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Abstract Learning curves are a useful way of representing the rate of learning over time.

Features include an index of baseline performance (y-intercept), the efficiency of learning

over time (slope parameter) and the maximal theoretical performance achievable (upper

asymptote). Each of these parameters can be statistically modelled on an individual and

group basis with the resulting estimates being useful to both learners and educators for

feedback and educational quality improvement. In this primer, we review various

descriptive and modelling techniques appropriate to learning curves including smoothing,

regression modelling and application of the Thurstone model. Using an example dataset we

demonstrate each technique as it specifically applies to learning curves and point out

limitations.
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Introduction

The learning curve is an excellent representation of the goal-directed learning that occurs

with practice to achieve a desired level of expertise (Pusic et al. 2015). The y-intercept

represents the learner’s prior knowledge. The slope is proportional to the efficiency of

learning given that the mean increase in performance per unit of study varies according to

the difficulty of the material, the quality of instruction or some combination thereof. With

continued effort, the learner crosses a mastery threshold after which the focus can switch to

performance maintenance as opposed to improvement (Pusic et al. 2012) though the

highest level of expert often chooses an adaptive expertise approach in which a lifelong

attitude of improvement is cultivated (Kalet and Pusic 2014). The learning curve

asymptote or plateau is a property of the learning system, representing the maximal

learning potential given endless repetitions (Jaber and Guiffrida 2004; Jaber 2006; Pusic

et al. 2015).

While considerable information can be gleaned from a qualitative assessment of the

learning curve, in this paper we explore the degree to which mathematical modelling of the

learning curve relationship can be of use to health professions educators and researchers

(Flavio et al. 2011; Jaber 2006).

We describe an approach to the statistical modelling of representative health professions

education tasks that can be repetitively practiced. In explicitly modelling the longitudinal,

growth nature of learning during effective practice, we demonstrate the feasibility of

predicting individual learning trajectories to the benefit of individuals and groups of

learners. Using both cognitive (radiology image interpretation) and psychomotor proce-

dural (laparoscopy) examples, we begin with the equivalent of descriptive statistics: scatter

plots and moving averages. We then describe the process of linear and nonlinear regression

modelling for learning curves, considering both data driven fitting of models and theo-

retical frameworks. We separately describe learning curve models derived from group data

compared with those compiled at the individual level. We finish by discussing potential

applications of these techniques.

Conceptual basis

As early as 1909, Robertson developed a learning equation based on the principles of

autocatalysis seen in physical chemistry (Robertson 1909; Singer and Willett 2003). His

equation had a logistic trajectory, arriving at an asymptote as the amount ‘‘to be learned’’

decreased. Thurstone later (1917) found that the theory held for women learning to type,

with the important parameters being the y-intercept, efficiency (a variant of slope) and the

asymptote (Thurstone 1919). The ogive appearance to the curve means that there are

diminishing returns, relative to effort expended, as one approaches the asymptote. This is

consistent with modern conceptualizations of expertise (Ericsson 2004).

A large number of formulae have been applied with success to model learning including

the Thurstone equation, logistic and power-law regression, each of which we consider

(Flavio et al. 2011; Ramsay et al. 2001). With novice learners, we have found that linear

regression can be a helpful first approximation in that it is easily determined and explained.

It also has the advantage of a ‘‘goodness-of-fit’’ metric, r-squared, which is easily calcu-

lated and compared, a fact that we will use to advantage when we examine the learning of a

group of individuals (Altman 1990).

742 M. V. Pusic et al.

123



We propose that the variability in the degree to which a learning curve relationship

holds can be useful to health professions educators. There is a large amount of empirical

data validating the learning curve conceptualization. Ritter and Schooler describe the

learning curve’s universality well when they say…

‘‘From short perceptual tasks to team-based longer term tasks of building ships, the

breadth and length of human behavior, the rate that people improve with practice

appears to follow a similar pattern. It has been seen in pressing buttons, reading

inverted text, rolling cigars, generating geometry proofs and manufacturing machine

tools, performing mental arithmetic on both large and small tasks, performing a

scheduling task, and writing books (Ritter and Schooler 2001).’’

