elevation myocardial infarction (N = 33) − .04 .05
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points along the group learning curves across learners as more ECGs are completed due 
in part to low sample size of learners completing large numbers of ECGs. We were also 
unable to undertake generalizability analyses. On the other hand, the slope of the group 
learning curve was statistically significant, indicating that the majority of learners were 
learning in this context. Extrapolation from performance on the ECG set to performance 
on other ECGs is supported by the group learning curves demonstrating expert–novice dif-
ferences in performance while acknowledging that these differences provide weak evidence 
(Cook 2015). The performance of the cardiology fellows was higher than the 58% accuracy 
reported in a previous study of similar participants, suggesting our fellows did represent an 
‘expert’ group (Sibbald et al. 2014). In addition, the proportion of typical to atypical learn-
ing curves as identified by visual inspection is similar to prior research (Pusic et al. 2011) 
and the comparison of the nested hierarchical models indicates that use of a random slope-
random intercept model (i.e. individual as opposed to group learning curve data) has the 
best explanatory power. Implications evidence is required to address issues such as learner 
engagement and the impact of the assessment on the learner and on the patients they care 
for.

Limitations and strengths

The weakest inference in the validity argument falls under Generalization. Regarding factor 
structure, it will be important for future research to determine if there is a metric or set of 
metrics other than “overall diagnostic accuracy” that more fully captures the development 
of ECG interpretation skills, particularly for novice learners. For reliability, it will be nec-
essary to formulate a suitable psychometric model for the inferences proposed here, and 
then to structure data collection to systematically sample the relevant facets of measure-
ment that might contribute to measurement error.

Additional limitations are that the ECG diagnoses did not include arrhythmias, and thus 
we have not included the full breadth of ECGs that clinicians need to interpret. Broad gen-
eralization from our study results should be limited, as in order to generate the learning 
curves, participants had to interpret at least 60 ECGs and our sample size became smaller 
as the number of ECGs completed increased. While these small numbers may reflect issues 
with learner engagement, we suspect they reflect the course context in which the learning 
system was used, where medical students and residents were instructed to complete a mini-
mum of 30 ECGs. It remains to be seen what level of engagement would occur if learners 
were asked to achieve a certain level of competence, or were left to engage naturally with 
the system in the absence of any specific number or standard to be attained. If learning 
curves model a fundamental phenomenon of human learning (for skills that are amenable 
to deliberate practice and feedback), then some of the atypical learning curves may reflect 
a lack of engagement. Future research using qualitative methods to explore the aetiology 
of atypical curves is required. In addition, we had unequal sized groups for the different 
levels of learners. Our participants are likely self-selected to be those who are motivated to 
succeed at ECG interpretation and are all from a single institution. Furthermore, our esti-
mates of item difficulty assume independence across ECGs, which may not hold true in an 
environment where feedback is given with each ECG (Wainer and Mislevy 2000). We lack 
evidence supporting the Implications inference.

There are several strengths to the current study. The underlying approach to ECG prac-
tice within the on-line system is evidence-based, grounded in the established principles of 
mixed ECG practice (Hatala et al. 2003) and deliberate practice with immediate feedback 
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(Ericsson et  al. 1993). We have demonstrated the generalizability of the learning curve 
approach by recruiting learners across varying levels of ECG expertise. Most importantly, 
we have developed a preliminary validity argument that could be built upon to support a 
repeated assessment approach for ECG interpretation skills. We emphasize the preliminary 
nature of this argument and invite the education community to contribute with produc-
tive discussion as to how the argument should evolve. The learning curve approach holds 
the potential to contribute to the assessment of ECG competency, as the data can inform 
discussion of where to set competency standards. By using a computer-based system that 
captures multiple metrics, we have demonstrated the ability to continuously monitor the 
validity argument supporting this repeated assessment.