Often when we apply statistical modeling techniques, typically in research settings, we

are trying to draw inferences from empirical data to inform a theory. However, given the

wide acceptance of learning curves as a fundamental principle of psychology, it may be

more advantageous to go in the opposite direction—that is, we can assume, under con-

ditions of practice with adequate ongoing feedback, that if a learning curve model does not

hold then the fault is likely not with the theory but rather lies with the conditions of

learning. In this way of thinking, we are not asking the question ‘‘is there a relationship

between learning and time or effort’’, but rather ‘‘if there isn’t a relationship, why not?’’

This orientation allows us to investigate situations where the learning relationship holds for

some learners, but not others. Are some learners not engaged? Are there developmental

differences such that this intervention is not appropriate for these learners? Thus, a learning

curve with a statistically significant negative slope is a call to attention for the educator;

similarly, a model that quantitatively demonstrates the relationship for some learners but

not others has provided interesting information on the learning method.

Example learning curve dataset

To describe the statistical modeling of learning curves, we will both draw on literature

examples and demonstrate analyses using an example dataset which we describe in this

section. Our emphasis is on demonstrating the analyses as opposed to presenting the

research findings for which we refer the reader to the prior reports (Boutis et al. 2010; Pusic

et al. 2015).

Learning curve models can be applied to assess learners’ development over time when

the following conditions are met: (a) there are at least three repeated observations per

individual with (b) adequate sample size with the minimum being reported as low as 22

individuals but generally closer to 100; more repeated observations per individual result in

increased power and (c) where maximum-likelihood methods are used, the repeated

measure needs to be normally distributed; however, learning curves can be fitted by other

means as well. The reader is referred to Curran et al. for a relevant summary (Curran et al.

2010).

Education intervention and post-intervention testing

We prospectively collected an initial pool of 234 ankle radiographs that were obtained to

exclude the possibility of ankle fracture (Boutis et al. 2010). Each case included the three

standard ankle radiograph views as well as the staff pediatric radiologist’s report. Cases

were categorized as either normal or abnormal based on the official radiology report. Case-
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to-case variability in terms of severity, quality etc. was accepted as being useful

pedagogically.

Computer program to present radiographs

In our prior report, we described the computer program used to present cases to participants

(Boutis et al. 2010). Subjects classified each case as either ‘Normal’ (no fracture), or

‘Abnormal’ (fracture present). Abnormal answers also required the user to indicate the

location of the suspected abnormality with a mouse click. Once a participant commits to

his/her diagnosis, the program immediately provided feedback by highlighting the

pathology on the abnormal images and providing the radiologist’s report (Fig. 1).

Participants In this review, we contrast the learning of 38 participants; 20 relatively

novice medical students (MS), against that of more advanced physicians in training: 6

residents (RS), and 12 pediatric emergency medicine fellows (FL). The dataset is suit-

able for our demonstration in that it shows both inter-individual and inter-group variability

in both prior knowledge and rate of learning. Each participant was presented with 234

randomly assigned ankle radiographs using a web-based application. The small number of

participants has advantages for straightforward demonstration of the analyses, at the cost of

Fig. 1 Screen capture from after the learner submits their answer (feedback screen). The purple annotations
do not appear in the actual program. The yellow dot represents the learner’s designation of the abnormality,
just inside the ‘‘hotspot’’ representing the correct location (Boutis et al. 2010). (Color figure online)
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leaving some of our comparisons underpowered. The dataset is provided as a supplemental

appendix.

Item-coding We considered each completed case as one item. Normal radiograph items

were scored dichotomously. Abnormal radiographs were scored correct if the participant

both identified them as abnormal and correctly indicated the lesion on the radiograph. We

defined ‘‘accuracy’’ as the dependent variable in our analyses, which takes on the value 0

or 1 for an individual case or, at the test level, the proportion correct.

Descriptive learning curves

In this section, we describe analytic methods that give insights as to the learning by

individuals. We consider, in turn, scatter plots and moving averages.

Scatter plots

In order to generate a learning curve, we graph an index of performance or learning on the

y-axis against an index of learning effort on the x-axis with the expectation that perfor-

mance improves with increasing learning effort (Jaber and Sverker 2004; Pusic et al.

2015). In some cases, the effort variable is easily represented: for example counts of how

many times an operation is repeated. Figure 2 shows a scatter diagram of the time taken

(speed) by one surgeon learning to perform a laparoscopic cholecystectomy (Ahlering et al.

2004). As surgeons gain psychomotor expertise, their speed improves such that the rela-

tionship is nonlinear with much larger speed gains initially (Ramsay et al. 2001). Each

point in Fig. 2 represents the time taken by one surgeon doing one operation somewhere in

a sequence of operations. While there is variability in the repeated unit (operations) in

terms of difficulty and other factors, the overall trend is clearly seen.

Binning

In some cases, like the radiograph interpretation example that we will further develop, the x-

or y-axis variable must be aggregated to properly show the learning relationship in mean-

ingful units. First, consider another learning curve of surgical operating times as they

decrease with cumulative experience represented by the number of cases performed (Fig. 3).

Here, the learning curve has been smoothed by taking the average time over a bin of 10

cases and then demonstrating how the 10-case average of time changes with experience.

This is an example of a connected-line scatterplot of the binned operative times.

‘‘Smoothing’’ results in less random noise in the scatterplot potentially making the

underlying learning curve relationship more clear. This approach works well for situations

where the y-axis is a continuous interval measure such as time, since continuous measures

can be averaged (and therefore smoothed) with the same meaning throughout the scale.

For an individual learning the visual diagnostic skill of interpreting radiographs, a single

case has less meaning as an index of an individual’s overall performance. Instead their

score across an aggregation of cases (again a bin) is a more reliable measure of perfor-

mance. Determining a sensible number of cases per data point, or ‘‘bin size’’, depends on

the nature of the task. In Fig. 4, we have plotted the Average Standard Error of Mea-

surement from the individuals’ scores on the ankle radiographs described earlier, against

the number of cases within an individual’s bin.
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We can see that it takes about 10 cases to reduce the error in the estimate of accuracy by

about 40 % (from *20 % to 13 %), but doubling the bin size to 20 reduces the SEM by

only 3 more percentage points (to 10 %). Each individual in the ankle radiograph study

completed 234 cases. One way of binning this data is to aggregate the data from every 18

cases interpreted, resulting in 13 individual testlets (13 9 18 = 234) though any number

of other combinations of cases per testlet are possible, trading off individual data point

precision against overall number of data points. A scatter diagram based on 13 testlets of a

representative individual completing the radiographs is shown in Fig. 5.

Moving averages

Smoothing functions attempt to capture important patterns in a set of data, while leaving

out noise or other rapidly fluctuating phenomena that do not bear on the overall trend

Fig. 2 Connect-line scatterplot of a single surgeon doing prostate surgery. Total operative time per single
case graphed against the number of cases completed. http://www.laparoscopytoday.com/2006/01/
robotassisted_r.html

Fig. 3 ‘‘Smoothed’’ learning curve. Average times over 10-case bins for a single surgeon performing
single-port laparoscopic cholecystectomy (Koo et al. 2012)
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(Simonoff 1996). Two of the most commonly used smoothing functions are cumulative and

simple moving averages (Table 1). The cumulative moving average takes each new data

point in a sequential series and incorporates it into the estimate of the average. While

useful for demonstrating overall learning trends, cumulative moving averages’ (e.g. Fig-

ure 6—green line) current estimate of the participant’s accuracy is always weighed down

by early cases, and therefore does not fully reflect the learning that has occured. Simple