Implications of the current study

Using a repeated assessment approach, rather than administering a test at a single moment 
in time, provides an educator and learner with a more robust understanding of where the 
learner is at in their learning and where they need to go. Fully understanding and respond-
ing to where the learner is at by examining individual learning curves (particularly when 
the curve is atypical) will require discussion between an educator and a learner, as both 
bring their perspectives on what is happening to bear on their interpretation of the learning 
curve. With the current study, we have demonstrated the group learning curves for ECG 
competency for three levels of learners at a single institution. In order to be used more 
broadly, more learners across multiple institutions will be required. Once the group learn-
ing curves are even more robustly established, issues such as how the learner compares 
with learners at a similar or higher level, or how many ECGs the learner will need to inter-
pret to achieve a certain level of competence, can be addressed. The nested hierarchical 
models could ultimately be incorporated in a predictive model in order to inform these edu-
cational inferences. Having demonstrated that typical learning curves are achievable within 
this learning platform, an educator could have a learner engage with the ECG learning 
system and plot their individual learning curve. Examining the individual learning curves, 
as shown in Fig. 4, allows the educator and learner to understand where the learner is at 
present (i.e. are they in the efficient early phase? Are they at the incremental phase but still 
making gains in terms of decreasing the time per ECG? Are they competent at the level of 
a student, resident or fellow?). Based on this assessment, the educator and learner can col-
laboratively decide if intervention is necessary and assess any interventions through their 
impact on the learning curve.

Implementing a repeated assessment approach using a computer-based system that 
captures both process (e.g. time per page) and outcome (e.g. diagnostic accuracy) metrics 
with minimal intrusion or cost highlights the potential contribution of a Big Data/Learning 
Analytics approach (Pecaric et al. 2017). Validity evidence can be collected as a real-time, 
ongoing process with minimal intrusiveness or cost. As the computer system records mul-
tiple metrics simultaneously for large numbers of learners, the data can be analyzed at both 
the individual learner and the system level. Further, this data can be dynamically incorpo-
rated into learning curve models along with features of the item under consideration, such 
as its difficulty, to allow the learner to benefit from predictive modeling.

For educational researchers, the current study provides fertile ground for future studies. 
Replication with other learners, at other institutions and with other learning systems based 
on the principles of mixed and deliberate practice, would help gauge the generalizability of 
this repeated assessment approach. More research is needed in understanding how learners 
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attain ECG interpretation skills, the significance of atypical learning curves, what concepts 
are encapsulated in ECG diagnostic accuracy, and whether there are other instructional 
design features that would yield further learning gains, such as spaced practice or varia-
tions on retrieval practice or cues to facilitate dual processing. Furthermore, we need to 
extend the repeated assessments such that we can subsequently see the forgetting curve 
which would inform interventions for maintenance of competence (Pusic et al. 2012b).

Validity investigation is an ongoing, iterative process. As learning curve-based assess-
ment systems come to be used more broadly, we will be able to ask and answer new ques-
tions and we will be particularly better positioned to evaluate Implications evidence (Cook 
and Lineberry 2016). While the psychological underpinnings and statistical modelling of 
group-level learning curves have been fairly well-established both here and in other stud-
ies, the analyses of individual learning curves require deeper study (Pusic et al. 2016). The 
current study provides preliminary insight into how educators interpret learning curves as 
typical versus atypical; a more complete model of likely interpretations and resulting edu-
cational decisions would be very useful going forward.

Conclusion

Our study outlines a validity investigation of a learning-curve-based, assessment for learn-
ing, system for ECG interpretation. Our findings generally support foundational inferences 
in the use of the approach while pointing to rich potential research and development work 
going forward. In the era of competency-based education, learning curve approaches have 
the potential to contribute to the discussion around competency standards. Repeated assess-
ment approaches such as those modelled through learning curves also have the potential to 
provide learners with information as to whether they are ‘on-track’ and should continue 
their practice as-is, or whether they require consultation with an educator for additional 
guidance. Learning curves hold promise for providing educators and researchers, in col-
laboration with learners, with deeper insights into how well learners are learning.
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