.0
5

.1
.1

5
.2

S
E

M
 o

f G
ro

up
 A

cc
ur

ac
y 

E
st

im
at

e

0 10 20 30 40 50
Number of Cases in "Bin"

Fig. 4 Standard error of measurement for the accuracy across individuals reading ankle radiographs, as
described in the text

Fig. 5 A scatter diagram showing the results of a single individual’s learning curve (MS002) upon
completion of 234 radiograph cases with immediate feedback. The results have been aggregated into 13 bins
of 18 cases. In addition, a regression trendline has been drawn through the 13 datapoints
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Table 1 Summary of descriptive learning curves at the individual level

Type Legend
(see
Fig. 6)

Formula for
last graphed
point

Formula for
second last
graphed
point

Consecutive
points
independent?

Comment

Connected
lines
scatter plot

Blue
jagged
line

Average of
accuracy
for cases
216–234

Average of
accuracy
for cases
198–216

Yes, the data
points are
generated
from non-
overlapping
data

Advantage is that this type
of graph is
straightforward to
generate; can have
considerable noise

Predicted
regression
line

Grey
trendline

Interpolated from regression
formula:
Accuracy = b0 ? b1n,
where b0 (y-intercept) and
b1 (slope) are parameters,
and n is the bin number

Yes, regression
generated
from the 13
independent
observations

Maximum likelihood
approximation which can
be judged using model fit
measures like r2.
Assumes linear
relationship

Simple
moving
average

Yellow
moving
average

Average of
prior 18
points
(cases
216–234)

Average of
prior 18
points
(cases
215–233)

No, the two
adjoining
points share 17
common data-
points

Smoothed but prone to
tradeoffs with regards to
bin size

Cumulative
moving
average

Green
moving
average

Average
over all
cases to
that point
(cases
1–234)

Average
over all
cases to
that point
(cases
1–233)

No, the two
adjoining
points share
n-1 common
data-points

Maximum smoothing but
later points underestimate
actual ability/
performance

Refer to Fig. 6 ‘‘Cumulative and Simple Moving Averages’’

Fig. 6 The same scatter diagram as shown in Fig. 5 is now overlaid with cumulative (green) and 18-case
simple (yellow) moving average curves. Note that the cumulative moving average underestimates the
learners functioning at the end of the learning experience. (Color figure online)
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moving averages use a subset (or bin) of fixed size, and therefore fixed precision, across the

whole length of the learning curve (Simonoff 1996). The issue of optimal bin size also

applies to the size of the window used in a simple moving average. Simple moving

averages provide a generally more accurate ending estimate of performance where the final

estimate is the average score for the final bin (of size 18 in our example from Fig. 6—

Table 2 Linear regression
parameters for 38 learners
ordered by the amount of vari-
ance explained (r2), where ‘‘SE’’
is standard error. In this case, the
degree to which a linear model
holds is highly variable between
learners

Learner Intercept SE (inter) slope SE (slope) r2

MS019* 0.537 0.037 0.019 0.021 0.655

FL009 0.444 0.095 0.030 0.012 0.605

FL010 0.551 0.040 0.024 0.005 0.499

MS002* 0.529 0.047 0.024 0.006 0.473

FL005 0.655 0.032 0.014 0.004 0.429

FL012 0.530 0.075 0.025 0.009 0.416

MS016 0.618 0.038 0.019 0.005 0.413

FL008 0.537 0.057 0.020 0.007 0.402

MS018 0.485 0.059 0.019 0.007 0.397

MS013 0.344 0.175 0.035 0.020 0.379

RS005 0.596 0.064 0.019 0.008 0.372

FL011 0.574 0.081 0.027 0.010 0.362

MS012 0.571 0.031 0.018 0.004 0.338

FL001 0.589 0.039 0.018 0.005 0.332

RS002 0.432 0.163 0.026 0.020 0.324

RS001 0.639 0.031 0.011 0.004 0.245

MS014 0.431 0.135 0.023 0.017 0.223

RS004* 0.370 0.078 0.019 0.038 0.221

MS008 0.742 0.049 -0.015 0.006 0.214

FL007 0.541 0.110 0.016 0.014 0.179

MS017 0.403 0.075 0.017 0.009 0.168

MS015 0.489 0.078 0.015 0.010 0.152

FL003 0.781 0.034 0.007 0.004 0.127

MS020 0.684 0.137 -0.008 0.016 0.120

MS001 0.584 0.109 0.012 0.014 0.098

MS007 0.579 0.060 0.009 0.008 0.097

FL002 0.704 0.040 0.007 0.005 0.091

RS006 0.658 0.135 0.006 0.016 0.067

MS003 0.536 0.070 0.009 0.009 0.067

MS010 0.645 0.075 0.007 0.009 0.057

MS006 0.684 0.058 0.004 0.007 0.029

MS009 0.830 0.163 -0.012 0.020 0.027

FL004 0.784 0.069 -0.002 0.009 0.019

MS005 0.630 0.067 -0.003 0.008 0.014

MS011 0.639 0.062 0.002 0.008 0.014

FL006 0.747 0.082 -0.005 0.010 0.011

MS004 0.654 0.060 0.002 0.008 0.010

RS003 0.664 0.117 0.000 0.014 0.001
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yellow line). By contrast, in the cumulative moving average, the final estimate is across all

repetitions and so incorporates data from the entire set (of size 234 in the same example,

Fig. 6—green line). As mentioned, this has the effect of underestimating the final per-

formance since the cumulative moving average is penalized by including early repetitions

when the participant is not as facile with the task as they are at the end.

A particular type of the cumulative moving average used in health education for

assessing procedural competence is the CUSUM (Cumulative Sum) analysis where success

at a procedure, over sequential repetitions, is plotted taking into account a known or

estimated acceptable failure rate (Bolsin and Colson 2000). Finally, curve-fitting using

regression techniques can be considered a form of smoothing, but differs in that the

emphasis is more explicitly placed on matching the data to a mathematical function that is

ideally theory-based (whereas smoothing functions are non-parametric) (Simonoff 1996),

(Priestley and Chao 1972).

Learning curve regression models for individuals

In this section, we explore the degree to which regression modeling can be used to draw

inferences about the learning of an individual under the conditions of repetitive practice.

We use the same dataset as for the prior exploration of descriptive learning curves

including and, where applicable, the same binning of 13 testlets of 18 cases each. While

any number of ‘‘linking functions’’ can describe the relationship between performance and

learning over time, we will consider in turn, logistic, linear and power models (Pusic et al.

2015; Ramsay et al. 2000).

Logistic regression is used to model the relationship between a categorical dependent

variable (in the case of the radiograph cases, dichotomous accuracy) and one or more

independent variables such as the number of cases completed. In Fig. 7 we see a graph of the

logistic function for the same learner (MS002) considered in the Moving Averages sec-

tion. There are important distinctions from other types of learning curves. First, the y-axis is

not an actual continuous outcome such as Accuracy), but rather a transformed probability

Fig. 7 Logistic regression model of learner MS002’s progression through the 234 radiology cases. Each
case is answered either correctly (scored 1.0 and dot on the top line) or incorrectly (scores 0.0 and dot on the
bottom line). The y-axis is the predicted probability of a correct outcome given completion of x radiograph
cases. Shaded area is the 95 % confidence interval about the prediction line
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generated as the outcome of a Bernoulli distribution. As a result, the relationship between the

trial data, a series of successes or failures, is more difficult to relate to an individual’s path

through the material. A key advantage of logistic regression modeling is that there is no need

to ‘‘bin’’ the data since each datapoint can be meaningfully represented.

Linear and power-law regression models can be used at the individual level to relate

performance to the number of cases completed. They differ from logistic regression in that

the performance (y-axis) variable is a continuous measure: for the surgical operation

example, it would be time per case; for the radiology example, the number of cases

accurately diagnosed per bin of 13 cases. In Fig. 8 we show both relationships, the power

law being theoretically more applicable to a learning situation where ongoing learning

effort is likely to result in diminishing performance returns as the learner goes along

(Ericsson 2008; Singer and Willett 2003).

For the situation of discrete outcomes, as for the radiology example, the question arises

as to whether to use logistic or linear/power regression to generate learning curves. We

suggest using each according to their advantages. Logistic regression modeling obviates

the need for subjective determination of bin sizes and therefore the estimated parameter for

learning rate is relatively standard. On the other hand, linear/power regression curves have

the advantage of a directly-observed y-axis measure and a more fine-grained representation

of the learner’s path and how it differs from those of others.

In Table 2, we have listed the linear regression parameters of all 38 of the learners in

our study in order to demonstrate the inter-individual variability in the degree to which a

linear regression model fits. Similar inter-individual variability is seen for a Power model

(data not shown). Using an index of model fit (r2), shows that the models vary in the

amount of variance explained from 0 (learner RS003), indicating no relationship what-

soever of Accuracy to number of cases completed, to an individual where fully 65 % of the

variance in Accuracy is explained by the amount of practice (learner MS019). Each of

these learners completed the same 234 cases albeit in a different random order.

In summary, learning curve models at the individual level are able to represent the inter-

individual variability seen, from completely unsuccessful learners to those who follow the

theoretical trajectory very well. We could speculate that the degree to which an individual

follows a theoretical statistical model reflects the success of the learning environment for

that individual and thus constitutes an indirect assessment that the necessary elements for

learning are present, including engagement/motivation as well as match between feedback

and the developmental stage of the learner.

Learning curve models for group-level data

Next, let us turn to the statistical analysis of the averaged learning curves of different

groups for the purposes of comparison. For group comparisons we contrast the learning of

two groups: the 20 medical students and the 18 more-expert residents and fellows under the

same conditions of deliberate practice. The dependent variable is the accuracy score of the

individual on each 13-case bin.

Repeated measures ANOVA

If the repeated measurements are independent (for normally distributed responses) we can

use standard ANOVA techniques to estimate the difference between two groups of
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participants. However, in fact the observations are not independent so we instead use

Repeated Measures ANOVA which takes into account the correlation of observations from

the same individual.

From the analysis (Fig. 9) we conclude that the ‘‘group’’ effect on accuracy is signif-

icant. The ‘‘Number of Cases’’ effect was also significant, meaning that the groups’

Fig. 8 Three individual learning curves chosen to show the degrees of correlation (r-squared) seen with 13
testlets of 18 cases each. The middle pane shows the same learning curve as in the moving average in Figs. 5
and 6. Model parameters for each are shown in Table 2, indicated by an asterisk (*) The r-squared displayed
on each figure is for the linear model. Note that the slope of the learning curve for learner MS008 is negative
to a statistically significant degree
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responses improve over time. The interaction term was not statistically significant sug-

gesting that the dependence of learning on the number of cases is not statistically different

between groups.

Linear and power models

Linear and power models can be useful for summarizing group-level learning curve data.

In Figs. 10 (linear) and 11 (power), we see that for each group separately, there is a

statistically significant slope indicating a relationship between the number of testlets

completed and level of accuracy.

Comparing the slopes of the students to those of the residents and fellows using a t test

revealed a more positive slope for residents of ?0.006 with a 95 % CI of 0.0, ?0.014. The

difference in y-intercepts did not achieve statistical significance (mean difference ?0.03;

95 % CI –0.038, ?0.092).

Power models have the theoretical advantage of better representing the phenomenon of

‘‘diminishing returns’’ seen with the repeated deliberate practice that characterizes elite

Df Sum Sq Mean Sq F value Significance
Between 
Individuals
Group 1 0.4668 0.4668 11.23 0.0019

Residuals 36 1.4966 0.0416
Within
Individuals
# of Testlets 12 1.45 0.117 8.54 0.000
group:NumTestlets 12 0.219 0.01823 1.329 0.198

Residuals 432 5.924 0.01371

Fig. 9 Repeated measures ANOVA for 13 testlets of 18 cases each. Bars on graph represent standard errors
for the group means
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performance. In a linear model, a large number of iterations would seem to result in the

same rate of improvement with each additional testlet, something that is not observed in

practice where later repetitions result in less improvement per repetition.

The Thurstone learning model

The Thurstone function (see Supplemental Appendix) adds one more parameter to the

previously discussed indices of prior knowledge (y-intercept) and learning efficiency

(slope); namely the asymptote (Singer and Willett 2003; Thurstone 1919). Based on the

asymptote, we can predict the maximum possible learning for each group, under the

conditions of the experiment. From the modeling results the coefficients for the asymptotes

were 0.72 (SE = 0.032) for medical students and 0.84 (SE = 0.031) for the residents and

fellows. Not only do fellows/residents learn at a greater rate, but they would be expected to

attain a different maximum learning benefit from the intervention. Note that the addition of

the third parameter (asymptote) makes this formula require greater participant numbers to

generate a fitted model (Fig. 12).

Medical Students (MS)
Estimate Std. Error t value Significance

Intercept 0.59 0.025 23.4 0.000
Slope 0.0094 0.0031 2.96 0.013

Residents and Fellows (RSFL)
Intercept 0.617 0.019 32.7 0.000

Slope 0.015 0.0023 6.1 0.000

Fig. 10 Linear regressions at the group level
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Discussion

In this review, using radiology and surgery learning data, we have shown that the learning

curve describing the relationship between productive learning effort and performance can

be successfully modeled using a number of descriptive (scatter plots, moving averages) and

modeling techniques (regression) both at the individual and group levels. Our intent was to

show how specific mathematical approaches to the description of the learning process can

yield insights beyond those of the graphics alone.

Learning curves are a particular instance of statistical models termed growth curve

models which allow for the estimation of ‘‘inter-individual variability in intra-individual

patterns of change over time’’ (Curran et al. 2010). They represent an advance in that they

provide a finer grained examination of the trajectories of individuals than do more tradi-

tional summary statistics, change scores, or even repeated measures ANOVA with its strict

assumptions.

We have distinguished between individual-level and group-level learning curves and

recommend determining both in order to fully assess the effectiveness of repeated practice.

Estimate Std. Error t value Significance
Medical Students (MS)
Intercept 0.562 0.024 23.5 0.0000
Learning 
efficiency 0.088 0.022 4.03 0.0012 

Residents and Fellows (RSFL)
Intercept 0.586 0.013 44.03 0.0000
Learning 
efficiency 0.116 0.0115 10.03 0.0000 

Fig. 11 Power law regressions at the group level
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Fitting a group level model establishes that the learning curve relationship holds and allows

determination of the average prior knowledge (y-intercept) and average efficiency (slope)

as well as, in the Thurstone model, an estimate of the learning potential (asymptote) of the

practice system. These norms provide context for individual-level curves in much the same

way that a class average informs the interpretation of one individual’s test score. If the

learning curve relation does not hold at the group level (poor model fit), then it calls into

question the entire system. On the other hand, if the relation holds at the group level, it

does not mean that the system works for each learner. Individual-level curves, and the

degree to which they fit (e.g. model r2) allows determination of the inter-individual vari-

ability of the learning experience, valuable information for those responsible for managing

the group’s educational experience.

Assessment in medical education is often divided into that which serves formative or

summative purposes (Epstein 2007). Learning curves add information on the rate and path

of learning to an assessment, which is an advantage for each of these.

In formative assessment, learning curves can be used to individualize adaptive learning,

thus providing motivation and direction for future learning. For a given level of prior

knowledge, the number of repetitions required, on average, to achieve mastery could be

Medical Students (MS)
Estimate Std. Error t value Significance

Asymptote 0.718 0.033 21.8 0.000
Intercept 0.33 0.37 0.89 0.39
Efficiency 0.897 1.57 0.57 0.582

Residents and Fellows (RSFL)
Asymptote 0.837 0.032 26.5 0.000
Intercept 0.467 0.069 6.735 0.000
Efficiency 2.498 1.426 1.751 0.11
a=asymptote (dashed horizontal lines)

Fig. 12 Thurstone learning curves at the group level
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estimated, allowing for individualized learning schedules. In current conceptualizations of

summative assessment, the focus is on having sufficient psychometric rigor to allow a

defensible binary decision as to whether a candidate has achieved a pre-determined level of

competence (Epstein 2007). By adding rate information, a learning curve conceptualization

changes the question from ‘‘will she/he pass?’’ to a question that is more consistent with a

growth mindset: namely, ‘‘when will she/he pass?’’ which allows the full variety of

learning paths, but still ensures the protection of the public.

The examples in this paper all show models of directly observed data so that the

measurement errors in the predictors (principally the effort variable) and the performance

measure are reflected in the modeling results. An alternative is the latent variable approach

where the measurement error is taken into account allowing a potentially more accurate

representation of the abstract construct of interest. In the radiology example, a latent

variable representing ‘‘radiograph interpretation ability’’ would allow the modeling of

unobservable learning trajectories with the errors deducted. This approach generally

requires a larger sample size and meeting the other requirements of latent class models

(Downing 2003). Another extension of the learning curve approach is to consider group

and individual trajectories within the same ‘‘multi-level’’ model which, while somewhat

more complex, has the added advantage of allowing exploration of group by individual

interactions (Curran et al. 2010; Detry and Ma 2016; Singer and Willett 2003).

There are limitations that need to be kept in mind. A learning curve statistical model is

only as good as the precision, reliability and validity of the measurements that go into it.

For example, immediate measures of performance like those we describe in our examples

are likely not as meaningful as those obtained after a retention interval (Dubrowski 2005).

Other limitations more specific to our example data include the non-random convenience

sampling and the fact that the participants generally completed the cases in a non-proctored

environment with varying levels of engagement (Boutis et al. 2010). The fact that we do

detect learning effects despite this real-world noise is hopeful. The radiology task lends

itself to this approach as the unit of analysis (the case) is repeatable with a defined amount

case-to-case variability. This may not be true of other health-professions skills where direct

indices of performance may be defeated by the extent of the case variability.

In the end, learning curve modeling can be helpful in Health Professions Education

where there are valid measures that allow discrimination of inter-individual variability in

the individual’s learning trajectory whether psychomotor, knowledge or attitudinal in

nature. Being able to describe that variability mathematically, whether in terms of the prior

knowledge, rate of learning or maximum learning potential can provide the health pro-

fessions educator or researcher with greater insight into their learning system.

In an online Supplemental Appendix we have listed the details of our data and the

algorithms used to derive the models. We have limited the scope of this review to learning

curves but we urge investigators to consider similar issues for forgetting or experience

curves (Jaber 2006; Pusic et al. 2012).

Conclusion

We have shown a number of mathematical modeling techniques for demonstrating the

degree to which a learning curve relationship holds for either groups or individual learners.

The learning curve model can serve as a barometer of the efficiency and effectiveness of a

learning system. Group level learning curve model parameters can guide the health
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professions educator by providing estimates as to how many repetitions are required, on

average, for individuals to achieve mastery. Individual level mathematical models can

make manifest the inter-individual variability in the rate of learning.
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